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Abstract—The first part of this paper discusses the high-
resolution, real-time 3D optical sensing techniques that we
developed in the optics community. Such technologies could
benefit the advanced intelligent mechatronics community as
another sensing tool. The second part of this paper discusses
our recent development on 3D sensing data compression
and streaming that could open new opportunities for the
mechatronics community. Our 3D optical sensing technique is
based on the digital fringe projection (DFP) method that has
merits of speed, resolution, and accuracy, as well flexibility
when comparing with other 3D optical imaging methods. Our
novel compression method drastically reduces data sizes, and
through seamless integration with our 3D sensing system, allows
for real-time high-quality 3D data delivery across standard
wired and wireless networks. This paper introduces the basic
principles of each technology and casts our perspectives on
possible applications that our technologies could enable for the
mechatronics community.

I. INTRODUCTION

Advances in two-dimensional (2D) optical sensing and
machine/computer vision have provided integrated smart
sensing systems for numerous applications [14]. By adding
one more dimension, advanced three-dimensional (3D) opti-
cal sensing and vision technologies can have much greater
impact to scientific researches (e.g., mechatronics, medicine,
computer sciences) and industrial practices (e.g., manufac-
turing, intelligent robotics).

Due to the increased computational power available on
personal computers, mobile devices, and in cloud computing,
high-speed and high-accuracy 3D sensing techniques have
been increasingly sought after by scientists in fields such
as biomedical engineering and computer science, by engi-
neers from various industries including manufacturing and
entertainment, and even by ordinary people with different
technical backgrounds [25]. The availability of consumer-
level real-time 3D sensing technologies (e.g., Microsoft
Kinect, Intel RealSense, Apple iPhone X) further drives
the developments and applications of 3D optical sensing
technologies.

3D optical sensing methods can be broadly classified
into two categories: passive and active methods. Passive
techniques require no active illumination for 3D sensing,
and one of the most popular passive methods used in the
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mechatronics community is based on stereo vision princi-
ples [5,13]. The stereo-vision technique determines depth
information by capturing images from at least two different
perspectives, finding the corresponding points which are
similar between those images, and then by utilizing the
calibrated camera parameters and the triangulation relation-
ship between image pairs. Despite its simple system setup,
low cost, and rapid image acquisition, stereo vision is not
extensively used in applications where high sensing accuracy
is required. This is primarily because such a method requires
determining corresponding points from a pair of images, and
it is fundamentally difficult to achieve high accuracy if an
object does not present rich surface texture.

Active methods eliminate the fundamental limitation of the
stereo method by actively illuminating the object with pre-
known information. For example, the time of light (TOF)
technique actively emits modulated light in the time domain
and collects the modulated light scattered back by the object.
Depth information can then be calculated by determining the
time delay from the time that the signal left the device until
the signal returned to the device [7]. Since the TOF method
does not require triangulation for 3D sensing, its footprint
can be small, making it applicable for long range 3D sensing
and mobile sensing. For example, the light detection and
ranging (LIDAR) technology is based on TOF for long range
sensing, and Microsoft Kinect II employs the TOF for mobile
applications. However, the achieved depth resolution for TOF
systems may not be high as, due to the extremely high
traveling speed of light, it is difficult to measure time delays
accurately.

The structured light method, another of the active methods,
reconstructs 3D information by replacing one of the cameras
within a stereo vision system with a projection device,
such that structured pattern(s) can be actively projected for
correspondence establishment [19]. The projection device
can be a fixed pattern projector (such as those used in
Apple iPhone X or Microsoft Kinect), or a programmable
and flexible digital video projector. Due to the flexibility
of digital video projectors, different types of structured
patterns can be used, such as random patterns [8], binary
structured patterns [19], multi-gray level patterns [18], as
well as sinusoidal patterns [23]. Compared with all of the
different types of patterns, using the sinusoidal structured
patterns, especially combined with phase-shifting algorithms,
is overwhelmingly advantageous [21]. The sinusoidal struc-
tured patterns are often referred to as fringe patterns in the
optics community, and the structured light method which
uses digital fringe patterns for 3D optical sensing is often
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called digital fringe projection (or DFP).

Leveraging the unique projection mechanism of single-
chip digital-light-processing (DLP) technologies, Zhang and
Huang [26] developed what was probably the first-ever, high-
speed 3D optical sensing system that achieved 3D shape
acquisition, reconstruction, and display at an unprecedented
40 Hz with over 250,000 measurement points per frame.
Following this endeavor, numerous real-time techniques in-
cluding [10, 15,20,28] have been developed for 3D shape
measurement, leveraging both advanced hardware technolo-
gies (e.g., GPU) and new innovations on software algorithms.

The size of 3D data is typically a magnitude larger than
that of its 2D counterpart. Therefore, compressing 3D data
has emerged as an important issue to be dealt with for large
size data storage and visualization. Conventional 3D data
representation formats (e.g., STL, OBJ) are effective and
generic, yet they usually store (,y, z) coordinates for each
vertex, the connectivity information between vertices, and of-
ten surface normal information thus utilizing a lot of storage
space. Given our knowledge and experience on 3D optical
sensing system development, we developed a sequence of 3D
compression techniques for 3D structured light sensors [2—
4,11,17,22] that convert 3D data into standard 2D image
formats such that the 2D images can be further compressed
using mature 2D image compression methods. Sequences of
2D images can also be further compressed using 2D video
compression techniques such as using H.264 codec [12].

Recently, Bell et al. [1] developed a novel platform,
dubbed Holostream, which enables high-quality 3D video
communications across existing standard wireless networks
and existing mobile hardware devices (e.g., iPhones and
iPads). Such a platform advances the quality and capabilities
of applications already utilizing real-time 3D data delivery
(e.g., teleconferencing, telepresence), and could also enable
applications where real-time delivery of high-resolution,
high-accuracy 3D video data is especially critical, such as
robot-robot and human-robot interactions.

This paper explains the basic principles behind real-time
3D optical sensing using DFP in addition to real-time 3D
video compression and streaming techniques. Experimental
data will be presented to demonstrate the performance of
each technology.

II. PRINCIPLE

This section briefly discusses the principles of real-time
3D optical sensing using a phase-shifting method, as well as
real-time 3D video compression and streaming techniques.

A. Real-time 3D sensing using digital fringe projection
(DFP) techniques

Figure 1 shows the schematic diagram of a DFP system
for 3D optical sensing using the triangulation approach.
Using this figure, we can see that Point A on the imaging
unit, Point C on the projection unit, and Point B on the
object surface form a triangle; such a triangular relationship
can be used for 3D reconstruction when the calibration
parameters of the camera and the projector are known. The
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projected pattern contains stripes that vary sinusoidally in
one direction, and thus each varying line on the projector
can encode unique information. To find the corresponding
point C on the projection device for a given camera image
point A, epipolar geometry is often used [23].

Phase ling

z Object
point

thﬁe line

Camera
{ pixel

Projector
pixel

rojector +A4j
fringe—"_

55
D E

Baseline

Fig. 1. Schematic configuration of the structured light system. A projector
shines pre-defined structured patterns to the object surface; the object surface
geometry distorts the patterns; the camera captures the distorted patterns;
and the software analyzes the camera images to find their correspondence
with the projector in order to form triangulation for 3D reconstruction.

Phase-shifting methods have been extensively employed
in high-accuracy 3D optical metrology due to the advantages
of achievable speed, resolution, and accuracy [16]. Among
those phase-shifting algorithms, the three-step or four-step
phase-shifting algorithm is typically used for high-speed
applications. For a three-step phase-shifting algorithm with
equal phase shifts, the intensity of the three fringe images
can be described as

L(z,y) = I'(z,y)+I"(z,y)cos(p—2m/3), (1)
L(z,y) = I'(z,y)+1"(x,y)cos(e), ()
Ii(z,y) = I'(z,y)+1"(z,y)cos(¢p+21/3). (3)

Here, I'(x,y) is the average intensity, I"(x,y) is the inten-
sity modulation, and ¢(x,y) is the phase to be solved for.
Simultaneously solving Eq. (1)-(3), the phase can be obtained
via

é(z,y) = tan~! [\/ﬁ(fl 1)/ — 1) — 13)} R

Equation (4) provides phase values ranging from —m to +7
with 27 phase discontinuities. A phase unwrapping algorithm
is required to determine those 27 discontinuous locations
and remove them. In general, phase unwrapping can be
classified as either relative phase unwrapping or absolute
phase unwrapping. The former produces an unwrapped phase
map that can be used to measure relative 3D surface informa-
tion. Conventional spatial phase unwrapping algorithms [6]
typically belong to this category. In contrast, by using a
predefined absolute reference, absolute phase unwrapping
methods [24] can obtain an unwrapped phase map that
can be used to recover absolute 3D shape of the object.
Temporal phase unwrapping algorithms typically generate
absolute phase maps, for example. In this research, we em-
ploy the enhanced two-frequency temporal phase unwrapping
method [9] to obtain absolute phase for absolute 3D shape
measurement.
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In addition to phase, solving Eq. (1)-(3) can also produce
a texture image which is perfectly aligned with 3D geometry

via
L+ L+

3

Since the texture image is essentially a regular photograph of
the object it can readily be used for enhanced visualizations
or for information analysis.

Figure 2 shows an example of using the three-step phase-
shifting algorithm for 3D optical sensing. Figures 2(a)-2(c)
show three high-frequency fringe patterns. Using these three
phase-shifted fringe patterns, we can compute the wrapped
phase (Fig. 2(d)) and the raw texture (Fig. 2(k)). Figures 2(e)-
2(g) show three low-frequency fringe patterns, from which
the low-frequency phase can be calculated, as shown in
Fig. 2(h). The low-frequency phase map can be used to
unwrap the high-frequency phase map using the enhance
two-frequency phase unwrapping method [9]. Figure 2(i)
shows the unwrapped phase map. The unwrapped phase map
can then be further processed to reconstruct 3D information
using the system’s calibration parameters. Figure 2(j) shows
the 3D result rendered in shaded mode. The raw texture
shown in Fig. 2(k) is Bayer coded, which can be converted to
color texture using a demosaicing algorithm; Fig. 2(1) shows
the recovered color texture. In this example, the system was
calibrated using the method discussed in Reference [27]. The
camera resolution used for this experiment was 480 x 640:
a rather low resolution, yet the details are well captured by
using the phase-shifting method.

Zhang and Huang [26] developed a 3D optical imaging
system that simultaneously captured, processed, and dis-
played 3D geometries at 40 Hz with over 250,000 mea-
surement points per frame, something which was unprece-
dented at that time. The basic principle behind such a real-
time 3D imaging technology is to take advantage of the
unique projection mechanism of a single-chip digital light
processing (DLP) projector. Such projectors naturally switch
between three images (i.e., red, green, and blue channels)
at a default refresh rate (which was 80 Hz at that time).
Today, the aforementioned enhanced two-frequency phase-
shifting algorithm has been successfully implemented on
DLP development kits to achieve real-time 3D measurement
speeds of 30 Hz (or faster when utilizing a modern GPU to
perform the 3D data processing and reconstruction).

Li(z,y) &)

B. 3D sensing data compression

Raw 3D video data is enormously large before compres-
sion, requiring bandwidths of over 1 Gbps (Gigabit per
second) for streaming, which is difficult to achieve across
standard wireless networks. To address this, we have devel-
oped a two-stage 3D video compression technique which
frame-by-frame (1) encodes 3D geometry and color texture
into standard 2D images and (2) further compresses the
2D image sequence using standard 2D video compression
codecs.

As mentioned above, our 3D sensing technique recovers
3D data from a 2D phase map and, since this process is
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Fig. 2.

Example of using enhanced two-frequency phase-shifting method
for high-resolution 3D optical sensing. (a)-(c) Three phase-shifted high-
frequency fringe patterns; (d) wrapped high-frequency phase map; (e)-
(g) three phase-shifted low-frequency fringe patterns; (h) wrapped low-
frequency phase map; (i) recovered 3D shape; (k) raw Bayer-coded texture
image; (1) color texture after demosaicing. The camera resolution used for
this experiment is 480 x 640.

performed pixel-by-pixel, there exists a one-to-one mapping
between the unwrapped phase ®(i,j) of a point and its
recovered (x,y, z) coordinate. In other words, the 2D phase
map already contains a precise encoding of the 3D coor-
dinates. Therefore, as long as the 2D phase map can be
encoded, its 3D information can be recovered later on.

For each pixel (i, j) within the unwrapped phase map, a
scaled corresponding phase value ® is encoded as sine and
cosine functions,

G(i,j) =

127.5 + 127.5sin ®, (6)
127.5 + 127.5cos D, (7)

and these two images can be stored into the red and green
channels of a standard image. The blue channel is then used
to store the natural texture value, B = I;. The encoded 2D
image can be further compressed frame by frame via a loss-
less (e.g., PNG), or via a lossy (e.g., JPEG), image encoding
method. The final compressed 2D image can now be stored
or transmitted and used to recover both 3D coordinates and
color texture when needed.

The left image of Fig. 3 shows an example of an image
that encodes both the 3D geometry shown in Fig. 2(j) and
color texture shown in Fig. 2(1). If the 480 x 640 image is
stored with lossless PNG, the file size of the data is reduced
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from 32 MB to 288 KB, achieving a compression ratio of
approximately 112:1 versus storing the same information
within the OBJ format. As shown in the last image of
Fig. 3(d), the difference between the original geometry and
the geometry reconstructed from the PNG image appears to
be random noise which may be caused by small amounts of
quantization.

et

Fig. 3. Encoding and decoding 3D geometry and color texture. A lossless
PNG format results in a compression ratio of approximately 112:1. (a) The
encoded RGB PNG image; (b) the recovered color texture; (c) the recovered
3D geometry; (d) an overlay of the reconstructed 3D geometry on top of
the original 3D geometry (gray color represents recovered geometry and red
represents the original geometry).

The encoded RGB image can be further compressed
using a lossy JPEG encoder. For example, we can achieve
compression ratios of 107:1, 267:1, 406:1, and 518:1 when
using JPEG 100%, 95%, 90%, and 85%, respectively. Fig-
ure 4 shows the result of compressing one single 3D frame
using the different qualities of JPEG encoding. The 3D
reconstructions from the lossy encoded images incur some
reduction in measurement accuracy; however, for visual-
based applications (e.g., telepresence), there may not be a
distinguishable difference.

Even higher compression ratios can be achieved if a
sequence of encoded 2D frames are compressed using video
codecs (e.g., H.264). Figure 5 shows some example recon-
structions decoded from the data stored with various qualities
of H.264. We achieved a 129:1 compression ratio if a lossless
encoding is used, and Fig. 5(a) shows the result. If we encode
the video at various lossy levels, placing the color texture in a
mosaic fashion to the right of the RGB encoded image, we
can achieve even higher compression ratios. For example,
we achieved a 551:1 compression ratio if the video frames
are compressed using 4:2:0 subsampling and a constant rate
factor (CRF) of 6. Figure 5(b) shows the representative result
using this level of lossy compression; it only requires a 14
Mbps connection to stream live 3D video at this quality. If
lower quality geometry is acceptable, we achieved a 1,602:1
compression ratio using a CRF value of 12 to encode the
video sequence. It would only require a 4.8 Mbps network
connection to stream this quality video at 30 Hz. As shown
in Fig. 5(c), even at the very low bitrate of 4.8 Mbps the
resulting 3D reconstructions are still of high quality in both
geometry and color texture. The mean error between the
original and reconstructed geometries across was 0.38 mm,
0.65 mm, and 0.69 mm for CRF values of 0, 6, and 12,
respectively. The respective standard deviations were 0.50
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Fig. 4.
at different qualities. (a) - (d) JPEG quality of 100%, , 95%, 90%, and
85%, respectively; (e) - (h) recovered texture from RGB images (a)-
(d), respectively; (i)-(1) recovered 3D geometry from RGB images (a)-(d),
respectively.

Compressing encoded RGB images with lossy JPEG encoding

mm, 0.51 mm, and 0.54 mm. It should be noted that these
measurements excluded large boundary outliers.

C. Holostream

As a result of the above process, the encoded 3D video is
small enough for delivery across wired or wireless networks.
To demonstrate this, we implemented data transmission
within an intermediary web server—built on top of HTTP
and WebSocket technologies. When a client first connects to
the server, an initialization message is constructed and sent
over a WebSocket. This message contains a few important
parameters, such as the camera’s demosaicing format and
resolution, the encoding parameters, etc. After initialization,
encoded live video streams are delivered over HTTP to
connected clients within small video segments (transport
streams) via HTTP Live Streaming (HLS). On the receiving
end, the compressed video received can be decompressed,
and the decompressed 2D video can be used frame-by-frame
to reconstruct 3D geometry and color texture.

We then developed a complete demonstration system to
verify the performance of our proposed 3D video sensing and
streaming methods. The entire system was implemented with
a single 3D video sensing system on a single PC. The PC
has an Intel Core 17 (3.40 GHz) CPU, 16 GB of RAM, and a
single NVIDIA GeForce GTX 980 Ti GPU. The real-time 3D
video sensing system consisted of a single camera (PointGrey
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(b)

Fig. 5.

Compressing RGB image sequences with H.264 video encoding. (a) Four frames decoded from encoded video stored with lossless H.264 (129:1

compression ratio); (b) four frames decoded from video stored with lossy H.264 using a CRF of 6 (551:1 compression ratio); (c) four frames decoded
from video stored with lossy H.264 using a CRF of 12 (1,602:1 compression ratio). The left half of (a)-(c) shows the recovered 3D data in shaded mode;
the right half shows the recovered color texture mapped onto the recovered 3D data.

Grasshopper3 GS3-U3-23S6C) and a single DLP projector
(Texas Instruments LightCrafter 4500); the resolution of
the camera was chosen as 480 x 640 and the projector’s
resolution was 912 x 1140.

Our real-time 3D optical sensing technique requires six
fringe patterns to reconstruct one single 3D geometry frame.
For the high frequency patterns, a fringe period 77 = 36
pixels was used; for the lower frequency fringe patterns, a
period of T5 = 380 pixels was used. To achieve a sensing
rate of at least 30 Hz, we project and capture images at
180 Hz. We implemented the method developed by Zhang
and Huang [27] to calibrate our 3D optical sensing system,
providing measurement accuracies between 0.1-0.2 mm.

The entire sensing and compression framework was imple-
mented on the GPU within custom CUDA kernels in order
to maintain a streamable frame rate of at least 30 (3D) Hz.
Figure 6 shows two photographs of the implementation of
our Holostream platform. Figure 6(a) shows the system that
includes real-time 3D optical sensing, 3D video compression,
and 3D video streaming. As mentioned above, all of the
video data processing was carried out on a single PC.
Figure 6(b) shows multiple users visualizing the 3D video
being delivered to their mobile devices across the standard
wireless network on Purdue University’s campus.
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III. CONCLUSIONS

This paper presented both 3D video optical sensing and
streaming technologies. This platform enabled high-quality
3D video delivery across standard wireless networks, even
to mobile devices (e.g., iPhones, iPads). The 3D video
compression method achieved compression ratios of 1,602:1
while maintaining high quality when paired with the H.264
codec. The prototype system we developed demonstrated the
entire 3D optical sensing acquisition, encoding, compression,
decompression, and visualization framework. This system
wirelessly delivered coordinate and color data, consisting
of up to 307,200 vertices per frame, at 30 Hz to multiple
mobile phones and tablets. Such a platform technology could
find many applications within the mechatronics community,
especially when remote sensing and remote operation are of
interest.
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