On Obtaining Stable Rankings’

Abolfazl Asudeht, H. V. Jagadish’, Gerome Miklau't, Julia Stoyanovich:!

fUniversity of Michigan, T"University of Massachusetts Amherst, *New York University
f{asudeh, jagy@umich.edu, ffmiklau@cs.umass.edu, ‘stoyanovich@nyu.edu

ABSTRACT

Decision making is challenging when there is more than one crite-
rion to consider. In such cases, it is common to assign a goodness
score to each item as a weighted sum of its attribute values and
rank them accordingly. Clearly, the ranking obtained depends on
the weights used for this summation. Ideally, one would want the
ranked order not to change if the weights are changed slightly. We
call this property stability of the ranking. A consumer of a ranked
list may trust the ranking more if it has high stability. A producer of
a ranked list prefers to choose weights that result in a stable rank-
ing, both to earn the trust of potential consumers and because a
stable ranking is intrinsically likely to be more meaningful.

In this paper, we develop a framework that can be used to assess
the stability of a provided ranking and to obtain a stable ranking
within an “acceptable” range of weight values (called “the region
of interest”). We address the case where the user cares about the
rank order of the entire set of items, and also the case where the user
cares only about the top-k items. Using a geometric interpretation,
we propose algorithms that produce stable rankings. In addition
to theoretical analyses, we conduct extensive experiments on real
datasets that validate our proposal.

PVLDB Reference Format:

Abolfazl Asudeh, H. V. Jagadish, Gerome Miklau, Julia Stoyanovich. On
Obtaining Stable Rankings. PVLDB, 12(3): 237-250, 2018.

DOI: https://doi.org/10.14778/3291264.3291269

1. INTRODUCTION

It is often useful to rank items in a dataset. It is straightforward
to sort on a single attribute, but that is often not enough. When the
items have more than one attribute on which they can be compared,
it is challenging to place them in ranked order. Consider, for ex-
ample, the problem of ranking computer science departments. Var-
ious entities, such as U.S. News and World Report, Times Higher
Education, and the National Research Council, produce such rank-
ings. These rankings are impactful, yet heavily criticized. Several
of these rankings have deficiencies in the attributes they choose to

*This work was supported in part by NSF Grants No. 1741022, 1741254,
1741047, and 1250880.

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 12, No. 3

ISSN 2150-8097.

DOI: https://doi.org/10.14778/3291264.3291269

237

measure and in their data collection methodology, not of relevance
to our paper now. Our concern is that even if these deficiencies were
addressed, we are compelled to obtain a single score/rank for a de-
partment by combining multiple objective measures, such as pub-
lications, citations, funding, and awards. Different ways of com-
bining values for these attributes can lead to very different rank-
ings. There are similar problems when we want to rank/seed sports
teams, rank order cars or other products, as Malcolm Gladwell has
nicely described [1].

Differences in rank order can have significant consequences. For
example, a company may promote high-ranked employees and fire
low-ranked employees. In university rankings, it is well-documented
that the ranking formula has a significant effect on policies adopted
by universities [2, 3]. In other words, it matters how we choose to
combine values of multiple attributes into a scoring formula. Even
when there is lack of consensus on a specific way to combine at-
tributes, we should make sure that the method we use is robust:
it should not be the case that small perturbations, such as small
changes in parameter values, can change the rank order.

In this paper we address the following problem: Assume that a
linear combination of the attribute values is used for assigning a
score to each item; then items are sorted to produce a final ranked
order. We want this ranking to be stable with respect to changes in
the weights used in scoring. Given a particular ranked list of items,
one question a consumer will ask is: how robust is the ranking? If
small changes in weights can change the ranked order, then there
cannot be much confidence in the correctness of the ranking.

A given ranking of a set of items can be generated by many
weight functions. Because this set of functions is continuous, we
can think of it as forming a region in the space of all possible weight
functions. We call a ranking of items stable if it is generated by a
weight function that corresponds to a large region of this space.

Note that if some items are very close in score, it is possible that
small changes to attribute values can change their relative ordering.
Such effects tend to be local, indicating that the affected items are
effectively “tied” so that the change in ranking is merely a breaking
of the tie. Past work [4] has considered the implications of data
uncertainty and sensitivity of rankings to imprecision; it is not our
focus here. Instead, we address a much bigger problem, that of
changes in the ranking even without any change to the attribute
values, but due to a small change in the weighting function used to
compute item scores. Such global changes can drastically affect the
ranked order, with far-reaching economic and societal effects [1].

Stability is a natural concern for consumers of a ranked list (i.e.
those who use the ranking to prioritize items and make decisions),
who should be able to assess the magnitude of the region in the
weight space that produces the observed ranking. If this region
is large, then the same ranked order would be obtained for many

choices of weights, and the ranking is stable. But if this region is
small, then we know that only a few weight choices can produce
the observed ranking. This may suggest that the ranking was en-
gineered or “cherry-picked” by the producer to obtain a specific
outcome.

Data scientists often act as producers of ranked lists (i.e. they
design weight functions that result in ranked lists), and desire to
produce stable results. We argued in [5] that stability in a ranked
output is an important aspect of algorithmic transparency, because
it allows the producer to justify their ranking methodology, and
to gain the trust of consumers. Of course, stability cannot be the
only criterion in the choice of a ranking function: the result may be
weights that seem “unreasonable” to the ranking producer. To sup-
port the producer, we allow them to specify a range of reasonable
weights, or an acceptable region in the space of functions, and help
the producer find stable rankings within this region.

Our work is motivated by the lack of formal understanding of
ranking stability and the consequent lack of tools for consumers
and producers to assess this critical property of rankings. We will
show that stability hinges on complex geometric properties of rank-
ings and weight functions. We will provide a novel technique to
identify stable rankings efficiently.

Our technique does not stop at proposing just the single most
stable choice, or even the h most stable choices for some pre-
determined fixed value of h. Rather, it will continue to propose
weight choices, and the corresponding rank ordering of items, be-
ginning with the most stable in the specified region of interest, and
continuing in decreasing order of stability, until the user finds one
that is satisfactory.

Alternatively, our technique can provide an overview of all the
rankings that occupy a large portion in the acceptable region, and
hence are stable, along with an indication of the fraction of the
acceptable region occupied by each. Thereby, the user can see at
a glance what the stable options are, and also how dominant these
are within the acceptable region.

We now motivate our techniques with an example.

EXAMPLE 1. CSMetrics [6] ranks computer science research
institutions based on the measured (M) and predicted (P) number
of citations. These values are appropriately scaled and used in
a weighted scoring formula, with parameter o« € [0, 1] that sets
their relative importance (see § 6.1 for details). CSMetrics includes
a handful of companies in its ranking, but we focus on academic
departments in this example.

As a ranges from 0 to 1, CSMetrics generates 336 distinct rank-
ings of the top-100 departments. Assuming (as a baseline) that
each ranking is equally likely, we would expect an arbitrarily cho-
sen ranking to occur 0.3% of the time, which we take to mean that it
occupies 0.3% of the volume in the space of attributes and weights.
We formalize this in § 2.2 and call it stability of a ranking.

Suppose that the ranking with o = 0.3 is released, placing Cor-
nell (a consumer) at rank 11, just missing the top-10. Cornell then
checks the stability of the ranking (see § 2.2.3), and learns that it’s
value is 0.3%, matching that of the uniform baseline. With this
finding, Cornell asks CSMetrics to justify its choice of a.

CSMetrics (the producer) can respond to Cornell by further in-
terrogating, and potentially revising the published ranking. It first
enumerates stable regions (see § 2.2.4) and finds that the most sta-
ble ranking indeed places Cornell at rank 10 (switching with the
University of Toronto), and represents 2% of the volume — an or-
der of magnitude more than the reference ranking. However, this
stable ranking is very far from the default, placing more emphasis
on measured citations with o = 0.608. If this is unsatisfactory,
CSRankings can propose another ranking closer to the reference

238

ranking, but with better stability (see § 2.2.2). Interestingly, Cor-
nell also appears at the top-10 in the most stable ranking that is
within 0.998 cosine similarity from the original scoring function.

Our contributions include the following:

We formalize a novel notion of the stability of a ranking, for
rankings that result from a linear weighting of item attribute val-
ues. Stability captures the tolerance to changes in the weights.

We propose algorithms that enable the efficient testing of ranking
stability as well as the enumeration of the most-stable rankings,
optionally constrained by a set of acceptable scoring functions.
We propose both exact algorithms and approximation algorithms
that are based on novel sampling methods.

Our empirical evaluation demonstrates the efficiency of our tech-
niques on real and synthetic datasets, and investigates the stabil-
ity of real published rankings of computer science departments,
soccer teams, and diamond retailers. We show that existing rank-
ings in these domains are often unstable and that favoring stabil-
ity can sometimes have a significant impact on the rank of some
items. For instance, our findings cast doubt on the validity of
the FIFA rankings which are used in making important decisions
such as seeding the World Cup final draws.

2. PROBLEM SETUP
2.1 Preliminaries

2.1.1 Data model and rankings

We consider a fixed database D consisting of n items, each with
d scalar scoring attributes. In addition to the scoring attributes, the
dataset may contain non-scoring attributes that are used for filter-
ing, but they are not our concern here. Thus we represent an item
t € D as a d-length vector of scoring attributes, (¢[1],¢[2], ..., t[d]).
Without loss of generality, we assume that the scoring attributes
have been appropriately transformed: normalized to non-negative
values between 0 and 1, standardized to have equivalent variance,
and adjusted so that larger values are preferred. Note that this nor-
malization is not strictly required for the techniques we propose
in the paper but they make the comparison between attribute value
weights fair and our stability measure more meaningful.

We consider rankings of items that are induced by first applying
a linear weight function to each item, then sorting the items by the
resulting score to form a ranking.

DEFINITION 1 (SCORING FUNCTION). A scoring function fz :
R? = R, with weight vector W (w1, wa, ..., waq), assigns the
score f5(t) = 9 w;t[j] to any item t € D.

Without loss of generality, we assume that w; € @ > 0. This as-
sumption is straightforward to relax with some additional notation
and bookkeeping. When 4 is clear, we denote fz(t) by f(¢).

We use U to refer to the set of all possible scoring functions.
Given a score for each item, the ranking of items induced by f
is the permutation of items in D defined by sorting them by their
scores under f, in descending order, and breaking ties consistently
by an item identifier. We use the notation V(D) to denote the
ranking of items in D based on f.

EXAMPLE 2. The human resources (HR) department of a com-
pany wants to prioritize hiring candidates based on two criteria:
an aptitude measure x1 (e.g. a score on a qualifying exam) and an
experience measure x> (e.g. the number of years of relevant experi-
ence). Figure 1a shows the candidates as well as their (normalized)

0.9
D f X,
id [1 [T2 |[X1+ X2 0.8
t1 | 0.63 | 0.71 1.34
ta | 0.83 | 0.65 1.48 0.7
ts | 0.58 | 0.78 1.36
ta | 0.7 | 0.68 1.38 0.6
ts | 0.53 | 0.82 1.35
l4 X
0.5/ 1
0.5 0.6 0.7 0.8 0.9 1

(a) A sample database, D, of items
with scoring attributes 1 and x2;
and the result of scoring function

f =z + x2. jection.

(b) The original space: each item is a point. A
scoring function is a ray (f = x1 + x2 is shown)
which induces a ranking of the items by their pro-

(¢) The dual space: items are the hyperplanes (lines
here). Each scoring function is a ray; within a region
bounded by the intersections of the item hyperplanes,
all scoring functions induce the same ranking.

Figure 1: A sample database and its geometric interpretation in the original space and dual space.

values for x1 and x2. The score for each candidate is also shown,
Sor weight vector w = (1, 1), computed as f(t) = x1 + 2.

Although we restrict our attention to linear scoring functions,
our techniques can be used with more general scoring functions by
applying non-linear transformations to D as a preprocessing step.
Consider Example 2, and let the scoring function be f(¢) = x1 +
z2 + 0.522. The quadratic term 22 can be added as x5 = 22,

2.1.2 Geometry of ranked items

Our algorithms are based on a geometric interpretation of scored
items and induced rankings. We now present two geometric views
of the database, to which we respectively refer as (i) the original
space, where every item corresponds to a point, and (ii) the dual
space, where every item corresponds to a hyperplane.

The original space. The original space consists of R? with each
item in D represented as a point, and a linear scoring function fz
viewed as a ray starting from the origin and passing through the
point @ = (w1, w2, ..., wq). The ranking V. (D) corresponds to
the ordering of their projections onto this ray.

Continuing our example, Figure 1b shows the items of our sam-
ple database in the original space, as points in R?. The function
f = x1 + x2 is shown as a ray passing through (1, 1). The pro-
jection of the points onto the vector of f specifies the ranking: the
further a point is from the origin, the higher its rank. The reason
is that, for every score f(t), > wjxz; = f(t) is the perpendicular
hyperplane to the ray of f that passes through the point ¢. Hence,
looking at Figure 1b, the candidates in Example 2 are ranked as
(t2,ts,t3,t5,t1) based on f. One can also easily imagine the rank-
ing of items that would result from an extreme scoring function that
ranks only by attribute =1 (i.e. f = x1) by considering the projec-
tions onto the x1-axis (or respectively for the z2-axis).

Viewing the items from D in the original space provides clarity
about the range of rankings that can be induced by the scoring func-
tions: all scoring functions are defined by rays in the first quadrant
of R? that is determined by the weight vector. It is sometimes con-
venient to use polar coordinates to represent a scoring function: a
ray in R starting from the origin (corresponding to function fyz)
can be identified by (d — 1) angles (61,602, ,64_1), each in the
range [0, 7/2]. Thus, given a function f, its angle vector can be
computed using the polar coordinates of w. For example, func-
tion f with weights (1, 1) in Figure 1b is identified by a single an-
gle (w/4). There is a one-to-one mapping between these rays and
the points on the surface of the origin-centered unit d-sphere (the
unit hypersphere in R?), or to the surface of any origin-centered

239

d-sphere. Thus, the first quadrant of the unit d-sphere represents
the universe of functions U.

The dual space. We are particularly interested in reasoning
about the transition points of the weight vector, where we move
from one ranking to a different ranking. The dual space [7] con-
sists of R, but we represent an item ¢ by a hyperplane d(t) given
by the following equation of d variables 1 . .. xq4:

d(t) : t[1] x 21+ +t[d] x za = 1 1)

Continuing our example, Figure 1c shows the items in the dual
space. In R?, every item ¢ is a 2-dimensional hyperplane (i.e. sim-
ply a line) given by d(¢) : t[1]z1 + t[2]z2 = 1. In the dual
space, functions are represented by the same ray as in the origi-
nal space, passing through the point w. Consider the intersection
of a dual hyperplane d(¢) with this ray. This intersection is in
the form of a X , because every point on the ray of f is a lin-
ear scaling of w. Since this point is also on the hyperplane d(¢),
t[l] X a X wi 4+ -+ t[d] x a x wqg = 1. Hence, > t[jlw; = 1/a.
This means that the dual hyperplane of any item with the score
f(t) = 1/a intersects the ray of f at point a X w. Following this,
the ordering of the items based on a function f is determined by the
ordering of the intersection of the hyperplanes with the vector of f.
The closer an intersection is to the origin, the higher its rank. For
example, in Figure lc, the intersection of the line ¢> with the ray of
f = x1 + x2 is closest to the origin, and so ¢ has the highest rank
for f. We will show in the next section that the intersections of hy-
perplanes in the dual space define regions, within which rankings
do not change under small changes of the weight vector.

2.2 Stability of a ranking

We now present our definition of stability and identify the key
algorithmic problems for consumers and producers of rankings.

2.2.1 Definition of stability

Every scoring function in the universe ¢/ induces a single ranking
of the items. But each ranking is generated by many functions. For
database D, let Rp be the set of rankings over the items in D that
are generated by at least one scoring function f € U, that is, by at
least one choice of weight vector. For a ranking v € fp, we define
its region, Rp(t), as the set of functions that generate t:

Rp(v) ={f | V(D) =t} 2

Figure 1c shows the boundaries (as dotted lines) of the regions for
our sample database, one for each of the 11 feasible rankings.

We use the region associated with a ranking to define the rank-
ing’s stability. The intuition is that a ranking is stable if it can be

induced by a large set of functions. If the region of a ranking
is large, then small changes in the weight vector are not likely to
cross the boundary of a region and therefore the ranked order will
not change. For every region R, we define its volume, vol(R), to
measure the bulk of the region. Specifically, we use the one-to-one
mapping between the surface of the unit d-sphere and U for this
purpose. The volume of a region is the area of the space carved out
in the unit d-sphere by the set of functions in the region.

DEFINITION 2 (STABILITY OF t AT D). Given a ranking v €
R, the stability of ¢ is the proportion of ranking functions in U
that generate v. That is, stability is the ratio of the volume of the
ranking region of ¢ to the volume of U. Formally:

vol(Rp(v))

Sp(r) = vol(U)

3

We emphasize that stability is a property of a ranking (not of a
scoring function) and it holds for a particular database, as indicated
by the notation Sp(t). For ease of notation, we denote Sp(t) and
Rp(r) with S(t) and R(t), respectively, in the rest of this paper.

In the following, we define the scope for studying the stability of
rankings, and we develop three alternative problems that build on
the notion of stability in Definition 2 and correspond to the views of
two different stakeholders: consumers and producers of rankings.

2.2.2 Acceptable scoring functions

When generating a ranking, the producer will often need to con-
sider trade-offs between the choice of an acceptable scoring func-
tion and the stability of the generated ranking. Stable rankings are
preferable because they are robust to small changes in scoring func-
tion weights. Furthermore, to the extent that consumers trust more
stable rankings, producers are interested in earning this trust. Still,
stability is not the only concern for the producer. We return to our
running example to motivate this point.

EXAMPLE 3. In producing a ranking of employees, an HR of-
ficer believes that aptitude (x1) should be twice as important as
experience (x2), but this is only a rough guideline. Any weight with
a ratio within 20% of 2 is acceptable. By testing different weights
within this acceptable range, the officer observes different rankings
of candidates and selects one that maximizes stability.

We allow producers to constrain the scoring function by specify-
ing an acceptable region, denoted U™ C U, in one of two ways:

o A vector and angle distance': the acceptable region is identified
by a hypercone around the central ray defined by the weight vec-
tor. For example, a user may equally prefer any function that has
at most 7w/10° angle distance (at least 95.1% cosine similarity)
with the function f with weight vector (1, 1).

e A set of constraints: the acceptable region is a convex region
identified by a set of inequalities. For example, if the user is
interested in the functions that weigh x5 no greater than z 1, then
the acceptable region is constrained by w2 < w;.

We incorporate the notion of an acceptable region into the defini-
tion of stability in a natural way. Let R* be the set of rankings that
are generated by at least one function f € U™. The ranking region
inU* of arankingt € R*is: R*(v) = {f e U" | V(D) = t}.
Accordingly, we modify the definition of stability of a ranking
v € R tobe: S(r) = vol(R"(x))/vol(U™).

'Note that this can be expressed by cosine similarity.

240

2.2.3 Consumer’s stability problem

The basic problem for the consumer is stability verification, where
the consumer seeks to validate the stability of a given ranking. A
ranking with higher stability will be more robust and is less likely
to be the result of an engineered scoring function.

PROBLEM 1 (STABILITY VERIFICATION). For datasetD with
n items over d scoring attributes, and ranking v € R of the items
in D, compute the ranking region Rp(t) and its stability Sp(t).

2.2.4 Producer’s stability problems

With all of the above machinery in place, we can return to help-
ing the producer of a ranking choose one that is stable. To this end,
we develop two related methods for a producer to explore stable
rankings. We state these problems with respect to an acceptable re-
gion U™ and set /" = U when all scoring functions are acceptable.

First, the producer may wish to enumerate rankings, prioritizing
those that are more stable. Below we consider an enumeration of
rankings in order of stability, with stopping criteria based either
on a stability threshold or on a bound on the number of desired
rankings.

PROBLEM 2 (BATCH STABLE-REGION ENUMERATION). For
a dataset D with n items over d scoring attributes, a region of in-
terest U™ (specified either by a set of constraints or by a vector-
angle), and a stability threshold s (resp. a value h), find all rank-
ings v € R* such that S(x) > s (resp. the top-h stable rankings).

In many scenarios, rather than enumerating rankings, the pro-
ducer may wish to incrementally generate stable regions, in the or-
der of their stability, using the GET-NEXT primitive. So, the h-th
call to GET-NEXT will return the h-th most stable ranking in /™.

PROBLEM 3 (ITERATIVE STABLE-REGION ENUMERATION).
For a dataset D with n items over d scoring attributes, a region of
interest U™, specified either by a set of constraints or by a vector-
angle, and the top-(h — 1) stable rankings in U*, discovered in
the previous iterations of the problem, find the h-th stable ranking
v € R. That is, find:

“)

argmax
te R\top—(h—1)

(S(v))

Of course, the two enumeration problems are closely related. In
fact, an algorithm for iterative ranking enumeration can be used
directly for batch ranking enumeration, if it’s called multiple times.
In our algorithmic contributions we focus on efficiently evaluating
an operator we call GET-NEXT, which can be used to solve both
enumeration problems.

In the above, for convenience, we relate the stability enumera-
tion to the producers and stability verification to the consumers of
rankings. However, a producer can use verification for testing the
stability of a ranking, while a consumer can use enumeration for
identifying stable rankings.

2.2.5 Stability of the top-k items

So far we focused on complete rankings of n items in D. How-
ever, when n is large, one may be interested in only the highest-
ranked k items, for £ << n. This motivates us to reformulate the
problems above, focusing on the top-k portion of the ranked list.

We consider two notions of stability of the top-k items. With the
first, weight vectors 0 and 1’ are said to generate the same result
if they produce the same set of top-k items, while with the second,
w and @' must both select the same set of top-k items and return

them in the same order. We present sampling-based randomized
algorithms that support top-k partial rankings in § 4.3.

We will discuss the relationship between our approach and the
rich body of work on top-k processing and skyline queries in Sec-
tion 7. Here we note that the set of most-stable top-k items is in
general different from the skyline [8], or any of its subsets [9-12].
The key difference is that the stable top-£ items are not necessar-
ily a subset of the skyline. Yet, these items are of high quality and
so are potentially of interest to the user. Consider the toy example
D = {t1(1,0),t2(.99,.99), t5(.98, .98),t4(.97,.97), t5(0,1)}.
The skyline of this dataset is {¢1, t2, t5 }, while the most stable top-
3 items are {t2, ts, t4}. Of these, only ¢; is part of the skyline.

3. TWO DIMENSIONAL (2D) RANKING

To develop our intuition, we start with the case of d = 2 scoring
attributes. Using the geometric interpretation of items provided in
§ 2.1 while considering the dual representation of the items, we
propose exact algorithms for stability verification and enumeration.

Consider a pair of items ¢; and ¢; presented in the dual space in
R2. Recall that in 2D, every item ¢ is transformed to the line:

d(t) : t[l] x 1 +t[2] x xz2 =1 Q)

Also, recall that every function f with the weight vector w is rep-

resented with the origin-starting ray passing through the point w,
and consider points ¢; and ¢;. f ranks ¢; higher than ¢; if the inter-
section of d(¢;) with f is closer to the origin than the intersection
of d(t;) with f.

Consider f whose origin-starting ray passes through the inter-
section of d(¢;) and d(¢;). Since both lines intersect with the ray of
f at the same point, f assigns an equal score to ¢; and ¢;. We refer
to this function (and its ray) as the ordering exchange (first defined
in [13]) between ¢; and t;, and denote it X, ¢ . The ordering be-
tween ¢; and ¢; changes on two sides of X, ¢ ¢; is ranked higher
than ¢; one side of the ray, and ¢; is ranked higher than ¢; on the
other side. For example, consider ¢; and ¢4 in Example 2, shown
in Figure 1c in the dual space: the closest line to the origin on the
21 axis represents d(t2), and the next closest line is d(¢4). The
left-most intersection in the figure is between d(¢1) and d(¢4). The
top-left dashed line that starts from the origin and passes through
this intersection shows Xy, ¢,: t1 is preferred over ¢4 on the left of
Xt,,t,, and t4 is preferred over ¢; on the right.

An item t dominates [8, 14, 15] an item ¢', if Bx; s.t. ¢'[i] > t[i]
and Jz; s.t. t[z] > ¢'[j]. If ¢ dominates ¢, then these items do not
exchange order. Consider two items ¢ and ¢ that do not dominate
each other. Equation 5 can be used for finding the intersection be-
tween the lines d(¢) and d(¢'). Considering the polar coordinates
of the intersection, X, , is specified by the angle 6 ,» (between the
ordering exchange and the x-axis) as follows:

t[1] — ¢[1]
t2] — (2]

The ordering exchanges between pairs of items of a database
partition the space of scoring functions into a set of regions. Each
region is identified by the two ordering exchanges that form its bor-
ders. Since there are no ordering exchanges within a region, all
scoring functions inside a region induce the same ranking of the
items. Thus, the number of regions is equal to ||, as R is the
collection of rankings defined by these regions. For instance, Fig-
ure 1c shows regions [?; through 211 that define the set of possible
rankings of Example 2 for /.

(6)

0 = arctan

241

3.1 Stability Verification

The ordering exchanges are the key to figuring out the stability of
aranking. Consider a ranking v. Fora value of 1 < ¢ < n, lett and
t’ be the i-th and (i + 1)-th items in v. Following Equation 6, 6 ;/
specifies the ordering exchange between ¢ and t'. If ¢[1] < ¢'[1]
(resp. t[1] > t'[1]), all functions with angles 6 < 0, (resp.
6 > 0,4 rank ¢ higher than ¢'. The reason is that if ¢[1] > ¢'[1],
t[2] should be smaller than ¢'[2], otherwise ¢ dominates ¢'. Hence

4> 1

2] , i.e. the dual line d(t) has a larger slope than d(t'), and

intersects the rays in range [0, 8; ;) closer to the origin.

We use this idea for computing the stability (and the region) of a
given ranking t. The stability verification algorithm uses the angle
range (01, 02) for specifying the region of t. For each value of 7 in
range [1,n), the algorithm considers the items ¢ and ¢’ to be the i-th
and (i + 1)-th items in v, respectively. If ¢’ dominates ¢, the ranking
is not valid. Otherwise, if ¢ does not dominate ', the algorithm
computes the ordering exchange X, and, based on the values of
t[1] and ¢'[1], decides to use it for setting the upper bound or the
lower bound of the ranking region. After traversing the ranked list
t, the algorithm returns 93&3 L as the stability value and (61, 62) as
the region of t. Since the algorithm scans the ranked list only once,
stability verification in 2D is in O(n). The algorithm’s pseudocode
is provided in the technical report [16].

3.2 Stability Enumeration

In 2D, U" is identified by two angles demarcating the edges of
the pie-slice. For example, let U be defined by the set of con-
straints {w1 < wa,2w1 > w2}. This defines the set of functions
above the line w1 = w2 and below the line 2w; = wo, limiting the
region of interest to the angles in the range [7/4°,7/3°]. Simi-
larly, region U5 defined around f = x1 +x2 with the maximum an-
gle 7w/10° corresponds to the angles in the range [37/20°, 77 /20°].
In what follows, we use [U*[1], U*[2]] to denote the borders of
U*. Based on Definition 2, the stability of a ranking v € R in 2D
is the span of its region — the distance between its two borders.

We propose the algorithm RAYSWEEPING (Algorithm 1) that
starts from the angle 2/*[1] and, while sweeping a ray toward U™ [2],
uses the dual representation of the items for computing the ordering
exchanges and finding the ranking regions. The algorithm stores
the regions, along with the stability of their rankings, in a heap data
structure that is later used by the GET-NEXT2p primitive.

Algorithm 1 starts by ordering the items based on I/*[1]. It uses
the fact that at any moment, an adjacent pair in the ordered list
of items exchange ordering, and, therefore, computes the order-
ing exchanges between the adjacent items in the ordered list. The
intersections that fall into the region of interest are added to the
sweeper’s min-heap. Until there are intersections over which to
sweep, the algorithm pops the intersection with the smallest angle,
marks the region between it and the previous intersection in the out-
put max-heap, and updates the ordered list accordingly. Upon up-
dating the ordered list, the algorithm adds the intersections between
the new adjacent items to the sweeper. Since the total number of
intersections between the items is bounded by O(n?), and the heap
operation is in O(logn), RAYSWEEPING is in O(n? log n).

After finding the ranking regions and theirs spans, every call
to GET-NEXT2p pops the most stable region from the heap and
chooses a scoring function f inside the region. The algorithm re-
turns the ranking V#(D), along with the width of the region (its
stability), to the user. Due to the space limitations, the pseudo
code of GET-NEXT2p is provided in the technical report [16].

Since there are no more than O(n?) regions in the heap, GET-
NEXTzp needs O(logn) to find the (h + 1)-th stable region. Then,

Algorithm 1 RAYSWEEPING

Input: Two dimensional dataset D with n items and the region of
interest in the form of an angle range [/1], U*[2]]

Output: A heap of ranking regions and their stability

: sweeper = new min-heap([U/*[2]]);
s = (cosU™[1], sinUU™[1])
L=Vy(D)
fori=1ton —1do
0 = arctan(Liy1[1] — Li[1])/(Li[2] — Li+1[2])
if U*[1] < 6 < U*[2] then sweeper.push((0, L;, L;11))
end for
h = new max-heap(); 6, = U*[1]
: while sweeper is not empty do
(0, t,t") = sweeper.pop()
11: 4,5 =index of t,t in L
12: h.push (%, (91,,9))
13: swap L; and L; and add the ordering exchanges between
the new adjacent items to the sweeper
14: 6,=106
15: end while
16: return h

SOXIDIUE LD =

it takes O(nlogn) to compute the ranking for the region. As a
result, the first call to GET-NEXT2p that creates the heap of re-
gions takes O(n? logn), while subsequent calls take O(n logn).
Note that subsequent GET-NEXT2p calls can be done in the order
of O(logn), with memory cost of O(n?), by storing the ordered
list L for every region in RAYSWEEPING algorithm.

4. MULTIDIMENSIONAL (MD) RANKING

Building upon the intuitions developed from the 2D case, we
now turn to the general setting where d > 2. Again, we consider
the items in dual space and use the ordering exchanges for specify-
ing the borders of the ranking regions. Recall from Equation 1 that
an item ¢ is presented as the hyperplane d(t) : S°% | t[i].z; = 1.
For a pair of items ¢; and ¢; the ordering exchange h = X, +; is a
hyperplane that contains the functions that assign the same score to
both items. Therefore: ¢

i, = (tilk] = t[k])zx =0 (7)

k=1

Every hyperplane h = X4, ., partitions the function space U in
two “half-spaces” [7]:

e b : Zzzl(ti[k] — tj[k])zr < 0: for the functions in h™, t;
outranks ¢;.

o it 00 (t:[k] — ti[k])zx > 0: for the functions in h't, t;
outranks ¢;.

Similar to § 3, we first show how ordering exchanges can be used
for verifying the stability of a ranking and then focus on designing
the GET-NEXT operator.

4.1 Stability Verification

Identifying the half-spaces defined by the ordering exchanges
between adjacent items in a ranking v is the key to figuring out its
stability. For each value of i in range [1,n), let ¢ and ¢’ be the
i-th and (¢ + 1)-th items in v. Using Equation 7, every function
in the positive half-space h™ : 3°¢_ (t[k] — t[k])z), > O ranks
t higher than ¢’. The intersection of these half-spaces specifies an
open-ended d-dimensional cone (referred to as d-cone) whose base
is a (d — 1) dimensional convex polyhedron. Every function in this

cone generates the ranking v, while no function outside it generates
v. In other words, this d-cone is the ranking region of v. The al-
gorithm for verifying stability finds the region of a ranking v as the
set of positive half-spaces defined by the ordering exchanges of the
adjacent items in t.

Based on Definition 2, the volume ratio of the region of t to the
one of U (or, more generally, to U/ ™) is its stability. However, since ©
is a polyhedron, computing its volume is #P-hard [17]. Therefore,
we use numeric methods and sampling for estimating this quan-
tity. Throughout this section, we assume the existence of a stability
oracle S(R,U") that, given a convex region R in the form of an
intersection of half-spaces and a region of interest /™, returns the
stability of RinU/*. Due to the space limitations, We will describe
in the technical report [16] how to construct such an oracle. Stabil-
ity verification in MD is in O(n+ Xs) where X is the complexity
of constructing the stability oracle.

4.2 Stability Enumeration

Similarly to verifying the stability of a ranking, ordering ex-
changes can be used for finding possible rankings in a region of
interest /™. The set of ordering exchanges intersecting U™ define
a dissection of /™ into connected convex d-cones, each showing a
ranking region as the intersection of ordering exchange half-spaces
and U™, This dissection is named the arrangement of ordering ex-
change hyperplanes [7]. For example, the ordering exchanges in
R? are the planes passing through the origin. Each plane dissects
the space in two half-spaces. The intersection of the half-spaces
forms an arrangement in the form of open-ended convex cones.

THEOREM 1. Every ranking v € R™ is provided by the func-
tions in exactly one convex region in the arrangement of ordering
exchange hyperplanes in U™.

Proof sketch: The proof follows the non-existence of ordering ex-
changes inside a region and the existence of at least one ordering
exchange between two regions. Additional details are provided in
the technical report [16].

Theorem 1 shows the one-to-one mapping between the rankings
t € R™ and the regions of the arrangement. Following Theorem 1,
the baseline for finding the stable regions in &/™ is to first construct
the arrangement and then, similarly to § 3, create a heap of re-
gions and their stabilities. Then, each GET-NEXT operation is as
simple as removing the most stable ranking from the heap. The
construction of arrangements is extensively studied in the litera-
ture [7, 13, 18-21]. The problem with this baseline is that it first
needs to construct the complete arrangement of ordering exchange
hyperplanes, and to compute the stability of each. The number of
ordering exchanges intersecting 2/* is bounded by O(n?). There-
fore the arrangement can contain as many as O(n>?) regions [7].
Yet, the baseline needs to compute the stability of each ranking as-
sociated with every region. Considering that our objective is to find
stable rankings, rather than to discover all possible rankings, and
that the user will likely be satisfied after observing a few rankings,
this construction if wasteful. Instead, since the objective is to find
the next stable ranking (not to discover all rankings), we propose
an algorithm that targets the construction of only the next stable
ranking and delays the construction of other rankings.

Arrangement construction is an iterative process that starts by
partitioning the space into two half-spaces by adding the first hy-
perplane H [1] (it partitions the space into H[1]~ and H[1]"). The
algorithm then iteratively adds the other hyperplanes; to add H [i],
it first identifies the set of regions in the arrangement of H|[1] to
H[i — 1] that H|[i] intersects with, and then splits each such region
into two regions (one including H[i]~ and one H[i]1).

The GET-NEXT,,q algorithm, however, only breaks down the
largest region at every iteration, delaying the construction of the
arrangement in all other regions. The algorithm uses the “region”
data structure to record each region in the arrangement of ordering
exchanges. This data structure contains the following fields: (a)
C: the set of half-spaces defining the region; (b) S: the stability of
the region, and (c) pending: the index of the next hyperplane to
be added to the region. In addition, every region contains two ex-
tra fields sb and se that are used for determining the intersection
of next hyperplanes with it. Due to the space limitations, we pro-
vide further details about these, as well as the pseudo code of the
algorithm GET-NEXT,,q4 in the technical report [16].

While constructing the arrangement of hyperplanes, the algo-
rithm keeps track of the stability of the regions, as it adds hyper-
planes to the largest one. It uses a max-heap for this purpose. For
the first GET-NEXT operation, the algorithm finds the set of ordering
exchanges H that intersect with U™, It also creates the root region
that contains all functions in &/* and adds it to the heap. While the
heap is not empty, the algorithm pops the most stable region r from
it. It then iterates over the pending hyperplanes that can be added
to 7, attempting to find one that intersects with that region. Testing
whether a hyperplane intersects with a region is done by solving
a linear program. Specifically, we solve a quadratic program that
looks for a function in U™ that satisfies both the inequality con-
straints defined by the half-spaces of the region, and the equality
constraints defined by the hyperplane. (Alternatively, sampling can
be used for this purpose. We provide further details about this in
the technical report [16].)

If no more hyperplanes can be added to region 7, the algorithm
returns 7 as the next stable region. Otherwise, if a hyperplane is
found that intersects with r, then the algorithm uses it to break r
into two regions, and adds them to the heap.

Still, in the worst case (where all regions are equally stable) the
algorithm may need to construct the arrangement before returning
even the first stable region. Therefore, the worst case cost of the
algorithm is still O(n>?).

Throughout this section, we assumed the existence of an oracle
that, given a region in the form of a set of half-spaces, returns its
stability. In next section, we discuss unbiased sampling from the
function space that plays a key role in the design of the oracle. Such
sampling will also enable the design of the randomized algorithm
in § 4.3 that does not depend on the arrangement construction (and
therefore, does not suffer its high complexity).

4.3 Randomized Get-Next

In a setting with many items, users are usually not interested in
the complete ranking between all of the items. The top-k items
model [22, 23] is a natural fit for such settings, and therefore, is
used as the de-facto data retrieval model in the web [24,25]. In this
model, the user is interested in the head (the top-k) of the ranked
list, rather than the complete ordering. In the following, we propose
arandomized algorithm that, in addition to being scalable for large
settings, is applicable for enumerating the top-k items.

While every ranking is generated by continuous ranges of func-
tions, every function f generates only one ranking of items. More-
over, the larger the volume of a ranking region (i.e. the more stable
it is), the higher the chance of choosing a random function from
it. Therefore, uniform sampling of the function space allows sam-
pling of rankings based on their stability distribution. We delay
the details of a sampler that generates functions uniformly at ran-
dom from a region of interest {* to § 5. Assuming the existence
of such sampler, in this section, we use the Monte-Carlo methods
for Bernoulli random variables [26-30] and design the randomized

243

GET-NEXT, operator. This operator works both for finding the sta-
ble rankings in a region of interest, as well as the top-k results. In
the following, we use ranking for the explanations but all the algo-
rithms and explanations are also valid for top-k.

Monte-Carlo methods work based on repeated sampling and the
central limit theorem in order to solve deterministic problems. We
consider using these algorithms for numeric integration. Based on
the law of large numbers [31], the mean of independent random
variables can be used for approximating the integrals. That is pos-
sible, as the expected number of occurrences of each observation
is proportional to its probability. At a high-level, the Monte-Carlo
methods work as follows: first they generate a sufficiently large set
of inputs based on a probability distribution over a domain; then
they use these inputs to do estimation and aggregate the results.

We use sampling both for discovering the rankings as well as for
estimating their stability. We design the GET-NEXT, operator to
allow the user to either (i) specify the sampling budget, or (ii) the
confidence interval. Each of these two approaches has their pros
and cons. The running time in (i) is fixed but the error is variable.
In (ii), on the other hand, the operator guarantees the output quality
while the running time is not deterministic. In the following, we
explain the details for (i). Due to space limitations, we show how
this can be adopted for (ii) in the technical report [16].

The sampler explained in § 5.2 draws functions uniformly at ran-
dom from the function space. Each function is associated with a
ranking. The uniform samples on the function space provide rank-
ing samples based on their stabilities (the portion of functions in
U™ generating them). For each ranking v € R, consider the distri-
bution of drawing a function that generate it. The probability mass
function of this distribution is:

S(v)
1—-5(v)

Vi (D)=t
Vi) (D) #r

Let the random Bernoulli variable 2. be 1 if V) (D) = t
and O otherwise. Recall that the mean and standard deviation of
a Bernoulli distribution with the success probability of S(t) are
e = S(r) and o = S(r)(1 — S(t)). Let m. be the average of a
set of NV samples of the random variable z.. Then, E[m.] = S(v)
and the standard deviation of samples are s = m.(1—m.). Based
on the central limit theorem, we also know that the distribution of
the sample average is N(,ut7 \‘;—‘ﬁ) — the Normal distribution with

p(6;5(v) = { ®)

O

VN

the mean . and standard deviation

we can estimate o, by ..
For a confidence level «, the confidence error e identifies the

. For a large value of N,

range [m. — e, m. + €] such that:
pime—e<pu<met+e)=1—a 9)
Using the Z-table: ()
Q. St o, [me(l—m.
—z1-2 =za-2 1
e=201-5) 5 = 20 - 5y ™S (10)

Using this argument, we use a set of /V samples of the function
space for the design of GET-NEXT, with a fixed budget. Every time
GET-NEXT, is called, we collect a set of /N samples and use them
for finding the next stable ranking and estimating its stability. In or-
der to provide a more accurate estimation, in addition to the /N new
samples, it uses the aggregates of its previous runs. Algorithm 2
shows the pseudocode of GET-NEXT, with a fixed budget.

Algorithm 2 uses a hash data structure that contains the aggre-
gates of the rankings it has observed so far. Upon calling the algo-
rithm, it first draws /N sample functions from the region of interest
U™. For each sample function, the algorithm finds the correspond-
ing ranking and checks if it has previously been discovered. If not,

Algorithm 2 GET-NEXT,

Input: D, U", previous stable rankings Rp,_1, hash of previous
aggregates cnts, total number of previous samples N’, confidence
level o, and sampling budget NV

Output: Next stable ranking and its stability measures

: for k=1to N do

w = Sampleld™ (U™)

t=V(D)

if v is in cnts.keys then cnts[t]+=1 else cnts[t] = 1
end for
if ents.keys\Mr—1 = 0 then return null

argmax (ents[x])

t€ cnts.keys\Ry 1
S(en) = Frih e = Z(1 - §) /ot

: return vy, S(vs), e

A A el

th =

o

it adds the ranking to the hash and sets its count as 1; otherwise,
it increments the count of the ranking. If the number of discov-
ered rankings is at most h, the algorithm fails to find a new ranking
and returns null. The algorithm then chooses the ranking that does
not belong to top-h and has the maximum count. It computes the
stability and confidence error of the ranking and returns it.
Considering a budget of N samples while finding the ranking for
each sample, the running time of GET-NEXT,. is O(N X nlogn).

4.3.1 Stable top-k items

When n is large, instead of the complete ranking, the user may
be interested in the top-k items. The top-k items may either be
treated as a set or a ranked list. A company that considers its top-
k candidates for the on-site interview is an example of the top-k
set model, whereas for a student that wants to apply for the top
colleges, the ranking between the top-k colleges is important.

Unfortunately the MD algorithm GET-NEXT,,q is not applica-
ble here, as different ranking regions may share the same top-k
items. Therefore, the algorithm cannot focus only on a single re-
gion, while delaying the others. Fortunately, the randomized al-
gorithm GET-NEXT, can be used for partial rankings. Instead of
maintaining the counts of complete rankings, it counts the occur-
rences of partial rankings. In § 6, we will show that GET-NEXT,. is
both effective and efficient for top-£ items.

S. UNBIASED FUNCTION SAMPLING

A uniform sampler from the function space is a key component
for devising Monte-Carlo methods, both for estimating the stability
of rankings and for designing randomized algorithms for the prob-
lem. In the following, we first discuss sampling from the complete
function space and then propose an efficient sampler for 2/™*.

5.1 Sampling from the function space

In this subsection we discuss how to generate unbiased samples
from the complete function space. Since every function is repre-
sented as a vector of d — 1 angles, each in range [0°, 7/2°], one
way of generating random functions is by generating angle vec-
tors uniformly at random. This, however, does not provide uniform
random functions sampled from the function space, except for 2D.

As mentioned in § 2.1, the set of points in the first quadrant of
the unit d-sphere represent the function space U/. This is because
of the one-to-one mapping between the points on the surface of the
unit d-sphere and the unit origin-starting rays, each representing a
function f. Hence, the problem of choosing functions uniformly
at random from U/ is equivalent to choosing random points from

244

the surface of a d-sphere. As also suggested in [32], we adopt a
method for uniform sampling of the points on the surface of the
unit d-sphere [33,34]. Rather than sampling the angles, this method
samples the weights using the normal distribution, and normalizes
them. This method works because the normal distribution func-
tion has a constant probability on the surfaces of d-spheres with
common centers [34, 35]. Therefore, in order to generate a ran-
dom function in U, we set each weight as w; = |[N(0, 1)|, where
N (0, 1) draws a sample from the standard normal distribution.

5.2 Sampling from the region of interest

Drawing unbiased samples from a region of interest /™ is critical
for finding stable regions. Given an unbiased sampler for the func-
tion space U, an acceptance-rejection method [36] can be used for
drawing samples from &/*. The idea is simple: (i) draw a sample
from the function space; (ii) test if the drawn sample is in the region
of interest and, if so, accept it; otherwise reject the sample and try
again. Testing if the drawn sample is in the region of interest can
be done by: (a) computing its angle distance from the reference p
and comparing it with the reference angle 6, if U{* is specified by a
ray and angle, or by (b) checking if the sampled point satisfies the
constraint, if /™ is specified by a set of constraints.

The efficiency of this method, however, depends on the accep-
tance probability p, defined by the volume ratio of U™ to Y. The
expected number of trials for drawing a sample for such probability
is 1/p. Hence, it is efficient if the volume of /™ is not small.

Therefore, in the following, we alternatively propose an inverse
CDF (cumulative distribution function) method [37] for generating
random uniform functions from a region of interest. This method is
preferred over the acceptance-rejection method when U™ is small.
It generates functions with the maximum angular distance of 6 from
the reference ray p. For a region of interest specified by a set of con-
straints, the bounding sphere [38] for the base of its d-cone identi-
fies the ray and angle distance that include I/*. For such regions of
interest, the inverse CDF method enables an acceptance-rejection
method with higher acceptance rate, leading to better performance.

Consider U™ as the set of functions with the maximum angle 6
around the ray of some function f. We model /™ by the surface
unit d-spherical cap with angle 6 around the d-th axis in R? (Fig-
ure 2a). This is similar to the mapping of U/ to the surface of the
unit hyperspherical, and is due to the one-to-one mapping between
the rays in /™ and the points on the surface unit hyperspherical
cap. We use a transformation that maps the ray of f to the d-D
axis. After drawing a function we transform it around the ray of f.

For an angle 6, the d-dimension orthogonal plane x4 = cos 6
partitions the cap from the rest of the d-sphere. Hence, the intersec-
tion of the set of the (d-th axis orthogonal) planes cos 0 < x4 < 1
with the d-sphere define the cap.

The intersection of each such plane with the d-sphere is a (d—1)-
sphere. For example, in Figure 2a the intersection of a plane that is
orthogonal to the z-axis with the unit sphere is a circle (2-sphere).
An unbiased sampler should sample points from the surface of such
(d — 1)-spheres proportionally to their areas. In the following, we
show how this can be done.

The surface area of a §-sphere with the radius 7 is [39]:

978/2
=——7

I'(6/2)

6—1

As(r) (11)

T, in the above equation, is the gamma function.

Using this equation, the area of the unit d-spherical cap can be
stated as the integral over the surface areas of the (d — 1)-spheres,
defined by the intersection of the planes cos < x4 < 1 with the

(@) (b)
Figure 2: Sampling from U*. a) U™ as a unit d-spherical cap
around d-th axis. b) Samples generated using (blue — scattered over
the space): § 5.1, (green — right cluster): Algorithm 3 and numeric
inverse CDF, (red — left cluster): Algorithm 3 and Equation 14.

d-sphere, as follows [39]:

2ﬂ_d/2

0
T(d2) /0 sin®~?(¢)d¢ (12)

Therefore, considering the random angle 0 < z < 6, the cumu-
lative density function (cdf) for x is given by:

0
A;“Pu):/ Aq_1 sin pdp =
0

Jo sin??(¢)do
Flg)="“——" —
) foe sin? =% (¢)d¢

For a specific value of d, one can solve Equation 13, find the
inverse of I and use it for sampling. For instance, for d = 3:

13)

1 —cosx

F(z) = F~'(x) = arccos (1—(1—cosb)z)

14

T 1 _cosh

For a general d, we use numerical methods for finding the inverse
CDF. Details can be found in the technical report [16].

Algorithm 3 shows the pseudocode of the inverse CDF sampler.
For example, consider the example in R, where the objective is
to generate random numbers around the ray (7 /6, w/4) with an-
gle & = 7/20. The algorithm starts by drawing a random uniform
number in range [0, 1]. Let such a random number be 0.13. It takes
the list L (computed using the function RiemannSums) as the input
and draws a random function from &/ ™. To do so, it first draws a ran-
dom uniform number y in the range [0,1]. Next, it applies a binary
search on the list of partial integrals to find the range to which y be-
longs. Considering a fine granularity of the partitions, we assume
that the areas of all (d — 1)-spheres inside each partition are equal.
The algorithm, therefore, returns a random angle (drawn uniformly
at random) from the selected partition. Obviously, instead, the al-
gorithm can use the equation of the inverse function. Continuing
with our example, while using Equation 14, the corresponding y
value for 0.13 is 7/55.5.

Algorithm 3 Sample /™
Input: The ray p, angle 6

1: Yy = U[O7 1] // draw a uniform sample in range [0,1]
2 x=F ty)

3: fori=1tod —1dow; =N(0,1)

4: (01, ,04_2) = the angles in polar representation of w
5: w = toCartesian(1, (01, - ,0q—2,x))

6:

return Rotate(w, p)

Recall that the angle x specifies the intersection of a plane with
the d-spherical cap, which is a (d — 1)-sphere. Hence, after finding
the angle x, we need to sample from the surface of a (d— 1)-sphere,

uniformly at random. For our example in R?, the intersection is a
circle (2-sphere) and, therefore, we need to sample from the sur-
face of the circle. Also, recall from § 5.1 that the normalized set
of d — 1 random numbers drawn from the normal distribution pro-
vide a random sample point on the surface of (d — 1)-sphere. The
algorithm Samplel/™ uses this for generating such a random point.
It uses the angle combination of the drawn random point from the
surface of a (d — 1)-sphere and combines them with the angle x
(with the d-th axis). In our example in R?, let the sampled point
on the circle have the angle 0.87. Hence, the angle combination
is (0.87,7/55.5). After this step, the point specified by the po-
lar coordinates (1, (01, -+ ,04—2,x)) is the random uniform point
from the surface of d-spherical cap around the d-th axis. As the
final step, the algorithm needs to rotate the coordinate system such
that the center of the cap (currently on d-th axis) falls on the ray p.
We rely on the existence of the function Rotate for this, presented
in the technical report [16]. Figure 2b shows three cases of 200
samples in R® drawn from (blue — scattered over the space) U us-
ing § 5.1 and (green and red — right and left clusters) /™ around the
rays (w/3,7/3) and (7 /6, 7 /4) with angle 6 = 7/20.

6. EXPERIMENTS

Here we validate our stability measure and evaluate the effi-
ciency of our algorithms on three real datasets used for ranking.
In particular, we study the stability of two of our datasets in § 6.2,
showing that the proposed reference rankings are not stable. In
§ 6.3, we study the running times of our algorithms, including sta-
bility verification, the GET-NEXT problems in 2D and MD, as well
as the randomized algorithm and top-k items.

6.1 Experimental setup

Hardware and platform. The experiments were conducted using
a 3.8 GHz Intel Xeon processor, 64 GB memory, running Linux.
The algorithms were implemented using Python 2.7.

Datasets We use four real datasets CSMetrics (d = 2), FIFA (d =
4), Blue Nile (d = 5), and Department of Transportation (d = 3),
as well as a set of three synthetic datasets described below.

CSMetrics [6]: CSMetrics ranks computer science research in-
stitutions based on publication metrics. For each institution, a com-
bination of measured (M) citations and an attribute intended to
capture future citations, called predicted (P), is used for rank-
ing, according the score function: (M)*(P)*~%, for parameter cv.
This score function is not linear, but under a transformation of the
data in which z1 = log(M) and x> = log(P) we can write an
equivalent score function linearly as: ax1 + (1 — a)x2. The CS-
Metrics website uses o = .3 as the default value, but allows other
values to be selected. We use a = .3 and restrict our attention to
the top-100 institutions according to this ranking.

FIFA Rankings [40]: The FIFA World Ranking of men’s na-
tional football teams is based on measures of recent performance.
Specifically, the score of a team ¢ depends on team performance
values for A; (current year), Ay (past year), As (two years ago),
and A4 (three years ago). The given score function, from which the
reference ranking is derived, is: t[1] 4 0.5¢[2] + 0.3¢[3] + 0.2t[4].
FIFA relies on these rankings for modeling the progress and abili-
ties of the national-A soccer teams [41] and to seed important com-
petitions in different tournaments, including the 2018 FIFA World
Cup. We consider the top 100 teams in our experiments.

Blue Nile [42]: Blue Nile is the largest online diamond retailer
in the world. We collected its catalog that contained 116,300 di-
amonds at the time of our experiments. We consider the scalar
attributes Price, Carat, Depth, LengthWidthRatio, and

0.14 0.012
most stable ranking <— most stable ranking
0.12 0.01
0.015 04 0.008
> > >
£ £0.08 =
K 2 5 0.006
T 0.01 £ 0.06 s
« ” reference ranking @ 0.00a
reference ranking 0.04 ’
0.005
0.02 0.002

50
Distribution of rankings by stability

100 150 200 250 300 5

10
Distribution of rankings by stability

15 20 100

20
Distribution of rankings by stability

40 60 80

Figure 3: CSMetrics: overall distribution of Figure 4: CSMetrics: stability around refer- Figure 5: FIFA: stability around reference vec-

rankings by stability.

Table for ranking. For all attributes, except Price, higher val-
ues are preferred. We normalize each value v of a higher-preferred
attribute A as (v — min(A))/(max(A) — min(A)); for a lower-
preferred attribute A, we use (max(A)—v)/(max(A)—min(A)).
Department of Transportation (DoT) [43]: The flight on-time
dataset is published by the US Department of Transportation. We
collected a set of 1,322,023 records, for the flights conducted by
the 14 US carriers in the last three months of 2017. We consider
the attributes air-time, taxi—inand taxi-out for ranking.
Synthetic Data: In order to study the effect of the correlation be-
tween the attributes, using the code provided by [8], we generated
three synthetic datasets (independent, correlated, anti-correlated),
containing 10,000 items and three scoring attributes in range [0, 1].

6.2 Stability investigation of real datasets

For the two datasets which provide a reference ranking (CSMet-
rics and FIFA) we assess these rankings below.

CSMetrics: Two attributes are used for ranking here (i.e. d = 2).
We can therefore use the GET-NEXT operator repeatedly to enumer-
ate all feasible rankings and their stability values. While an upper
bound on the number of rankings for n = 100 and d = 2 is around
5,000, the actual number of feasible rankings for this dataset is
336. Figure 3 shows the distribution of rank stability across all
rankings, showing a few rankings with high stability, after which
stability rapidly drops. The reference ranking is highlighted in Fig-
ure 3; using SVap, we calculated the stability of the reference rank-
ing to be 0.0032. Notably, the reference ranking did not appear in
the top-100 stable rankings (it is the 108*" most stable ranking).

Maximizing stability would cause a number of changes com-
pared with the reference ranking. For example, Cornell Univer-
sity is not in the top-10 universities in the reference ranking, but
replaces the University of Toronto in the top-10 in the most stable
ranking. One of the bigger changes in rank position is Northeastern
University which improves from 40 in the reference ranking to 35
in the most stable ranking.

We also study stability for an acceptable region close to the ref-
erence ranking. We choose 0.998 cosine similarity (0 7 /50)
around the weight vector of the reference score function. There are
22 feasible rankings in this acceptable region; their stability distri-
bution is shown in Figure 4. Even in this narrow region of interest,
the reference ranking is far below the maximum stability.

FIFA Rankings: Next, we evaluate the higher-dimensional FIFA
rankings that are used for important decisions such as seeding dif-
ferent tournaments, including the 2018 FIFA World Cup. We focus
on an acceptable region defined by 0.999 cosine similarity (6 =
m/100) around the reference weights used by FIFA, ie. w
(1,0.5,0.3,0.2). Using the MD algorithm GET-NEXT,q4, We con-

ence vector (0.3,0.7) with 0.998 cosine sim.

246

tor (1,0.5,0.3,0.2) with 0.999 cosine sim.

ducted 100 operations to get the distribution of the top-100 stable
rankings around the reference weight vector. We considered 10,000
samples drawn using Algorithm 3 for estimations. Figure 5 shows
the distribution of stable rankings. First, since d = 4, there are
many feasible rankings, even in such a narrow region of interest,
with a significant drop in stability after the most stable rankings, as
was the case for CSMetrics.

Perhaps the most interesting observation is that the reference
ranking did not appear in the top-100 stable rankings (as a result it
is not highlighted in Figure 5). While FIFA advertises this ranking
as “a reliable measure for comparing the national A-teams” [41],
our finding questions FIFA’s trust in such an unstable ranking for
making important decisions such as seeding the world cup. To
highlight an example, while Tunisia holds a higher rank than Mex-
ico in the reference ranking, Mexico is ranked higher in the most
stable ranking. This supports the many critics that have questioned
the validity of FIFA rankings in the recent past. Examples of con-
troversial rankings include Brazil at 22 in 2014, the U.S. at 4 in
2006, and Belgium at 1 in 2015.

6.3 Algorithm performance

To evaluate the efficiency of our algorithms, we use the Blue Nile
dataset, which consists of 116, 300 items over 5 ranking attributes.
To vary the number of items, we take random samples; to vary
the number of dimensions to d = k < 5 we project the first &
attributes. We equally weight the attributes as the default function.

2D: First we study the impact of n, the database size, on the effi-
ciency of SVap to compute the stability of the default ranking (i.e.
w = (1,1). We vary n from 100 to 100, 000, measuring both time
and the stability of the default ranking (Figure 6). As stated in § 3
computing the stability of a ranking in 2D is in O(n). We find that
the running time increased linearly and was only 0.12 seconds for
the largest data set. We observe that the stability quickly drops from
the order of 1072 for n = 100 to less than 10~° for n. = 100K.
This is because the number of ordering exchanges increase by n,
leading to many small regions and low stability measures.

Next, we study the performance of GET-NEXT2p under differ-
ent database sizes. The first GET-NEXT call needs to perform ray
sweeping to construct the heap of ranking regions, while subse-
quent calls just remove the next most stable ranking from the heap.
Therefore, in Figure 7, we separate the first call from subsequent
calls. As expected, as the number of items increases, the num-
ber of ordering exchanges increases and therefore, the efficiency of
the operator drops. Also, subsequent GET-NEXT calls are signifi-
cantly faster than the first. Still, even for the largest setting (i.e.,
n = 100K), the first call to the operator took less than 10 seconds.

-3
10° 107 10' \.10 104
) First GETNEXT call 108
2 4071 710 © o 100 ;| Subsequent GETNEXT calls © °
] 288 s s 10
@ 107§ @ @ @ 401
8102 488 g 8"
T 107 == - == 400
S 103 10° 29 3 S5107
810 £3 3 wg o,
P 1030 b 210 1=10,000
£ 10 % E £ E103 %-n=1,000
- T = = -©n=100
5: " s B 5 10 &n=10
10° 0" 10 0 107
10" 10? 10° 10* 10‘1’ 10’ 10? 10° 104 10° 10" 10% 10° 104 10° 0 2 4 6 8 10

number of items (n) -- logscale
Figure 6: 2D: Stability verifica-
tion, Impact of dataset size (n)

number of items (n) -- logscale

pact of dataset size (n)

Figure 7: 2D: GET-NEXT, Im- Figure 8: MD: Stability verifica-
tion, Impact of dataset size

number of items (n) -- logscale top-h stable rankings

Figure 9: MD: stable rankings,
Impact of dataset size (n)

10° 10°

=)
~

10?

oa

10

o
°

time (sec) -- logscale
time (sec) -- logscale

e,

=}
o
o

2 4 6 8
top-h stable rankings

Figure 10: MD: stable rankings,
impact of number of attributes

().

MD: Next we study the performance of the stability verification
algorithm, Sv, and the MD algorithm, GET-NEXT,q, for producing
the stable rankings. We vary the number of items (n), number of
attributes (d), and width of the region of interest (6).

First we evaluate stability verification (Figure 8). Choosing the
default weight vector w = (1,1, 1), while setting d = 3, we ini-
tiate the stability oracle with a set of 1M samples drawn from the
entire function space U/ and vary the number of items from 100
to 10K. The stability verification algorithm in MD needs to iterate
over the sample points, counting those falling inside the ranking
region, described as a set of O(n) constraints. This took less than
a minute for n = 10K. On the other hand, the stability of the de-
fault ranking immediately drops to near zero, even for 100 items.
Compared to 2D, this is due to the increase in the complexity of the
function space.

Next, we evaluate the performance of the GET-NEXT,,,q4 operator
under varying n, d, and 6 (the width of &{*). The default values are
n = 100, d = 3 and § = 7/100. We use a set of 100K samples
from the region of interest for the measurements. Figures 9, 10,
and 11 show the performance of the GET-NEXT,,q algorithm for
the top 10 stable rankings for varying (i) number of items from
n = 10 ton = 10K, (ii) number of attributes from d = 3tod = 5,
and (iii) width of the region from 6§ = 7 /10 to 7/100, respectively.

Overall, the running time decreases for subsequent calls. This is
because the algorithm initially builds part of the arrangement be-
fore it finds the most stable ranking. As shown in Figure 9, every
GET-NEXT call took up to several thousand seconds for the large
setting of 10K items. That is because of the complexity of the
arrangement of O(n?) ordering exchanges which makes even the
focus on the most stable region inefficient. In such complex sit-
uations, all the regions are very small and unstable, as too many
ordering exchanges pass through a narrow region. Nevertheless, in
a large setting, it is more reasonable to consider the top-k items
rather than the complete list. Our proposal for such settings is the
randomized operator.

The next observation is that the running times are similar for
different values of d and #. While the complexity of the space
changes for the O(n?) ordering exchanges, the search is still done
using a fixed set of samples and, using the Partition algorithm, only
the subset of points falling into a region are used for constructing

10 0 2 4 6 8
top-h stable rankings

Figure 11: MD: stable rankings,
impact of width of region of in-
terest (6).

10

3 0
10 0.1 10
A A 1=100,000; set
o]) n=10,000; set
§ 008 S o © n=1,000; set
210? g3 A, n=100,000; ranked
I 0.06 o @ A -+ n=10,000; ranked
: je=0.00019 210" 6"'—&A © n=1,000; ranked
g [T 04 82 ©00-- 0,
Byl 7 T wagootf 04 N S el
Py =32 R el
E 002 28 « 2%
]
2 il 2 ﬁ &:2‘ £
10° 0 10 >+
10° 10* 10° [2 4 6 8 10

Figure 12: GET-NEXT,.: stable
top-k items, impact of dataset
size (n).

number of items (n) top-h stable partial rankings

Figure 13: GET-NEXT,: stable
top-k items, impact of dataset
size (n) on stability.

the arrangement in it. As a result, the lines in Figures 10 and 11
show similar behaviors for different settings.

Randomized algorithm: As the complexity of arrangement in-
creases, GET-NEXT,,q becomes less efficient. On the other hand,
when the number of items is large, users may be more interested
in top-k items: that is they may focus on the top of the ranked list.
In § 4.3, we proposed a Monte-Carlo-based randomized algorithm
to handle these cases. As the last set of experiments, we evalu-
ate the performance of the randomized algorithm under different
settings. We look at two models of top-k items, (i) ranked top-k
items and (ii) top-k sets. In (i) the user is interested in the order-
ings among the top-k items, whereas in (ii) the user’s interest is in
the top-k sets in the ranking lists. We consider a budget of 5,000
samples (from the region of interest) for the first GET-NEXT, call
and 1, 000 for subsequent calls. The default values are number of
items n = 10, 000, number of attributes d = 3, the width of the
region of interest § = /50, and k = 10.

Figures 12 and 15 show the running time of the first GET-NEXT,
call and the stability of the most stable ranking for varying the num-
ber of items from 1K to 100K, and the number of attributes from
3 to 5, while considering the ranked top-k£ items (the running times
are similar for top-k sets). The plots verify the scalability of the
randomized algorithm for large settings, as it took a few minutes
for 100K items while the running times for d = 3, 4, and 5 are
similar. Looking at right y-axis in Figure 12, despite the increase
in the number of items from 1K to 100K, the stability of the most
stable ranked top-k did not noticeably decrease. This confirms the
feasibility of considering the top-k items for the large settings.

Also, to evaluate the scalablity of our proposal for a very large
setting, we use the DoT dataset and set the budget to SK samples
for the first GET-NEXT, call and 1K for subsequent calls. Similar
to the previous experiment, we set d to 3, the width of the region
of interest to # = /50, and consider top-k sets for k = 10, while
varying the number of items up to one million. Figure 14 shows
the performance of the algorithm for each setting. As expected
the run-time linearly increases with the number of items, while it
takes on the order of an hour for the largest setting. Note that the
number of samples plays an important role in the performance of
the algorithm: the higher the sampling budget, the more accurate

247

A 100 0.1
o Consequent calls| A 80 .08
g 8 ooy 0.06
~102 -
10
Py © Lanpageeseeeeree £=0:00019
£ g £=0:00018'
E £ 40
1
10
4 20 .
20000038
0
10° 104 10° 10° 3 4 5

number of items (n)
Figure 14: DoT, GET-NEXT,:
stable top-k items, Impact of
dataset size (n)

number of attributes (d)
Figure 15: GET-NEXT,.: stable
top-k items, Impact of number
of attributes (d)

the results, and the run-time is also higher. This can be confirmed
by comparing the lines for the first call (5000 samples) versus the
consequent calls (1000 samples) of the primitive.

Figures 13 and 16 show the stability of the top-10 stable rankings
for both ranked top-k items and the top-£ sets. In both figures, the
top-k sets are more stable than the top-k rankings. The reason is
that the top-£ sets do not consider the ordering between the items,
and thus the variety of possible outcomes is reduced compared to
top-k rankings. An observation in Figure 13 is the similarity of the
stability distributions for different numbers of items, which, again,
confirms the feasibility of considering the top-k items for large set-
tings. In Figure 16, as expected, the number of attributes have a
negative correlation with the stability of the top-k items.

The effect of attribute correlation Finally, we study the effect of
attribute correlation on the stability of the rankings. To do so, we
use the synthetic datasets (independent, correlated, anti-correlated),
each containing 10K items and d = 3 attributes. Using a budget
of 5000 samples for evaluation, we set the width of the region of
interest to @ = 7/50, and k to 10. Figure 17 shows the stability of
the most stable top-k sets. We find that strong attribute correlation
leads to a greater skew in the distribution of stable regions: the most
stable regions have higher stability. This is illustrated in Figure 17
where we see that the correlated dataset results in the greatest max-
imum stability but also has the steepest slope as we descend from
the most-stable to the 10th-most-stable top-k set. Accordingly, the
independent dataset has a slightly lower stability most-stable re-
gion with a reduced slope, and the anti-correlated dataset displays
the least skew in the stabilities. This is expected since, in a dataset
with highly correlated attributes, we are more likely to find items in
dominance relationships with one another (i.e. the attributes of item
X are greater than those of Y in all, or nearly all, dimensions). In
that case, those items are almost always ranked in one way, reduc-
ing the number of feasible rankings, and resulting in a large number
of relatively unstable rankings and a few highly stable rankings.

7. RELATED WORK

Given a dataset with multiple attributes, ordering the items and
choosing a subset to support decision making is challenging. This
has motivated a rich body of work on ranking [24, 44—47], top-
k [22,23], and skyline queries [8, 10,48, 49]. Broadly speaking,
ranking and top-k are employed when a user’s preference in the
form of a scoring function is available, while skyline queries are
used when only the scoring attributes are known, but the scoring
function is left unspecified. To the best of our knowledge, no ex-
isting work considers a range of acceptable scoring functions, and
discovers stable rankings within that range. In our work, the region
of interest can be as narrow as a single scoring function, or as wide
as the entire space of scoring functions.

The work on ranking and top-k includes managing datasets with
uncertainty and noise with respect to item existence or their at-
tribute values [50-52], and using human computation to fill in miss-

f top ranking
Stability -- logscale

10° 03
Ad=3; set B Anti-correlated
% d=4: set 0.250 % Independent
Ko, © d=5; set 2 © Correlated
A, , " d=3; ranked 2 0.2
107 Ak o
1 0.15
2
3 01
2 2
R (7]
10 f 0.05
|
¢ ; 0
o 2 4 & 8 10 1.2 3 4 5 6 7 8 9 10

top-h stable partial rankings top-h stable partial rankings

Figure 16: GET-NEXT,: stable Figure 17: Synthetic data, GET-
top-k items, Impact of number NEXT,: stable top-k items, Im-
of attributes (d)

pact of correlation

ing information [15]. While the work on probabilistic rankings
considers uncertainty in the data, in our work we focus on un-
certainty in the scoring function that reflects a user’s preferences.
There has been extensive effort on efficient processing of top-k
queries [22]: threshold-based algorithms [23] consider parsing pre-
sorted lists along each attribute, view-based approaches [53, 54]
utilize presorted lists that are built on various angles of the function
space, and indexing-based methods [55] create layers of extreme
points for efficient processing of queries. Ranking has also been
considered in spatial databases [56].

In the absence of a scoring function, the effort is on finding
the set of potentially high-scoring representatives such as the sky-
line [8, 14, 57], also known as the pareto-optimal set [15] — the set
of non-dominated items. Since the number of skyline points can be
large [48], works such as [9-12,32,48] look for smaller represen-
tative subsets. For example, [9] finds a subset of k£ skyline points
that dominate the maximum number of points, while [12] picks the
top-k combinatorial skyline based on an importance ordering of the
attributes. Also, extensive recent work [10, 11] aims to find a small
subset of the skyline that minimizes some notion of regret. A key
difference between the stable top-k set and these proposals is that
a top-k set is not necessarily a subset of the skyline.

In this paper, we used notions such as half-space, duality, and ar-
rangement from combinatorial geometry that are explained in detail
in [7,58]. Arrangement of hyperplanes, its complexity, construc-
tion, and applications are studied in [7, 18-21]. Geometric aspects
of top-k queries are presented in a recent tutorial [59].

8. FINAL REMARKS

In this paper, we studied the problem of obtaining stable rankings
for databases with multiple attributes when the rankings are pro-
duced through a goodness score for each item as a weighted sum of
its attribute values. A stable ranking is more meaningful than one
susceptible to small changes in scoring weights, and hence engen-
ders greater trust. We developed a framework that gives consumers
the facility to assess the stability of a ranking and enables producers
to discover stable rankings. We devised an unbiased function sam-
pler that enables Monte-Carlo methods. We designed a randomized
algorithm for the problem that works both for the complete ranking
of items, as well as the top-k partial rankings. The experiments on
three real datasets demonstrated the validity of our proposal. Our
current definition of stability considers two rankings to be different
if they differ in one pair of items. An alternative is to allow minor
changes in the ranking. Similarly, we note that a weight vector is a
single point in a stable region. It would be nice, for some applica-
tions, to characterize the boundaries of the stable region. We will
consider these in future work.

248

9.

(1]

(2]

(3]

(4]

(]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(171

[18]
[19]

[20]

[21]

[22]

REFERENCES

M. Gladwell. The order of things: What college rankings
really tell us. The New Yorker Magazine, Feb 14, 2011.

N. A. Bowman and M. N. Bastedo. Anchoring effects in
world university rankings: exploring biases in reputation
scores. Higher Education, 61(4):431-444, 2011.

J. Monks and R. G. Ehrenberg. The impact of us news and
world report college rankings on admission outcomes and
pricing decisions at selective private institutions. Technical
report, National Bureau of Economic Research, 1999.

A. Langyville and C. Meyer. Who's #1? The Science of Rating
and Ranking. Princeton University Press, 2012.

K. Yang, J. Stoyanovich, A. Asudeh, B. Howe, H. Jagadish,
and G. Miklau. A nutritional label for rankings. In SIGMOD,
pages 1773-1776. ACM, 2018.

CSMetrics. www.csmetrics.org/. [Online; accessed
April 2018].

H. Edelsbrunner. Algorithms in combinatorial geometry,
volume 10. Springer Science & Business Media, 2012.

S. Borzsony, D. Kossmann, and K. Stocker. The skyline
operator. In ICDE, pages 421-430. IEEE, 2001.

X. Lin, Y. Yuan, Q. Zhang, and Y. Zhang. Selecting stars:
The k most representative skyline operator. In Data
Engineering, 2007. ICDE 2007. IEEE 23rd International
Conference on, pages 86-95. IEEE, 2007.

D. Nanongkai, A. D. Sarma, A. Lall, R. J. Lipton, and J. Xu.
Regret-minimizing representative databases. PVLDB,
3(1-2):1114-1124, 2010.

S. Chester, A. Thomo, S. Venkatesh, and S. Whitesides.
Computing k-regret minimizing sets. PVLDB, 7(5):389-400,
2014.

L-F. Su, Y.-C. Chung, and C. Lee. Top-k combinatorial
skyline queries. In International Conference on Database
Systems for Advanced Applications, pages 79-93. Springer,
2010.

A. Asudeh, H. Jagadish, J. Stoyanovich, and G. Das.
Designing fair ranking schemes. In SIGMOD. ACM, 2019.
A. Asudeh, S. Thirumuruganathan, N. Zhang, and G. Das.
Discovering the skyline of web databases. PVLDB,
9(7):600-611, 2016.

A. Asudeh, G. Zhang, N. Hassan, C. Li, and G. V. Zaruba.
Crowdsourcing pareto-optimal object finding by pairwise
comparisons. In CIKM, pages 753-762. ACM, 2015.

A. Asudeh, H. Jagadish, G. Miklau, and J. Stoyanovich. On
obtaining stable rankings. CoRR, abs/1804.10990, 2018.
M. E. Dyer and A. M. Frieze. On the complexity of
computing the volume of a polyhedron. SIAM Journal on
Computing, 17(5):967-974, 1988.

P. Orlik and H. Terao. Arrangements of hyperplanes, volume
300. Springer, 2013.

B. Griinbaum. Arrangements of hyperplanes. In Convex
Polytopes. Springer, 2003.

V. V. Schechtman and A. N. Varchenko. Arrangements of
hyperplanes and lie algebra homology. Inventiones
mathematicae, 106(1), 1991.

P. K. Agarwal and M. Sharir. Arrangements and their
applications. Handbook of computational geometry, 2000.
L. E Ilyas, G. Beskales, and M. A. Soliman. A survey of
top-k query processing techniques in relational database
systems. CSUR, 40(4), 2008.

249

[23] R. Fagin, A. Lotem, and M. Naor. Optimal aggregation
algorithms for middleware. Journal of Computer and System
Sciences, 66(4), 2003.

[24] A. Asudeh, N. Zhang, and G. Das. Query reranking as a
service. PVLDB, 9(11):888-899, 2016.

[25] Y. D. Gunasekaran, A. Asudeh, S. Hasani, N. Zhang,

A. Jaoua, and G. Das. QR2: A third-party query reranking
service over web databases. In ICDE, pages 1653-1656.
IEEE, 2018.

[26] H. Blaker. Confidence curves and improved exact confidence
intervals for discrete distributions. Canadian Journal of
Statistics, 28(4):783-798, 2000.

[27] E.J. Hickernell, L. Jiang, Y. Liu, and A. B. Owen.
Guaranteed conservative fixed width confidence intervals via
monte carlo sampling. In Monte Carlo and Quasi-Monte
Carlo Methods 2012, pages 105-128. Springer, 2013.

[28] W. Hoeffding. Probability inequalities for sums of bounded
random variables. Journal of the American statistical
association, 58(301):13-30, 1963.

[29] H. Chernoff. A measure of asymptotic efficiency for tests of
a hypothesis based on the sum of observations. The Annals of
Mathematical Statistics, pages 493-507, 1952.

[30] C. P. Robert. Monte carlo methods. Wiley Online Library,
2004.

[31] R. Durrett. Probability: theory and examples. Cambridge
university press, 2010.

[32] A. Asudeh, A. Nazi, N. Zhang, G. Das, and H. Jagadish.
RRR: Rank-regret representative. In SIGMOD. ACM, 2019.

[33] M. E. Muller. A note on a method for generating points
uniformly on n-dimensional spheres. Communications of the
ACM, 2(4), 1959.

[34] G. Marsaglia et al. Choosing a point from the surface of a
sphere. The Annals of Mathematical Statistics, 43(2), 1972.

[35] H. Cramér. Mathematical methods of statistics (PMS-9),
volume 9. Princeton university press, 2016.

[36] S. Lucidl and M. Piccioni. Random tunneling by means of
acceptance-rejection sampling for global optimization.
Journal of optimization theory and applications,
62(2):255-277, 1989.

[37] L. Devroye. Sample-based non-uniform random variate
generation. In Proceedings of the 18th conference on Winter
simulation, pages 260-265. ACM, 1986.

[38] K. Fischer, B. Girtner, and M. Kutz. Fast
smallest-enclosing-ball computation in high dimensions. In
European Symposium on Algorithms, pages 630—641.
Springer, 2003.

[39] S. Li. Concise formulas for the area and volume of a
hyperspherical cap. Asian Journal of Mathematics and
Statistics, 4(1):66-70, 2011.

[40] T.F. L. de Football Association (FIFA). Fifa rankings.
www.fifa.com/fifa-world-ranking/
ranking-table/men/index.html. [Online; accessed
April 2018].

[41] FIFA. Fifa/coca-cola world ranking procedure.
http://www.fifa.com/fifa-world-ranking/
procedure/men.html, 28 March 2008.

[42] BlueNile. www.bluenile.com/diamond-search?
[Online; accessed Feb. 2018].

[43] US Department of Transportation’s dataset. http:
//www.transtats.bts.gov/DL_SelectFields.
asp?Table_ID=2366&DB_Short_Name=0On-Time.

[44] F. Geerts, H. Mannila, and E. Terzi. Relational link-based
ranking. In Proceedings of the Thirtieth international
conference on Very large data bases-Volume 30, pages
552-563. VLDB Endowment, 2004.

S. Chaudhuri and G. Das. Keyword querying and ranking in
databases. PVLDB, 2(2):1658-1659, 2009.

R. Agrawal, R. Rantzau, and E. Terzi. Context-sensitive
ranking. In SIGMOD, pages 383-394. ACM, 2006.

P. K. Agarwal, L. Arge, J. Erickson, P. G. Franciosa, and J. S.
Vitter. Efficient searching with linear constraints. JCSS,
61(2), 2000.

A. Asudeh, A. Nazi, N. Zhang, and G. Das. Efficient
computation of regret-ratio minimizing set: A compact
maxima representative. In SIGMOD, pages 821-834. ACM,
2017.

J. Stoyanovich, W. Mee, and K. A. Ross. Semantic ranking
and result visualization for life sciences publications. In
ICDE, pages 860-871, 2010.

S. Chaudhuri, G. Das, V. Hristidis, and G. Weikum.
Probabilistic ranking of database query results. In
Proceedings of the Thirtieth international conference on Very
large data bases-Volume 30, pages 888-899. VLDB
Endowment, 2004.

[51] J. Li, B. Saha, and A. Deshpande. A unified approach to

[45]
[40]

[47]

[48]

[49]

[50]

250

ranking in probabilistic databases. PVLDB, 2(1):502-513,
20009.

[52] J. Li and A. Deshpande. Ranking continuous probabilistic
datasets. PVLDB, 3(1-2):638-649, 2010.

[53] V. Hristidis and Y. Papakonstantinou. Algorithms and

applications for answering ranked queries using ranked

views. The VLDB Journal, 13(1):49-70, 2004.

G. Das, D. Gunopulos, N. Koudas, and D. Tsirogiannis.

Answering top-k queries using views. In Proceedings of the

32nd international conference on Very large data bases,

pages 451-462. VLDB Endowment, 2006.

Y.-C. Chang, L. Bergman, V. Castelli, C.-S. Li, M.-L. Lo,

and J. R. Smith. The onion technique: indexing for linear

optimization queries. In SIGMOD, 2000.

[56] G.R. Hjaltason and H. Samet. Ranking in spatial databases.
In SSTD. Springer, 1995.

[57] M. F. Rahman, A. Asudeh, N. Koudas, and G. Das. Efficient
computation of subspace skyline over categorical domains.
In CIKM, pages 407-416. ACM, 2017.

[58] M. De Berg, O. Cheong, M. Van Kreveld, and M. Overmars.
Computational Geometry: Introduction. Springer, 2008.

[59] K. Mouratidis. Geometric approaches for top-k queries.
PVLDB, 10(12):1985-1987, 2017.

[54]

[55]

