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Protein2Vec: Aligning Multiple PPl Networks

with Representation Learning

Jianliang Gao, Ling Tian, Tengfei Lv, Jianxin Wang, Bo Song, and Xiaohua Hu

Abstract—Research of Protein-Protein Interaction (PPl) Network Alignment is playing an important role in understanding the
crucial underlying biological knowledge such as functionally homologous proteins and conserved evolutionary pathways across
different species. Existing methods of PPl network alignment often try to improve the coverage ratio of the alignment result by
aligning all proteins from different species. However, there is a fundamental biological premise that needs to be considered
carefully: not every protein in a species can, nor should, find its homologous proteins in other species. In this work, we propose a
novel alignment method to map only those proteins with the most similarity throughout the PPI networks of multiple species. For
the similarity features of the protein in the networks, we integrate both topological features with biological characteristics to provide
enhanced supports for the alignment procedures. For topological features, we apply a representation learning method on the
networks that can generate a low dimensional vector embedding with its surrounding structural features for each protein. The
topological similarity of proteins from different PP networks can thus be transferred as the similarity of their corresponding vector
representations, which provides a new way to comprehensively quantify the topological similarities between proteins. We also
propose a new measure for the topological evaluation of the alignment results which better uncover the structural quality of the
alignment across multiple networks. Both biological and topological evaluations on the alignment results of real datasets

demonstrate our approach is promising and preferable against previous multiple alignment methods.

Index Terms—Protein representation, multiple network alignment, PPI networks, topological assessment

1 INTRODUCTION

1.1 PPI Network Alignment

he comparative analysis of protein-protein interaction

(PPI) networks across different species by network
alignment is very effective in discovering functional
orthologs of proteins among diverse species and identify-
ing conserved subnetworks or motifs in the PPI network
[1]. PPI network alignment can be implemented as either
one-to-one or many-to-many node mapping by comparing
networks based upon various supportive information such
as sequence similarity and topology conservation. By
aligning PPI networks of multiple species, knowledge such
as conserved proteins and complexes can be transferred
from well-studied species to poor-studied species.

Network alignment has already been successfully ap-
plied in many applications. (1) While plenty of crucial bio-
logical and disease processes in a species of interest are ex-
perimentally expensive to study, network alignment is ca-
pable to serve as a bridge and transfer knowledge from
well-studied species, such as yeast Saccharomyces cere-
visiae or worm Caenorhabditis elegans, to high-valued but
less well-studied species such as human, and consequently
lead to new discoveries in system biology. (2) In addition
to the knowledge transferring across species, network
alignment is also utilized for inferring phylogenetic rela-
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Fig. 1 PPl Network Alignment

According to the number of networks being aligned, the
network alignment approaches can be categorized as ei-
ther pairwise or multiple. Pairwise network alignment
aligns only two networks at a time, whereas multiple net-
work alignment aims to align more than two networks at
the same time. Aligning multiple networks other than pair-
wise networks promises additional insights into the com-
plex conservation as well as the knowledge transfer across
multiple species. Figure 1 shows an example of three PPI
network alignment. The substructure M; = (x1,x,,x3) in
the network of species x is aligned with M, = (y,y,,¥3) in
the network of species y; Similarly, M, is also aligned with
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being further aligned with M; from the consistent perspec-
tive can only made possible during a multiple network
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alignment. To the contrast, M, = (y,,¥s,¥s) might be the
best alignment if it was a pairwise alignment between Net-
work y and Network z. In addition, species y and z could
share more closed relationship than with species x in this
example. Evolutionary tree can hence be further drawn
from the results of multiple network alignment.

Network alignment methods can also be categorized as
either local alignment or global alignment. Many existing
network alignment methods focus on the Local Network
Alignment (LNA), which aims to find smaller subnetworks
with high similarities, such as protein complexes, that are
irrespective of the overall similarity among compared net-
works [3]. Since the subnetworks can overlap, a node in
one network can be mapped to multiple nodes in another
network [4],[5]. Consequently, LNA is generally not capa-
ble of finding the global best mapping between the input
networks [6]. Therefore, most of the recent efforts have
been attracted to the Global Network Alignment (GNA),
which typically attempts to map the entire network as a
whole to other networks and maximize overall similarity
of the participating networks [7].

This study mainly focuses on how to improve the align-
ment of multiple PPI networks from the global perspective.

1.2 Motivations

Although significant progresses have been made in the
alignment research of PPI networks, there exist two crucial
problems that still need to be solved:

(1) How to better quantify the topological similarity of
proteins from different species?

Network alignment provides an effective way to iden-
tify conserved protein complexes across multiple PPI net-
works [8]. The conserved functional and topological fea-
tures are the two focuses during the alignment, where
functional module represents a collection of molecular in-
teractions that work together to achieve a particular func-
tional objective in a biological process, and topological
module represents the locally dense neighborhoods in a
PPI network [9].

Prior methods attempted with different metrics to obtain
the topological similarity and generated various perfor-
mances without a unified agreement and constancy. Some
methods consider only the topological similarity in degree-
based measures that capture the graph structure partially
instead of retaining more comprehensive structural char-
acteristics of the network. In this study, we try to improve
this problem by proposing to apply representation learn-
ing on the networks to obtain vector representation of each
protein with topological features embedded comprehen-
sively. The topological similarity of proteins across the net-
works can be consequently converted and easily quanti-
fied as unified similarity of vectors.

(2) How many proteins really need to be aligned?

The coverage and consistency are the two most consid-
ered metrics to evaluate the effectiveness of a network
alignment method. Achieving both high coverage and

high consistency at the same time is one important goal
when trying to involve all proteins of a network in the
alignment procedure. However, other than these overall
measures, it is more important to achieve precised align-
ment among multiple network alignment. Unfortunately,
existing alignment methods mostly concern with only the
overall coverage. In reality, many proteins from different
species should never be aligned as they are not homolo-
gous at the first place. To eliminate these commonly
adopted limitations, we propose an algorithm that only
partially aligns those most homologous proteins from di-
verse species, which is robust and scalable for multiple net-
works and can achieve balanced high consistency.

1.3 Contributions

In our research, we propose a new approach for aligning
multiple PPI networks. The main contributions are as fol-
lows:

® To solve the existing limitation of quantifying the
topological features of proteins, we propose to
learn the representation of proteins in PPI net-
works, which creates a vector for each protein. The
topological similarity of proteins is then easily
transferred by computing the similarity of vector
representations of the proteins.

®  We propose an effective method to partially align
multiple PPI networks with representation learn-
ing. With this method, only those proteins that re-
ally need to be aligned are considered instead of
involving all protiens for the overall coverage. It is
also more efficient to find homologous proteins or
protein complexes across various species.

® A more comprehensive topological evaluation
called mean neighbor similarity (MNS) is intro-
duced. It measures topological quality of align-
ment result in replacing the conventional measure
of overall coverage.

®  Extensive experiments are conducted on the real
datasets consist of PPI networks from five species.
The results for different evaluation measures illus-
trate the outstanding performances of the pro-
posed method when compared with four widely
adopted network alignment methods.

2 REeLATED WORKS

The general objective of PPI network alignment is to obtain
the similarities among proteins from different networks
through the graph mapping. The alignment result usually
reaches to the highest score of similarity. To determine the
protein similarities with the best score, many current net-
work alignment algorithms adopt a cost function combin-
ing with the biological and structural properties[10]. For
the network structural properties, representation learning
is a recently raising approach that could reflect more com-
prehensive network topology than those conventional
measures like degree related approaches. In this section,
we review the related research in the PPI network align-
ment and representation learning.
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2.1 Alignment of PPl Networks

Network alignment methods from previous research could
be categorized into either or combined categories of local
or global, pairwise or multiple [4, 6, 10, 12], while each of
them has its own way in attempting to achieve an optimal
alignment result.

For pairwise PPI networks, IsoRank as a classic pairwise
global alignment algorithm for biological networks is one
of the most referred alignment methods in the field [12]. In
IsoRank, a version of Google’s PageRank algorithm is
adopted to estimate the similarity of proteins base on the
topology of their respective neighbors. Intuitively, if the
neighbors of two proteins from different networks are sim-
ilar, the two proteins are considered as similar too. Based
upon which, IsoRank associates similarity scores for pro-
tein pairs and screens out the candidate pairs to construct
similarity matrix for the search of final global alignment in
a greedy algorithm. MAGNA is another recently proposed
pairwise and global network alignment method. It relies
on a genetic algorithm that optimizes edge conservation
directly and chooses high scoring alignment results ac-
cording to an objective function that combines both topo-
logical and biological factors [4].

There exist more research interests of network alignment
that shift toward multiple networks, including
IsoRankN[12], SMETANA[13], NetCoffee[18], BEAMS[14],
GMAlign[26] and MPGM][27]. Evolved from IsoRank,
IsoRankN [12] applies spectral graph theorectic approach
that is similar to the PageRank-Nibble algorithm. It can
generate aligned clusters globally from multiple networks,
where each cluster can contain several proteins from the
same network. SMETANA [13] tries to effectively find
among multiple networks a maximum global alignment in
two stages. It first applies a node cost function bases on a
semi-Markov random walk model in order to calculate
similarities between nodes that serves as a probabilistic in-
dex; then, the aligned node clusters with the maximum ex-
pected accuracy can be obtained by a greedy approach.
NetCoffee is another global multiple aligner that combines
in its objective function both the sequence and topological
similarities [6]. It is the first multiple network aligner that
measures weights on the edge according to not only bipar-
tite sequence similarity, but also a triplet extension over all
networks. This topological approach is also similar to the
multiple sequence aligner T-Coffee [25]. Alkan et al., pro-
pose a global heuristic algorithm BEAMS that applies a
backbone extraction and merge strategy. It maximizes the
number of conserved edges between disjoint cliques to re-
peatedly merge which into identified backbones and form
the final aligned protein clusters from multiple PPI net-
works in a greedy manner [14]. Zhu Y et al present a two
stage global network aligner GMAIlign[26]. In the first
stage, it selects several pairs of important proteins as seeds
to obtain an initial protein mapping by expanding the
seeds; In the second stage, it refines the initial result to ob-
tain an optimal alignment result iteratively based on the
vertex cover. MPGM]J27] is a global alignment algorithm
recently proposed that generates one-to-one mappings
through multiple networks. It firstly maps few proteins

and produces an initial set of seed tuples using only pro-
tein sequence similarities, and combined which with the
structure of networks later to align the rest of unmapped
proteins across all networks.

2.2 Representation Learning

Current literature of node embedding technique mainly
define the nodes similarity in terms of different types of
proximity between the local neighborhood structures of
the nodes.

Representation learning of node is the approach that try
to obtain similar embeddings for similar nodes while pre-
serving the node features in the embedded space. Deep-
walk [15] is the first representation learning algorithms in-
spired by the word2vec algorithm to learn a language
model from a network. It is an unsupervised method
which learns adaptable latent representations for the nodes
in a network. The representative sequences of nodes are
learnt by sampling from a stream of unbiased and trun-
cated random walks over the network, which effectively
maps local features into a low-dimensional vector space.
Deepwalk has attracted considerable interests in network
analysis field as it conveyed the idea of representation
learning from language modeling to the realm of networks,
spurring extended and fruitful outcomes. Node2vec [16] is
proposed as an algorithmic framework to learn the repre-
sentation of continuous node features and capture in net-
work the observed diverse patterns of connectivity. It pro-
duces high quality and informative embeddings through
biased second order random walk model to maximize the
likelihood of preserving neighborhood features of nodes.
Node2vec provides the flexibility in capturing the context
of nodes with both homophily and structural equivalence,
andcan explore neighborhood diversity efficiently.
Struc2vec [17] is another rising framework of representa-
tion learning with great novelty and flexibility, which is
able to preserve the structural similarity of nodes in the
network at different scales and regardless of their proxim-
ity. It attempts to learn latent representations of nodes that
have similar role in the network with a hierarchy measures
by constructing a multilayer graph for topological similar-
ity encoding and structural context generation.

Many applications and downstream tasks related to
node embedding become very promising and largely pro-
moted by these recent advances in the representation
learning research, but which has not been widely applied
in the biological networks analysis nor extended beyond a
single network, let alone for multiple biological networks
studies.

3 METHODS AND ALGORITHMS

In order to achieve the optimal alignment result with en-
hanced supports, we establish a similarity scoring function
that could reflect comprehensive information from both
functional and structural aspect of the participating species
and their networks. Biological characteristics and topolog-
ical features are well quantified and integrated in our over-
all scoring function to guide the aligning process and pro-
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mote the final alignment result. All match connections be-
tween proteins across different networks that have high
scores form a candidate pool for the later heuristic search-
ing procedure to generate the final optimized alignment
result, which only consists of proportional proteins with
the most similarities.

By quantifying and denoting the biological similarity be-
tween two proteins u and v as B(u, v), and the topological
similarity of which as T (u, v), our scoring function below
that integrates both features can be formulated as:

Swv)=a*Twv)+ (1 —a)*Buv) 1)
where « is a controllable parameter to weight and balance
the contribution of topological and biological similarity to-
wards the overall similarity score of S(u, v).

3.1 Protein Node to Vector

The conserved proteins across species often share similar
structural patterns of interactions and have similar func-
tions [18]. Conventional approaches describe the structural
feature of proteins mainly with metrics of topology such as
the degree. We apply in our research an alternative ap-
proach to represent proteins in the PPI network as vectors,
utilizing more comprehensive structural features. As
struc2vec builds its algorithm based on the intuitive as-
sumption that two proteins should be deemed structurally
similar if their neighbors also share same degrees, we pro-
pose to further consider with proteinaceous pattern that is
more meaningful in PPI networks, where the over-repre-
sented triangle motifs (fully connected 3-node subgraph)
often act as the basic building block and essential func-
tional units of biological processes [19].

Denote G = (V,E) as a PPI network with node set VV and
edge set E. We compute in the first step a hierarchic vari-
ance H as follows:

He(u,v) = d(t(Uk): t(Vk)) + d(s(Uk):S(Vk)) + He_1(u,v) (2)

where Uy () or V, (-) denotes a node set at k hop away from
uor vin G, s(-) denotes the ordered sequence of degree of
a node set. t(-) denotes the sequence of number of triangle
motif composed with node set k-1 hop away. The function
d(-) measures the distance between two sequences. The
design of this hierarchy is able to capture structural char-
acteristics of nodes with both neighborhood degree chain
and motif features for every two nodes.

In the second step, a weighted k-layer complete graph is
constructed for a biased random walk to generate context
sequence for each node. The weight on the edge of two
nodes in the kth layer is assigned as its normalized hierar-
chic variance on the total variances of that layer:

7% (u' U) = Hk (u' U)/ ZvEV,viu Hk (u! U) (3)

The weights on the connection of a node u to its upper
and lower layers are assigned as ¢, (1) and ¢, (u) sepa-
rately by:

log(1+Tvevuzvler wr)>Q1 (ex)])
= : 4
a1 () = L s ey menlex@r)> Qs ) ) (4)
Croa(W) =1 — iy () @)

where Q, (e;) is the lower quartile of all edge weights of the

complete graph in the kth layer. Then the biased random
walk similar to node2vec is applied on the k-layer graph
instead of one, with the in-layer moving probability as
e, (u, v) and cross-layer moving probability as ¢, (u) and
cx—1(w), to create neighbors in sequences as its context.

Once the context sequences are generated, we apply
word2vec model to effectively learn from the sequences a
node embedding and get its latent representation as a low-
dimensional vector for each of the proteins.

With the structural property of a node quantified and
embedded in a vector, the topological similarity T (u, v)
can be readily transformed by calculating the vector simi-
larity with various choices of coefficient. We apply the co-
sine measure for the vector similarity calculation:

emb(u) - emb(v)
lemb(w)] * [emb (V)]

where emby(.) is the low-dimensional vector representation
of a protein node embedded with its topological features.
We further conduct normalization on the results to have
topological similarity scores of all proteins fall in the same
scope of [0,1] for fair comparison. The closer the T (u, v) of
two proteins is to the value 1 the more similar their topo-
logical features are in their own networks.

T(u,v) = cos(u,v) =

(6)

3.2 Protein Sequence to Biological Similarity
Besides topological features of interactions in a network, a
protein also has its biological identity, such as the amino
acid sequence, which can be used to assess from biological
aspect its homology relationships with other proteins.
Higher similarity between protein sequences indicate
greater likelihood of them having similar molecular func-
tions [8].

We take biological similarity into consideration to sup-
port and complement our scoring function in guiding the
alignment process to a more compelling result. We deter-
mine the biological similarity B(u,v) between proteins as
our previous work [20] by comparing their biological sig-
nificance of homology, which is quantified as a statistical
index called Expect values (E-value). The all-against-all se-
quence comparison of Protein to Protein Basic Local
Alignment Search Tool (BLASTP) [21] is applied to calcu-
late the E-value, which describes the number of hits that
can be expected to get by chance in a pairwise comparison.

The lower the E-value the more the similarity of the two
proteins is statistically significant. We utilize such index of
significance to quantify biological similarity of each pro-
tein pair (u, v), which is to be assigned a score s, if its E-
value is within a cutoff threshold :

_ (Ses  BLASTP(u,v) < threshold

B(u, v) = {O, otherwise. )

The B(u, v) is also further normalized to fall into the

scope of [0, 1] in order to keep the consistency of dimen-

sionality with that of T'(u, v) for the integration of our scor-
ing function.

3.3 Heuristic Searching to Optimum Matchset
When previous research attempted to align every protein
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from one PPI network to others, we propose against which
to only focus on just proportion of the proteins that deserve
to be aligned to their homologues in other species. Under
this guiding principle that we deem is more natural and
rational, the new strategy is applied accordingly in our
heuristic alignment procedure.

A candidate pool can be firstly constructed from protein
pairs possessing high overall similarity score S determined
from our integrated scoring function. Maximum weighted
bipartite matching method is then applied on all pairs to
search for a maximum number of pairs whose sum of score
S is as large as possible. The outcomes form the candidate
pool where each protein pair is aligned by a virtual link
called match connection with its similarity score. The can-
didate pool contains less number of pairs while prior qual-
ity of quantified similarities of the networks is well pre-
served. During the alignment process, matchsets will be
created and updated from the candidate pool, where each
matchset contains aligned proteins with their match con-
nections from multiple networks.

Instead of considering all proteins, we start the align-
ment by randomly selecting a source network from the
participating multiple networks and a percentage of pro-
teins in the source network to create the initial matchsets,
where each of the proteins form one matchset. In each of
the repeated step of the alignment procedure, a candidate
match connection from the candidate pool will be ran-
domly selected with replacement. It is attempted to link
with the proteins in one of the existed matchsets. The ef-
fected matchset will be updated according to a merging
rules.

For the protein nodes u and v in a selected match con-
nection c=(u,v), node; or node; belongs to a considered
matchset, and the source nerwork is G, the merging rule
can be described as follows:

1) If both u and v do not belong to any existed matchset,
but one of the proteins comes from the source net-
work G, the u, v and ¢ will become a new matchset
to replace the existed matchset with the lowest
alignment score;

2) If one of the proteins belongs to an existed matchset:

2.1) when u belongs to the source network G or nei-
ther of the proteins belong to the G, add v and the c
to the matchset;
2.2) if v belongs to the source network, then add u,
v, and {node;|(node;,node,) € pool & node; ¢ G}
into the matchset, and take (u,v) together
wit {(node;,node,)|(node;, node,) € the matchset}
to form a new matchset;

3) If u and v belong to the same matchset:

3.1) leave without updating if (u,v) € matchset;
3.2) add (u,v) into the matchset if(u,v) & matchset;

4) If u and v belong to deifferent matchsets m;and m;:
4.1) if either of u and v belongs to G (e.g. the u),

a) add (u,v) into the matchset m; and the rest

of mjcompose a new matchset;
b) add the (wv) and {(node;,node;) |

(nodei,nodej) € m; & node;, node; & G} into the
m; and then randomly select one match connection
from the pool to replace the m;;

c) choose from a) or b) whichever could obtain
higher alignment score.

4.2) if none of the u and v belongs to G:

a) add (u,v) into the matchset m; and the rest
of mjcompose a new matchset;

b) add the(u, v) into the m; and then randomly se-
lect one match connection from the pool (where u
or v € G) to replace the m;;

¢) choose from a) or b) whichever could obtain
higher alignment score.

The alignment score S(M) for the current alignment re-
sult that consists of matchsets M, are calculated along with
each update step. To obtain S(M), the score of each match-
set m will first be calculated with function h:

h(m) = Y™ S(u, v) ®)

where N,,, is the number of match connections in that
matchset m. Then the alignment score function H for the
alignment result with all the matchsets can be formulated
as:

H(M) = Y™ h(m,) )

where m; is a matchset in the matchsets M, and Ny, is the
number of matchsets in matchset M.

To solve the computationally intractable (NP-hard) issue
of network alignment, we apply Simulated Annealing (SA)
[11] to heuristically search for an alignment result whose
matchsets hold the global maximum alignment score.
Match connection in the candidate pool is incrementally
selected in the update procedure until the alignment result
reaches to its highest possible score H(M), which is then
the best alignment of multiple networks. The detail of the
algorithm is shown in the following Algorithm 1.

Algorithm 1 Heuristic Selection

Input: maximum temperature T, 4,
minimum temperature T, in,
candidate match connection pool Pt,K

Output: Set of matched protein complexes
M ={m,, my, ..., m;}

while Ty, >Tymin do

fori « 1toKdo

link < GetMatch(P);

m; <merge(link, M yrrent);

if Sum(Meyrrent)< Sum(m;)

Meyrrent < My,

elseif ra nd(0,1)<exp( Sum(mcurrent_sum(mi)))

S Tmax

Meurrent < Mi;

(Yol Neo] N|ojnn|h{W|N|F-

end if

[y
o

end for

[y
[y

end while

[y
N

return M ={m,, m,, ..., m;}
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4 EXPERIMENT

4.1 Dataset preparations

We use real PPI networks from five eukaryotic species to
conduct experiments for the evaluation of our proposed
alignment method. The five adopted species in our align-
ment experiments include: Homo sapiens (human), Mus
musculus (mouse), Dorsophila melanogaster (fruit fly),
Caenorhabditis elegans (worm) and Saccharomyces cere-
visiae (yeast). They are pulled from public molecular inter-
action database IntAct [22]. Through cleaning and filtering
the raw data from these five eukaryotic species, we even-
tually obtained a total of 21,472 proteins and 87,310 inter-
actions in constructing five PPI networks. The descriptive
details for each network are listed in Table 1. The sequence
of each protein from all five PPI networks is further retrieved
from UniProtKB/Swiss-Prot database [23].

With the variousness of five PPl networks from diverse
species, we examine our proposed method and compare
our outcome with other four previous widely acknowl-
edged global multiple PPI network alignment methods on
the same three testing datasets. The three Datasets named
as A, B, C are each composed of three different PPI net-
works, and their specific compositions are also shown in
Table 1.

TABLE 1

Datasets
Species #Proteins  #Interactions Dataset

A B C

H.sapiens 8828 37956 N
M.musculus 1569 3129 N N
D.melanogaster 1547 3292 N N N
C.elegans 784 1493 N N
S.cerevisiae 5744 41440 M

Proteins and interactions of five species and the composition of three datasets
A, B, and C. Blue blocks in each dataset indicate the species included in the
according dataset, e.g. dataset-A contains PPI networks of H.sapiens, H.mus-
culus, and D.melanogaster.

Besides the novel topological measure proposed in this
study, we also evaluated the quality of our alignment out-
comes with commonly applied biological criteria on all da-
tasets. For the purpose of biological evaluations, the Gene
Ontology (GO) annotations for each protein were retrieved
accordingly from Uniprot-GOA database [24].

4.2 Experiment setups

To integrate biological information into our score assign-
ment, we calculate the E-values of pairwise proteins by im-
plementing BLASTP. The cutoff value was set to be 1e-7 as
a filter to keep only those pairs with more potential homol-
ogous from each bipartite network. The filtered pairs are
all assigned a biological similarity score B with their nor-
malized E-values.

The integrated score of each protein pair is then obtained
by combining both Band topological similarity score T to-
gether on a customizable coefficient a. We also test a by
assigning different values and discuss its corresponding
influences on the alignment results. All the pairs with inte-
grated scores are further computed with maximum
weighted matching algorithm to form a candidate pool for

the heuristic update procedure of alignment. For the align-
ment procedure, we also discuss the effect on the align-
ment results with different choices of aligning percentages.

For the purpose of alignment result comparisons, four
most widely accepted multiple alignment methods are ap-
plied, including: IsoRank-N[12], SMETANA[13], NetCof-
fee[18], and BEAMSJ[14]. They are all executed with their
recommended parameters from the original papers to
compare with our proposed method on the same datasets
in the experiment.

4.3 Evaluations

The topological evaluation of MNS and the biological eval-
uations of ME and MNE for all the alignment results gen-
erated by our proposed method as well as by the other four
methods are compared in Table 2.

TABLE 2
Evaluation of the Alignment Results
Alignment Methods
Dataset Evalua P SME.
ti ro- -
1ons tein2Vee BEAMS TANA IsoRankN|NetCoffee
ME 0.001969 0.001506 0.002778 0.002402 0.002487
IDataset
A MNE | 0.000855| 0.000408 0.000843| 0.000631 0.000546
MNS | 250.7044 359.3844 307.7648 287.4407 300.2356
ME 0.003868 0.005123 0.006794 0.005994 0.002894
IDataset
B MNE | 0.001202| 0.001210/ 0.001407| 0.001614 0.001487
MNS | 18.60203 25.90799 28.81806 26.63474 27.34610
ME 0.001904, 0.002501 0.003306 0.004856 0.002597
Dataset
C MNE | 0.000978 0.000633| 0.001144 0.001595 0.001182
MNS | 2915.752 5346.524 5580.384 4399.162| 5356.012

4.3.1 Biological measures

To evaluate the biological significance of the alignment re-
sults, we applied the commonly adopted measures of
Mean Entropy (ME) and the Mean Normalized Entropy
(MNE) to assess their functional homogeneity. The idea is
based on an intuitive assumption that the more the pro-
teins of a matchset in the alignment results have their GO
annotations corresponding to a set of genes with the same
function, the higher consistency that matchset possesses to
a certain degree in terms of alignment. The higher the con-
sistencies possessed in all the matchsets generated from an
alignment, the better is the alignment method.

One of the measuares for assessing the consistency of
aligned protein nodes in the same matchset is the ME.
Given each protein corresponding to one or more GO an-
notations, ME is computed by finding all corresponding
GO annotations of each protein in a matchset and obtain-

Page 6 of 15
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ing the percentage of proteins containing the same GO an-
notation for each different GO annotation in that matchset.
In order to compute the mean entropy of an alignment re-
sult with all matchsets, we can first calculate the entropy
E(m) of each matchset as follows:

d
_ Pix logpi

4

E(m) = E(vy, vy ) = = (10)
where v; is the protein nodes in the matchset m; p; repre-
sents the percentage of proteins containing the it GO an-
notation, and d is the total number of different GO annota-
tions in this matchset. The lower entropy a matchset hold,
the more within-cluster consistency it possesses. The ME is
then the evaluation on all matchsets from an alignment by
calculating the average of their entropies, which can be for-
mulated as follows:

1 N
ME = —Z E(m
N2, )

where N is the number of all matchsets in the alignment
result and m; is the it matchset. Accordingly, the lower the
ME of an alignment, the higher consistency it could ob-
tained, which indicates a better biological quality.

For the purpose of comparison, the ME evaluations of all
methods are illustrated in Figure 2.

(11)

Mean Entropy (ME)

0.008
0.006
0.004
~ 12N Y 1YY

Dataset-A Dataset-B Dataset-C

M Protein2Vec B BEAMS &ISMETANA [@lsoRankN [ANetCoffee

Fig. 2. lllustration and comparisons of the biological evaluation ME on
the alignment results of all five alignment methods.

As shown in Figure 2, for the biological evaluation meas-
ure ME on Dataset-A, our method obtains slightly higher
value than that of the BEAMS method, but performs better
alignment when being compared to the other three meth-
ods of SMETANA, IsoRankN, and NetCoffee; On Dataset-
B, NetCoffee performs slightly better than our method ,
while ME value of ours is much lower than the other three
methods of BEAMS, IsoRankN, and SMETANA; Our pro-
posed method outperforms all four other methods on Da-
taset-C with lower ME across all aligned networks and
achieves better alignment in terms of the consistency of bi-
ological functionality.

Another measure of the consistency evaluation for a
matchset is the MNE. MNE is a biological measure similar
to the ME and more from a normalized aspect. It normal-
izes the entropy E(m) in each matchset with the following
definition of NE(m):

NE(m) = NE(vq, vy, .. 1y) = —

d
1
;X1 (12
logdZPl ogp; (12)

where the parameters in the formula share the same mean-
ing of Equation 10. The MNE is then defined to be the av-
erage value of the normalized entropies of all matchsets
generated from an alignment method, which is formulated

as follows:
1 N
MNE = NE(m;)

i=1

(13)

Similarly, the evaluation of MNE obtaining a lower
value would indicate a better consistency and biological
quality of an alignment method.

The comparison regarding the MNE evaluation measure
of all five methods on the three datasets are shown in Fig-
ure 3.

Mean Normalized Entropy (MNE)
0.002
0.0015
0.001
0.0005 I
. ME

Dataset-A

Dataset-B Dataset-C

B Protein2Vec BBEAMS LISMETANA ElIsoRankN [@ NetCoffee

Fig. 3. lllustration and comparisons of the biological evaluation MNE
on the alignment results of all five alignment methods.

From Figure 3 we can see that our method could not
overtake all other methods on Dataset-A for the MNE eval-
uation. However, our method outperforms all other four
methods on Dataset-B. On Dataset-C, except for the
BEAMS, our method obtains better MNE than the other
three methods.

4.3.2 Topological measure

There are several existing topological measures usually be-
ing applied in the previous PPI network alignment re-
search, such as the Edge Correctness (EC), the Induced
Conserved Structure (ICS), or the Symmetric Substructure
Score (S3). Despite of their effectiveness in evaluating an
alignment results from different aspects, they are designed
to measure the alignment of pairwise networks instead of
multiple networks.

To solve the above limitation, we propose a novel meas-
ure for topological evaluation of the result from multiple
network alignment, called Mean Neighbor Similarity
(MNS). Our idea is based on a very natural assumption
that if two proteins from different networks are very simi-
lar in functional homogeneity, they should also share a
very similar topological characteristics in terms of the pro-
tein interactions in their respective network of species. In
another word, two well aligned proteins from different
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networks should share a very similar pattern of the neigh-
boring structure and the structure of their neighbors. With
such assumed guidance, we design to use the degree se-
quence of all neighbors of a protein in a network to repre-
sent its topological feature.

When evaluating the topological feature of a protein
node in the matchsets of an alignment result, we obtain the
degree sequence of its all neighbors in the network. The
two similar protein nodes should share similar topological
structures while their neighbor nodes are also having sim-
ilar structures in their respective PPl networks, and such
structural patterns can be represented by the degree se-
quences of their neighbors; If the degree sequences of dif-
ferent proteins from different networks are similar, the
protein nodes are considered to have a more similar topo-
logical structure hence being more homogeneous.

To determine the topological similarity of aligned pro-
teins, we need to calculate the similarity of their degree se-
quences which are usually unequal in length. Traditional
sequence similarity calculations usually apply the algo-
rithm such as Euclidean distance, but which cannot solve
the complex case of sequences with different lengths. Dy-
namic Time Warping (DTW) is a very effective algorithm
that can measure similarity between two sequences with
different lengths. We calculate the similarity of the degree
sequences of proteins for the MNS drawing on the same
idea of DTW.

Given two finite degree sequences Q = (qq, ..., q,) and
C = (cy, ..., ), without loss generality, we assume both
Q1 -, qn and ¢y, ..., ¢, are in ascending order, and n, m de-
note the length of sequence Q and sequence C. The algo-
rithm we applied for calculating the similarity of degree
sequences are as follows:

If n=m, the distance between the degree sequences can
be directly calculated, such as using Euclidean distance;

if n # m, the two sequences need to be aligned before
calculating the distance. Here we use the dynamic pro-
gramming (DP) algorithm to align different sequences. We
need to first create a matrix of n x m, where the matrix ele-
ment (i, j) represents the distance d(g;, ¢;) between the two
sequence element q; and c;, that s, the i element of the se-
quence Q and the jth element of the sequence C. Calculating
the similarity of sequences with different length by the DP
algorithm can be then summarized as finding a path,
where its passing elements are those that need to be
aligned. The optimal distance is the path with the smallest
accumulated distance; The shorter the distance, the more
similar the two sequences are.

The specific steps of MNS calculation are: Firstly, the de-
gree sequences of two protein nodes are aligned with DP
algorithm to obtain their similarity distance. Secondly, the
pairwise similarity distances of the degree sequences of all
nodes in a matchset is calculated and accumulated. Thirdly,
the average of the degree sequence similarity of all the
matchsets is calculated as the value of the evaluation index
MNS.

Figure 4 shows the MNS comparison of the alignment
results of five methods on three datasets. Since the orders

of magnitude are not at the same level for the numbers of
nodes in the networks of different datasets, in order to
show the comparison in one figure, the MNS values are
processed and scaled for the results on each dataset sepa-
rately. For example, on the Dataset-B, the MNS values of
the five methods are all increased by 10 times; On the Da-
taset-C, the MNS values are all reduced by a factor of 10.
The scaling processing has no effect on the comparison be-
tween the different methods on the same dataset.

Mean Neighbor Similarity (MNS)

600
500
400
300

200
100 I
0

M Protein2Vec B BEAMS [E SMETANA @ IsoRankN @ NetCoffee

Dataset-A Dataset-B Dataset-C

Fig. 4. lllustration and comparisons of the topological evaluation (MNS)
on the alignment results of five alignment.

Since MNS calculates the distance between sequences,
the lower the value of MNS, the more similar the sequences
are. From Figure 4 we can see that for the evaluation of
topological features, our method outperforms all other
four methods on all three evaluation datasets.

TABLE 3
Evaluation of the Alignment Results on Different Settings
of the Parameter percentage and a

a for topological score
Percent- | p o luations | 0.1 03 0.6
age

ME 0.005318 0.003665 | 0.004487
50% MNE 0.001405 0.001294 | 0.001319
MNS 3111.352 2954.371 2533.671
ME 0.005562 0.003642 0.004372
60% MNE 0.001213 0.001131 0.001211
MNS 3050.323 2763.615 2480.121
ME 0.003985 0.001904 | 0.003213
70% MNE 0.001073 0.000978 | 0.000919
MNS 2881.996 2915.752 | 2489.956
ME 0.001901 0.002493 | 0.002145
80% MNE 0.000825 0.000806 | 0.000863
MNS 2880.966 2714.952 | 2474.034
ME 0.002166 0.002950 | 0.003043
90 % MNE 0.000723 0.000739 0.000795
MNS 2866.939 2727.614 2525.304

In order to figure the influences on the alignment results
generated by our proposed method with different param-
eter assignments to a and the percentage of best aligning
proteins in a target network, we additionally conduct a
large number of experiments on the three datasets. Taking
the experimental results of the parameter examination on

Page 8 of 15
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the Dataset C as an example, we test different a values and
different numbers of aligned matchsets as the percentage
of target network. We experiment with a values spanning
as 0.1, 0.3, and 0.6, and set the percentage of matchsets
spanning as 50%, 60%, 70%, and 80%, and 90%. The de-
tailed results are shown in Table 3.

In order to see the effects of setting different a values
and different number of matchsets on the results of multi-
ple network alignments with same dataset, we show dif-
ferent values of a across different aligning percentages of
the target network with the three evaluation measures in
Figure 5 respectively.

Mean Entropy (ME)

=== 23|pha=0.1 ==fll==alpha=0.3 alpha=0.6

0.006
0.005
0.004
0.003
0.002
0.001

50%

60% 70%

(a)

Mean Normalized Entropy (MNE)

80% 90%

== alpha=0.1

== alpha=0.3

alpha0.6

0.0016
0.0014
0.0012

0.001

0.0008

\-\U

80%

0.0006

50% 60% 70%

(b)
Mean Neighbor Similaritysd (MNS)

90%

=== 3|pha=0.1 === alpha=0.3 alpha=0.6

3200

3100

3000

2900 & o
v 4

2800 N\

2700

2600

2500

2400

50% 60% 70%

(c)
Fig. 5. Evaluation of the alignment results on different settings of the
parameter of percentage and a

80% 90%

From Fig. 5, we can see that: Firstly, in the Figure 5(a) ,
with the same value of qa, there is a trend that the ME value

decreases at the beginning and then increases when the
number of matchsets changes from 50% of the source net-
work protein node number towards 90% of it. This trend
remains when we test with the three different a values;
Secondly, in the case of the evaluation measure of MNE
showed in Figure 5(b), with the same a value, there is a
tendency of MNE values decrease when the percentages
increase. The overall decreasing rate however changes
from large to small, and such tendency also occurs with the
condition of three different a values. Thirdly, in the Figure
5(c), when the value of a remains and the number of
matchsets increases, there is a trend that values of MNS de-
crease first and then increase, which has also appeared for
three different a values.

These further large number of experiments and compar-
isons indicate that, initially the more the aligning match-
sets involved, the more protein nodes with homogeneity
from multiple networks can be aligned with our alignment
method; There is a turning point of saturation however, if
the allowed number of matchsets keeps increasing after
reaching that point, the alignment performance and qual-
ity start to decrease. The findings also justify our alignment
approach and guidance of only aiming at aligning part of
the proteins that should be aligned from multiple PPI net-
works of different species, instead of making effort to in-
volve all proteins in every network for the network align-
ment task.

7 CONCLUSION

In this study, we propose a new PPl network alignment
method with representation learning on the networks. It
transforms and quantifies the structural features of pro-
teins into low-dimensional vectors. Topological similarity
can thus be computed through the corresponding vectors.
Along with the biological similarity, the proposed method
aligns multiple PPI networks without requiring all pro-
teins to be aligned, which is more efficient to find only
most homologous proteins across multiple species. Besides
biological evaluation measures, we also propose a new
measure to better evaluate topological quality of the align-
ment results.
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