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Approximation algorithms for stochastic clustering∗

David G. Harris† Shi Li‡ Thomas Pensyl§ Aravind Srinivasan¶ Khoa Trinh∥

Abstract

We consider stochastic settings for clustering, and develop provably-good approximation al-
gorithms for a number of these notions. These algorithms yield better approximation ratios
compared to the usual deterministic clustering setting. Additionally, they offer a number of
advantages including providing fairer clustering and clustering which has better long-term be-
havior for each user. In particular, they ensure that every user is guaranteed to get good service
(on average). We also complement some of these with impossibility results.
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This is an extended version of a paper that appeared in the Conference on Neural Information
Processing Systems (NeurIPS) 2018.

1 Introduction

Clustering is a fundamental problem in machine learning and data science. A general clustering
task is to partition the given data points such that points inside the same cluster are “similar” to
each other. More formally, consider a set of datapoints C and a set of “potential cluster centers”
F , with a metric d on C ∪F . We define n := |C ∪F|. Given any set S ⊆ F , each j ∈ C is associated
with the key statistic d(j,S) = mini∈S d(i, j). The typical clustering task is to select a set S ⊆ F
which has a small size and which minimizes the values of d(j,S).

The size of the set S is often fixed to a value k, and we typically “boil down” the large collection
of values d(j,S) into a single overall objective function. A variety of objective functions and
assumptions on sets C and F are used. The most popular problems include1

• the k-center problem: minimize the value maxj∈C d(j,S) given that F = C.

• the k-supplier problem: minimize the value maxj∈C d(j,S) (where F and C may be unrelated);

• the k-median problem: minimize the summed value
∑

j∈C d(j,S); and
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1In the original version of the k-means problem, C is a subset of Rℓ and F = R
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with only a small loss in the value of the objective function.

1



• the k-means problem: minimize the summed square value
∑

j∈C d(j,S)
2.

An important special case is when C = F (e.g. the k-center problem); since this often occurs in
the context of data clustering, we refer to this as the self-contained clustering (SCC) setting.

These classic NP-hard problems have been studied intensively for the past few decades. There
is an alternative interpretation from the viewpoint of operations research: the sets F and C can
be thought of as “facilities” and “clients”, respectively. We say that i ∈ F is open if i is placed
into the solution set S. For a set S ⊆ F of open facilities, d(j,S) can then be interpreted as the
connection cost of client j. This terminology has historically been used for clustering problems,
and we adopt throughout for consistency. However, our focus is on the case in which C and F are
arbitrary abstract sets in the data-clustering setting.

Since these problems are NP-hard, much effort has been paid on algorithms with “small” prov-
able approximation ratios/guarantees: i.e., polynomial-time algorithms that produce solutions of
cost at most α times the optimal. The current best-known approximation ratio for k-median is
2.675 by Byrka et. al. [6] and it is NP-hard to approximate this problem to within a factor of
1+ 2/e ≈ 1.735 [23]. The recent breakthrough by Ahmadian et. al. [1] gives a 6.357-approximation
algorithm for k-means, improving on the previous approximation guarantee of 9 + ε based on local
search [24]. Finally, the k-supplier problem is “easier” than both k-median and k-means in the
sense that a simple 3-approximation algorithm [20] is known, as is a 2-approximation for k-center
problem: we cannot do better than these approximation ratios unless P = NP [20].

While optimal approximation algorithms for the center-type problems are well-known, one can
easily demonstrate instances where such algorithms return a worst-possible solution: (i) all clusters
have the same worst-possible radius (2T for k-center and 3T for k-supplier where T is the optimal
radius) and (ii) almost all data points are on the circumference of the resulting clusters. Although
it is NP-hard to improve these approximation ratios, our new randomized algorithms provide sig-
nificantly better “per-point” guarantees. For example, we achieve a new “per-point” guarantee
E[d(j,S)] ≤ (1+2/e)T ≈ 1.736T , while respecting the usual guarantee d(j,S) ≤ 3T with probabil-
ity one. Thus, while maintaining good global quality with probability one, we also provide superior
stochastic guarantees for each user.

The general problem we study in this paper is to develop approximation algorithms for center-
type problems where S is drawn from a probability distribution over k-element subsets of F ; we
refer to these as k-lotteries. We aim to construct a k-lottery Ω achieving certain guarantees on the
distributional properties of d(j,S). The classical k-center problem can be viewed as the special case
where the distribution Ω is deterministic, that is, it is supported on a single point. Our goal is to
find an approximating distribution Ω̃ which matches the target distribution Ω as closely as possible
for each client j.

Stochastic solutions can circumvent the approximation hardness of a number of classical center-
type problems. There are a number of additional applications where stochasticity can be beneficial.
We summarize three here: smoothing the integrality constraints of clustering, solving repeated
problem instances, and achieving fair solutions.

Stochasticity as interpolation. For many problems in practice, robustness of the solution is
often more important than achieving the absolute optimal value for the objective function. One
potential problem with the (deterministic) center measure is that it can be highly non-robust;
adding a single new point may drastically change the overall objective function. As an extreme
example, consider k-center with k points, each at distance 1 from each other. This clearly has
value 0 (choosing S = C). However, if a single new point at distance 1 to all other points is added,
then the solution jumps to 1. Stochasticity alleviates this discontinuity: by choosing k facilities
uniformly at random among the full set of k + 1, we can ensure that E[d(j,S)] = 1

k+1 for every

2



point j, a much smoother transition.

Repeated clustering problems. Consider clustering problems where the choice of S can be
changed periodically: e.g., S could be the set of k locations in the cloud chosen by a service-
provider. This set S can be shuffled periodically in a manner transparent to end-users. For any
user j ∈ C, the statistic d(j,S) represents the latency of the service j receives (from its closest
service-point in S). If we aim for a fair or minmax service allocation, then our k-center stochastic
approximation results ensure that for every client j, the long-term average service-time — where
the average is taken over the periodic re-provisioning of S — is at most around 1.736T with high
probability. (Furthermore, we have the risk-avoidance guarantee that in no individual provisioning
of S will any client have service-time greater than 3T .) We emphasize that this type of guarantee
pertains to multi-round clustering problems, and is not by itself stochastic.

Fairness in clustering. The classical clustering problems combine the needs of many different
points (elements of C) into one metric. However, clustering (and indeed many other ML problems)
are increasingly driven by inputs from parties with diverse interests. Fairness in these contexts has
taken on greater importance in our current world, where decisions will increasingly be taken by
algorithms and machine learning. Some examples of recent concerns include the accusations of, and
fixes for, possible racial bias in Airbnb rentals [4] and the finding that setting the gender to “female”
in Google’s Ad Settings resulted in getting fewer ads for high-paying jobs [10]. Starting with older
work such as [34], there have been highly-publicized works on bias in allocating scarce resources –
e.g., racial discrimination in hiring applicants who have very similar resumés [5]. Additional work
discusses the possibility of bias in electronic marketplaces, whether human-mediated or not [3, 4].

A fair allocation should provide good service guarantees to each user individually. In data
clustering settings where a user corresponds to a datapoint, this means that every point j ∈ C
should be guaranteed a good value of d(j,S). This is essentially the goal of k-center type problems,
but the stochastic setting broadens the meaning of good per-user service.

Consider the following scenarios. Each user, either explicitly or implicitly, submits their data
(corresponding to a point in C) to an aggregator such as an e-commerce site. The cluster centers
are “influencer” nodes. Two examples that motivate the aggregator’s budget on k are: (i) the
aggregator can give a free product sample to each influencer to influence the whole population
in aggregate, as in [25], and (ii) the aggregator forms a sparse “sketch” with k nodes (the cluster
centers), with each node hopefully being similar to the users in the cluster so that these users nodes
get relevant recommendations. Each point j would like to be in a cluster that is “high quality” from
its perspective, with d(j,S) being a good proxy for such quality. Indeed, there is increasing emphasis
on the fact that organizations monetize their user data, and that users need to be compensated for
this (see, e.g., [27, 22]). This is a transition from viewing data as capital to viewing data as labor.
A concrete way for users (i.e., the data points j ∈ C) to be compensated in our context is for each
user to get a guarantee on their solution quality: i.e., bounds on d(j,S).

1.1 Our contributions and overview

In Section 2, we encounter the first clustering problem which we refer to as chance k-coverage:
namely, where every client j has a distance demand rj and probability demand pj, and we wish
to find a distribution satisfying Pr[d(j,S) ≤ rj ] ≥ pj. We show how to obtain an approximation
algorithm to find an approximating distribution Ω̃ with2

Pr
S∼Ω̃

[d(j,S) ≤ 9rj ] ≥ pj.

2Notation such as “S ∼ Ω̃” indicates that the random set S is drawn from the distribution Ω̃.
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In a number of special cases, such as when all the values of pj or rj are the same, the distance
factor 9 can be improved to 3, which is optimal ; it is an interesting question to determine whether
this factor can also be improved in the general case.

In Section 3, we consider a special case of chance k-coverage, in which pj = 1 for all clients j.
This is equivalent to the classical (deterministic) k-supplier problem. Allowing the approximating
distribution Ω̃ to be stochastic yields significantly better distance guarantees than are possible for
k-supplier or k-center. For instance, we find an approximating distribution Ω̃ with

∀j ∈ C ES∼Ω̃
[d(j,S)] ≤ 1.592T and Pr[d(j,S) ≤ 3T ] = 1

where T is the optimal solution to the (deterministic) k-center problem. By contrast, deterministic
polynomial-time algorithms cannot guarantee d(j,S) < 2T for all j, unless P = NP [20].

In Section 4, we show a variety of lower bounds on the approximation factors achievable by
efficient algorithms (assuming that P ̸= NP). For instance, we show that our approximation
algorithm for chance k-coverage with equal pj or rj has the optimal distance approximation factor
3, that our approximation algorithm for k-supplier has optimal approximation factor 1 + 2/e, and
that the approximation factor 1.592 for k-center cannot be improved below 1 + 1/e.

In Section 5, we consider a different type of stochastic approximation problem based on expected
distances: namely, every client has a demand tj , and we seek a k-lottery Ω with E[d(j,S)] ≤ tj .
We show that we can leverage any given α-approximation algorithm for k-median to produce a
k-lottery Ω̃ with E[d(j,S)] ≤ αtj. (Recall that the current-best α here is 2.675 as shown in [6].)

In Section 6, we consider the converse problem to Section 5: if we are given a k-lottery Ω with
E[d(j,S)] ≤ tj , can we produce a single deterministic set S so that d(j,S) ≈ tj and |S| ≈ k?
We refer to this as a determinization of Ω. We show a variety of determinization algorithms. For
instance, we are able to find a set S with |S| ≤ 3k and d(j,S) ≤ 3tj . We show a number of
nearly-matching lower bounds on what determinizations are achievable as well.

1.2 Related work

With algorithms increasingly running our world, there has been substantial recent interest on in-
corporating fairness systematically into algorithms and machine learning. One such notion that
has gained importance is that of disparate impact : in addition to requiring that protected attributes
such as gender or race not be used (explicitly) in decisions, this asks that decisions not be dispro-
portionately different for diverse protected classes [14]. This is developed further in the context of
clustering in the work of [8]. Such notions of group fairness are considered along with individual
fairness – treating similar individuals similarly – in [36]. See [11] for earlier work that developed
foundations and connections for several such notions of fairness.

In the context of the location and sizing of services, there have been several studies indicating
that proactive on-site provision of healthcare improves health outcomes significantly: e.g., mobile
mammography for older women [32], mobile healthcare for reproductive health in immigrant women
[17], and the use of a community mobile-health van for increased access to prenatal care [12].
Studies also indicate the impact of distance to the closest facility on health outcomes: see, e.g.,
[29, 30, 33]. Such works naturally suggest tradeoffs between resource allocation (provision of such
services, including sizing – e.g., the number k of centers) and expected health outcomes.

While much analysis for facility-location problems has focused on the static case, there have
been other works analyzing a similar lottery model for center-type problems. In [19, 18], Harris
et. al. analyzed models similar to chance k-coverage and minimization of E[d(j,S)], but applied
to knapsack center and matroid center problems; they also considered robust versions (in which a
small subset of clients may be denied service). While the overall model was similar to the ones we

4



explore here, the techniques are somewhat different. Furthermore, these works focus only on the
case where the target distribution is itself deterministic.

Similar stochastic approximation guarantees have appeared in the context of approximation
algorithms for static problems, particularly k-median problems. In [7], Charikar & Li discussed a
randomized procedure for converting a linear-programming relaxation in which a client has frac-
tional distance tj , into a distribution Ω satisfying ES∼Ω[d(j,S)] ≤ 3.25tj . This property can be
used, among other things, to achieve a 3.25-approximation for k-median. However, many other ran-
domized rounding algorithms for k-median only seek to preserve the aggregate value

∑

j E[d(j,S)],
without our type of per-point guarantee.

We also contrast our approach with a different stochastic k-center problem considered in works
such as [21, 2]. These consider a model with a fixed, deterministic set S of open facilities, while
the client set is determined stochastically; this model is almost precisely opposite to ours.

1.3 Publicly verifying the distributions

Our approximation algorithms will have the following structure: given some target distribution Ω,
we construct a randomized procedure A which returns some random set S with good probabilistic
guarantees matching Ω. Thus the algorithm A is itself the approximating distribution Ω̃.

It is often preferable to have a distribution Ω̃ which has a sparse support (set of points to which
it assigns nonzero probability), and which can be enumerated directly; the users can then draw
from Ω̃ as desired. Such a sparse distribution can also be publicly verified. In a number of cases,
we will be able to convert the randomized algorithm A into a sparse distribution Ω̃, perhaps with
a small loss in approximation ratio.

Recall that one of our main motivations is fairness in clustering; the ability for the users to
verify that they are being treated fairly in a stochastic sense (although not necessarily in any one
particular run of the algorithm) is particularly important.

1.4 Notation

We define
(F
k

)

to be the collection of k-element subsets of F . We assume throughout that F can
be made arbitrarily large by duplicating its elements; thus, whenever we have an expression like
(F
k

)

, we assume without loss of generality that |F| ≥ k.
We will let [t] denote the set {1, 2, . . . , t}. We use the Iverson notation throughout, so that for

any Boolean predicate P we let [[P]] be equal to one if P is true and zero otherwise.
For any vector a = (a1, . . . , an) and a subset X ⊆ [n], we write a(X) as shorthand for

∑

i∈X ai.
For a real number q ∈ [0, 1], we use the shorthand q = 1− q throughout.
For a distribution Ω, we let |Ω| denote the support size of Ω.
Given any j ∈ C and any real number r ≥ 0, we define the ball B(j, r) = {i ∈ F | d(i, j) ≤ r}.

We let θ(j) be the distance from j to the nearest facility, and Vj be the facility closest to j, i.e.
d(j, Vj) = d(j,F) = θ(j). Note that in the SCC setting we have Vj = j and θ(j) = 0.

For a solution set S, we say that j ∈ C is matched to i ∈ S if i is the closest facility of S to j;
if there are multiple closest facilities, we take i to be one with least index.

1.5 Some useful subroutines

We will use two basic subroutines repeatedly: dependent rounding and greedy clustering.
In dependent rounding, we aim to preserve certain marginal distributions and negative cor-

relation properties while satisfying some constraints with probability one. Our algorithms use a
dependent-rounding algorithm from [35], which we summarize as follows:
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Proposition 1.1. There exists a randomized polynomial-time algorithm DepRound(y) which takes
as input a vector y ∈ [0, 1]n, and outputs a random set Y ⊆ [n] with the following properties:

(P1) Pr[i ∈ Y ] = yi, for all i ∈ [n],

(P2) ⌊
∑n

i=1 yi⌋ ≤ |Y | ≤ ⌈
∑n

i=1 yi⌉ with probability one,

(P3) Pr[Y ∩ S = ∅] ≤
∏

i∈S(1− yi) for all S ⊆ [n].

We adopt the following additional convention: suppose (y1, . . . , yn) ∈ [0, 1]n and S ⊆ [n]; we
then define DepRound(y, S) ⊆ S to be DepRound(x), for the vector x defined by xi = yi[[i ∈ S]].

The greedy clustering procedure takes an input a set of weights wj and sets Fj ⊆ F for every
client j ∈ C, and executes the following procedure:

Algorithm 1 GreedyCluster(F,w)

1: Sort C as C = {j1, j2, . . . , jℓ} where wj1 ≤ wj2 ≤ · · · ≤ wjℓ .
2: Initialize C ′ = ∅
3: for t = 1, . . . , ℓ do
4: if Fjt ∩ Fj′ = ∅ for all j′ ∈ C ′ then update C ′ ← C ′ ∪ {jt}
5: Return C ′

Observation 1.2. If C ′ = GreedyCluster(F,w) then for any j ∈ C there is z ∈ C ′ with wz ≤ wj

and Fz ∩ Fj ̸= ∅.

2 The chance k-coverage problem

In this section, we consider a scenario we refer to as the chance k-coverage problem: every point
j ∈ C has demand parameters pj , rj , and we wish to find a k-lottery Ω such that

Pr
S∼Ω

[d(j,S) ≤ rj] ≥ pj. (1)

If a k-lottery satisfying (1) exists, we say that the parameters pj , rj are feasible. We refer to
the special case wherein every client j has a common value pj = p and a common value rj = r,
as homogeneous. Homogeneous instances often arise in the context of fair allocations, for example,
k-supplier is a special case of the homogeneous chance k-coverage problem, in which pj = 1 and rj
is equal to the optimal k-supplier radius.

As we show in Section 4, any approximation algorithm must either significantly give up a
guarantee on the distance, or probability (or both). Our approximation algorithms for this problem
will be based on a linear programming (LP) relaxation which we denote Pchance. It has fractional
variables bi, where i ranges over F (bi represents the probability of opening facility i). It is defined
by the following constraints:

(B1)
∑

i∈B(j,rj)
bi ≥ pj for all j ∈ C,

(B2) b(F) = k,

(B3) bi ∈ [0, 1] for all i ∈ F .

Proposition 2.1. If parameters p, r are feasible, then Pchance is nonempty.

6



Proof. Consider a distribution Ω satisfying (1). For each i ∈ F , set bi = PrS∼Ω[i ∈ S]. For j ∈ C
we have pj = Pr

[
∨

i∈B(j,rj)
i ∈ S

]

≤
∑

i∈B(j,rj)
Pr[i ∈ S] =

∑

i∈B(j,rj)
bi and thus (B1) is satisfied.

We have k = E[|S|] =
∑

i∈F Pr[i ∈ S] = b(F) and so (B2) is satisfied. (B3) is clear, so we have
demonstrated a point in Pchance.

For the remainder of this section, we assume we have a vector b ∈ Pchance and focus on how to
round it to an integral solution. By a standard facility-splitting step, we also generate, for every
j ∈ C, a center set Fj ⊆ B(j, rj) with b(Fj) = pj. In the SCC setting, it will also be convenient to
ensure that j ∈ Fj as long as bj ̸= 0.

Our first result shows how to get an approximation algorithm which respects the distance
guarantee exactly, with constant-factor loss to the probability guarantee:

Theorem 2.2. If p, r is feasible then one may efficiently construct a k-lottery Ω satisfying

Pr
S∼Ω

[d(j,S) ≤ rj] ≥ (1− 1/e)pj .

Proof. Let b satisfy Pchance and set S = DepRound(b). This satisfies |S| ≤ ⌈
∑n

i=1 bi⌉ ≤ ⌈k⌉ = k
as desired. Each j ∈ C has

Pr[S ∩ Fj = ∅] ≤
∏

i∈Fj

(1− bi) ≤
∏

i∈Fj

e−bi = e−b(Fi) = e−pj .

and then simple analysis shows that

Pr[d(j,S) ≤ rj ] ≥ Pr[S ∩ Fj ̸= ∅] ≥ 1− e−pj ≥ (1− 1/e)pj

As we will later show in Proposition 4.5, this approximation constant 1− 1/e is optimal.
We next turn to preserving the probability guarantee exactly with some loss to distance guar-

antee. As a warm-up exercise, let us consider the special case of problem instances which are
“half-homogeneous”: all the values of pj are the same, or all the values of rj are the same. We use
a similar algorithm for both these cases. The main idea is to first select a set C ′ according to some
greedy order, and then open a single item from each cluster. The only difference between the two
cases is the choice of weighting function wj for the greedy cluster selection.

We summarize these algorithms as follows:

Algorithm 2 Rounding algorithm for half-homogeneous chance k-coverage

1: Set C ′ = GreedyCluster(Fj , wj)
2: Set Y = DepRound(p,C ′)
3: Form solution set S = {Vj | j ∈ Y }.

Algorithm 2 opens at most k facilities, as the dependent rounding step ensures that
∑

j∈Y pj ≤
⌈
∑

j∈C′ pj⌉ = ⌈
∑

j∈C′ b(Fj)⌉ ≤ ⌈
∑

i∈F bi⌉ ≤ k.

Proposition 2.3. Suppose that pj is the same for every j ∈ C. Then using the weighting function
wj = rj ensures that every j ∈ C satisfies Pr[d(j,S) ≤ 3rj ] ≥ pj. Furthermore, in the SCC setting,
it satisfies Pr[d(j,S) ≤ 2rj ] ≥ pj .

Proof. By Observation 1.2, for any j ∈ C there is z ∈ C ′ with rz ≤ rj and Fj ∩ Fz ̸= ∅. Letting
i ∈ Fj∩Fz gives d(j, z) ≤ d(j, i)+d(z, i) ≤ rj+rz ≤ 2rj . This z ∈ C ′ survives to Y with probability
pz = pj, and in that case we have d(z,S) = θ(z). In the SCC setting, this means that d(z,S) = 0;
in the general setting, we have θ(z) ≤ rz ≤ rj.
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Proposition 2.4. Suppose rj is the same for every j ∈ C. Then using the weighting function
wj = 1 − pj ensures that every j ∈ C satisfies Pr[d(j,S) ≤ 3rj ] ≥ pj. Furthermore, in the SCC
setting, it satisfies Pr[d(j,S) ≤ 2rj ] ≥ pj.

Proof. By Observation 1.2, for any j ∈ C there is z ∈ C ′ with pz ≥ pj and Fj ∩ Fz ̸= ∅. Letting
i ∈ Fj∩Fz gives d(j, z) ≤ d(j, i)+d(i, z) ≤ rj+rz = 2rj . This z ∈ C ′ survives to Y with probability
pz ≥ pj, and in that case we have d(z,S) = θ(z). In the SCC setting, this means that d(z,S) = 0;
in the general setting, we must have d(z,S) ≤ rz = rj .

2.1 Approximating the general case

We next show how to satisfy the probability constraint exactly for the general case of chance k-
coverage, with a constant-factor loss in the distance guarantee. Namely, we will find a probability
distribution with

Pr
S∼Ω

[d(j,S) ≤ 9rj ] ≥ pj.

The algorithm is based on iterated rounding, in which the entries of b go through an unbiased
random walk until b becomes integral (and, thus corresponds to a solution set S). Because the walk
is unbiased, the probability of serving a client at the end is equal to the fractional probability of
serving a client, which will be at least pj. In order for this process to make progress, the number
of active variables must be greater than the number of active constraints. To ensure this, we
periodically identify clients which will be automatically served by serving other clients, and discard
them. This is similar to a method of [26], which also uses iterative rounding for (deterministic)
approximations to k-median with outliers and k-means with outliers.

The sets Fj will remain fixed during this procedure. We will maintain a vector b ∈ [0, 1]F and
maintain two sets Ctight and Cslack with the following properties:

(C1) Ctight ∩Cslack = ∅.

(C2) For all j, j′ ∈ Ctight, we have Fj ∩ Fj′ = ∅

(C3) Every j ∈ Ctight has b(Fj) = 1,

(C4) Every j ∈ Cslack has b(Fj) ≤ 1.

(C5) We have b(
⋃

j∈Ctight∪Cslack
Fj) ≤ k

Given our initial solution b for Pchance, setting Ctight = ∅, Cslack = C will satisfy criteria (C1)–
(C5); note that (C4) holds as b(Fj) = pj ≤ 1 for all j ∈ C.

Proposition 2.5. Given any vector b ∈ [0, 1]F satisfying constraints (C1)—(C5) with Cslack ̸= ∅,
it is possible to generate a random vector b′ ∈ [0, 1]F such that E[b′] = b, and with probability one
b′ satisfies constraints (C1) — (C5) as well as having some j ∈ Cslack with b′(Fj) ∈ {0, 1}.

Proof. We will show that any basic solution b ∈ [0, 1]F to the constraints (C1)—(C5) with Cslack ̸= ∅
must satisfy the condition that b(Fj) ∈ {0, 1} for some j ∈ Cslack. To obtain the stated result, we
simply modify b until it becomes basic by performing an unbiased walk in the null-space of the
tight constraints.

So consider a basic solution b. Define A =
⋃

j∈Ctight
Fj and B =

⋃

j∈Cslack
Fj . We assume that

b(Fj) ∈ (0, 1) for all j ∈ Cslack, as otherwise we are done.
First, suppose that b(A ∩ B) > 0. So there must be some pair j ∈ Cslack, j

′ ∈ Ctight with
i ∈ Fj ∩ Fj′ such that bi > 0. Since b(Fj) < 1, b(Fj′) = 1, there must be some other i′ ∈ Fj′
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with bi′ > 0. Consider modifying b by incrementing bi by ±ε and decrementing bi′ by ±ε, for
some sufficiently small ε. Constraint (C5) is preserved. Since Fj′ ∩ Fj′′ = ∅ for all j′′ ∈ Ctight,
constraint (C3) is preserved. Since the (C4) constraints are slack, then for ε sufficiently small they
are preserved as well. This contradicts that b is basic.

Next, suppose that b(A ∩ B) = 0 and b(A ∪ B) < k strictly. Let j ∈ Cslack and i ∈ Fj with
bi > 0; if we change bi by ±ε for sufficiently small ε, this preserves (C4) and (C5); furthermore,
since i /∈ A, it preserves (C3) as well. So again b cannot be basic.

Finally, suppose that b(A ∩ B) = 0 and b(A ∪ B) = k. So b(B) = k − |A| and b(B) > 0 as
Cslack ̸= ∅. Therefore, there must be at least two elements i, i′ ∈ B such that bi > 0, bi′ > 0. If
we increment bi by ±ε while decrementing bi′ by ±ε, this again preserves all the constraints for ε

sufficiently small, contradicting that b is basic.

We can now describe our iterative rounding algorithm, Algorithm 3.

Algorithm 3 Iterative rounding algorithm for chance k-coverage

1: Let b be a fractional solution to Pchance and form the corresponding sets Fj .
2: Initialize Ctight = ∅, Cslack = C
3: while Cslack ̸= ∅ do
4: Draw a fractional solution b′ with E[b′] = b according to Proposition 2.5.
5: Select some v ∈ Cslack with b′(Fv) ∈ {0, 1}.
6: Update Cslack ← Cslack − {v}
7: if b′(Fv) = 1 then
8: Update Ctight ← Ctight ∪ {v}
9: if there is any z ∈ Ctight ∪ Cslack such that rz ≥ rv/2 and Fz ∩ Fv ̸= ∅ then

10: Update Ctight ← Ctight − {z}, Cslack ← Cslack − {z}
11: Update b ← b′.
12: For each j ∈ Ctight, open an arbitrary center in Fj .

To analyze this algorithm, define Ct
tight, C

t
slack, b

t to be the values of the relevant variables at
iteration t. Since every step removes at least one point from Cslack, this process must terminate in
T ≤ n iterations. We will write bt+1 to refer to the random value b′ chosen at step (4) of iteration
t, and vt denote the choice of v ∈ Cslack used step in step (5) of iteration t.

Proposition 2.6. The vector bt satisfies constraints (C1) — (C5) for all times t = 1, . . . , T .

Proof. The vector b0 does so since b satisfies Pchance and hence b(F) ≤ k. Proposition 2.5 ensures
that step (4) does not affect this. Removing points from Ctight or Cslack will also clearly not violate
these constraints.

Let us check that adding vt to Ctight will not violate the constraints. This step only occurs if
bt+1(vt) = 1, and so (C3) is preserved. Since we only move vt from Cslack to Ctight, constraints (C1)
and (C5) are preserved.

Finally, we show that (C2) is preserved. Suppose we add vt into Ctight at stage (8), but
Fvt ∩ Fvs ̸= ∅ for some other vs which was added to Ctight at time s < t. If rvt ≥ rvs , then step
(10) would have removed vt from Cslack, making it impossible to enter Ct

tight. Thus, rvt ≤ rvs ; this

means that when we add vt to Ct
tight, we also remove vs from Ct

tight.

Corollary 2.7. Algorithm 3 opens at most k facilities.
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Proof. At the final step (12), the number of open facilities is equal to |Ctight|. By Proposition 2.6,
the vector bT satisfies constraints (C1) — (C5). So b(Fj) = 1 for j ∈ Ctight and Fj ∩ Fj′ = ∅ for
j, j ∈ Ctight; thus

k ≥ b(Ctight) ≥
∑

j∈Ctight

b(Fj) =
∑

j∈Ctight

1 = |Ctight|.

Proposition 2.8. If z ∈ Ct
tight for any time t, then d(z,S) ≤ 3rz.

Proof. Let t be maximal such that z ∈ Ct
tight. We show the desired claim by induction on t. When

t = T , then this certainly holds as step (12) will open some center in Fz and thus d(z,S) ≤ rz.
Suppose that z was added into Cs

tight, but was later removed from Ct+1
tight due to adding j = vt.

Thus there is some i ∈ Fz ∩ Fj . When we added z in time s, we would have removed j from Cs
tight

if rj ≥ rz/2. Since this did not occur, it must hold that rj < rz/2.
Since z was removed from Ct+1

tight but j is present in Ct+1
tight, the induction hypothesis applied to

j implies that d(j,S) ≤ 3rj and so

d(z,S) ≤ d(z, i) + d(i, j) + d(j,S) ≤ rz + rj + d(j,S) ≤ rz + (rz/2)(1 + 3) = 3rz.

Theorem 2.9. Every j ∈ C has Pr[d(j,S) ≤ 9rj ] ≥ pj.

Proof. We will prove by induction on t the following claim: suppose we condition on the full state
of Algorithm 3 up to time t, and j ∈ Ct

tight ∪ Ct
slack. Then

Pr[d(j,S) ≤ 9rj ] ≥ bt(Fj). (2)

At t = T , this is clear; since CT
slack = ∅, we must have j ∈ CT

tight, and so d(j,S) ≤ rj with

probability one. For the induction step at time t, note that as E[bt+1(Fj)] = b(Fj), in order to
prove (2) it suffices to show that if we also condition on the value of bt+1, it holds that

Pr[d(j,S) ≤ 9rj | b
t+1] ≥ bt+1(Fj). (3)

If j remains in Ct+1
tight∪Ct+1

slack, then we immediately apply the induction hypothesis at time t+1.

So the only non-trivial thing to check is that (3) will hold even if j is removed from Ct+1
tight ∪Ct+1

slack.

If j = vt and bt+1(Fj) = 0, then (3) holds vacuously. Otherwise, suppose that j is removed
from Ct

tight at stage (10) due to adding z = vt. Thus rj ≥ rz/2 and there is some i ∈ Fj ∩ Fz. By
Proposition 2.8, this ensures that d(z,S) ≤ 3rz. Thus with probability one we have

d(j,S) ≤ d(j, i) + d(i, z) + d(z,S) ≤ rj + rz + 3rz ≤ rj + (2rj)(1 + 3) = 9rj .

The induction is now proved. The claimed result follows since b0(Fj) = pj and C0
slack = C.

3 Chance k-coverage: approximating the deterministic case

An important special case of k-coverage is where pj = 1 for all j ∈ C. Here, the target distribution
Ω is just a single set S satisfying ∀jd(j,S) ≤ rj. In the homogeneous case, when all the rj are
equal to the same value, this is specifically the k-supplier problem. The usual approximation
algorithm for this problem chooses a single approximating set S, in which case the best guarantee
available is d(j,S) ≤ 3rj . We improve the distance guarantee by constructing a k-lottery Ω̃ such
that d(j,S) ≤ 3rj with probability one, and ES∼Ω̃

[d(j,S)] ≤ crj , where the constant c satisfies the
following bounds:
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1. In the general case, c = 1 + 2/e ≈ 1.73576;

2. In the SCC setting, c = 1.60793;

3. In the homogeneous SCC setting, c = 1.592.3

We show matching lower bounds in Section 4; the constant value 1+ 2/e is optimal for the general
case (even for homogeneous instances), and for the third case the constant c cannot be made lower
than 1 + 1/e ≈ 1.367.

We remark that this type of stochastic guarantee allows us to efficiently construct publicly-
verifiable lotteries, as follows.

Proposition 3.1. Let ε > 0. In any of the above three cases, there is an expected polynomial
time procedure to convert the given distribution Ω into an explicitly-enumerated k-lottery Ω′, with
support size |Ω′| = O( logn

ε2
), such that PrS∼Ω′ [d(j,S) ≤ 3rj ] = 1 and ES∼Ω′ [d(j,S)] ≤ c(1 + ε)rj.

Proof. We let X1, . . . ,Xt be independent draws from Ω for t = 6 logn
cε2

and set Ω′ to be the uniform
distribution on {X1, . . . ,Xt}. To see that ES∼Ω′ [d(j,S)] ≤ c(1 + ε)rj holds with high probability,
apply a Chernoff bound, noting that d(j,X1), . . . , d(j,Xt) are independent random variables in the
range [0, 3rj ].

We use a similar algorithm to Algorithm 2 for this problem: we choose a covering set of clusters
C ′, and open exactly one item from each cluster. The main difference is that instead of opening the
nearest item Vj for each j ∈ C ′, we instead open a cluster according to the solution bi of Pchance.

Algorithm 4 Rounding algorithm with clusters

1: Set C ′ = GreedyCluster(Fj , rj).
2: Set F0 = F −

⋃

j∈C′ Fj ; this is the set of “unclustered” facilities
3: for j ∈ C ′ do
4: Randomly select Wj ∈ Fj according to the distribution Pr[Wj = i] = bi

// This is a valid probability distribution, as b(Fj) = 1
5: Let S0 ← DepRound(b, F0)
6: Return S = S0 ∪ {Wj | j ∈ C ′}

We will need the following technical result in order to analyze Algorithm 4.

Proposition 3.2. For any set U ⊆ F , we have

Pr[S ∩ U = ∅] ≤
∏

i∈U∩F0

(1− bi)
∏

j∈C′

(1− b(U ∩ Fj)) ≤ e−b(U).

Proof. The set U contains each Wj independently with probability b(U ∩ Fj). The set S0 is inde-
pendent of them and by (P3) we have Pr[U ∩ S0 = ∅] ≤

∏

i∈U∩F0
(1− bi). So

Pr[S ∩ U = ∅] ≤
∏

i∈U∩F0

(1− bi)
∏

j∈C′

(1− b(U ∩ Fj)) ≤
∏

i∈U∩F0

e−bi
∏

j∈C′

e−b(U∩Fj) = e−b(U)

At this point, we can show our claimed approximation ratio for the general (non-SCC) setting:

3This value was calculated using some non-rigorous numerical analysis; we describe this further in what we call
“Pseudo-Theorem” 3.8
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Theorem 3.3. For any v ∈ C, the solution set S of Algorithm 4 satisfies d(v,S) ≤ 3rv with
probability one and E[d(v,S)] ≤ (1 + 2/e)rv .

Proof. By Observation 1.2, there is some j ∈ C ′ with Fj ∩ Fv ̸= ∅. Letting i ∈ Fj ∩ Fv, we have

d(v,S) ≤ d(v, i) + d(i, j) + d(j,S) ≤ rv + rj + rj ≤ 3rv.

with probability one.
If S ∩Fv ̸= ∅, then d(v,S) ≤ rv. Thus, a necessary condition for d(v,S) > rv is that S ∩Fv = ∅.

Applying Proposition 3.2 with U = Fv gives

Pr[d(v,S) > rv] ≤ Pr[S ∩ Fv = ∅] ≤ e−b(Fv) = e−1

and so E[d(v,S)] ≤ rv + 2rv Pr[d(v,S) > rv] ≤ (1 + 2/e)rv .

3.1 The SCC setting

The SCC setting (where C = F) is more difficult to analyze. To motivate the algorithm for this case,
note that if some client j ∈ C has some facility i opened in a nearby cluster Fj′ , then this guarantees
that d(j,S) ≤ d(j, j′) + d(j′, i) ≤ 3rj . This is what we used to analyze the non-SCC setting. But,
if instead of opening facility i, we opened j′ itself, then this would ensure that d(j,S) ≤ 2rj . Thus,
opening the centers of a cluster can lead to better distance guarantees compared to opening any
other facility. We emphasize that this is only possible in the SCC setting, as in general we do not
know that j′ ∈ F .

We define the following Algorithm 5, which takes a parameter q ∈ [0, 1] which we will discuss
how to set shortly. We recall that we have assumed in this case that j ∈ Fj for every j ∈ C.

Algorithm 5 Rounding algorithm for k-center

1: Set C ′ = GreedyCluster(Fj , rj).
2: Set F0 = F −

⋃

j∈C′ Fj ; this is the set of “unclustered” facilities
3: for j ∈ C ′ do
4: Randomly select Wj ∈ Fj according to the following distribution

Pr[Wj = i] =

{

q + (1− q)bi if i = j

(1− q)bi if i ̸= j
.

5: Let S0 = DepRound(b, F0)
6: Return S = S0 ∪ {Wj | j ∈ C ′}

This is the same as Algorithm 4, except that some of the values of bi for i ∈ Fj have been
shifted to the cluster center j. In fact, we can think of Algorithm 5 as a two-part process: we first
modify the fractional vector b to obtain a new fractional vector b′ defined by

b′i =

⎧

⎪

⎨

⎪

⎩

(1− q)bi + q if i ∈ C ′

(1− q)bi if i ∈ Fj − {j} for j ∈ C ′

bi if i ∈ F0

.

and we then execute Algorithm 4 on the resulting vector b′. In particular, Proposition 3.2 remains
valid with respect to the modified vector b′.
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Theorem 3.4. Let v ∈ C. After running Algorithm 5 with q = 0.464587 we have d(v,S) ≤ 3rv
with probability one and E[d(v,S)] ≤ 1.60793rv .

Proof. Let D = {j ∈ C ′ | Fj ∩ Fv ̸= ∅, rj ≤ rv}. We must have D ̸= ∅, as otherwise v would have
been added to C ′. For each j ∈ D∪{0}, set aj = b(Fj∩Fv), and note that a0+

∑

j∈D aj = b(Fv) = 1.
As before, a necessary condition for d(v,S) > rv is that Fv ∩ S = ∅. So by Proposition 3.2,

Pr[d(v,S) > rv] ≤ Pr[Fv ∩ S = ∅] ≤
∏

i∈Fv∩F0

(1− b′i)
∏

j∈C′

(1− b′(Fv ∩ Fj))

≤
∏

i∈Fv∩F0

(1− bi)
∏

j∈D

(1− qb(Fv ∩ Fj)) ≤ e−b(Fv∩F0)
∏

j∈D

(1− qb(Fv ∩ Fj))

= e−a0
∏

j∈D

eaj (1− qaj) = (1/e)
∏

j∈D

eaj (1− qaj).

where the last equality comes from the fact that a0 +
∑

j∈D aj = 1.
Similarly, if there is some i ∈ S ∩ D, then d(v, i) ≤ 2rv and hence d(v,S) ≤ 2rv. Thus, a

necessary condition for d(v,S) > 2rv is that S ∩ (D ∪ Fv) = ∅. Applying Proposition 3.2 with
U = D ∪ Fv gives:

Pr[d(v,S) > 2rv] ≤
∏

j∈(D∪Fv)∩F0

(1− bj)
∏

j∈C′

(1− b′((D ∪ Fv) ∩ Fj))

≤ e−b(Fv∩F0)
∏

j∈D

q(1− aj) = (1/e)
∏

j∈D

eajq(1− aj)

Putting these together gives:

E[d(v,S)] ≤ rv

(

1 + 1/e
∏

j∈D

eaj (1− qaj) + 1/e
∏

j∈D

eajq(1− aj)
)

(4)

Let s =
∑

j∈D aj and t = |D|. By the AM-GM inequality we have:

E[d(v,S)] ≤ rv

(

1 + es−1
∏

j∈D

(1− qrj) + es−1
∏

j∈D

q(1− rj)
)

≤ rv

(

1 + es−1
(

1−
qs

t

)t
+ es−1(q(1− s))t

)

This is a function of a single real parameter s ∈ [0, 1] and a single integer parameter t ≥ 1.
Some simple analysis, which we omit here, shows that E[d(v,S)] ≤ 1.60793rv .

3.2 The homogeneous SCC setting

From the point of view of the target distribution Ω, this setting is equivalent to the classical k-center
problem. We may guess the optimal radius, and so we do not need to assume that the common
value of rj is “given” to us by some external process. By rescaling, we assume without loss of
generality here that rj = 1 for all j.

We will improve on Theorem 3.4 through a more complicated rounding process based on
greedily-chosen partial clusters. Specifically, we select cluster centers π(1), . . . ,π(n), wherein π(i)
is chosen to maximize b(Fπ(i) − Fπ(1) − · · ·− Fπ(i−1)). By renumbering C, we may assume without
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loss of generality that the resulting permutation π is the identity; therefore, we assume throughout
this section that C = F = [n] and for all pairs i < j we have

b(Fi − F1 − · · ·− Fi−1) ≥ b(Fj − F1 − · · ·− Fi−1) (5)

For each j ∈ [n], we let Gj = Fj − F1 − · · · − Fj−1; we refer to Gj as a cluster and we let
zj = b(Gj). We say that Gj is a full cluster if zj = 1 and a partial cluster otherwise. We note that
the values of z appear in sorted order,

1 = z1 ≥ z2 ≥ z3 ≥ · · · ≥ zn ≥ 0

We use the following randomized Algorithm 7 to select the centers. Here, the quantities Qf, Qp

(short for full and partial) are first selected according to a joint probability distribution which we
discuss later. (Recall our notational convention that q = 1− q; this will be used extensively in this
section to simplify the formulas.)

Algorithm 7 Partial-cluster based algorithm

1: Draw random variables Qf, Qp.
2: Z ← DepRound(z)
3: for j ∈ Z do
4: Randomly select a point Wj ∈ Gj according to the following distribution

Pr[Wj = i] =

{

(qj + qjyi)/zj if i = j

qjyi/zj if i ̸= j
,

where qj is defined as

qj =

{

Qf if zj = 1

Qp if zj < 1

5: Return S = {Wj | j ∈ Z}

The dependent rounding in Algorithm 7 ensures that |Z| ≤ ⌈
∑n

j=1 zj⌉ =
∑n

j=1 b(Fj −F1− · · ·−
Fj−1) = b(F) ≤ k, and so |S| ≤ k as required.

Before the technical analysis of Algorithm 7, let us provide some intuition. Consider some j ∈ C.
It may be beneficial to open the center of some cluster near j as this will ensure d(j,S) ≤ 2. However,
there is no benefit to opening more than one such cluster center. So, we would like a significant
negative correlation between opening the centers of distinct clusters near j. Unfortunately, as all
full clusters “look alike,” it seems impossible to enforce any significant negative correlation among
the indicator random variables for opening their centers.

Partial clusters break the symmetry. Every client j has at least one full cluster in its neigh-
borhood, and possibly some partial clusters as well. We will create a probability distribution with
significant negative correlation between the event that partial clusters open their centers and the
event that full clusters open their centers. This decreases the probability that a given j ∈ C will
see multiple neighboring clusters open their centers, which in turn leads to an improved value of
E[d(j,S)].

We need the following technical result; the proof is essentially the same as Proposition 3.2 and
is omitted.
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Proposition 3.5. For any U ⊆ C, we have

Pr[S ∩ U = ∅ | Qf, Qp] ≤
n
∏

j=1

(

1− qjb(U ∩Gj)− qjzj [[j ∈ U ]]
)

.

Our main lemma to analyze Algorithm 7 is the following:

Lemma 3.6. Let i ∈ [n]. Define Jf, Jp ⊆ [n] as

Jf = {j ∈ [n] | Fi ∩Gj ̸= ∅, zj = 1}

Jp = {j ∈ [n] | Fi ∩Gj ̸= ∅, zj < 1}

Let m = |Jf| and Jp = {j1, . . . , jt} where j1 ≤ j2 ≤ · · · ≤ jt. For each ℓ = 1, . . . , t+ 1 define

uℓ = b(Fi ∩Gjℓ) + b(Fi ∩Gjℓ+1
) + · · ·+ b(Fi ∩Gjt)

Then 1 ≥ u1 ≥ u2 ≥ · · · ≥ ut ≥ ut+1 = 0, m ≥ 1, and

E[d(i,S) | Qf, Qp] ≤ 1 +

(

1−Qf

u1
m

)m t
∏

ℓ=1

(1 −Qp(uℓ − uℓ+1)) +

(

Qf

(

1−
u1
m

)

)m t
∏

ℓ=1

(uℓ +Qpuℓ+1).

Proof. Let us condition on a fixed value for (Qf, Qp); all probabilities should be interpreted as
conditioned on these values which we will not note explicitly for the remainder of the proof. For
ℓ = 1, . . . , t we let aℓ = b(Fi ∩Gjℓ) = uℓ − uℓ+1. For j ∈ Jf, we let sj = b(Fi ∩Gj).

First, we claim that zjℓ ≥ uℓ for ℓ = 1, . . . , t. For, by (5), we have

zjℓ ≥ b(Fi − F1 − · · ·− Fjℓ−1) ≥ b(Fi)−
∑

j∈Jf

b(Fi ∩Gj)−
∑

v<jℓ

b(Fi ∩Gv)

= b(Fi)−
∑

j∈Jf

b(Fi ∩Gj)−
∑

v<ℓ

b(Fi ∩Gjv) as Fi ∩Gv = ∅ for v /∈ Jp ∪ Jf

= 1−
∑

j∈Jf

sj −
ℓ−1
∑

v=1

av = uℓ.

If m = 0, then u1 = 1; but this implies that zj1 ≥ u1 = 1, which contradicts zj1 < 1. This
shows that m ≥ 1.

A necessary condition for d(i,S) > 1 is that no point in Fi is open. Applying Proposition 3.5
with U = Fi yields

Pr[S ∩ Fi = ∅] ≤
∏

j∈Jp

(1−Qpb(Fi ∩Gj))−Qpzj [[j ∈ Fi]])
∏

j∈Jf

(1−Qfb(Fi ∩Gj)−Qf[[j ∈ Fi]])

≤
∏

j∈Jp

(1−Qpb(Fi ∩Gj))
∏

j∈Jf

(1−Qfb(Fi ∩Gj)) =
t
∏

ℓ=1

(1−Qpaℓ)
∏

j∈Jf

(1−Qfsj).

A necessary condition for d(i,S) > 2 is that we do not open any point in Fi, nor do we open
center of any cluster intersecting with Fi. Applying Proposition 3.5 with U = Fi ∪ Jf ∪ Jp, and
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noting that zjℓ ≤ uℓ, we get:

Pr[S ∩ U = ∅] ≤
∏

j∈Jp

(1−Qpb(U ∩Gj))−Qpzj)
∏

j∈Jf

(1−Qfb(U ∩Gj)−Qf)

≤
t
∏

ℓ=1

(1−Qpb(Fi ∩Gjℓ)−Qpzjℓ)
∏

j∈Jf

(1−Qfb(Fi ∩Gj)−Qf)

=

t
∏

ℓ=1

(1−Qpaℓ −Qpzjℓ)
∏

j∈Jf

Qf(1− sj) ≤
t

∏

ℓ=1

(1−Qpaℓ −Qpuℓ)
∏

j∈Jf

Qf(1− sj)

Thus,

E[d(i,S)] ≤ 1 +

t
∏

ℓ=1

(1−Qpaℓ)
∏

j∈Jf

(1−Qfsj) +

t
∏

ℓ=1

(1−Qpaℓ −Qpzjℓ)
∏

j∈Jf

Qf(1− sj) (6)

The sets Gj partition [n], so
∑

j∈f sj = 1 −
∑t

ℓ=1 aℓ = 1 − u1. By the AM-GM inequality,
therefore we have

E[d(i,S)] ≤ 1 +

(

1−Qf
u1
m

)m t
∏

ℓ=1

(1 − Qpaℓ) +

(

Qf

(

1−
u1
m

)

)m t
∏

ℓ=1

(1 − Qpaℓ − Qpuℓ). (7)

The claim follows as aℓ = uℓ − uℓ+1.

We will use Lemma 3.6 to bound E[d(i,S)], over all possible integer values m ≥ 1 and over all
possible sequences 1 ≥ u1 ≥ u2 ≥ u3 ≥ · · · ≥ ut ≥ 0. One technical obstacle here is that this is
not a compact space, due to the unbounded dimension t and unbounded parameter m. The next
result removes these restrictions.

Proposition 3.7. For any fixed integers L,M ≥ 1, and every j ∈ C, we have

E[d(j,S)] ≤ 1 + max
m∈{1,2,...,M}

1≥u1≥u2≥...uL≥0

EQR̂(m,u1, u2, . . . , uL),

where we define

α =

L−1
∏

ℓ=1

(1−Qp(uℓ − uℓ+1))× e−QpuL ,

β =

L−1
∏

ℓ=1

(uℓ +Qpuℓ+1)×

⎧

⎨

⎩

(1− uL) if uL ≤ Qp

e
−

uL−Qp

1−Qp (1−Qp) if uL > Qp

,

R̂(m,u1, . . . , uL) =

{

(1−Qf
u1
m )mα+ (Qf(1−

u1
m ))mβ if m < M

e−Qfu1α+Qf
M
e−u1β if m = M

.

The expectation EQ is taken only over the randomness involved in Qf, Qp.

Proof. By Lemma 3.6,

E[d(i,S) | Qf, Qp] ≤ 1 +

(

1−Qf
u1
m

)m t
∏

ℓ=1

(1−Qp(uℓ − uℓ+1)) +

(

Qf(1−
u1
m

)

)m t
∏

ℓ=1

(uℓ +Qpuℓ+1).
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where u1, . . . , ut,m are defined as in Lemma 3.6; in particular 1 ≥ u1 ≥ u2 ≥ · · · ≥ ut ≥ ut+1 = 0
and m ≥ 1. If we define uj = 0 for all integers j ≥ t, then

E[d(i,S) | Qf, Qp] ≤ 1 +

(

1−Qf
u1
m

)m ∞
∏

ℓ=1

(1−Qp(uℓ − uℓ+1)) +

(

Qf(1−
u1
m

)

)m ∞
∏

ℓ=1

(uℓ +Qpuℓ+1).

The terms corresponding to ℓ > L telescope so we estimate these as:

∞
∏

ℓ=L

(1−Qp(uℓ − uℓ+1)) ≤
∞
∏

ℓ=L

e−Qp(uℓ−uℓ+1) = e−QpuL

and

∞
∏

ℓ=L

(uℓ +Qpuℓ+1) ≤ (1− uL +QpuL+1)

∞
∏

ℓ=L+1

e−uℓ+Qpuℓ+1 ≤ (1− uL +QpuL+1)e
−uL+1 .

Now consider the expression (1 − uL + QpuL+1)e
−uL+1 as a function of uL+1 in the range

uL+1 ∈ [0, uL]. Elementary calculus shows that it satisfies the bound

(1− uL +QpuL+1)e
−uL+1 ≤

⎧

⎨

⎩

(1− uL) if uL ≤ Qp

e
−

uL−Qp
1−Qp (1−Qp) if uL > Qp

,

Thus

E[d(i,S) | Qf, Qf] ≤ 1 +

(

1−Qf
u1
m

)m

α+

(

Qf(1−
u1
m

)

)m

β.

If m < M we are done. Otherwise, for m ≥ M , we upper-bound the Qf terms as:

(1−Qfu1/m)m ≤ e−Qfu1 , (Qf(1− u1/m))m ≤ Qf
M
e−u1

We now discuss to bound R̂ for a fixed choice of L,M , where we select Qf, Qp according to the
following type of distribution:

(Qf, Qp) =

{

(γ0,f, 0) with probability p

(γ1,f, γ1,p) with probability 1− p
.

Having fixed the distribution on Q, we can calculate EQR̂(m,u1, . . . , uL) for given u1, . . . , uL,m.
The most straightforward way to upper-bound it over the compact domain m ∈ {1, . . . ,M}, 1 ≥
u1 ≥ · · · ≥ uL ≥ 0 would be to divide u1, . . . , uL into intervals of size ε. We then enumerate over all
possible m and possible intervals for u1, . . . , uL and use interval arithmetic to calculate an upper
bound on R̂. However, this would have a running time ε−L which is excessive.

But we make the following observation: suppose we have fixed uj, . . . , uL, and we wish to
continue to enumerate over u1, . . . , uj−1. To compute R̂(m,u1, . . . , uL) as a function ofm,u1, . . . , uL
we do not need to know all the values uj+1, . . . , uL, but only the following four quantities:

1. e−γ1,puL
∏L−1

ℓ=j (1− γ1,p(uℓ − uℓ+1)),

2.
∏L−1

ℓ=j (uℓ + γ1,puℓ+1)×

⎧

⎨

⎩

(1− uL) if uL ≤ γ1,p

e
−

uL−γ1,p
1−γ1,p (1− γ1,p) if uL > γ1,p

,
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3. e−uL
∏L−1

ℓ=j (1− (uℓ − uℓ+1)),

4. uj+1.

Thus, we can use a dynamic program: for j = L, . . . , 1, we compute all possible values for these
terms in a recursive fashion. Furthermore, we only need to keep track of the maximal four-tuples
for these four quantities. The resulting search space has size O(ε−3). We restrict γ0,p = 0 in order
to keep this search space controlled. If γp > 0, then we would need to track an additional term as
well, making the search space infeasibly large.

Pseudo-Theorem 3.8. Suppose that Qf, Qp has the following distribution:

(Qf, Qp) =

{

(0.4525, 0) with probability p = 0.773436

(0.0480, 0.3950) with probability 1− p
.

Then for all i ∈ F we have d(i,S) ≤ 3ri with probability one, and E[d(i,S)] ≤ 1.592ri.

Proof. In light of Proposition 3.7, we can get an upper bound on E[d(i,S)] by maximizing R̂ with
M = 10, ε = 2−12, L = 7. We wrote C code to perform this computation in about an hour on a
single CPU core. With some additional tricks, we can also optimize over the parameter p ∈ [0, 1]
while still keeping the stack space bounded by O(ε−3).

Due to the complexity of the dynamic programming algorithm, we carried out the computations
using double-precision floating point arithmetic. The rounding errors were not tracked precisely,
and it would be difficult to write completely correct code to do so. We believe that these errors
are likely to be orders of magnitude below the third decimal place, and that the computed value
1.592 is a valid upper bound. We call this a “pseudo-theorem” only because of the non-rigorous
computer calculations used; a more careful implementation would give a true theorem.

4 Lower bounds on approximating chance k-coverage

We next show lower bounds for the chance k-coverage problems of Sections 2 and 3. These con-
structions are adapted from similar lower bounds for approximability of k-median [16], which in
turn are based on the hardness of set cover.

A set cover instance consists of a ground set [n] and a collection of sets B = {S1, . . . , Sm} ⊆ 2[n].
For any set X ⊆ [m] we define SX =

⋃

i∈X Si. The goal is to select a collection X ⊆ [m] of minimum
size such that SX = [n]. The minimum value of |X| thus obtained is denoted by OPT.

We quote a result of Moshovitz [31] on the inapproximability of set cover.

Theorem 4.1 ([31]). Assuming P ̸= NP, there is no polynomial-time algorithm which guarantees
a set-cover solution X with SX = [n] and |X| ≤ (1− ε) lnn×OPT, where ε > 0 is any constant.

We will need a simple corollary of Theorem 4.1, which is a (slight reformulation) of the hardness
of approximating max-coverage.

Corollary 4.2. Assuming P ̸= NP, there is no polynomial-time algorithm which guarantees a
set-cover solution X with |X| ≤ OPT and

∣

∣SX

∣

∣ ≥ cn for any constant c > 1− 1/e.

Proof. Suppose there exists such an algorithm A. We will repeatedly apply A to solve a residual
instances. Specifically, for i = 1, 2, . . . , we define Ui = [n]−

⋃

j<i SXj
and Bi = {S ∩ Ui | S ∈ B}.
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Each Bi has a solution of cost at most OPT. Thus, algorithm A applied to Bi gives a solution
set Xi with |Xi| ≤ OPT and |Ui ∩ SXi

| ≥ c|Ui|. Now note that |Ui+1| = |Ui − SXi
| ≤ (1 − c)|Ui|.

So, for s = ⌈1 + lnn
ln( 1

1−c
)
⌉ we have Us = ∅.

Thus, the set X = X1∪ · · ·∪Xs solves the original set-cover instance B, and |X| ≤
∑s

i=1 |Xi| ≤
(1 + lnn

ln( 1
1−c

)
)OPT. By Theorem 4.1, this implies that c ≤ 1 + 1/e.

Theorem 4.3. Assuming P ̸= NP , no polynomial-time algorithm can guarantee ∀jE[d(j,S)] ≤ crj
for c < 1 + 2/e for all feasible homogeneous chance k-coverage instances with pj = 1. Thus, the
approximation constant in Theorem 3.3 cannot be improved.

Proof. Consider a set cover instance B = {S1, . . . , Sm}. We begin by guessing the value OPT (there
are at most m possibilities, so this can be done in polynomial time). We define a k-center instance
with k = OPT and with disjoint client and facility sets, where F is identified with [m] and C is
identified with [n]. We define d by d(i, j) = 1 if j ∈ Si and d(i, j) = 3 otherwise.

Now note that if X is an optimal solution to B then d(j,X) ≤ 1 for all points j ∈ C. So there
exists a (deterministic) distribution achieving rj = 1. On the other hand, suppose that A generates
a solution X ∈

(

F
k

)

where E[d(j,X)] ≤ crj ; the set X can also be regarded as a solution to the set
cover instance. For j ∈ SX we have d(j,X) = 1 and for j /∈ SX we have d(j,X) ≥ 3. Thus

∑

j∈[n]

d(j,X) ≥ |SX |+ 3(n − |SX |),

and so |SX | ≥
3n−

∑
j∈[n] d(j,X)

2 . As E[d(j,X)] ≤ crj = c for all j, we take expectations to get:

E[|SX |] ≥
(3− c)n

2
.

After an expected constant number of repetitions of this process we can ensure that |SX | ≥ c′n

for some constant c′ > 3−(1+2/e)
2 = 1− 1/e. This contradicts Corollary 4.2.

A slightly more involved construction applies to the homogeneous SCC setting.

Theorem 4.4. Assuming P ̸= NP, no polynomial-time algorithm can guarantee ∀jE[d(j,S)] ≤ crj
for c < 1 + 1/e for all feasible homogeneous SCC chance k-coverage instances with pj = 1. Thus,
the approximation factor 1.592 in Pseudo-Theorem 3.8 cannot be improved below 1 + 1/e.

Proof. Consider a set cover instance B = {S1, . . . , Sm}, where we have guessed the value OPT = k.
We define a k-center instance as follows. For each i ∈ [m], we create an item vi and for each j ∈ [n]
we create t = n2 distinct items wj,1, . . . , wj,t. We define the distance by setting d(vi, wj,t) = 1 if
j ∈ Si and d(vi, vi′) = 1 for all i, i′ ∈ [m], and d(x, y) = 2 for all other distances. This problem size
is polynomial (in m,n), and so A runs in time poly(m,n).

Now note that if X is an optimal solution to the set cover instance, the corresponding set
S = {vi | i ∈ X} satisfies d(j,S) ≤ 1 for all j ∈ C.

On the other hand, suppose that A generates a solution S ∈
(

F
k

)

with maxj E[d(j,S)] ≤ c.
From the set S, we construct a corresponding set-cover solution by X = {i | vi ∈ S}.

Consider some wj,ℓ /∈ S. If j ∈ SX , then some i ∈ X has j ∈ Si. This implies that vi ∈ S, and
implies that d(wj,ℓ,S) = 1 for all ℓ = 1, . . . , t. On the other hand, if j /∈ SX , then d(wj,ℓ,S) ≥ 2.
Putting these facts together, we see that

∑

j∈[n]

t
∑

ℓ=1

d(wj,ℓ,S) ≥
∑

j,ℓ:wj,ℓ/∈S

(1 + [[j /∈ SX ]]) ≥
∑

j,ℓ

(1 + [[j /∈ SX ]])− |S| ≥ n2(2n− |SX |)− n,
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and so |SX | ≥ 2n−
∑

j,ℓ d(wj,ℓ,S)

n2 − 1/n.
Taking expectations and using our upper bound on E[d(j,S)], we have E[|SX |] ≥ 2n−cn−1/n.

Thus, for n sufficiently large, after an expected constant number of repetitions of this process we
get |SX | ≥ c′n where c′ > 2− (1 + 1/e) = 1− 1/e. This contradicts Corollary 4.2.

Proposition 4.5. Assuming P ̸= NP, no polynomial-time algorithm can guarantee either

∀j Pr
S∼Ω

[d(j,S) < rj] ≥ cpj, or, ∀j Pr
S∼Ω

[d(j,S) < 3rj ] ≥ pj

for any constant c > 1− 1/e for all feasible homogeneous chance k-coverage instances.
Likewise, in the homogeneous SCC setting, we cannot ensure that

∀j Pr
S∼Ω

[d(j,S) < 2rj ] ≥ pj,

Proof. This is similar to the proof of Theorem 4.3. We reduce to set-cover instance with optimal
solution k. Each item j in the ground set [n] corresponds to a point with pj = 1, rj = 1 and each
set Si corresponds a facility. Note that d(j,S) = 1 if item j is covered and d(j,S) = 3 otherwise.
The SCC setting proof is similar to Theorem 4.4.

5 Approximation algorithm for E[d(j,S)]

In the chance k-coverage problem, our goal is to achieve certain fixed values of d(j,S) with a certain
probability. In this section, we consider another criterion for Ω; we wish to achieve certain values
for the expectation ES∼Ω[d(j,S)]. We suppose we are given values tj for every j ∈ C, such that
the target distribution Ω satisfies

ES∼Ω[d(j,S)] ≤ tj. (8)

In this case, we say that the vector tj is feasible. As before, if all the values of tj are equal to
each other, we say that the instance is homogeneous. We show how to leverage any approximation
algorithm for k-median with approximation ratio α, to ensure our target distribution Ω̃ will satisfy

ES∼Ω̃
[d(j,S)] ≤ (α+ ε)tj .

More specifically, we need an approximation algorithm for a weighted form of k-median. In
this setting, we have a problem instance I = F , C, d along with non-negative weights wj for j ∈ C,
and we wish to find S ∈

(F
k

)

minimizing
∑

j∈C wjd(j,S). (Nearly all approximation algorithms
for ordinary k-median can be easily adapted to the weighted setting, for example, by replicating
clients.) If we fix an approximation algorithm A for (various classes of) weighted k-median, then
for any problem instance I we define

αI = sup
weights w

∑

j∈C wjd(j,A(I, w))

minS∈(Fk)
∑

j∈C wjd(j,S)
.

We first show how to use the k-median approximation algorithm to achieve a set S which
“matches” the desired distances tj:

Proposition 5.1. Given a weighted instance I and a parameter ε > 0, there is a polynomial-time
algorithm to produce a set S ∈

(

F
k

)

satisfying:

1.
∑

j∈C wj
d(j,S)
tj

≤ (αI + ε)
∑

j∈C wj,
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2. Every j ∈ C has d(j,S) ≤ ctj/ε, for some constant c.

Proof. We assume αI = O(1), as constant-factor approximation algorithms for k-median exist. By
rescaling w and d, we assume without loss of generality that

∑

j∈C wj = 1 and
∑

j∈C tj = 1. By

rescaling ε, it suffices to show that
∑

j∈C wj
d(j,S)
tj

≤ αI +O(ε).

Now apply algorithm A with weights zj = 1 +
wj

tjε
. Letting Ω be a distribution satisfying (8),

this gives

ES∼Ω

[

∑

j∈C

zjd(j,S)
]

=
∑

j∈C

zjtj ≤
∑

j∈C

(1 +
wj

tjε
)tj =

∑

j∈C

tj +
wj

ε
= 1 + 1/ε.

In particular, there exists some S ∈
(F
k

)

with
∑

j∈C zjd(j,S) ≤ 1 + 1/ε. Algorithm A therefore

produces a set S ∈
(

F
k

)

with
∑

j∈C zjd(j,S) ≤ αI(1 + 1/ε). We claim that this set S satisfies the
two conditions of the theorem. First, we have

∑

j∈C

wjd(j,S)

tj
≤

∑

j∈C

εzjd(j,S) ≤ αI(1 + ε) ≤ (αI +O(ε))
∑

j

wj.

Next, every j ∈ C has zj ≥ 1 and so

d(j,S) ≤
∑

w∈C

zwd(w,S) ≤ αI(1 + 1/ε) ≤ O(1/ε) ≤ O(tj/ε)

Theorem 5.2. There is an algorithm which takes as input an instance I, a parameter ε > 0 and
a feasible vector tj, runs in time poly(n, 1/ε), and returns an explicitly enumerated distribution Ω̃

with |Ω̃| ≤ O(n) and ES∼Ω̃
[d(j,S)] ≤ (αI + ε)tj for all j ∈ C.

Proof. We assume without loss of generality that ε ≤ 1; by rescaling ε it suffices to show that
E[d(j,S)] ≤ (αI +O(ε))tj .

We begin with the following Algorithm 8, which uses a form of multiplicative weights update
with repeated applications of Proposition 5.1.

Algorithm 8 Approximation algorithm for E[d(j,S)]: first phase

1: For all j ∈ C, set w1
j = 1

2: for ℓ = 1, . . . , r = n logn
ε3

do

3: Apply Proposition 5.1 with parameters ε, tj and weights wℓ to obtain Xℓ ∈
(F
k

)

.

4: For all j ∈ C, update wℓ+1
j = wℓ

j exp
( ε2d(j,Xℓ)

ctj

)

5: Set Ω̃′ to be the uniform distribution on X1, . . . ,Xr

Here, c is the constant in property (2) of Proposition 5.1, i.e. such that d(j,X) ≤ ctj/ε. For
ℓ = 1, . . . , r define Φℓ =

∑

j∈C w
ℓ
j . For ℓ ≥ 1, we have

Φℓ+1 =
∑

j∈C

wℓ+1
j =

∑

j∈C

wℓ
j exp

(ε2d(j,Xℓ)

ctj

)

.

Let uj =
ε2d(j,Xℓ)

ctj
. Proposition 5.1 ensures that uj ≤ ε, and thus euj ≤ 1+ eε−1

ε
uj ≤ 1+(1+ε)uj.

By Proposition 5.1 we have
∑

j w
ℓ
jd(j,Xℓ)/tj ≤ (αI + ε)Φℓ and so

Φℓ+1 ≤
∑

j∈C

wℓ
j

(

1+(1+ε)
ε2d(j,Xℓ)

ctj

)

≤
∑

j∈C

wℓ
j+

(1 + ε)ε2

c

∑

j∈C

wℓ
jd(j,Xℓ)

tj
≤ Φℓ

(

1+
(1 + ε)ε2(αI + ε)

c

)

.
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As Φ1 ≤ n, this implies that Φℓ ≤ ne(ℓ−1)(1+ε)ε2(αI+ε)/c for all ℓ = 1, . . . , r + 1. For any j ∈ C,

we have wr+1
j = exp(

∑r
ℓ=1

ε2d(j,Xℓ)
ctj

). Since wr+1
j ≤ Φr+1 this implies that

exp(

r
∑

ℓ=1

ε2d(j,Xℓ)

ctj
) ≤ n exp(r(1 + ε)ε2(αI + ε)/c).

Taking logarithms, this implies that

∑r
ℓ=1 d(j,Xℓ)

r
≤

ctj
ε2

(lnn+ r(1 + ε)ε2(αI + ε)/c) = tj

(c log n

rε2
+ (1 + ε)(αI + ε)

)

.

As r = n lnn
ε3

we therefore have

ES∼Ω̃′ [d(j,S)] =

∑r
ℓ=1 d(j,Xℓ)

r
≤ (cε+ (1 + ε)αI)tj ≤ (αI +O(ε))tj . (9)

At this point, the distribution Ω̃′ satisfies the condition on E[d(j,S)], but its support size is too
large. We can reduce the support size of Ω̃′ to |C| by moving in the null-space of the inequalities
(9), noting that (9) defines |C| linear constraints.

Byrka et al. [6] have shown a 2.675+ ε-approximation algorithm for k-median, which automati-
cally gives a 2.675+ε-approximation algorithm for k-lottery as well. Some special cases of k-median
have more efficient approximation algorithms. For instance, Cohen-Addad, Klein & Mathieu [9]
gives a PTAS for k-median problems derived from a planar graph, and Ahmadian et al. [1] gives a
2.633+ ε-approximation for Euclidan distances. These immediately give approximation algorithms
for the corresponding k-lottery approximations. We also note that, by Theorem 4.3, one cannot
obtain a general approximation ratio better than 1 + 2/e (or 1 + 1/e in the SCC setting).

6 Determinizing a k-lottery

In this section, we consider a converse problem to the one considered in Section 5. We suppose that
we have a set of feasible weights tj such some k-lottery distribution Ω satisfies ES∼Ω[d(j,S)] ≤ tj ;
our goal is to find a single, deterministic set S with d(j,S) ≈ tj. We refer to this as the problem
of determinizing the lottery Ω.

We will see that, in order to obtain reasonable approximation ratios, we may need to take |S|
to be significantly larger than k. We thus define an (α,β)-determinization to be a set S ∈

(F
k′

)

with
k′ ≤ αk and d(j,S) ≤ βtj for all j ∈ C.

We emphasize that we cannot necessarily obtain (1, 1)-determinizations, even with unbounded
computational resources. The following simple example illustrates the tradeoff between parameters
α and β:

Observation 6.1. Let α,β, k ≥ 1. If β < αk+1
(α−1)k+1 , there is a homogeneous SCC instance for

which no (α,β)-determinization exists.

Proof. Let k′ = αk and consider a problem instance with F = C = {1, . . . , k′ + 1}, and d(i, j) = 1
for every distinct i, j. Clearly, every S ∈

(

F
k′

)

satisfies minj d(j,S) = 1. When Ω is the uniform

distribution on
(

F
k

)

, we have E[d(j,S)] = 1 − k
k′+1 . Thus tj = k

k′+1 is feasible and therefore

β ≥ 1
1− k

k′+1

= αk+1
(α−1)k+1 .
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Note that when α = 1, Observation 6.1 shows that we must have β ≥ k + 1; when α > 1 and
k → ∞, we must have β ! α

α−1 .
We examine three main regimes for the parameters (α,β): (1) the case where α,β are scale-free

constants; (2) the case where β is close to one, in which case α must be of order log n; (3) the case
where α = 1, in which case β must be order k.

Our determinization algorithms for the first two cases will based on the following LP denoted
Pexpectation, defined in terms of fractional vectors bi, ai,j where i ranges over F and j ranges over C:

(A1) ∀j ∈ C,
∑

i∈F ai,jd(i, j) ≤ tj,

(A2) ∀j ∈ C,
∑

i∈F ai,j = 1,

(A3) ∀i ∈ F , y ∈ C, 0 ≤ ai,j ≤ bi,

(A4) ∀i ∈ F , 0 ≤ bi ≤ 1,

(A5)
∑

i∈F bi ≤ k.

Theorem 6.2. If tj is feasible, then Pexpectation has a fractional solution.

Proof. Let Ω be a probability distribution with E[d(j,S)] ≤ tj . For any draw S ∼ Ω, define random
variable Zj to be the facility of S matched by j. Now consider the fractional vector defined by

bi = Pr
S∼Ω

[i ∈ S], ai,j = Pr
S∼Ω

[Zj = i]

We claim that this satisfies (A1) — (A5). For (A1), we have

E[d(j,S)] = E[d(j, Zj)] =
∑

i∈F

d(i, j) Pr[Zj = i] =
∑

i∈F

d(i, j)ai,j ≤ tj.

For (A2), note that
∑

i Pr[Zj = i] = 1. For (A3), note that Zj = i can only occur if i ∈ S. (A4)
is clear, and (A5) holds as |S| = k with probability one.

We next describe upper and lower bounds for these three regimes.

6.1 The case where α, β are scale-free constants.

This regime (with all parameters independent of problem size n and, ideally, k), is the typical goal
in developing approximation algorithms. The following Algorithm 9 is our main tool to achieve
this, by randomized rounding of Pexpectation.

Algorithm 9 (α,β)-determinization algorithm

1: Let a, b be a solution to Pexpectation.
2: For every j ∈ C, select rj ≥ 0 to be minimal such that

∑

i∈B(j,rj)
ai,j ≥ 1/α

3: By splitting facilities, form a set Fj ⊆ B(j, rj) with b(Fj) = 1/α.
4: Form a set Fj ⊆ B(j, rj) with b(Fj) = 1/α.
5: Set C ′ = GreedyCluster(Fj , θ(j) + rj)
6: Output solution set S = {Vj | j ∈ C ′}.

We note that step (3) is well-defined, as (A3) ensures that b(B(j, rj)) ≥
∑

i∈B(j,rj)
ai,j ≥ 1/α.

Next let us analyze the resulting approximation factor β.
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Proposition 6.3. Every client j ∈ C has rj ≤
αtj−θ(j)

α−1 .

Proof. Let s =
αtj−θ(j)

α−1 . It suffices to show that

∑

i∈F ,d(i,j)>s

ai,j ≤ 1− 1/α.

As d(i, j) ≥ θ(j) for all i ∈ F , we have

∑

i∈F
d(i,j)>s

ai,j ≤
∑

i∈F
d(i,j)>s

ai,j
d(i, j) − θ(j)

s− θ(j)
≤

∑

i∈F

ai,j
d(i, j) − θ(j)

s− θ(j)
=

∑

i∈F ai,jd(i, j) − θ(j)
∑

i∈F ai,j

s− θ(j)

≤
tj − θ(j)

s− θ(j)
= 1− 1/α, by (A1), (A2).

Theorem 6.4. Algorithm 9 gives an (α,β)-determinization with the following parameter β:

1. In the general setting, β = max(3, 2α
α−1).

2. In the SCC setting, β = 2α
α−1 .

Proof. We first claim that the resulting set S has |S| ≤ αk. The algorithm opens at most |C ′|
facilities. The sets Fj are pairwise disjoint for j ∈ C ′ and b(Fj) = 1/α for j ∈ C ′. Thus
∑

j∈C′ b(Fj) = |C ′|/α. On the other hand, b(F) = k, and so k ≥ |C ′|/α.
Next, consider some j ∈ C; we want to show that d(j,S) ≤ βtj. By Observation 1.2, there

is z ∈ C ′ with Fj ∩ Fz ̸= ∅ and θ(z) + rz ≤ θ(j) + rj. Thus d(j,S) ≤ d(z,S) + d(z, i) + d(j, i)
where i ∈ Fj ∩ Fz. Step (5) ensures d(z,S) = θ(z). We have d(z, i) ≤ rz and d(i, j) ≤ rj since
i ∈ Fj ⊆ B(j, rj) and i ∈ Fz ⊆ B(z, rz). So

d(j,S) ≤ θ(z) + rz + rj ≤ 2rj + θ(j).

By Proposition 6.3, we therefore have

d(j,S) ≤
2αtj − 2θ(j)

α− 1
+ θ(j) =

2αtj
α− 1

+
α− 3

α− 1
θ(j) (10)

In the SCC setting, we have θ(j) = 0 and so d(j,S) ≤
2αtj
α−1 as desired.

In the general setting, for α ≤ 3, the second coefficient in the RHS of (10) is non-positive and

hence the RHS is at most
2αtj
α−1 as desired. When α ≥ 3, then in order for t to be feasible we must

have tj ≥ θ(j); substituting this upper bound on θ(j) into (10) gives

d(j,S) ≤
2αtj
α− 1

+
α− 3

α− 1
tj = 3tj

We note that these approximation ratios are, for α close to 1, within a factor of 2 compared to
the lower bound of Observation 6.1. As α → ∞, the approximation ratio approaches to limiting
values 3 (or 2 in the SCC setting).
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6.2 The case of small β

We now consider what occurs when β becomes smaller than the critical threshold values 3 (or 2 in
the SCC setting). We show that in this regime we must take α = Ω(log n). Of particular interest
is the case when β approaches 1; here, in order to get β = 1+ ε for small ε we show it is necessary
and sufficient to take α = Θ( logn

ε
).

Proposition 6.5. For any ε < 1/2, there is a randomized polynomial-time algorithm to obtain a
(3 logn

ε
, 1 + ε) determinization.

Proof. First, let a, b be a solution to Pexpectation . Define pi = min(1, 2 logn
ε

bi) for each i ∈ F and

form S = DepRound(p). Observe then that |S| ≤ ⌈
∑

i pi⌉ ≤ ⌈2 logn
ε

∑

bi⌉ ≤ 1 + 2k logn
ε

≤ 3k logn
ε

.
Next, for any j ∈ C, property (P3) of DepRound gives

Pr[d(j,S) > (1 + ε)tj] = Pr[Bj,(1+ε)tj ∩ S = ∅] ≤
∏

i∈B(j,(1+ε)tj )

(1− pi) ≤
∏

i∈B(j,(1+ε)tj)

e−
2 log n

ε
bi

≤ exp
(

−
2 log n

ε

∑

i∈B(j,(1+ε)tj )

ai,j

)

as ai,j ≤ bi

≤ exp
(−2 log n

ε
(1−

1

1 + ε
)
)

≤ n−4/3 as ε < 1/2

A union bound over j ∈ C shows that solution set S satisfies d(j,S) ≤ (1 + ε)tj for all j with
high probability.

The following shows matching lower bounds:

Proposition 6.6. 1. There is a universal constant K with the following properties. For any
k ≥ 1, ε ∈ (0, 1/3) there is some integer Nk,ε such that for n > Nk,ε, there is a homogeneous

SCC instance of size n in which every (α, 1 + ε)-determinization satisfies α ≥ K logn
ε

.

2. For each β ∈ (1, 2) and each k ≥ 1, there is a constant K ′
β,k such that, for all n ≥ 1,

there is a homogeneous SCC instance of size n in which every (α,β)-determinization satisfies
α ≥ K ′

β,k log n.

3. For each β ∈ (1, 3) and each k ≥ 1, there is a constant K ′′
β,k such that, for all n ≥ 1, there is a

homogeneous instance of size n in which every (α,β)-determinization satisfies α ≥ K ′′
β,k log n

Proof. These three results are very similar, so we show the first one in detail and sketch the
difference between the other two.

Consider an Erdős-Rényi random graph G ∼ G(n, p), where p = 3ε/k; note that p ∈ (0, 1). As
shown by [15] asymptotically almost surely the domination number J of G satisfies J = Ω(k logn

ε
).

We construct a related instance with F = C = [n], and where d(i, j) = 1 if (i, j) is an edge,
and d(i, j) = 2 otherwise. Note that if X is not a dominating set of G, then some vertex of G has
distance at least 2 from it; equivalently, maxj d(j,X) ≥ 2 for every set X with |X| < J .

Chernoff’s bound shows that every vertex of G has degree at least u = 0.9np with high proba-
bility. Assuming this event has occured, we calculate E[d(j,S)] where S is drawn from the uniform
distribution on

(F
k

)

. Note that d(j,S) ≤ 1 if j is a neighbor of X and d(j,S) = 2 otherwise, so

E[d(j,S)] ≤ 1 +

(n−u
k

)

(

n
k

) ≤ 1 + e−0.9pk = 1 + e−2.7ε.
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Both of the required events happen with positive probability for n sufficiently large (as a function
of k, ε). In this case, tj = 1+e−ε is a feasible homogeneous demand vector. At the same time, every
set S ∈

(F
k′

)

for k′ < J satisfies minj∈C d(j,S) ≥ 2. Thus, we cannot have an (α,β)-determinization

with α < J
k = Θ( logn

ε
) and β ≤ 2

1+e−2.7ε . Note that 2
1+e−2.7ε ≥ 1 + ε for ε < 1/3. Thus, whenever

β ≤ 1 + ε, we have α ≥ Θ( logn
ε

).
For the second result, let β = 2 − λ. We use the same construction as above, except that we

set p = 1 − 1
2(λ/2)

1/k . A similar analysis shows that the vector tj = 1 + λ/2 is feasible with high
probability and |J | ≥ Ω(k log n) (where the hidden constant may depend upon β, k). Thus, unless
α ≥ Ω(log n), the approximation ratio achieved is 2

1+λ/2 ≥ β.
The third result is similar to the second one, except that we use a random bipartite graph.

The left-nodes are associated with F and the right-nodes with C. For i ∈ F and j ∈ C, we define
d(i, j) = 1 if (i, j) is an edge and d(i, j) = 3 otherwise.

6.3 The case of α = 1

We finally consider the case α = 1, that is, where we exactly respect the constraint on the number
of open facilities. By Observation 6.1, we must have β ≥ k+1 here. The following greedy algorithm
gives a (1, k + 2)-determinization, nearly matching this lower bound.

Algorithm 10 (1, k + 2)-determinization algorithm

1: Initialize S = ∅
2: for ℓ = 1, . . . , |F| do
3: Let Cℓ denote the set of points j ∈ C with d(j,S) > (k + 2)tj
4: If Cℓ = ∅, then return S.
5: Select the point jℓ ∈ Cℓ with the smallest value of tjℓ .
6: Update S ← S ∪ {Vjℓ}

Theorem 6.7. If the values tj are feasible, then Algorithm 10 outputs a (1, k+2)-determinization
in O(|F||C|) time.

Proof. For the runtime bound, we first compute Vj for each j ∈ C; this requires O(|F||C|) time
upfront. When we update S at each iteration ℓ, we update and maintain the quantities d(j,S)
quantities by computing d(j, Vjℓ) for each j ∈ C.. This takes O(|C|) time per iteration.

To show correctness, note that if this procedure terminates at iteration ℓ, we have Cℓ = ∅ and
so every point j ∈ C has d(j,S) ≤ (k+2)tj . The resulting set S at this point has cardinality ℓ− 1.
So we need to show that the algorithm terminates before reaching iteration ℓ = k + 2.

Suppose not; let the resulting points be j1, . . . , jk+1 and for each ℓ = 1, . . . , k + 1 let wℓ = tjℓ .
Because jℓ is selected to minimze tjℓ we have w1 ≤ w2 ≤ · · · ≤ wk+1.

Now, let Ω be a k-lottery satisfying ES∼Ω[d(j,S)] ≤ tj for every j ∈ C, and consider the random
process of drawing S from Ω. Define the random variable Dℓ = d(jℓ,S) for ℓ = 1, . . . , k + 1. For
any such S, by the pigeonhole principle there must exist some pair jℓ, jℓ′ with 1 ≤ ℓ < ℓ′ ≤ k + 1
which are both matched to a common facility i ∈ S, that is

Dℓ = d(jℓ,S) = d(jℓ, i),Dℓ′ = d(jℓ′ ,S) = d(jℓ′ , i).

By the triangle inequality,

d(jℓ′ , Vjℓ) ≤ d(jℓ′ , i) + d(i, jℓ) + d(jℓ, Vjℓ) = Dℓ′ +Dℓ + θ(jℓ)
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On the other hand, jℓ′ ∈ Cℓ′ and yet Vjℓ was in the partial solution set S seen at iteration ℓ′.
Therefore, it must be that

d(jℓ′ , Vjℓ) > (k + 2)tjℓ′ = (k + 2)wℓ′

Putting these two inequalities together, we have shown that

Dℓ +Dℓ′ + θ(jℓ) > (k + 2)wℓ′ .

As θ(jℓ) ≤ wℓ ≤ wℓ′ , this implies that

Dℓ

wℓ

+
Dℓ′

wℓ′
≥

Dℓ +Dℓ′

wℓ′
>

(k + 2)wℓ′ − θ(jℓ)

wℓ′
≥

(k + 2)wℓ′ − wℓ

wℓ′
≥

(k + 2)wℓ′ − wℓ′

wℓ′
= k + 1.

We have shown that, with probability one, there is some pair ℓ < ℓ′ satisfying this inequality
Dℓ/wℓ +Dℓ′/wℓ′ > k + 1. Therefore, with probability one it holds that

k+1
∑

ℓ=1

Dℓ/wℓ > k + 1. (11)

But now take expectations, observing that E[Dℓ] = E[d(jℓ,S)] ≤ tjℓ = wℓ. So the LHS of (11)
has expectation at most k + 1. This is a contradiction.

We remark that it is possible to obtain an optimal (1, k + 1)-determinization algorithm for the
SCC or homogeneous settings, but we omit this since it is very similar.
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