Model-Free IRL Using Maximum Likelihood Estimation

Vinamra Jain,! Prashant Doshi,! Bikramjit Banerjee?
I'THINC Lab, Dept. of Computer Science; University of Georgia; Athens, GA 30602
2School of Computing Sciences & Computer Engineering; University of Southern Mississippi; Hattiesburg, MS 39406
pdoshi@cs.uga.edu, Bikramjit.Banerjee @usm.edu

Abstract

The problem of learning an expert’s unknown reward func-
tion using a limited number of demonstrations recorded from
the expert’s behavior is investigated in the area of inverse re-
inforcement learning (IRL). To gain traction in this challeng-
ing and underconstrained problem, IRL methods predomi-
nantly represent the reward function of the expert as a lin-
ear combination of known features. Most of the existing IRL
algorithms either assume the availability of a transition func-
tion or provide a complex and inefficient approach to learn
it. In this paper, we present a model-free approach to IRL,
which casts IRL in the maximum likelihood framework. We
present modifications of the model-free Q-learning that re-
place its maximization to allow computing the gradient of
the Q-function. We use gradient ascent to update the feature
weights to maximize the likelihood of expert’s trajectories.
We demonstrate on two problem domains that our approach
improves the likelihood compared to previous methods.

1 Introduction

Inverse reinforcement learning (IRL) (Russell 1998) is the
problem of ascertaining an agent’s preferences from obser-
vations of its behavior on a task. It inverts RL with its focus
on learning the reward function given information about op-
timal action trajectories. IRL lends itself naturally to a robot
learning the task from demonstrations by a human teacher
(often called the expert) in controlled environments, and
therefore finds application in robot learning from demonstra-
tion (Argall et al. 2009), imitation learning (Osa et al. 2018),
and forming ad hoc collaborations (Trivedi and Doshi 2018).

Key model assumptions of popular IRL methods are that
the expert’s stochastic transition function is fully known to
the learner as in IRL for apprenticeship learning (Abbeel and
Ng 2004) and in Bayesian IRL (Ramachandran 2007). Al-
ternately, the transition function is effectively deterministic
and thus is easily approximated from the observed trajecto-
ries as in entropy maximization (Ziebart et al. 2008) with
the assumption that transition randomness has a limited ef-
fect on the final behavior. The prior knowledge requirement
is often difficult to satisfy in practice, for example, in sce-
narios where environmental noise is not random and it influ-
ences transitions significantly. An example of this is learning

Copyright (© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

the driving styles of cars in the merging lane of a congested
freeway; cars adjacent to the merging lane add noise. On
the other hand, assuming that any transition error is incon-
sequential is a strong imposition in the context of robots.

In this paper, we introduce novel model-free algorithms
to generalize IRL to problem domains where the transition
function is not available. A previous method for model-free
IRL (Boularias, Kober, and Peters 2011) casts the problem
as one of relative entropy optimization while using impor-
tance sampling to avoid using the model. A more recent
method (Uchibe 2018) casts IRL as a problem of estimat-
ing the density ratio between expert state transitions and a
baseline one, and shows how this is related to the reward
function in linearly solvable MDPs where the state transition
probability is optimized. Both of these methods assume the
availability of a secondary set of (non-expert) trajectories. In
stark contrast, our approach does not require this secondary
set of trajectories. We build on the model-based maximum
likelihood IRL (MLIRL) (VRoman 2014) to remove its de-
pendency on the transition function. Our method replaces
the traditional Bellman update in MLIRL with two ways of
performing model-free Q-learning that is modified to be dif-
ferentiable. The first modification is to replace the max op-
erator in the update with an averaging operator. The second
modification replaces the max operator with a Boltzmann-
weighted mean. As we show, the search for the most likely
reward function can now be guided by the gradient of the
likelihood function for the current feature weights.

We evaluate both our methods on two problem domains
and compare their performances with the existing model-
based MLIRL as well as the relative-entropy IRL tech-
nique. The first domain is the standard grid world problem
that is commonly used to compare IRL methods. Our sec-
ond problem facilitates real-world applications in the do-
main of autonomous vehicles. While self-driving cars have
made tremendous progress in the last few years, specific
road situations continue to challenge them. One of these is
autonomously merging into a congested freeway. We eval-
uate our model-free IRL methods on real-world trajecto-
ries of cars driving in the merging lane of a congested
freeway in order to learn the preferences of a class of
drivers. IRL’s relevance toward learning the driving styles
of humans on a highway has been explored before for au-
tonomous cars (Kuderer, Gulati, and Burgard 2015), but not

in the context of freeway merging. In all of these evalua-
tions, our methods meet and often exceed the performance
of MLIRL, while easily improving on the performance of
relative-entropy IRL. Between the two modifications, the av-
eraging estimation is significantly better. These results make
the maximum-likelihood IRL with the Q-averaging estima-
tion as the new frontline method for model-free IRL.

2 Background

In this section, we briefly review the fundamentals of IRL
and the maximum likelihood estimation approach to IRL.

2.1 Inverse Reinforcement Learning

Informally, IRL refers to both the problem and method by
which an agent learns preferences of another agent that ex-
plain the latter’s observed behavior (Russell 1998). Usually
considered an “expert” in the task that it is performing, the
observed agent, say I, is modeled as executing the optimal
policy of a standard MDP defined as (S;, A7, Ty, Rr). The
learning agent is assumed to perfectly know the parameters
of the MDP except the reward function. Consequently, the
learner’s task may be viewed as finding a reward function
under which the expert’s observed behavior is optimal.

This problem in general is ill-posed because for any given
behavior there are infinitely-many reward functions which
align with the behavior. Abbeel and Ng (2004) present an al-
gorithm that allows the expert I to provide task demonstra-
tions instead of its policy. The reward function is modeled
as a linear combination of K binary features, ¢: S; x A; —
{0, 1}, each of which maps a state from the set of states St
and an action from the set of I’s actions Aj to either a O or
1. Note that non-binary feature functions can always be con-
verted into binary feature functions although there will be
more of them. Throughout this paper, we assume that these
features are known to, or selected by, the learner. The re-
ward function for expert [is then defined as R;(s,a) =

Zle O - di(s,a), where 0, are the weights. The learner’s
task is reduced to finding a vector of weights that complete
the reward function, and subsequently the MDP such that
the demonstrated behavior is optimal.

To assist in finding the weights, feature expectations
are calculated for the expert’s demonstration and com-
pared to those of possible trajectories (Ziebart et al. 2008).
A demonstration is provided as one or more trajecto-
ries, which are a sequence of length-7' state-action pairs,
({s,a)t, (s,a)?,...(s,a)T), corresponding to an observa-
tion of the expert’s behavior across 7T time steps. Feature
expectations of the expert are averages over all observed tra-

jectories, ¢, = ﬁ D owex D(s.ayes Pr(s;a), where z is a
trajectory in the set of all observed trajectories, X.

Given a set of reward weights, the expert’s MDP is com-
pleted and solved optimally to produce 77. The difference

é — ¢™1 provides a gradient with respect to the reward
weights for a numerical solver. To resolve the degeneracy
of this problem, Abbeel and Ng (2004) maximize the mar-
gin between the value of the optimal policy and the next
best policy. The resulting program may be solved with a
quadratic program solver such as a support vector machine.

2.2 MLE for Model-based IRL

Babes-VRoman et al. (2014) showed how IRL could be for-
mulated as a maximum likelihood estimation (MLE) prob-
lem.

0 = arg max L(6)

where L(0) is the log-likelihood of the demonstration tra-
jectories in X. In other words,

L(8) =log Pr(X;0) (1)

As the trajectories in X are conditionally independent of
each other given 60, we can decompose Pr(X; 0) as:

P(X;0) = [] P(x6) 2)

reX

Because = denotes a trajectory as shown in Section 2.1, we
may further decompose Eq. 2 as:

T-1
Pr(X;0) = H <Pr(sl) Pr(a'|s'; 6) H Pr(s"|st a")

zeX i=1
x Pr(a"t|s"t1;0)). 3)

The term Pr(a’*t|s"*1; @) is given by the agent’s policy pa-
rameterized by 6, and Pr(s*1|s?, a') is given by the transi-
tion function. Therefore,

T-1
Pr(X;0)= H (Pr(sl) mo(st, a') H T(s', at, s
zeX i=1
x (s a™th)).

Taking log on both sides we get the log likelihood as,

-1
L(6) = Z (log Pr(s') + Z log e ("™, a™™h)

ceX i=0
T—1

+ Z log T(s’,al,5’+1)> . 4)
i=1

The transition function in the log likelihood above is usually
given. Therefore, it is common practice to exclude it from
the computation while comparing the performance of vari-
ous methods (Ramachandran 2007; VRoman 2014).

T-1
L) = Z (log Pr(s') + Z log Trg(sHl,aiH)) .

zeX i=0
&)

The policy is commonly modeled using the parameter-
ized Boltzmann exploration (Ramachandran 2007; VRoman
2014) as follows,

of Qo(s.0) o8 Qo(s,a)
Darea, €9 Qolsa) - Zpg(s)

(6)

mo(s,a) =

As (3 approaches infinity, the Boltzmann exploration assigns
a probability approaching 1 to the action with the largest Q-
value. Given this exploration policy, the action-value (Q-)
function becomes,

Qo(s,a) = Rg(s,a) +~ Z T(s,a,s)

s’'eSy
X Z Qe(s',a') me(s',a’) @)
a’€Ag

where mg(s’, a’) is as defined in Eq. 6.
To obtain the MLE, we may partially differentiate the log
likelihood of Eq. 5:

T

OL(0) 1 Ome(st,at)
00 Z Z mo(st, at) 00 ®

rzeX i=1

In the context of Eq. 6, differentiating the policy above in-
volves differentiating the Q-function w.r.t. 8. Although the
derivative of the Q-function requires differentiating the pol-
icy in turn, Babes-VRoman et al. (VRoman 2014) show how
this recursive differentiation may be performed and the fea-
ture function weights are updated using the standard gradi-
ent descent until the weights all converge. Notice that the
computation of the Q-function involves the transition func-
tion of the expert I. Consequently, the approach given by
Babes-VRoman et al. is a model-based MLE for IRL.

3 Model-Free MLE for IRL

We are motivated to study model-free IRL because it relaxes
a debilitating prior knowledge requirement by most IRL
methods. Specifically, they assume that the learner knows
the dynamics of the expert as modeled by its stochastic tran-
sition function as in apprenticeship learning (Abbeel and Ng
2004) and in Bayesian IRL (Ramachandran 2007). Alter-
nately, the transition function is assumed to be effectively
deterministic and thus is easily approximated from the ob-
served trajectories as in entropy maximization (Ziebart et al.
2008) with the assumption that transition randomness has
a limited effect on the final behavior. The prior knowledge
requirement is often difficult to satisfy in practice, for ex-
ample, in scenarios that are not cooperative. Alternately, the
supposed impotency of transition errors is a strong assump-
tion in the context of robots possessing noisy actuators.

Two observations enable us to adapt the MLE of Sec-
tion 2.2 for model-free IRL. First, notice that the right-hand
side of the gradient of the log likelihood in Eq. 5 does not
involve the transition function. Second, if we replace the Q-
function computation in Eq. 7 with a way of computing it
that does not involve the transition function, then the gra-
dient can be entirely computed without knowledge of the
transition function.

We begin by presenting a method to estimate the Q-value
without knowledge of the transition function.

3.1 Differentiable learning

A straightforward model-free estimation of the expert’s
Qo(s,a) is to use Watkin’s off-policy Q-learning (Watkins

and Dayan 1992).

Qo(s,a) < (1 —a) Qo(s,a) + a(Re(s,a)+

! /
7 nax Qo(s',a’))

where « is the learning schedule, + is the discount factor, s’
is the next state in the trajectory x, and Rg(s, a) is the reward
for taking action a in state s. Recall that the reward func-
tion is defined as Rg(s,a) = Zle Or ¢r(s,a). However,
the presence of the max operator in the estimation above

makes the Q-function discontinuous and therefore not dif-
ferentiable (Asadi and Littman 2017).

Consequently, as a first step, we seek a simple modifica-
tion of the Q-learning equation to make it differentiable. We
propose two estimations of the Q-function, first of which re-
places the max operator with an averaging operator.

Qo(s,a) +(1 —a) Qg(s,a) + a(Rg(s, a)+

Do)

Notice that the averaging operation simply replaces the max-
imal Q-value for the next state s’ with the Q-value averaged
over all expert’s actions for the next state. We refer to this
version of Q-learning as Q-averaging. This use of the av-
eraging operation for IRL is novel to the best of our knowl-
edge.

The second estimation replaces the max operator with the
Boltzmann-weighted mean as given below:

Qo(s,a) +(1 —a) Qg(s,a) + a(Rg(s, a)+
v Z To(s',a")Qo(s',a)) (10)

a’€Ag

Here, mg(s’,a’) is the Boltzmann softmax as defined in
Eq. 6. We refer to this version of Q-learning as Q-softmax.

For both these Q-learning methods, we will continue to
use the Boltzmann policy for the action distribution. This
introduces a discrepancy between how the Q-value is esti-
mated in Q-averaging — essentially selecting one of the ex-
pert actions at s’ at random — and the action distribution.
However, not all is lost with this approximation. In addi-
tion to being easily differentiable, the Q-averaging update
is a non-expansion given fixed 6 ensuring convergence to
a unique fixed point (Asadi and Littman 2017). As such, it
serves as a useful method. In comparison, Q-softmax is dif-
ferentiable and approximates the traditional “max” operator
for selecting an action at s’ as 3 — oo . However, it lacks
the non-expansion property and therefore may not always

converge. !

'Recently, Asadi and Littman (2017) pointed out the conver-
gence limitation of using the Boltzmann policy for exploration in
the context of SARSA. It’s likely that Q-learning also suffers from
a similar fixed-point issue, and the alternative mellowmax may be
used instead, but this needs further investigation.

3.2 Gradient Computation

Our approach is to obtain the gradient vector of the log like-
lihood, which is defined as:

OL(6) 0L(0) 0L(0)
L(0) =
VL(©) < 061 7 06, T 96,
We may then use the appropriate component of the gradi-

ent vector to update the parameters 0 as a step of gradient
ascent.

Vi, 0! =0 +a,VLi(0)

where, o is the dynamic step size in the #*" iteration and
V Li(0) denotes the component of the gradient correspond-
ing to the differentiation by 6.

The derivative of the log likelihood in Eq. 8 requires com-
puting the gradient of the policy. This is obtained as,

Ome(st, a’) 1 8 Qo(s',a) Qe (s, at)
96 _22(){ o(s)Be 90

o8 Qostay 9Z6(s) |
00

Y

Q-averaging The above requires the gradient of the Q-
function, whose computation proceeds as follows for Q-
averaging. Equation 9 is iterated until (near-)convergence.
For the t'" iteration, we may write it as:

Qp(s,a) = (1 — a) Qg '(s,a) + a(Re(s,a)+
Y t—1/.1 1
W;Qg (s',d)) (12)
and its gradient becomes,
oo Qbl5,0) = (1=) 2@l (5,0 +a(6n(s. o)+

|A1|Zao9th '(s',d)) (13)

As the Q-function at the first time step is the reward func-

tion, we get,
0 4 0
Taer(S, Cl) = aiekRg(S, a)

Recall that Q-averaging is a non-expansion given 6
and differentiable. Consequently, iterating over Eq. 13 with
Eq. 14 as the base case will cause the gradient to converge
to a fixed point. As such, the gradient of the model-free Q-
function is available to us.

Next, we need the gradient of Zg w.r.t. 8, which uses the
converged gradient of the Q-function obtained before.

= ¢i(s,a) (14)

329 ﬁ Z BQG s,a) an(s,a)

aek = 20,
, 9Qe(s,a)
— B Qe(sa) (1 _
Py ((o) Mot

0Qe(s',a’)
a(¢n(s, a) +‘A|Z T)

Algorithm 1 Model-free ML IRL using Q-averaging

Require: MDP\{R,T'}: (S, Ar,v), Features & :
{¢1, b2, ..., px }, Trajectories X: (z1,22,...,ZN), «,
Qn, €

1: Initialize randomly 0 : (01,0, ...,0;)

2: Initialize local variables L’ <— 0,n < 0,t + 0

3: Initialize Qg(s,a) < Oforalls € S,a € A;

4: Initialize stochastic policy using Eq. 6

5: repeat

6: n+n+1

7. L« L

8 Re(s,a) = Zle Or dr(s,a)

9: repeat
10: t+—t+1
11: Update Q (s, a) (Eq. 12) for all (s, a) using Boltzmann

exploratlon

12: Update % using Eq. 13 for all (s, a) and 6y,

13: Use Eq. 6 and updated Q-values to update policy
14 until |Qp(s,a) — Qg ' (s, a)| <e(1—7)/v
15: Qj(s,a) « Qb(s,a) forall (s, a)

_BQ5(s.a)
W for all (S, a)

17: Evaluate likelihood L(8) using Eq 5

18: Obtain VL (0) (Eq. 8) usmg " inEq. 11
19: L'+ L(8)

20: forall 0 € 6 do

21: O <+ 0 + anVLk(G)

2: 6= - L

23: until § < e(1 —7)/v

24: return 6

16: mo(s,a)

We summarize the method for model-free IRL using Q-
averaging in Algorithm 1. We initialize the feature weight
vector and the Q-table with random values and zeroes re-
spectively, and compute the initial policy (lines 1-4). For
the current 6, we obtain the nearly converged Q-values
and its gradient in an iterative manner. The model-free Q-
averaging uses the Boltzmann policy (kept updated) for ex-
ploration (lines 9-14). These are then utilized to obtain the
current log likelihood for the expert’s trajectories and its gra-
dient. Lines 20-22 perform gradient ascent to update the fea-
ture weights, and these steps are repeated until approximate
convergence.

Q-softmax Let us proceed in a similar manner as in Q-
averaging, and write out the iterative version of the Q-
function.

Qp(s,a) (1 —) Qg (8 a)+a(Re(87a)+

v Y w8, a) Qg (s d)) (15)

a’€Ag

where for any iteration ¢ the probability 7)(s,a) is ob-

tained from the ¢*" iteration of the Q-function, 74 (s, a) =

B Qh(s,a) 8 QY (s,a)
< eﬂ ot = ¢ Zte . Thus, convergence of Q-
Yaea e To" o(s)

softmax additionally requires iterations over the Boltzmann
policy.

Differentiating Eq. 15 w.r.t. 6, we get,
9 9
69;9 86k

_ 0 _
’YZ’/TZ 1(s/,a/)679k gl(sl,a/)+QtB 1(5’,@’)

Qy(s.a) = (1—a) 2 Qb (s.a) + a(¢k<s,a>+

X aiekﬂ-e

Notice that Eq. 16 also involves the gradient of the policy
in contrast to the gradient of Q-averaging. This is obtained
analogously to Eq. 11 with the difference that Qg(s, a) and
its derivative is replaced with Q' (s, a) and its derivative,
respectively, both of which are available from the previ-
ous iteration. With Q-softmax not guaranteed to be a non-
expansion, its gradient may not be a non-expansion either in
some cases. Finally, we obtain the gradient of Z}, as,

0 tl(s/,a/)> (16)

aZé(s) _ B QL(s,a) aQtG(Sva‘)
. P2 90,

a€Ar

t
where %f:@) is computed as given in Eq. 16.

The algorithm for model-free IRL with MLE using Q-
softmax is analogous to Algorithm 1 with just a few
changes. In particular, the Q-value in line 11 is updated us-
ing Eq. 15 and its gradient in the next line is computed using
Eq. 16. The remaining steps of the algorithm including the
likelihood computation and the iterative update of feature
weights remain unchanged.

4 Experiments

We evaluated our model-free IRL algorithm using two ap-
plication domains. Multiple experiments were performed
on two domains: the grid world domain, a small toy prob-
lem, and the freeway merging domain, a real-world prob-
lem with a considerably larger state space than the first. We
also compared our results with the model-based MLIRL ap-
proach and another model-free approach, relative entropy
IRL (REIRL). We used Monica Babes-VRoman’s code for
MLIRL, and REIRL code from https://github.com/
aravindsiv/irl-lab. Our code for both presented
methods is also publicly available at https://github.
com/RAILUSM/Model-free-IRL.

4.1 Gridworld Domain

Our first domain is a simple grid of size 5 X 5. An agent can
navigate this domain using 4 directional movements. Fig-
ure 1 depicts the graphical user interface for the grid world
environment. The gray colored circle is the agent. The five
different color grids signify the unique location features.
The MDP model for the grid world environment includes
25 states, 4 actions, and the discount factor of 0.99. The task
is to reach the nearest corner (goal) cell from any non-blue
starting location, while avoiding the blue cells. We used two
variants of this domain—one with no transition noise, and
another where the agent has a 10% chance of slipping later-
ally relative to the intended direction of motion. We used the
Boltzmann temperature (/3) as 0.01 for all methods.

i
H

Figure 1: The graphical user interface for grid world envi-
ronment. The gray circle is the agent exploring the 5 x 5
grid. Each different color in the grid represents a distinct
(Boolean) feature of the state. The agent tries to learn the

cost associated with each color using the expert’s trajecto-
ries.

We recorded 20 trajectories in each variant, by moving
the agent across the grid following an optimal policy for
the above tasks. We then removed any repeated trajecto-
ries, leading to a set of 12 distinct expert trajectories in
0-noise variant, and 14 distinct expert trajectories in 10%-
noise variant. These trajectories were then used by the agent
to learn the reward weights associated with each grid-color
(feature). The weights were initialized to random values in
[—1,1] for all methods. Accurate transition matrices—with
or without noise—were additionally available to the model
based method (MLIRL). While MLIRL and our methods are
based on the log-likelihood of data, REIRL does not use this
metric, and instead runs for a given number of iterations. We
allowed it 5 x 10° iterations in the no-noise variant, and 108
iterations in the 10% noise variant, to ensure convergence of
its objective value, then used the learned feature weights to
construct a reward function, and optimally solved the result-
ing MDP to get the final log-likelihood. REIRL also requires
two other adjustments to the data: (1) it assumes all trajec-
tories are of the same length, for which we prolonged all
shorter trajectories by copying the last (s, a) pair to match
the length of the longest trajectory; (2) it needs an additional
set of baseline trajectories that are generated by a random
policy. We conducted 30 independent trials for each setting.

Tables 1 and 2 show the mean with standard devia-
tions of learned feature weights and corresponding final
log-likelihood values achieved using model-free and model-
based IRL methods in the two grid world variants. It is inter-
esting that while MLIRL (correctly) learns negative weights
for the blue feature avoided in the expert trajectories due to
the availability of the true transition matrix, REIRL learns
negative weights for this feature due to the availability of
a set of baseline trajectories where the blue feature is vis-
ited by a random policy, and it optimizes entropy of expert
trajectories relative to these baseline trajectories. By com-
parison, our methods have access to neither the true transi-
tion matrix nor a set of baseline trajectories. Consequently
they learn to associate the lowest weight to this feature in

Method Learned feature weights (feature 5 is blue) Final
91 [92 [93 [94 [95 IOg—likelihOOd
MLIRL | 43.04+14.83 | 33.31 £11.35 54.23 +18.23 53.93 £ 18.00 | —49.09 4+ 16.80 —36.50 + 3.12
Q-Avg | 152.33 £60.81 | 92.06 £+ 36.91 | 1526.06 4+ 608.96 | 151.51 + 60.49 0.03+£0.56 | —29.25+ 6.59
Q-SM 17.92 + 14.09 11.96 + 9.15 109.88 + 84.96 17.87 + 14.07 0.02 + 0.60 —40.39 +4.15
REIRL 0.87+0.00 | 28.27 £ 0.60 40.43 £ 0.58 44.62 + 0.55 —3.10£0.05 —43.58 £ 0.03

Table 1: Comparison of learned feature weights and corresponding final log-likelihood values of trajectories for grid world
domain with no transition noise, from various algorithms.

Method Learned feature weights (feature 5 is blue) Final

91 [02 [03 [04 [05 IOg-likelihOOd
MLIRL | 94.00 & 31.88 | 86.91 £29.56 | 93.26 = 31.67 | 95.35 £32.11 | —71.57 £23.78 | —45.05 £9.07
Q-Avg | 227.724+1.41 | 89.83+£0.68 | 157.59 +1.18 | 3368.95 +0.24 151.43 £ 0.67 | —40.49 +0.04
Q-SM 30.37+5.22 | 10.98+1.69 | 18.40+2.91 | 225.20+0.21 11.33£0.80 | —57.354+0.30
REIRL 0.58 £ 0.09 0.13£0.05 1.96 + 0.46 0.31 £ 0.06 —0.50£0.40 | —72.11+0.01

Table 2: Comparison of learned feature weights and corresponding final log-likelihood values of trajectories for grid world

domain with 10% transition noise, from various algorithms.

the no-noise variant (Table 1). With transition noise, how-
ever, the blue feature sometimes appears in the expert tra-
jectories due to slippage, but without a true transition matrix
or baseline trajectories our methods have no way to real-
ize that this feature is undesirable to the expert. Hence we
see higher weights associated with this feature for both Q-
averaging and Q-softmax in Table 2. Notwithstanding this,
the final log-likelihoods of our methods are competitive, in
particular, Q-averaging achieves the highest log-likelihood
in both cases. The relatively large variances for some indi-
cate that different trials converged to different local optima.
This is a consequence of the termination criterion (line 23
of Algorithm 1) which was also applied to MLIRL, and this
may explain why despite being model-based it failed to find
solutions with higher log-likelihoods on the average.

A Wilcoxon signed rank test of significance between the
sets of final log-likelihoods of different methods compared
to MLIRL found that for the no-noise case, the Q-averaging
method achieves significantly higher log-likelihoods than
MLIRL at the 99% confidence level (p-value=0.00194),
while MLIRL achieves significantly higher log-likelihoods
compared to Q-softmax and REIRL (p-value O in both
cases). In the 10% noise gridworld, the same relative ad-
vantages hold with p-values 0, 0, and O respectively.

Instead of a comparison of precise run times (because
the methods were implemented in different programming
languages), we note that all methods ran in a comparable
amount of time, each under 15 minutes per trial on a Linux
workstation with Intel core 17 CPU each core is 3.6GHz and
16GB of main memory.

4.2 Freeway Merging Domain

The freeway merging domain is a real-world problem faced
by autonomous vehicles in making decisions about when to
merge, keeping in consideration the stochastic behavior of
human drivers on the freeway. Solving the freeway merg-
ing problem requires modeling the relevant traffic. Here, we

model this problem using a sufficient A-B-C model as shown
in Fig. 2. Vehicle in role B is an autonomous vehicle that is
about to merge onto the freeway. A is the vehicle on right-
most lane of the freeway but relatively behind B. C is also the
vehicle on rightmost lane of the freeway but relatively ahead
of B. The problem is that vehicle B must merge between A
and C but the preferences of A’s driver about allowing B to
merge ahead are not known. The objective of IRL in this
context is to model the preferences of A’s driving model as
it detects B.

Figure 2: Detailed A-B-C model representing the freeway
merging problem. B is an autonomous vehicle about to
merge onto the freeway. Relative variables like velocity
and distance between any two vehicles play crucial roles in
defining the state of vehicle in role A.

The Next Generation SIMulation (NGSIM) (Alexiadis,
Colyar, and Halkias 2007) program was launched by United
States Department of Transportation (US DOT) Federal
Highway Administration (FHWA)’s Traffic Analysis Tools
Program to develop algorithms in support of traffic simula-
tion, with a primary focus on microscopic modeling. The re-
searchers for the NGSIM program collected detailed vehicle
trajectory data on eastbound I-80 in the San Francisco Bay
area in Emeryville, CA. Seven synchronized digital video

cameras were mounted on the top of a 30-story building
adjacent to the freeway to record vehicle passing through
over approximately 500 meters (1,640 feet) in length. The
study included all 6 freeway lanes and an additional on-ramp
merging onto the freeway. The collected dataset is well doc-
umented with necessary meta-data. Out of the 260 trajecto-
ries in the full dataset that encompasses a wide variety of
driving preferences, we isolated 12 trajectories where A ex-
hibited risky behavior, accelerating frequently. This experi-
ment is based on these 12 trajectories.

We define the state space using the following 5 state vari-
ables:

. dac: Distance between vehicles A and C (in ft.)
. dap: Distance between vehicles A and B (in ft.)
. vac: Velocity of A relative to C (in ft./sec)
. vap: Velocity of A relative to B (in ft./sec)

whn A WD =

. Vehicle type of vehicle B (truck or not).

We discretized the first 4 state variables into 5 intervals and
the fifth variable is binary in nature. This yields 1,250 states
of vehicle A.

The instantaneous acceleration values are modeled as
actions of the driver. We discretized the acceleration (in
ft./sec?.) into five intervals and named them as the follow-
ing actions:

1. High Brake: —11.20 < acc < —4.80
2. Low Brake: —4.79 < ace < —0.60
3. Zero Acceleration: —0.59 < acc < 0.59
4. Low Acceleration: 0.60 < acc < 4.79
5. High Acceleration: 4.80 < acc < 11.2
We accounted for 3 binary features in the reward func-

tion. Any feature is considered active with the value 1 and
inactive when the value is 0.

Safe (¢1): This feature is inactive only when d ¢ < 35 ft.
and acc > 0.6 ft./sec?, i.e. distance from the preceding
vehicle is less than 35 ft and the vehicle is accelerating.
This feature signifies the preference of being safe when
active.

Time to travel (¢5): This feature is active when acc >
—0.6 ft./sec?, i.e. either the vehicle is accelerating or
moving with a constant speed. This feature signifies the
importance of time to reach the destination.

Ahead of Truck (¢3): This feature is active when the vehi-
cle B is a truck and acc > 0.6 ft./secQ, i.e., A accelerates
when B is a truck to get ahead of it.

Below is the summarized description of the experimental
setup.

o MDP : (S, A,~) = (1250,5,0.99);
e Features ® = {¢1, ¢2, P3};

o T ={(1,(2y ..., (12}, i€ set of 12 expert’s trajectory ex-
hibiting risky behavior from the NGSIM dataset;

e Boltzmann temperature, 5 = 0.01;

e Learning rate for Q-averaging and Q-softmax, a =
0.01.

Table 3 shows the learned feature weights and corre-
sponding final log-likelihood values of trajectories using our
model-free IRL approach as well as the existing baselines
MLIRL and REIRL, based on 10 independent trials for each
setting. MLIRL requires the transition model, which we es-
timated by relative frequency of transition counts from the
trajectories. For states not seen in the trajectories, we ap-
plied the mid-point of action ranges to the midpoint of state
feature ranges to estimate the next states using standard dy-
namical equations. Although this is a reasonable model, the
result is unlikely to be an accurate transition model for a
domain as complex as NGSIM, and this highlights a ma-
jor limitation of model-based approaches. For REIRL, we
prolonged shorter trajectories by assuming constant veloc-
ity motion for A, B, and C beyond the last frame. We also
selected a subset of trajectories randomly from the full set
(of 260 trajectories) to serve as the baseline trajectories for
REIRL. Once again, we see from Table 3 that Q-Averaging
achieves the best log-likelihood, while this time MLIRL
achieves the worst, perhaps because the estimated transition
model is a poor approximation in this domain. In particular,
MLIRL terminated early, in less than 25 iterations in all tri-
als, confirming the unsuitability of a model-based approach
for a complex domain where just the trajectory data is avail-
able. The log-likelihoods in Table 3 indicate performance
improvement in the order MLIRL < REIRL < Q-softmax
< Q-averaging, with the Wilcoxon signed rank tests being
significant at the 99% level (p-values across successive pairs
being 0.00694, 0.00512, 0.00512). While the selection cri-
terion for the 12 trajectories, viz., vehicle A speeding often,
may indicate that the weight of the second feature (i.e., 62)
should be the highest, that is not the case for Q-averaging
and REIRL. However, the intuition is essentially correct, be-
cause the trials where 65 ended up higher for Q-averaging
also had a slightly higher log-likelihood (=~ —1890). Unfor-
tunately, only 40% of the trials converged to this solution.
Once again the methods had comparable runtimes (except
MLIRL which exited early with poor solutions) of about one
hour per trial.

The overall results in Table 3 indicate a few interesting
conclusions about the trajectories themselves. Even though
the trajctories were selected based on what appeared to be
risky driving behavior, the methods reach the conclusion that
vehicle A still prefers to maintain safety. Also, contrary to
the other methods, REIRL came to the conclusion that vehi-
cle A strongly prefers to get ahead of B when the latter is a
truck. However, given that both our methods achieve higher
log-likelihoods with low values of 83, we must conclude that
the trajectories display insufficient evidence of this behavior.

5 Conclusion and Future work

We have proposed a novel model-free approach to inverse
reinforcement learning that relaxes constraining assump-
tions of existing methods, that the transition model is known,
or that an additional set of non-expert trajectories is avail-
able. We have formulated our approach within the frame-

Method Learned feature weights Final

91 [92 [93 lOg-likelihOOd
MLIRL | 0.28 =0.72 | 0.42 £0.48 0.45+0.76 —1927.09 £ 1.1
Q-Avg | 2.01 £0.23 | 1.86 +0.37 0.15+0.55 | —1891.34 +0.79
Q-SM | 0.41£0.30 | 0.80£0.53 | —0.12£0.67 | —1914.56 £1.38
REIRL | 0.08 £0.18 | 0.01 £0.14 | 15.89 £7.62 | —1920.48 &+ 3.24

Table 3: Comparison of learned feature weights and corresponding final log-likelihood values of NGSIM trajectories, from

various algorithms.

work of maximum likelihood IRL, and proposed two al-
gorithms — Q-averaging and Q-softmax. Experiments in
two domains show that Q-averaging achieves higher log-
likelihood compared to both an existing model-based and a
model-free method. Furthermore, the experiment on a real-
world complex problem involving freeway merging, high-
lights the considerable limitation of model-based MLIRL.
Thus our experimental findings position Q-averaging as the
new state-of-the-art for model-free IRL.

It may appear surprising that Q-averaging is able to per-
form so well despite involving no optimization within the
Q-update rule itself. Note however, that it simply gives a
plausible value estimate of the policy in the current itera-
tion, while the real search is in the space of feature weights,
where gradient ascent provides the needed optimization in
IRL. During algorithm design, we expected Q-softmax to
perform better since it is closer to the Bellman operator for
high values of 3, and it is instructive to inspect why it did
not. We found that high values of 3 leads to exponential
blow-up in the gradient values (due to the presence of ex-
ponential terms in equation 11) and this forced us to use
smaller S values in the experiments. Note that this problem
appears with the MLIRL method as well. Smaller 3 actually
makes the Q-values of Q-averaging and Q-softmax (i.e.,
equations 12 and 15) to be rather similar; however their gra-
dients (equations 13 and 16) are quite different. The net ef-
fect on the learning outcome seems to be that the Q-softmax
gradients tend to keep the feature weights (0) closer to each
other, compared to 8 of Q-averaging which can be vastly
different (see Tables 1- 3). It appears to effectively become a
kind of constraint for Q-softmax, which might explain why
it was unable to reach better log-likelihoods.

Future work may include implementing our approach
with other optimization techniques which do not require dif-
ferentiating the likelihood function. This will allow the use
of conventional Q-learning with the “max” operator. Our
current approach is limited to a single expert, therefore an-
other avenue would be to address multiple experts. Modeling
of a multi-agent environment and their interaction with other
experts in the environment might lead to better understand-
ing of their behavior.

6 Acknowledgment

We thank Tomoki Nishi of Toyota Research Institute of
North America and TCRDL for many helpful discussions
and insights into the freeway merge domain. We thank Mon-
ica Babes-VRoman for her MLIRL implementation which

was used to generate baseline results in this paper. We also
thank the anonymous reviewers for constructive comments
and suggestions. This work was supported in part by a re-
search contract with the Toyota Research Institute of North
America (TRI-NA), and by National Science Foundation
grants IIS-1830421 and I1S-1526813.

References

Abbeel, P., and Ng, A. 2004. Apprenticeship learning via
inverse reinforcement learning. In ICML, 1.

Alexiadis, V.; Colyar, J.; and Halkias, J. 2007. A model
endeavor. Public Roads 70(4).

Argall, B. D.; Chernova, S.; Veloso, M.; and Browning,
B. 2009. A survey of robot learning from demonstration.
Robotics and Autonomous Systems 57(5):469—483.

Asadi, K., and Littman, M. 2017. An alternative softmax
operator for reinforcement learning. In International Con-
ference on Machine Learning (ICML).

Boularias, A.; Kober, J.; and Peters, J. 2011. Relative en-
tropy inverse reinforcement learning. In AISTATS, 182-189.
Kuderer, M.; Gulati, S.; and Burgard, W. 2015. Learning
driving styles for autonomous vehicles from demonstration.
In IEEE International Conference on Robotics and Automa-
tion (ICRA), 2641-2646.

Osa, T.; Pajarinen, J.; Neumann, G.; Bagnell, J. A.; Abbeel,
P.; and Peters, J. 2018. An algorithmic perspective on imita-

tion learning. Foundations and Trends in Robotics 7(1-2):1-
179.

Ramachandran, D. 2007. Bayesian inverse reinforcement
learning. In IJCAI, 2586-2591.

Russell, S. 1998. Learning agents for uncertain environ-
ments (extended abstract). In Eleventh Annual Conference
on Computational Learning Theory, 101-103.

Trivedi, M., and Doshi, P. 2018. Inverse learning of robot
behavior for collaborative planning. In /ROS, 6.

Uchibe, E. 2018. Model-free deep inverse reinforcement
learning by logistic regression. Neural Processing Letters
47(3):891-905.

VRoman, M. C. 2014. Maximum Likelihood Inverse Rein-
forcement Learning. Ph.D. Dissertation, Rutgers University.
Watkins, C., and Dayan, P. 1992. Q-learning. Machine
Learning Journal 8(3/4).

Ziebart, B. D.; Maas, A.; Bagnell, J. A.; and Dey, A. K.

2008. Maximum entropy inverse reinforcement learning. In
AAAI, 1433-1438.

