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Abstract— Rectilinear forms of snake-like robotic locomotion
are anticipated to be an advantage in obstacle-strewn scenarios
characterizing urban disaster zones, subterranean collapses,
and other natural environments. The elongated, laterally-
narrow footprint associated with these motion strategies is well-
suited to traversal of confined spaces and narrow pathways.
Navigation and path planning in the absence of global sensing,
however, remains a pivotal challenge to be addressed prior
to practical deployment of these robotic mechanisms. Several
challenges related to visual processing and localization need to
be resolved to to enable navigation. As a first pass in this
direction, we equip a wireless, monocular color camera to
the head of a robotic snake. Visiual odometry and mapping
from ORB-SLAM permits self-localization in planar, obstacle-
strewn environments. Ground plane traversability segmentation
in conjunction with perception-space collision detection permits
path planning for navigation. A previously presented dynamical
reduction of rectilinear snake locomotion to a non-holonomic
kinematic vehicle informs both SLAM and planning. The
simplified motion model is then applied to track planned
trajectories through an obstacle configuration. This naviga-
tional framework enables a snake-like robotic platform to
autonomously navigate and traverse unknown scenarios with
only monocular vision.

I. INTRODUCTION

Navigation through cluttered environments, often describ-
ing natural disaster aftermaths, subterranean collapses and
similar senarios, is a challenge that snake-like robotic plat-
forms are well-positioned to address. Mimicry of snake-
like morphologies and adoption of serpentine locomotion
strategies potentially confer locomotive advantages similar to
those employed by biological counterparts traversing similar
environments. Given the current challenges associated to
traversal of arbitrary, unknown, rugged terrains, we focus
the problem scope to navigation through a unknown planar
environments with obstacles.

A frequent characterization of these mission scenarios
entails the absence of global environmental knowledge.
Success requires adequate onboard sensing and navigation
strategies in the presence of obstacles, which includes self-
localization, map construction and motion planning [1].
Snake-like robotics research has focused on the latter, path
planning and following, with less effort on addressing the
former challenges. Morphological features that advantage
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snake-like platforms in obstacle-strewn environments also
limit them with respect to the supported onboard sensory
equipment. Head-mounted cameras obtain visual information
which, in conjunction with proprioception-based dead reck-
oning, informs localization [2]. Cameras on these robotic
platforms have predominantly been used to address higher
task-level objectives or monitoring needs rather than naviga-
tional autonomy [1], [3]. Other perceptual modalities such
as ultrasonic range sensors may be used to initiate reactive
obstacle avoidance [3]–[5]. Laser range finders have also
been applied to support SLAM for snake robots [4]–[6].

Given a representation of the environment, path planning
may be accomplished. Approaches exploit simplified kine-
matic modes of travel for hyper-redundant mechanisms. For
active wheeled or tracked platforms, follow-the-leader-like
motion planning suffices [7]–[9]. Other planners focus on
wheel-less snake-like robots and exploit locomotive reduc-
tion of gaits to differential-drive vehicle models for which
control is well-understood; in demonstration, however, they
have presumed global knowledge of the environment [10]–
[12]. Integration of SLAM and path planning to accomplish
navigation is challenging for snake-like platforms due to
weight as well as footprint restrictions. Alternative vehicles
operating terrestrially [13]–[15], aerially [16], [17], as well
as aquatically [18]–[20], have addressed similar navigational
challenges, utilizing different sensing strategies. However,
mapping and self-localization, a key component for au-
tonomous navigation, remains largely unexplored on bio-
inspired robotic platforms.
Contribution. We equip a snake-like robotic mechanism
with a low-resolution, monocular camera. This sensing
modality, in conjunction with a reduced kinematic model of
rectilinear motion, informs ORB-SLAM to accomplish self-
localization in complex, obstacle-cluttered environments.
Ground plane segmentation and ego-centric, perception space
collision checking facilitate trajectory planning under the
assumption of a reduced kinematic unicycle motion model.
Lifting the reduced dynamics, and corrective feedback mod-
ifications, to the actual locomotion gait leads to execution of
the planned trajectories. Relying on monocoluar vision, the
presented framework enables a snake-like robotic platform
to both navigate and traverse unknown environments.

II. RECTILINEAR GAIT MODEL

We briefly review a prior presentation of the traveling
wave rectilinear gait and associated dynamics in [12], [21].
The snake-like robot is represented as a mechanical system
whose state decomposes into a shape component, r ∈ M ,
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and a group component, g ∈ SE(2), with body velocity,
ξ = g−1ġ. The reduced Lagrange-d’Alembert dynamical
formulation is [22]: ṙ

ġ
ṗ

 =


u

g
(
Ωb −Aloc(r, u)

)
ad∗(Ωb−Aloc(r,u))p+ Fb(r, p, u)

 (1)

where u is the shape space control signal, Ωb is the vertical
body velocity, p = Ilock(r)Ωb is the vertical body momen-
tum, and Aloc(r, ·) is the local principle connection defining
the horizontal and vertical split. The net external wrench
acting on the body frame, Fb, models the influence of the
external environment.

A. Time-varying Gait Shape

The time-varying gait shape for rectinilinear motion is for-
mulated with respect to an average body curve, parametrized
by arclength, s, as well as an accompanying average body
frame rigidly attached to the average body at midpoint,
s = 0. Vertical lift of the gait shape from the ground is
modeled in the x− z plane, however, locomotion dynamics
are modeled in the ground, x− y, plane.

A sinusoidal wave traveling rostrally along the body in
the x − z body plane models the rectilinear gait, with time
varying shape equations,

d(s, t) =

{
x(s)
y(s)

}
=

1

κ

{
sin(κs)

cos(κs)− 1

}
,

z(s, t) = A sin
(

2π
(
ft+

s

λ

))
,

(2)

where s ∈ [−L/2, L/2] is the body curve parameter (see
Figure 1) and κ captures planar curvature of the average
body (dashed green) in the x-y modeling plane, assumed
constant along the length of the body. The variables A, λ
and f parametrize the traveling wave amplitude, wavelength
and frequency, respectively while t denotes time.

Figure 1 (top) illustrates the continuous body model, in
the x-z plane. A contact profile (beneath), parametrized by
s, defines time varying locations on the body in contact with
ground. The x- and y- (into the page) coordinate vectors
comprise the rigid body frame with respect to which body
frame dynamics are modeled, in the locomotion plane.

The rigid multi-link structure of the robotic snake (lower
snake image in Figure 1), in contrast to a continous body
model, may only effect curvature about joint locations along
the body and not when the flat face of the discrete link
is flush to the ground. To accomodate this distinction an
activation profile 1act(s) ∈ {0, 1} is introduced, illustrated
in Figure 1 (bottom). Pulses of the profile coincide with
joint locations along the body which can curve or roll and
produce propulsion through a rolling friction model with the
environment. All other regions of the body coincide with
link interiors, incapable of effecting curvature; they instead
produce drag.

Fig. 1: Top: Side view of the continuous body model
annotated with the rectilinear traveling wave parameters. The
green dashed line is the average body curve. Blue segments
are overlaid onto the body curve (red), identifying segments
in ground contact. Pulses in the contact profile (blue) cor-
respond to body segments in contact with the locomotion
surface. Bottom: A discrete-link structure approximates the
continuous body curve. Pulses in the activation profile (pur-
ple) depict regions of the body capable of effecting curvature
and, thus, forward propulsion. All other regions may only
induce drag.

B. Dynamical Model Reduction

The traveling wave rectilinear gait has sufficient structure
that the equations of motion simplify. We advance to the
modeling results most relevant to this work and refer the
reader to [12], [21] for specifics.

A rolling viscous friction model is employed to model
environmental caudal-rostral forcing produced at points of
body-ground contact. Given the friction coefficients µb, µf ,
and µt, individual link masses, and the contact and activation
profiles, numerical integration of the system dynamics per-
mits recovery of the body velocity of the robot as a function
of time for a particular set of gait parameters.

Figure 2 illustrates the resulting relationship, generated
from repeated numerical integration simulations sweeping a
wide range of traveling wave amplitude, A, and average body
curvature values, κ. Averaged steady-behavior body velocity
of the system is captured as a function over gait parameter
space, {A, κ}. Linear body velocity components remained
largely invariant with respect to traveling wave amplitude,
A, and average body curvature, κ. Averaged steady-behavior
body velocity laterally, ξby , is negligible while that in the
forward direction, ξbx, remains positive and nearly constant.
Variation of traveling wave amplitude has little impact on
the averaged steady-behavior motion of the system. Angular
velocity varies linearly with average body curvature, κ.

The linear relation between κ and turn rate, as well as the



Fig. 2: Body Velocity vs Curvature, ξb(κ): Linear com-
ponents (top and middle) remain relatively constant with
respect to average body curvature. The angular component
(bottom) varies linearly with curvature.

result that linear body velocity remains fairly constant, re-
veals a strong resemblance of this system to a fixed forward-
velocity unicycle model, whereby κ, serves as the steering
control parameter. We denote the inverse mapping of ξbω(κ)
by κ(ω) = (ξbω)−1(ω) where ω is a given angular velocity.
It is maintained as a linear fit of data plotted in Figure 2.
The mapping, ξb(κ) effectively reduces the traveling wave
rectilinear gait dynamics to that of a kinematic unicycle
vehicle, reminiscent of [23]. Classical techniques for path
tracking are applicable; body velocities required to rectify
following errors are expeditiously mapped to corresponding
body curvatures that produce the required motion.

III. PERCEPTION AND PLANNING

A monocular radio frequency (RF) camera attached to the
head of a 12-link robotic snake with scales [24] supports
localization and planning. The camera continually transmits
a 640 × 480 analog color image to a stationary PC. All
computation related to navigation, tracking and control is
processed on this PC with the final body shape commands
transmitted, through a lightweight tether, to the robot for
locomotion. The intent behind the wireless transmission
method is to limit the thickness of the tether to improve
maneuverability.

The traveling wave rectilinear gait entails sinusoidal, time-
varying body shape changes over time. As a result, the
camera frame is in constant motion during the course of gait
of execution, both spatially and with respect to the robot
body frame. Visual sensing of the environment operates at
one frame per gait cycle (i.e., every 2.5 seconds), coinciding
with gait phase during which velocity of the camera frame is
minimal to reduce motion blur. Applying the unicycle motion
model [12] to the previous pose estimate provides a predicted
pose for the robot as a function of the current commanded
gait curvature (κ). Each kept image frame and predicted

Initial
poses

Final
pose

Fig. 3: Left: Initialization of ORB-SLAM with known-
motion, wide-baseline frame capture. Right: Key-frames and
3D map generated with SLAM. The scale of the estimated
pose and map are accurate enough for planning and control.

pose is sent to a custom ORB-SLAM implementation for
estimating visual odometry during locomotion. From there,
a vision-based path planner confirms the current trajectory
or returns a new path to follow for collision avoidance.

A. Simultaneous Localization and Mapping (SLAM)

ORB-SLAM [25] is chosen mostly due to the robustness
of ORB feature descriptor [26]. Other popular real-time
methods use direct visual odometry/SLAM (e.g. SVO [27],
DSO [28]), which relies on consistent illumination and low
noise in the video input. In our platform, the assumptions
required by direct methods are easily violated due to the
target application, the on-board sensor, and transmission-
based image corruption. Feature-based ORB-SLAM is more
robust to these nuisance factors: it provides reliable odometry
and 3D map points when working with rolling shutter camera
under image transmission induced noise. One limitation
of visual odometry/SLAM with monocular camera is that,
it cannot provide accurate scale estimation since scale is
not observable given monocular video input. For visual
odometry/SLAM to be useful in planning & control, two
enhancements are added to monocular ORB-SLAM, enabling
it to provide well-bounded scale estimation.

SLAM Initialization. Rather than employ the built-in, ran-
domized initialization strategy of ORB-SLAM, programmed
snake movements with known relative pose seeds the SLAM
initialization. With known head movements between cap-
tured frames, see Fig. 8 left, the unknown scale is fixed; addi-
tionally, the initialization problem changes from a structure-
and-motion estimation to structure-only estimation for ini-
tializing the map points. The images used for SLAM ini-
tialization are captured with the widest baseline that the
robot can provide through body movement (without tipping
over), thereby reducing the triangulation error of 3D mapped
features, relative to a typical motion-based initialization.

Motion Model for Feature Matching Prior. Though the
scale is estimated accurately at the initialization, it degener-
ates easily as the small estimation error accumulates in the
frame-by-frame tracking process of SLAM. We incorporate
the snake unicycle motion model as the motion prior in
frame-by-frame tracking so as to bound the scale drift during



Captured Image Ground Segmentation Terminal Trajectory Poses
Collision Checked

Trajectory Overlay

Fig. 4: Perception space collision checking on binary ground/no-ground segmented image. The captured image gets binarized,
and poses representing the robot front are tested at discrete points along the trajectory. Those leaving the binary region are
considered collisions. Trajectories whose poses stay full within the ground region are considered feasible.

the tracking of ORB-SLAM. Only those features matchings
that agree with the prior are accepted and utilized in frame-
by-frame tracking. Doing so reduces the estimation error and
the scale drift during tracking in ORB-SLAM. The enhanced
pose tracking and 3D mapping are illustrated in Fig. 3 right.

B. Perception Space Trajectory Planning
Monocular, color vision does not recover dense depth of

generic scenes, while the monocular SLAM processing does
not provide dense scene geometry. To overcome the lack
of depth knowledge from monocular streams, we employ
ground-plane traversability tests to segment the sensed en-
vironment into traversable and non-traversable components
[29]–[33]. When coupled with a flat ground-plane assump-
tion, traversable regions can be used to test the collision-
free feasibility of potential forward moving snake paths. For
planning and trajectory synthesis to naturally work with the
segmented scene, it employs a perception space approach
[34]. Instead of relying on a 3D world reconstruction from
the monocular camera, the robot model is directly projected
into image space for collision checking. The image itself
is processed to obtain a binary image where false values
indicate hypothesized non-ground regions of the world, e.g.,
obstacles, see Figure 4. The sample based planner selects
from amongst the collision-free paths to identify the best
path to follow. Planning in binary perception space gives a
flexible modality to deploy our snake-like robotic platform
for fast trajectory generation and collision checking.

Ground Plane Segmentation. Differentiating obstacles from
ground uses a trained DCT-based support vector machine
[35] to classify 40-by-40 pixel image blocks as ground versus
not ground. The prevailing assumption is that the camera
pose will always have ground regions extending from the
central bottom of the image up towards the horizon, meeting
with possible obstacle regions prior to hitting the horizon.
Block-wise classification then yields a continuous ground-
obstacle boundary expanding from the bottom-center of the
image. A binary image is constructed whereby pixels below
the boundary are designated traversable and those above are
impassible (ie. obstacles). Figure 4 provides a visualization
of the traversability segmentation of an input image.

Collision Checking. The planner uses a sample-based reced-

ing horizon strategy for synthesizing local paths and testing
their fitness. In contrast to many path planning methods that
assume a point based robot model, our method considers
the entire snake-like robot model for performing collision
checks. Given a trajectory to collision check, it is decom-
posed into several, closely-spaced navigation poses. For each
navigation pose, the robot model with 51mm width front is
hallucinated, using the calibrated intrinsic camera matrix, and
a synthetic binary image is created for the robot head at that
pose as viewed from the current camera configuration. Since
there is a homographic assumption on the classified binary
image data, only the footprint of the snake robot head (no
height geometry) is hallucinated to create the future pose
binary image. Due to the unicycle motion model, the snake
body follows behind the head. Collision checks at the head
are also valid for the body. The collision checking process
involves evaluating the projected snake head region and the
binary image for false labels. If the entire projected line fits
in the ground plane area (only true labels), the current pose
will not collide with obstacles.

Trajectory Sampling and Selection. The trajectory sampler
generates multiple trajectories to be collision checked. From
the current pose of the robot, a set of n curved trajectories
are generated based on near-identity diffeomorphism control
trajectories for unicycle robots [34], where n is an odd
number so as to include the straight trajectory (plus an equal
quantity going left as going right). We choose n = 5 in our
implementation. The chosen trajectory generation dynamics
of the robot match the reduced order kinematic model of
the snake robot. After checking all trajectory samples for
collision, the longest trajectory is chosen as the one to follow.

IV. EXPERIMENT

The presented navigation framework is experimentally
deployed using a 12-link robotic snake operating over a
carpeted surface. We task the robot to navigate through a
non-trivial obstacle configuration, illustrated in Figure 5. Its
initial objective is to travel a straight path along a corridor.
However, the obstacles in its path will induce a sequence of
trajectory re-plans as they are encountered. The robot begins
on the left and attempts to proceed along a straight path from
left to right.



Fig. 5: Navigation overhead result of the snake-like robotic
platform. The navigation system starts at the green point, and
ends at the red point. Green curved line is the real trajectory
that robot walks through.

As obstacles come into view, ground segmentation outputs
cause the path planning module to steer around them. A new
path is re-planned every 10 seconds (ie. every 4 rectilinear
gait cycles) based on the robot’s current position. Planned
paths are represented as a sequence of waypoints. The
furthest waypoint, within a ball of radius δ = 60mm, is
chosen as the target waypoint to which to travel. Robot pose
errors with respect to this waypoint are used to compute an
angular body velocity correction, ωfb (as foward velocity
is constant), to the feedfoward angular velocity, ωff , as-
sociated with the planned trajectory. The control-to-action
mapping, Φ, then maps the feedback corrected velocity to
actionable curvature command, κ. Figure 6 illustrates the
feedback-corrected curvature commands versus the original
feedforward cuvature commands computed during the course
of navigating the scenario of Figure 5. The feedback control
strategy employed is similar to that used in [12], [36].

A time-lapsed series of images, captured from the head
camera, are compiled in Figure 7. Despite a limited field
of view of the surrounding environment and control con-
straints on the turning rate of the robot snake, the candidate
trajectories generated circumvent obstacles. When multiple
feasible trajectories are possible, the longest trajectory with
least curvature is selected amongst the candidates. Feedback
control then tracks the planned trajectory utilizing robot pose
updates that are updated using ORB-SLAM until trajectory
re-planning occurs. At that point, the newly selected trajec-
tory segment is followed. The scenario completes when the
robotic snake exits the obstacle field into the corridor on
the right side of Figure 5. From the visual sequence it is
clear that the robot snake maneuvers to navigate between
the obstacles. The camera pose of the robot tracked by ORB-
SLAM is illustrated in Fig 8, where the left image provides
an example viewpoint and its set of tracked feature points,
while the right side depicts the estimated trajectory.

Fig. 6: Body velocity corrections, to address robot pose
errors with respect to the planned trajectory, are mapped
back to feedback curvature commands (green) via the in-
verse control-to-action mapping, Φ. Feed-forward curvature
commands (red) of the planned trajectory are overlaid.

V. CONCLUSION

This work leverages a previously presented feedback con-
trol model for the traveling wave rectilinear gait of a snake-
like robot. Reduction of the complex gait dynamics to a
simpler kinematic unicycle model, in the steady-behavior
motion, admits the application of tools and strategies targeted
for differential drive vehicles; in particular, to trajectory
planning and to trajectory tracking using feedback control.
We augment the snake-like robotic platform with a wireless
monocular head camera to capture images of the environment
once every gait cycle. Future pose predictions derived from
the gait motion model, in conjunction with captured visual
information, inform ORB-SLAM which is tasked with self-
localization in the environment. Ground segmentation of
captured visual information then aids a perception space
trajectory planner. Localization is critical to successful track-
ing of planned trajectories. The integrated snake localization
and navigation system is experimentally deployed. The de-
ployment self-localizes and dynamically plans through an
unknown environment as visual information of the envi-
ronment becomes available. Initially feasible trajectories are
re-synthesized to navigate around detected obstacles. Using
the presented navigation framework the robot successfully
negotiated a scenario, avoiding obstacles as they came into
view, and eventually exited the obstacle field. Future work
aims to resolve the limitations of monocular cameras, both
for localization and navigation, by using a stereo camera and
appropriately upgrading the algorithmic system components.
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