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Summary. A coherent-optical implementation of a Rectifying Linear Unit (ReLu) as an interfer-
ometric phase-sensitive bidiectional switch along with convolutional layers using lenslet arrays and
multiplexed Fourier holograms allows the efficient implemention of Deep Neural Networks (DNN) in
a self-aligning multilayer adaptive-holographic optical neural network.

Deep learning has emerged as the leading approach to a variety of cognitive tasks.[1, 2] These
computationally-demanding deep neural networks (DNN) with vast numbers of hidden units and many
layers were not previously trainable due to numerous local minima of the back-propagation training pro-
cedure and small derivatives of the sigmoid nonlinear activation function for large neuron inputs which
leads to small gradients of the weights and slow convergence.[3] Recent improvements in neuron func-
tionality, training algorithms, network architectures, and GPU computational powers have made deep
learning practical for networks with up to about 103−104 inputs. For even larger problems there may be
an opportunity for an optical hardware implementation of an analog DNN co-processor for accelerating
both training and processing.

Progress in liquid crystals, VLSI, and nonlinear optics may make the implementation of a deep optical
neural networks a compelling alternative to simulation on GPUs. So even though the inevitable progress
of digital electronics has made many TFLOP neural network simulations routine, deep convolutional
neural networks will continue to overrun these capabilities, and vastly increased throughputs may be
achieved with an optically implemented neural network, albeit at a lower analog precision. As a nominal
benchmark, GoogLeNet operates on images up to 244× 244× 3, and with a GPU accelerator can achieve
frame rates of 75 mini-batches per second, but learning runs can take a week or more. Much larger image
resolution is possible with optically implemented DNN using current Spatial Light Modulators (SLMs)
up to 4k×4k. And SLM frame rates of 5 KHz are currently available with MHz rate liquid crystal under
development promising future input devices and optical neuron arrays that allow for orders of magnitude
improvement in both image size and training speed.

For large inputs to sigmoidal neurons the derivative of their nonlinear activation is very small, effec-
tively shutting off the back propagation of error through them to previous layers. This inhibits learning,
especially in very deep architectures. DNN have migrated from sigmoidal nonlinear neurons to Rectifying
Linear Units (ReLU), shown in Fig. 1, which are a simple nonlinear activation function whose derivative
is zero (or small) below threshold and unity above threshold, so the back propagating error never gets
blocked for large inputs to the neuron. Such DNN of ReLU hidden units is trainable with back prop,
making learning of complex cognitive tasks achievable even in very deep networks.[1]

The optical implementation of such ReLU neurons for both forward nonlinear activation and gated
back propagation of the error is simplified compared to sigmoidal nonlinearity since only two transmissive
values are required and for a threshold at 0 bidirectional ReLU operation is automatic. Dropout during
training can be incorporated by randomly gating off the optical ReLU neurons during training in order
to improve the network robustness and generalization. An optically controlled transmissive switch based
on the sign of the forward propagating presynaptically summed neuron input that goes from an opaque
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Figure 1: Sigmoidal vs Rectifying Linear Units
(ReLU). Bidirectional operation, nonlinearity and
derivative. A thresholded bidirectional switch imple-
ments the ReLU.

Figure 2: Coherent optical implementation of rectify-
ing linear unit using polarization interferometry and a
bidirectional liquid crystal on silicon switch that can be
fabricated in large arrays.
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Figure 3: Multilayer convolutional neural net with each layer a matrix-vector-multiplier of image con-
volvers.

to transmissive state as the neuron input goes from negative to positive implements both the forward
and backwards propagation functionalities. Amplitude sign encoded with (0, π) phase can be demod-
ulated with interferometry, for example by splitting the forward propagating signal into 2 copies, one
for modulation and propagation to subsequent layers and one for detection in the neuron. Polarization
interferometry using a cross-polarized reference beam and a pair of orthogonally-polarized differential
detectors can be used to set the state of the neuron transmission, as illustrated in Fig. 2.

An optical architecture for a deep convolutional neural network loosely based on a previous self-
aligning holographic back-propagation architecture is illustrated in Fig. 3.[4] An input image is Fourier
transformed and multiplied by a spatial-frequency multiplexed array of holographically-encoded convolutional-
filter transfer functions and this is Fourier transformed to produce a y multiplexed array of M output
image convolutions. A 2:1 demagnifying optical system gives a lower pixel count output image, operating
like the max-pooling used in deep learning and successively decreases the resolution of each subsequent
feature space, thereby increasing the neuron receptive fields at each stage. Each pixel of the smart-pixel
optical neuron array detects the multiple convolution outputs operates as an optical ReLU in this dia-
gram. The next stage computes an x-multiplexed array of M2 lower-resolution convolutionaly-filtered
images diffracted in y by the thick dynamic hologram, which is thin enough to act as a Fourier-plane
convolutional filter but thick enough to eliminate unwanted partial convolutions through Bragg selectivity
along y. Successive multi-image convolutional stages with resolution-decreasing pooling and computing
even more convolutional feature spaces are followed by fully interconnected stages using dynamic volume
holograms thick enough to operate as Bragg-matched vector-matrix multipliers. Backwards propagating
errors injected at the network output are diffracted off each hologram back towards the neurons where
they propagate backwards through the ReLU pixels currently in the transmissive state. The backwards
propagating error interferes with the phase-conjugates of the forward propagating beams within the
hologram volume to update the holographic weights in each layer, completing the shift-invariant outer-
product learning. The phase conjugated signals must be blocked from further propagation after recording
the hologram with appropriate polarization filtering or time gating.[4] In this fashion, an all-optical self-
aligning deep-learning back-propagation algorithm can potentially be implemented at speeds far in excess
of that possible with digital simulations.

The requirements of deep convolutional neural networks seem ideally suited for an all optical imple-
mentation utilizing adaptive multiplexed Fourier holograms, and this is enabled by a coherent optical
rectifying linear unit that is more readily implemiented than a sigmoidal back-propagation neuron.

This work is supported by the US National Science Foundation (NSF ECCS) grant number 1810508.

References

[1] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, no. 7553, pp. 436–444, 2015.

[2] J. Schmidhuber, “Deep learning in neural networks: An overview,” Neural Networks, vol. 61, p. 85, 2015.

[3] S. Hochreiter, “The vanishing gradient problem during learning,” Int J Uncertainty, vol. 6(2), p. 107, 1998.

[4] K. Wagner and D. Psaltis, “Multilayer optical learning networks,” Appl. Opt., vol. 26, pp. 5061–5076, 1987.


