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Abstract. Rearranging objects on a planar surface arises in a variety of
robotic applications, such as product packaging. Using two arms can im-
prove efficiency but introduces new computational challenges. This paper
studies the structure of dual-arm rearrangement for synchronous, mono-
tone tabletop setups and develops an optimal mixed integer model. It
then describes an efficient and scalable algorithm, which first minimizes
the cost of object transfers and then of moves between objects. This is
motivated by the fact that, asymptotically, object transfers dominate
the cost of solutions. Moreover, a lazy strategy minimizes the number
of motion planning calls and results in significant speedups. Theoreti-
cal arguments support the benefits of using two arms and indicate that
synchronous execution, in which the two arms perform together either
transfers or moves, introduces only a small overhead. Experiments sup-
port these points and show that the scalable method can quickly compute
solutions close to the optimal for the considered setup.

1 Introduction

Automation tasks in industrial and service robotics, such as product packing or
sorting, often require sets of objects to be arranged in specific poses on a planar
surface. Efficient and high-quality single-arm solutions have been proposed for
such setups [19]. The proliferation of robot arms, however, including dual-arm
setups, implies that industrial settings can utilize multiple robots in the same
workspace (Fig 1). This work explores a) the benefits of coordinated dual-arm
rearrangement versus single-arm, b) the combinatorial challenges involved and
c) computationally efficient, high-quality and scalable methods.

A motivating point is that the coordinated use of multiple arms can result in
significant improvements in efficiency. This arises from the following argument.

Lemma 1. There are classes of tabletop rearrangement problems, where a k-
arm (k ≥ 2) solution can be arbitrarily better than the optimal single-arm one.

For instance, assume two arms that have full (overhand) access to a unit
square planar tabletop. There are n objects on the table, divided into two groups
of n

2 each. Objects in each group are ε-close to each other and to their goals. Let
the distance between the two groups be on the order of 1, i.e., the two groups are
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Fig. 1. Example of dual-arm setups that can utilize algorithms proposed in this work.

at opposite ends of the table. The initial position of each end-effector is ε-close to
a group of objects. Let the cost of each pick and drop action be cpd, while moving
the end-effector costs ct per unit distance. Then, the 2-arm cost is no more than
2ncpd + 2nεct. A single arm solution costs at least 2ncpd + (2n − 1)εct + ct. If
cpd and ε are sufficiently small, the 2-arm cost can be arbitrarily better than the
single-arm one. The argument also extends to k-arms relative to (k − 1)-arms.

In most practical setups, the expectation is that a 2-arm solution will be
close to half the cost (e.g., time-wise) of the single-arm case, which is a desirable
improvement. While there is coordination overhead, the best 2-arm solution
cannot do worse; simply let one of the arms carry out the best single arm solution
while the other remains outside the workspace. More generally:

Lemma 2. For any rearrangement problem, the best k-arm (k ≥ 2) solution
cannot be worse than an optimal single arm solution.

The above points motivate the development of scalable algorithmic tools for
such dual-arm rearrangement instances. This work considers certain relaxations
to achieve this objective. In particular, monotone tabletop instances are con-
sidered, where the start and goal object poses do not overlap. Furthermore, the
focus is on synchronized execution of pick-and-place actions by the two arms. i.e.,
where the two arms simultaneously transfer (different) objects, or simultaneously
move towards picking the next objects. Theoretical arguments and experimental
evaluation indicate that this does not significantly degrade solution quality.

The first contribution is the study of the combinatorial structure of syn-
chronous, monotone dual-arm rearrangement. Then, a mixed integer linear pro-
gramming (MILP) model is proposed that achieves optimal coordinated solutions
in this domain. The proposed efficient algorithm Tour Over Matching (TOM) sig-
nificantly improves in scalability. TOM first optimizes the cost of object transfers
and assigns objects to the two arms by solving an optimal matching problem.
It minimizes the cost of moves from an object’s goal to another object’s start
pose per arm as a secondary objective by employing a TSP solution. Most of the
computation time is spent on the many calls to a lower-level motion planner that
coordinates the two arms. A lazy evaluation strategy is proposed, where motion
plans are evaluated for candidate solution sequences. This results in significant
computational improvement and reduces the calls to the motion planner. An
analysis studies the expected improvement in solution quality versus the single
arm case, as well as the expected cost overhead from a synchronous solution.

Finally, experiments for i) a simple planar picker setting, and ii) two 7-
DOF Kuka arms, demonstrate a nearly two-fold improvement against the single
arm case for the proposed approach in practice. The algorithm exhibits close to
optimal solutions and good scalability. The lazy evaluation strategy significantly
improves computation costs for both the optimal and proposed methods.



2 Related Work

The current work dealing with dual-arm object rearrangement touches upon the
challenging intersection of a variety of rich bodies of prior work. It is closely
related to multi-robot planning and coordination where a challenge is the high
dimensionality of the configuration space. Optimal strategies were developed
for simpler instances of the problem [36], although in general the problem is
known to be computationally hard [34]. Decentralized approaches [41] also used
velocity tuning [25]. General multi-robot planning tries to plan for multiple high-
dimensional platforms [43,15] using sampling-based techniques. Recent advances
provide scalable [35] and asymptotically optimal [10] sampling based frameworks.

In some cases, by restricting the input of the problem to a certain type,
it is possible to cast known hard instances of a problem as related algorithmic
problems which have efficient solvers. For instance, unlabeled multi-robot motion
planning can be reduced to pebble motion on graphs [1]; pebble motion can be
reduced to network flow [47]; and single-arm object rearrangement can be cast
as a traveling salesman problem [19]. These provide the inspiration to closely
inspect the structure of the problem to derive efficient solutions.

In this work we leverage a connection between dual-arm rearrangement and
two combinatorial problems: (1) optimal matching [11] and (2) TSP. On the
surface the problem seems closely related to multi-agent TSP. Prior work has
formulated the k-TSP solution in terms of splitting a single tour [12] or as an op-
timization task [28]. Some work [13] deals with asymmetric edge weights which
are more relevant to the problems of our interest. The problem can be posed
as an instance of multi vehicle pickup and delivery (PDP) [27]. Prior work [8]
has applied the PDP problem to robots, taking into account time windows and
robot-robot transfers. Some seminal work [24,30] has explored its complexity, and
concedes to the hardness of the problem, while others studied cost bounds [39],
and proposed ILP formulations [30]. Typically this line of work ignores coordi-
nation costs, though some methods [5] reason about it on candidate solutions.

Navigation among movable objects deals with the combinatorial challenges
of multiple objects [44,40] and has been shown to be a hard problem, and ex-
tended to manipulation applications [38]. Despite a lot of interesting work on
challenges of manipulation and grasp planning, the current work shall make
assumptions that avoid complexities arising from them. Manipulators opened
the applications of rearrangement planning [3,26], including instances where
objects can be grasped only once or monotone [38], as well as non-monotone
instances [20,37]. Efficient solutions to assembly planning problems [45,18] typ-
ically assumes monotonicity, as without it the problem becomes much more
difficult. Recent work has dealt with the hard instances of task planning [4,7]
and rearrangement planning [22,23,19]. Sampling-based task planning has made
a recent push towards guarantees of optimality [42,31]. These are broader ap-
proaches that are invariant to the combinatorial structure of the application
domain. The current work draws inspiration from these varied lines of research.

General task planning methods are unaware of the underlying structure stud-
ied in this work. Single-arm rearrangement solutions will also not be effective



in this setting. The current work tries to bridge this gap and provide insights
regarding the structure of dual-arm rearrangement. Under assumptions that en-
able this study, an efficient solution emerges for this problem.

3 Problem Setup and Notation

Consider a planar surface and a set of n rigid objects O = {o1, o2 · · · on} that
can rest on the surface in stable poses pi ∈ Pi ⊂ SE(3). The arrangement space
A = P1×P2 . . .×Pn is the Cartesian product of all Pi, where A = (p1, . . . , pn) ∈
A. In valid arrangements Aval ⊂ A, the objects are pairwise disjoint.

Fig. 2. An example of object rearrange-
ment involving two robotic arms. Initial
(left) and final (right) object configuration.

Two robot arms m1 and m2 can
pick and place the objects from and to
the surface. Ck

free is the set of collision-
free configurations for arm mk (while
ignoring possible collisions with ob-
jects or the other arm), and is as-
sumed here to be a subset of Rd. A
path for mk is denoted as πk : [0, 1]→
Ck

free and includes picking and plac-
ing actions. Let Ci

free(π
j) represent

the collision free C-space for mi, given
that mj moves along πj . This is a function of the paths’ parametrization.
The space of dual-arm paths D denotes pairs of paths for the two arms:
D = (π1, π2) ∈ D. Then, A(Ainit, D) is the resulting arrangement when the
objects are at Ainit and moved according to D. Let cost(D) : D → R be a cost
function over dual-arm paths.

Definition 1 (Optimal Dual-arm Rearrangement). Given arms m1, m2

and objects O to be moved from initial arrangement Ainit ∈ Aval to target ar-
rangement Agoal ∈ Aval, the optimal dual-arm rearrangement problem asks for a
dual-arm path D∗ ∈ D, which satisfies the following constraint:

D∗ = (π∗1, π∗2) | A(Ainit, D
∗) = Agoal and π∗i ∈ Ci

free(π
∗j) (1)

and optimizes a cost function: D∗ = argmin
∀D∈D

cost(D).

A set of assumptions are introduced to deal with the problem’s combinatorics.
The reachable task-space T k ⊂ SE(3) of arm mk is the set of SE(3) poses that
objects attached to the arm’s end effector can acquire.

Let the ordered set of objects moved during the arm path πi be denoted as
Ō(πk). In general, an object can appear many times in Ō(πk). The current work,
however, focuses on monotone instances, where each object is moved once.
Assumption 1 (Monotonicity) There are dual-arm paths D = (π1, π2) that
satisfy Eq. 1, where each object oi ∈ O appears once in Ō(π1) or Ō(π2).

For the problem to be solvable, all objects are reachable by at least one arm at
both Ainit and Agoal: ∀ pi ∈ Ainit and ∀ pj ∈ Agoal and ∃ k ∈ [1, 2] : pi, pj ⊂ T k.
The focus will be on simultaneous execution of transfer and move paths.
Transfers: Dual-arm paths T (π1

i , π
2
i ) ∈ D, where Ō(πk

i ) = oki and each mk:
− starts the path in contact with an object oki at its initial pose in Ainit,
− and completes it in contact with object oki at its final pose in Agoal.



Moves or Transits: Paths M(π1
i→i′ , π

2
i→i′) ∈ D, Ō(π1

i→i′) = ∅, and each mk:
− starts in contact with object oki at its final pose in Agoal,
− and completes it in contact with object oki′ at its initial pose in Ainit.

Assumption 2 (Synchronicity) Consider dual-arm paths, which can be de-
composed into a sequence of simultaneous transfers and moves for both arms:

D =
(︁
T (π1

1 , π
2
1),M(π1

1→2, π
2
1→2), . . . ,M(π1

ℓ−1→ℓ, π
2
ℓ−1→ℓ), T (π

1
ℓ , π

2
ℓ )
)︁
. (2)

For simplicity, Eq. 2 does not include an initial move from qksafe ∈ Ck
free and a

final move back to qksafe. An odd number of objects can also be easily handled.
Then, the sequence of object pairs moved during a dual-arm path as in Eq. 2 is:

Ω(D) =

(︄
ωi = (o1i , o

2
i ) | i, j ∈ [1 · · · ℓ],

⋃︂
i

(o1i ∪ o2i ) = O,∀k, k′ ∈ [1, 2], oki ̸= ok
′

j

)︄
.

Given the pairs of objects ωi, it is possible to express a transfer as T (ωi) and a
move as M(ωi→j). Then, D(Ω) is the synchronous, monotone dual-arm path due
to Ω = (ω1, . . . , ωℓ), i.e., D(Ω) = (T (ω1),M(ω1→2), . . . ,M(ωℓ−1→ℓ), T (ωℓ)).

Assumption 3 (Object Non-Interactivity) There are collision-free trans-
fers T (ωi) and moves M(ωi→i′) regardless of the object poses in Ainit and Agoal.
This entails that there is no interaction between the n resting objects and the
arms during transits. Similarly, there are no interactions between the arm-object
system and the n − 2 resting objects during the transfers. Collisions involving
the arms, static obstacles and picked objects are always considered.

The metric this work focuses on relates to makespan and minimizes the sum
of the longest distances traveled by the arms in each synchronized operation.
Let ∥πk∥ denote the Euclidean arc length in Ck

free ⊂ Rd of path πk. Then, for
transfers cost(T (π1

i , π
2
i )) = max{∥π1

i ∥, ∥π2
i ∥}. Similarly, cost(M(π1

i→i′ , π
2
i→i′)) =

max{∥π1
i→i′∥, ∥π2

i→i′∥}. Then, over the entire dual-arm path D define:

cost(D) =

ℓ∑︂
i=1

cost(T (ωi)) +

ℓ−1∑︂
i=1

cost(M(ωi→i+1)). (3)

Note that the transfer costs do not depend on the order with which the objects
are moved but only on the assignment of objects to arms. The transit costs
arise out of the specific ordering in Ω(D). Then, for the setup of Definition 1
and under Assumptions 1-3, the problem is to compute the optimal sequence of
object pairs Ω∗ so that D(Ω∗) satisfies Eq. 1 and minimizes the cost of Eq. 3.
Note on Assumptions: This work restricts the study to a class of mono-
tone problems that relate to a range of industrial packing and stowing appli-
cations. The monotonicity assumption is often used in manageable variants of
well-studied problems [45,18]. A monotone solution also implies that every ob-
ject’s start and target is reachable by at least one arm. To deal with cases where
the number of reachable objects is unbalanced between the two arms, a NO ACT

task assignment is introduced and considered in Section 6.
The synchronicity assumption allows to study the combinatorial challenges

of the problem, which do not relate to the choice of time synchronization of
different picks and placements. Section 6 describes the use of dRRT∗[10] as the
underlying motion planner that can discover solutions that can synchronize arm



motions for simultaneous picks, and simultaneous placements. The synchronicity
assumption is relaxed through smoothing (Section 6).

The non-interactivity assumption comes up naturally in planar tabletop sce-
narios with top-down picks or delta robots. Such scenarios are popular in indus-
trial settings. Once the object is raised from the resting surface, transporting
it to its target does not introduce interactions with the other resting objects.
This assumption is also relaxed in Section 6, with a lazy variant of the proposed
method. Once a complete candidate solution is obtained, collision checking can
be done with everything in the scene.

Overall, under the assumptions, the current work identifies a problem struc-
ture, which allows arguments pertaining to the search space, completeness, and
optimality. Nevertheless, the smoothed, lazy variant of the proposed method will
still return effective solutions in practice, even if these assumptions do not hold.

4 Baseline Approaches and Size of Search Space

This section highlights two optimal strategies to discover D(Ω∗): a) exhaustive
search, which reveals the search space of all possible sequences of object pairs
Ω and b) an MILP model. Both alternatives, however, suffer from scalability
issues as for each possible assignment, it is necessary to solve a coordinated
motion planning problem for the arms. This motivates minimizing the number of
assignments ω considered, and the number of motion planning queries it requires
for discovering D(Ω∗), while still aiming for high quality solutions.
Exhaustive Search: The exhaustive search approach shown in Fig. 3 is a brute
force expansion of all possible sequences of object pairs Ω. Nodes correspond to
transfers T (ωi) and edges are moves M(ωi→i′). The approach evaluates the cost
for all possible branches to return the best sequence Ω. The total number of
nodes is in the order of O(n!), expressed over the levels L of the search tree as:

nP 2 +
nP 2 × n−2P 2 + ...+ nP 2 × n−2P 2 × n−4P 2...× 2P 2 =

n/2∑︂
L=1

2L−1∏︂
k=0

(n− k),

where nP k is the k-permutations of n.

Fig. 3. Search tree for 4 objects.

Motion plans can be reused,
however, and repeated occurrences
of T (ωi) and M(ωi→i′) should be
counted only once for a total of:
− nP 2 transfers of objects, and
− nP 2 × n−2P 2 transits between all
possible valid ordered pairs of ω.

Additional motion plans are needed for the initial move from qksafe and the return
to it at the end of the process, introducing 2× nP 2 transits:

# of Transfers + # of Moves = nP 2 +
(︂
(nP 2 × n−2P 2) + (2× nP 2)

)︂
(4)

This returns optimal synchronized solution but performs an exhaustive search
and requires exponentially many calls to a motion planner.
MILP Formulation: Mixed Integer Linear Programming (MILP) formulations
can utilize highly optimized solvers [17]. Prior work has applied these techniques
for solving m-TSP [28,13] and pickup-and-delivery problems [8,30], but viewed



these problems in a decoupled manner. This work outlines an MILP formula-
tion for the synchronized dual-arm rearrangement problem that reasons about
coordination costs arising from arm interactions in a shared workspace.

Graph Representation: The problem can be represented as a directed graph
where each vertex v = ωv = (o1v, o

2
v) corresponds to a transfer T (ωu) and edges

e(u, v) are valid moves M(ωu→v). A valid edge e(u, v) is one where an object
does not appear more than once in the transfers of nodes u and v. The cost of
a directed edge e(u, v) encodes both the cost of the transfer T (ωv) and the cost
of the move M(ωu→v). There is also a vertex S, which connects moves from and
to the safe arm configurations qksafe. The directed graph Ĝ(V̂ , Ê) is defined:

V̂ = {v = ωv = (o1v, o
2
v) | ∀ o1v, o

2
v ∈ O, o1v ̸= o2v} ∪ {S}

Ê = {e(u, v) | ∀ u, v ∈ V̂ so that u ̸= v, okv ̸= oℓu ∀ k, ℓ ∈ [1, 2]}
∪ {e(S, v) ∀ v ∈ V̂ \ S} ∪ {e(v, S) ∀ v ∈ V̂ \ S}

coste(u,v) = cost(u) + cost(u, v) = cost(T (ωu)) + cost(M(ωu→v))

Let cost(S) = 0. The total number of motion planning queries needed to be
answered to define the edge costs is expressed in Eq. 4. The formulation proposed
in this section tries to ensure the discovery of Ω∗ on Ĝ as a tour that starts and
ends at S, while traversing each vertex corresponding to Ω∗. To provide the MILP
formulation, define δin(v) as the in-edge set v, and δout(v) as the out-edge set.
Then, γ(o) is the object coverage set γ(o) = {e(u, v) | e ∈ Ê, o ∈ ωu}, i.e., all
the edges that transfer o.

Model: Set the optimization objective as: min
∑︁

e∈Ê costexe [A]
Eq. [B] below defines indicator variables. Eqs. [C-E] ensure edge-flow conserved
tours. Eqs. [F-G] force S to be part of the tour. Eq. [H] transfers every object
only once. Eq. [I] lazily enforces the tour to be of length n

2 + 1. While the num-
ber of motion-planning queries to be solved is the same as in exhaustive search,
efficient MILP solvers [17] provide a more scalable search process.

xe ∈ {0, 1} ∀e ∈ Ê [B]∑︂
e∈δin(v)

xe ≤ 1 ∀v ∈ V̂ [C]

∑︂
e∈δout(v)

xe ≤ 1 ∀v ∈ V̂ [D]

∑︂
e∈δin(v)

xe =
∑︂

e∈δout(v)

xe ∀v ∈ V̂ [E]

∑︂
e∈δin(S)

xe = 1 [F]

∑︂
e∈δout(S)

xe = 1 [G]

∑︂
e∈γ(o)

xe = 1 ∀o ∈ O [H]

∑︂
e(u,v)∈T

xe < |T| ∀T ⊂ V̂ , |T| ≤ n

2
[I]

5 Efficient Solution via Tour over Matching

The optimal baseline methods described above highlight the problem’s complex-
ity. Both methods suffer from the large number of motion-planning queries they
have to perform to compute the cost measures on the corresponding search struc-
tures. For this purpose it needs to be seen whether it is possible to decompose
the problem into solvable sub-problems.



Importance of Transfers: In order to draw some insight, consider again the
tabletop setup with a general cost measure of ct per unit distance. Lemma 1
suggests that under certain conditions, there may not be a meaningful bound
on the performance ratio between a k-arm solution and a single-arm solution.
This motivates the examination of another often used setting—randomly chosen
non-overlapping start and goal locations for n objects (within a unit square). In
order to derive a meaningful bound on the benefit of using a 2-arm solution to a
single-arm solution, we first derive a conservative cost of a single-arm solution.
A single-arm optimal cost has three main parts: 1) the portion of the transfer
cost involving the pickup and drop-off of the n objects with a cost of Cpd = ncpd,
2) the remaining transfer cost from start to goal for all objects Csg, and 3) the
transit cost going from the goals to starts Cgs. The single arm cost is

Csingle = ncpd + Csg + Cgs. (5)
To estimate Eq. 5, first note that the randomized setup will allow us to obtain

the expected Csg[29] as
2+

√
2+5 ln(1+

√
2)

15 nct ≈ 0.52nct. Approximate Cgs by sim-
ply computing an optimal assignment of the goals to the starts of the objects
excluding the matching of the same start and goal. Denoting the distance cost
of this matching as CM

gs , clearly Cgs > CM
gs because the paths produced by the

matching may form multiple closed loops instead of the desired single loop that
connects all starts and goals. However, the number of loops produced by the
matching procedure is on the order of lnn and therefore, Cgs < CM

gs + ct lnn,

by [39]. By [2], CM
gs = Θ(

√
n lnn). Putting these together, we have,

Θ(ct
√
n lnn) = CM

gs < Cgs < CM
gs + ct lnn = Θ(ct

√
n lnn) + ct lnn

which implies that Cgs ≈ CM
gs because for large n, lnn≪

√
n lnn. It is estimated

in [46] that CM
gs ≈ 0.44

√
n lnnct for large n. Therefore,

Csingle ≈ ncpd + (0.52n+ 0.44
√
n lnn)ct ≈ (cpd + 0.52ct)n (6)

noting that the 0.44
√
n lnnct term may also be ignored for large n. The cost of

dual arm solutions will be analyzed in Section 7.

Lemma 3. For large n, the transfers dominate the cost of the solution.
We formulate a strategy to reflect this importance of transfers. The proposed

approach gives up on the optimality of the complete problem, instead focusing
on a high-quality solution, which:
− first optimizes transfers and selects an assignment of object pairs to arms,
− and then considers move costs and optimizes the schedule of assignments.
This ends up scaling better by effectively reducing the size of the search space
and performing fewer motion planning queries. It does so by optimizing a related
cost objective and taking advantage of efficient polynomial-time algorithms.

G(V, E)
V = {v = o,∀o ∈ O}

E = {e(u, v) : ω = (u, v),∀u, v ∈ V}
cost(e(u, v)) = cost(T (ω = (u, v)))

(7)

GΓ (VΓ , EΓ )
VΓ = {v = ω,∀ω ∈ {Ω}∗} ∪ {ωS}
EΓ = {e(u, v) : ωu→v,∀u, v ∈ VΓ }

cost(e(u, v)) = cost(M(ωu→v))

(8)



Fig. 4. (left) A dual-arm rearrangement
problem. (middle) The same problem as min-
imum weight edge matching on a fully con-
nected directed graph of transfers. (right)
The ordering of the object-arm assignments
from an optimal tour over a transit graph.

Foundations: Consider a complete
weighted directed graph G(V, E)
(Eq. 7), where v ∈ V corresponds
to a single object o. Each directed
edge, e = (oi, oj) ∈ E is an ordered
pair of objects oi and oj , where the
order determines the assignment of
an object to an arm m1 or m2. The
cost of an edge cost(e) is the co-
ordinated motion planning cost of
performing the transfer correspond-
ing to ω = (oi, oj). For instance, as
shown in Fig 4(middle), e(A,B) cor-
responds to m1 transferring ‘A’, while m2 transfers ‘B’, and the cost(e(A,B)) =
cost(T (ω = (A,B)) is the cost of such a concurrent motion. It should also be
noted that since the arms are different, in general, cost(e(A,B)) ̸= cost(e(B,A)).

Following the observation made in Eq. 3, the cost of the transfers can be rea-
soned about independent of their order. Define {Ω} as the unordered set of ω ∈
Ω, then unordered transfer cost component corresponds to

∑︁
ω∈{Ω} cost(T (ω)).

Since G is a complete graph where every edge corresponds to every possible valid
ω, by construction {Ω} ⊂ E . A candidate solution of a monotone dual-arm re-
arrangement problem must transfer every object exactly once. In terms of the
graph, this means that in the subset of edges {Ω} every vertex appears in only
one edge. We arrive at the following crucial observation.

Lemma 4 (Perfect Matching). Every candidate solution to a monotone dual-
arm rearrangement problem comprises of a set of unordered object-to-arm assign-
ments {Ω} that is also a perfect matching solution on G.

As per the decomposition of the costs in Eq. 3, it follows that the cost({Ω})
is the cost of the transfers in the solution. The solution to the minimum-weight
perfect edge matching problem on such a graph would correspond to a {Ω} that
optimizes the cost of transfers of all the objects.

Lemma 5 (Optimal Matching). The set of object-to-arm assignments {Ω}∗
that minimizes the cost of object transfers is a solution to the minimum-weight
perfect matching problem on G.

Once such an optimal assignment {Ω}∗ is obtained, the missing part of the
complete solution is the set of transits between the object transfers and their
ordering. Construct another directed graph GΓ (Eqs. 8), where the vertices com-
prise of the ω ∈ {Ω}∗. An edge e(ωu→v) corresponds to the coordinated tran-
sit motion between them. For instance, as in Fig 4(right) for an edge between
ω(A,B) and ω(C,D), m1 moves from the target pose of object ‘A’ to the starting
pose of object ‘C’, and similarly m2 moves from the target of ‘B’ to the start
of ‘D’. An additional vertex corresponding to the starting(and ending) configu-
ration of the two arms (S) is added to the graph. The graph is fully connected
again to represent all possible transits or moves. A complete candidate solution
to the problem now requires the sequence of ω, which is a complete tour over GΓ ,
that visits all the vertices i.e., an ordered sequence of vertices Γ = (S,ΩΓ , S).



Lemma 6 (Tour). Any complete tour Γ over the graph GΓ , corresponds to a
sequence of object-to-arm assignments ΩΓ and is a candidate solution to the
synchronous dual-arm rearrangement problem.

Let P{Ω} represent the set of all possible ordering of the elements in {Ω}.
This means, any candidate tour corresponds to a ΩΓ ∈ P{Ω}. An optimal tour
on GΓ minimizes the transit costs over the all possible candidate solutions in
P{Ω}∗

.
Ω+ = argmin

Ω∈P{Ω}∗

∑︂
e(u,v)∈Γ

cost(M(ωu→v))) (9)

This differs from the true optimal Ω∗, since the second step of finding the
optimal transit tour only operates over all possible solutions that include the
optimally matched transfers obtained in the first step. The insight here is that,
even though Ω+ reports a solution to a hierarchical optimization objective, the
search space is much smaller, and the sub-problems more efficient to solve.

Algorithm: This section describes the algorithm Tour Over Matching (TOM)
outlined in the previous section. The steps correspond to Algo 1.
transfer graph: This function constructs a directed graph G defined by Eqs. 7.
This step creates a graph with n vertices and nP 2 edges.

Algorithm 1: TOM(O, S,Ainit, Agoal)

1 G ← transfer graph(O, Ainit, Agoal);
2 {Ω}∗ ← optimal matching(G);
3 GΓ ← transit graph({Ω}∗, S);
4 Ω+ ← optimal tour(GΓ );
5 return D(Ω+);

optimal matching: This func-
tion takes the graph G con-
structed as an argument and
returns the unordered set of
edges, corresponding to the
set of optimal transfers over
G. Optimal matching over
an undirected graph can be
solved using Edmond’s Blossom Algorithm [11,14,9]. The directed graph G is
converted into an equivalent undirected graph GU . Since G is complete, every pair
of vertices shares two directed edges. GU only preserves the minimally weighted
connection for every vertex pair. The result of matching is a subset of edges on
GU which correspond to a set of directed edges on G i.e., {Ω}∗. The runtime
complexity of the step is O(|E||V| log |V|) = O(nP 2n log n) = O(n3 log n).
transit graph: This function constructs the directed transit graph GΓ as per
the set of Eqs. 8. This constructs n

2 + 1 vertices and (n
2 +1)P 2 edges.

optimal tour: Standard TSP solvers like Gurobi [17] can be used to find the
optimal tour over GΓ corresponding to Ω+.

The costs are deduced from coordinated motion plans over edges. The total
number of such calls compared to the count from the baseline in Equ. 4, shows
a saving in the order of O(n2) queries (# of Transfers + # of Moves).

Baseline #

TOM #
=

nP 2 +
(︂
nP 2 × n−2P 2

)︂
+
(︂
2× nP 2

)︂
nP 2 +

(n
2 +1)P 2

=
4(n− 1)((n− 5)n+ 9)

5n− 2

The evaluation performed here focuses on the maximum of distances (Eq. 3)
for a fair comparison with the other methods. The prioritization of optimization
objective, however, is also amenable to other cost functions, where carrying
objects is often more expensive than object-free motions.



6 Integration with Motion Planning

The algorithms described so far are agnostic to the underlying motion planner.
Depending upon the model of the application domain, different motion planning
primitives might be appropriate. For planar environments with disk robot pick-
ers (similar to delta robots), recent work [21] characterizes the optimal two-disk
coordinated motions. The current implementation uses a general multi-robot
motion planning framework dRRT∗ [10] for dual-arm coordinated planning.

In practice the cost of generating and evaluating two-arm motions can dom-
inate the overall running time of the algorithm, when compared to the combi-
natorial ingredients that discover the high-level plan, i.e., execution order and
and arm assignment. Even though TOM reduces this, further improvements can
be made with lazy evaluation.

Algorithm 2: Lazy Evaluation(ALGO,H, MP)
1 Eb ← ∅; D ← ∅;
2 while D = ∅ ∧ time not exceeded do
3 Ω ← ALGO(H, Eb);
4 for ωi, ωi→i+1 ∈ Ω do
5 Di, Di→i+1 ←

MP(ωi), MP(ωi→i+1);
6 D ← (D,Di, Di→i+1);
7 if Di = ∅ then
8 Eb ← Eb ∪ {ωi}; D ← ∅;
9 if Di→i+1 = ∅ then

10 Eb ← Eb ∪ {ωi→i+1}; D ← ∅;
11 if D = ∅ then break ;

12 return D

Lazy Evaluation: Recent
work [32] introduces heuris-
tics for dRRT∗, which pre-
process estimates of the short-
est path costs for the arms.
Dual-arm rearrangement can
be significantly sped up if the
motion planning queries are
replaced with look-ups of such
heuristics. Once a candidate
Ω is obtained, motion plan-
ning can evaluate the solution
D(Ω). If this fails, the algo-
rithm tries other sequences.

The algorithm Algo 2
takes as input the algorithm ALGO, a heuristic H, and a motion planner MP.
Eb keeps track of the blocked edges. The process keeps generating candidate so-
lutions using the ALGO (Line 3). Line 5 motion plans over the candidate solution,
and appends to the result (Line 6). Any failures are recorded in Eb (Lines 8,10),
and inform subsequent runs of ALGO.

Completeness: The lazy variants give up on optimality for the sake of efficiency
but given enough retries the algorithms will eventually solve every problem that
ALGO can. Since the motion planning happens in the order of execution, the
object non-interactivity assumption is relaxed.

Smoothing: Applying velocity tuning over the solution trajectories for the in-
dividual arms relaxes the synchronization assumption by minimizing any waits
that might be a by-product of the synchronization. Smoothing does not change
the maximum of distances, only improves execution time. Indications that the
smoothed variants of the synchronous solutions do not provide significant savings
in execution time are included in the Appendix [33] for the interested reader.

It should be noted that in an iterative version of TOM, in order to explore
variations in {Ω}∗ if failures occur in finding Γ , some edges need to be tem-



porarily blocked on {Ω}∗. The search structures can also be augmented with
NO ACT tasks, for possible ω where one of the arms do not move.

7 Bounding Costs under Planar Disc Manipulator Model

Following from Lemma 3, the current analysis studies the dual arm costs in the
randomized unit tabletop setting, with ct as the cost measure per unit distance.
For the 2-arm setting, assume for simplicity that each arm’s volume is repre-
sented as a disc of some radius r. For obtaining a 2-arm solution, we partition
the n objects randomly into two piles of n

2 objects each; then obtain two initial
solutions similar to the single arm case. It is expected (Eq. 6) that these two
halves should add up to approximately (cpd + 0.52ct)n.

From the initial 2-arm solution, we construct an asynchronous 2-arm solution
that is collision-free. Assume that pickups and drop-offs can be achieved without
collisions between the two arms, which can be achieved with properly designed
end-effectors. The main overhead is then the potential collision between the two
(disc) arms during transfer and move operations. Because there are n

2 objects for
each arm to work with, an arm may travel a path formed by n+ 1 straight line
segments. Therefore, there are up to (n+1)2 intersections between the two end-
effector trajectories where potential collision may happen. However, because for
the transfers and transits associated with one pair of objects (one for each arm)
can have at most four intersections, there are at most 2n potential collisions to
handle. For each intersection, let one arm wait while letting the other circling
around it, which incurs a cost that is bounded by 2π · r · ct.

Adding up all the potential extra cost, a cumulative cost is obtained as
Cdual = Csingle + 2n(2πrct) ≈ (cpd + 0.52ct + 4πrct)n .

For small r, Cdual is almost the same as Csingle ct is a distance (e.g., energy) cost.
Upon considering the maximum of the two arc lengths or makespan (Eq. 3), the
2-arm cost becomes Ct

dual ≈ (cpd + 0.52ct)
n
2 + 4nπrct. The cost ratio is

Ct
dual

Csingle
≈

(cpd + 0.52ct)
n
2 + 4nπrct

(cpd + 0.52ct)n
=

1

2
+

4πrct
cpd + 0.52ct

. (10)

When r is small or when ct
cpd

is small, the 2-arm solution is roughly half

as costly as the single arm solution. On the other hand, in this model a 2-arm
solution does not do better than 1

2 of the single arm solution. This argument
can be extended to k-arms as well [33].

Theorem 1. For rearranging objects with non-overlapping starts and goals that
are uniformly distributed in a unit square, a 2-arm solution can have an asymp-
totic improvement of 1

2 over the single arm solution.

The synchronization assumption changes the expected cost of the solution.
The random partitioning of the n objects into two sets of n

2 object with a ran-
dom ordering of the objects yields n

2 pairs of objects transfers, which dominate
the total cost for large n. The cost (Eq. 3) of n

2 synchronized transfers (ωi)
includes n

2 cpd and Csync
sg ≈ (E(max(l1, l2))ct)

n
2 , where E(max(l1, l2)) is the ex-

pected measure of the max of lengths l1,l2 of two randomly paired transfers.
Using the pdf [16] of lengths of random lines in an unit square and integrating



over the setup[33], results in the value of E(max(l1, l2)) to be 0.66 . This means
Csync

dual ≈ (cpd + 0.66ct)
n
2 + 4nπrct. The synchronized cost ratio is

Csync
dual

Csingle
≈

(cpd + 0.66ct)
n
2 + 4nπrct

(cpd + 0.52ct)n
=

1

2
+

(0.07 + 4πr)ct
cpd + 0.52ct

. (11)

When ct
cpd

is small, even the synchronized 2-arm solution provides an im-

provement of 1
2 . For the case when both r and cpd are small, we observe that

the ratio approaches 0.636.

Theorem 2. For rearranging objects with non-overlapping starts and goals that
are uniformly distributed in a unit square, a randomized 2-arm synchronized
solution can have an asymptotic improvement of 1

2 over the single arm solution
if ct

cpd
is small, and a improvement ≈ 0.64 when both cpd and r are small.

Note on bounds: Even though the proposed simplified model does not apply
immediately costs and collision volumes in general configuration spaces, experi-
ments indicate that the speedups exist in these spaces as well.

8 Evaluation

Fig. 5. Picker and Manipulator trials.

This section describes the experiments
performed to evaluate the algorithms in
two domains shown in Fig 5: a) simple
picker and b) general manipulators. In or-
der to ensure monotonicity, the object starts and goals do not overlap. Uniform
cuboidal objects simplify the grasping problem, though this is not a limitation of
the methods. 50 random experiments were limited to 300s of computation time.
The underlying dRRT∗ motion planner is restricted to a max of 3s per plan. A
comparison point includes a random split method, which splits O at random
into two subsets and chooses an arbitrary ordering. Maximum of distances cost
is compared to the single arm solution [19]. Computation times and success rates
are reported. The trends in both experiments show that in the single-shot ver-
sions, exhaustive and MILP tend to time-out for larger n. Lazy variants scale
much better for all the algorithms, and in some cases increase the success ratio
due to retries. TOM has much better running time than exhaustive and MILP,
and producing better and more solutions than random split. Overall, the results
show a) our MILP succeeds more within the time limit than exhaustive, b) TOM
scales the best among all the methods, and c) the cost of solutions from TOM is
close to the optimal baseline, which is around half of the single arm cost.

Simple Picker: This benchmark evaluates two disk robots hovering over a
planar surface scattered with objects. The robots are only free to move around
in a plane parallel to the resting plane of the objects, and the robots can pick
up objects when they are directly above them. Fig 6(top) all runs up to 24
objects succeeded for TOM. MILP scales better than exhaustive. Lazy random
split succeeds in all cases (bottom). In terms of solution costs (middle) exhaustive
finds the true optimal. MILP matches exhaustive and TOM is competitive. In all
experiments, TOM enjoys a success rate of 100%.



General Dexterous Manipulator: The second benchmark sets up two
Kuka arms across a table with objects on it. The objects are placed in the com-
mon reachable part of both arms’ workspace, and only one top-down grasping
configuration is allowed for each object pose. Here (Fig 7) a larger number of
motion plans tend to fail, so the single shot variants show artifacts of the ran-
domness of dRRT∗in their success rates. Random split performs the worst since
it is unlikely to chance upon valid motion plans. Single shot exhaustive and
MILP scale poorly because of expensive motion planning. Interestingly, motion
planning infeasibility reduces the size of the exhaustive search tree. The solution
costs (middle) substantiate benefits of the use of two arms. The computation
times (bottom) again show the scalability of TOM, even compared to random split.

Fig. 6. Simple Picker results with success(top), solution costs(middle), and computa-
tion(bottom) reported for single-shot(left) and lazy(right) versions of the methods

Fig. 7. Kuka results with success(top), solution costs(middle), and computa-
tion(bottom) reported for single-shot(left) and lazy(right) versions of the methods

9 Discussion

The current work demonstrates the underlying structure of synchronized dual-
arm rearrangement and proposes an MILP formulation, as well as a scalable algo-
rithm TOM that provides fast, high quality solutions. Existing efficient solvers for
reductions of the dual-arm problem made TOM effective. Future work will attempt



to explore the k−arm case and instances of non-monotone rearrangement. The
incorporation of manipulation and regrasp reasoning can extend these methods
to more cluttered domains.
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10 Appendix

10.1 Expected k-arm cost bounds in a planar disk manipulator
model

The arguments made in about the speedups for 2 arms can be extended to k
disc arms. In the planar unit-square setting, with k arms, there are n

k objects for
each arm to work with. Consider the transfers and transits of a set of k objects,
one for each arm. By [6], the arbitrary rearrangement of k discs can be achieved
in a bounded region with a perimeter of O(kr). Clearly, the per robot additional
(makespan or distance) cost is bounded by some function f(k, r)ct, which goes
to zero as r goes to zero. Adding up all the potential extra cost, a k-arm solution
has a cumulative cost

Ck-arm = Csingle + nf(k, r)ct ≈ (cpd + 0.52ct + f(k, r)ct)n .

For fixed k and small r, Ck-arm is almost the same as Csingle. Upon considering
the maximum of the two arc lengths or makespan, the k-arm cost becomes
Ct

k-arm ≈ (cpd + 0.52ct)
n
k + nf(k, r)ct.

The cost ratio is

Ct
k-arm

Csingle
≈

(cpd + 0.52ct)
n
k + nf(k, r)ct

(cpd + 0.52ct)n
=

1

k
+

f(k, r)ct
cpd + 0.52ct

. (12)

When r is small or when ct
cpd

is small, the k-arm solution is roughly 1
k as

costly as the single arm solution. On the other hand, in this model a k-arm
solution does not do better than 1

k of the single arm.

Theorem 3. For rearranging objects with non-overlapping starts and goals that
are uniformly distributed in a unit square, a k-arm solution can have an asymp-
totic improvement of 1

k over the single arm solution.



10.2 Expected measure of the maximum of lengths of two random
lines on an unit square

Prior work [16] defines the pdf of lengths(l) of randomly sampled lines in a
rectangle of sides a, b, a ≥ b as

p(l) = (
4l

a2b2
)ϕ(l)

ϕ(l) =
1

2
πab− al − bl +

1

2
l2, l ∈ [0, b]

ϕ(l) = ab sin−1(
b

l
) + a.

√︁
(l2 − b2)− al − 1

2
b2, l ∈ [b, a]

ϕ(l) = ab{sin−1(
b

l
)− cos−1(

a

l
)}+ a

√︁
(l2 − b2) + b

√︁
(l2 − a2)

− 1

2
(l2 + a2 + b2), l ∈ [a,

√︁
(a2 + b2)]

In the unit square model, a = b = 1. Substituting the values, the pdf becomes

p(l) = 2πl − 8πl2 + 2l3, l ∈ [0, 1] (13)

p(l) = 4l sin−1(
1

l
)− 4l cos−1(

1

l
) + 8l

√︁
(l2 − 1)− 2l3 − 4l, l ∈ [1,

√
2] (14)

Assuming two random sets of lines, representing transfers in a random split
of objects between two arms, we need the expected value of the maximum of
these pairwise lengths ie., E(max(l1, l2)), l1, l2 i.i.d, l1 ∼ p, l2 ∼ p. This is
estimated using the pdf obtained.

E(max(l1, l2)) =

∫︂ √
2

0

∫︂ √
2

0

max(l1, l2)p(l1)p(l2)dl2dl1 ≈ 0.663 (15)

The result is calculated by taking into account the combination of different
ranges of p(l) and max(l1, l2) over the integration of the corresponding terms.

Fig. 8. Empirical cost ratio versus
the estimate

Prior work [29] offered an estimate for
the expected length of a transit path Csg in
terms of the expected length of a line seg-
ment, 0.52, in a randomized setting in an
unit square. With the current estimate of
0.663 for the maximum of two such randomly
sampled line segments, it follows that, the
expected makespan or maximum of distances
cost will use this estimate.

Using this result, the synchronized cost
ratio is stated as

Csync
dual

Csingle
≈

(cpd + 0.66ct)
n
2 + 4nπrct

(cpd + 0.52ct)n



As a way to validate our asymptotic estimate, randomized trials were run with
different number randomly sampled object transfer coordinates on an unit square.

When cpd = 0 and r = 0, the ratio of
Csync

dual

Csingle
evaluates to 0.636. Fig 8 verifies

empirically that the ratio converges to the expected value as the number of trans-
fers increases. This indicates the asymptotic speedup of a synchronized dual arm
solution for a makespan or maximum of distances cost metric.

10.3 Smoothing

The result of the velocity tuning over the solution trajectories for the individual
arms as a post-processing step is shown in Fig 9. The objective is to minimize
any waits that might be a by-product of the synchronization. The small % im-
provements indicate that the asynchronous variants of the solutions discovered
from the methods do not yield a big enough saving in execution time. Most of
the improvement as a percentage of the original solution duration is not too
high. On top of that, the time taken to smooth the solutions for TOM (overlaid
on Fig 9) shows that it is often not beneficial. In their largest problem instances
the Kuka spent 0.44s of smoothing time to save 3.23s off the solution duration,
while the picker spent 9.84s to save 0.54s. This indicates that among the class
of synchronized solutions discovered by the proposed algorithms, the analogous
asynchronous variants do not seem to be drastically better. Moreover, smoothing
does not improve the maximum of distances cost measure, but only reduces the
solution duration. The theoretical bounds in the simple planar setups agree with
the results in that the synchronization does not degrade the benefits of using
2 arms too much. It should be pointed out though that it needs to be studied
further, whether these trends would hold for a class of algorithms that can solve
the asynchronous dual-arm rearrangement problem in general setups. This is out
of the scope of the current work.

Fig. 9. Smoothed solution improvement as a percentage of the original synchronized
solution duration, and the time taken to smooth solutions obtained from TOM in seconds.
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