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Abstract— In this preliminary study, we propose a new
centralized decoupled algorithm for solving one-shot and dy-
namic optimal multi-robot path planning problems in a grid-
based setting mainly targeting warehouse like environments. In
particular, we exploit two novel and effective heuristics: path
diversification and optimal sub-problem solution databases.
Preliminary evaluation efforts demonstrate that our method
achieves promising scalability and good solution optimality.

I. INTRODUCTION

Labeled optimal multi-robot path planning (MPP) has
been actively studied for many decades [1]–[4], which finds
applications in a wide range of domains including assem-
bly [5], evacuation [6], formation [7], [8], localization [9],
microdroplet manipulation [10], object transportation [11],
search and rescue [12], human robot interaction [13], and
large-scale warehouse automation [14], to list a few. Optimal
solvers for MPP are realized through reduction to other
problems, e.g., answer set programming [15], SAT [16], and
multi-commodity flow [17]. Popular decoupled approaches
[2] first compute independent paths then schedule them.
Commonly found discrete decoupled approaches span sub-
dimensional expansion [18], conflict-based search [19], [20],
independence detection [21], among others. There also exists
prioritized methods [22]–[25] and global decoupling based
approach [26] which achieve superior scalability at the cost
of completeness or optimality. MPP is examined from many
other angles. As a fairly incomplete list, readers may refer
to [27]–[34] for additional algorithmic coverage for MPP
under partially labeled and continuous settings.

In this extended abstract, we perform a preliminary
study of two novel heuristics: path-diversification and pre-
computed solution database. Adapting effective decoupled
planning paradigm [2], [22], [23], [25], [35], our algorithm
first compute initial shortest paths independently for each
robot and then resolves local conflicts between paths. In
computing initial paths, a diversification heuristic makes the
paths use the workspace in a balanced manner to robot
aggregation. In resolving local path conflicts, they can be
resolved in a small 3 × 3 area. A second heuristic is
introduced that constructs a solution database for 3× 3 sub-
problems. Together, these improve computational efficiency
and solution optimality in terms of computing near-optimal
solutions under practical settings.
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II. PRELIMINARIES

Consider n robots in a square grid G(V,E). Following the
traditional 4-way connectivity rule, for each vertex (i, j) ∈
V , its neighborhood is N(i) = {(i+ 1, j), (i− 1, j), (i, j +
1), (i, j−1)}∩V . For a robot i with initial and goal vertices
xI
i , x

G
i ∈ V , a path is defined as a sequence of vertices

Pi = (p0i , . . . , p
T
i ) satisfying: (i) p0i = xI

i ; (ii) pTi = xG
i ;

(iii) ∀1 ≤ t ≤ T , pt−1
i = pti or pt−1

i ∈ N(pti). Denoting
the joint initial and goal configurations of the robots as
XI = {xI

1, . . . , x
I
n} ⊆ V and XG = {xG

1 , . . . , x
G
n } ⊆ V ,

the solution paths of all the robots is then P = {P1, . . . , Pn}.
For P to be collision-free, ∀1 ≤ t ≤ T , Pi, Pj ∈ P
must satisfy: (i) pti ̸= ptj (no conflicts on vertices); (ii)
(pt−1

i , pti) ̸= (ptj , p
t−1
j ) (no “head-to-head” collisions on

edges). An optimal solution minimizes the makespan T ,
which is the time for all the robots to reach XG.

Problem 1. Time-optimal Multi-robot Path Planning
(MPP). Given ⟨G,XI , XG⟩, find a collision-free path set
P that routes the robots from XI to XG and minimizes T .

We assume that G is a low-resolution graph which
assumes the width of every passage in G is at least 3.
The restriction on low-resolution graphs effectively prevents
environments with narrow passages and mimics typical ware-
house environments [14]. As previously stated, our main goal
in developing this work is to tackle structured warehouse-
like environments. In particular, narrow passages are not
addressed by this current preliminary study.

III. ALGORITHM OVERVIEW

The is described in Algorithm 1. It first creates initial
independent paths (line 2), which is done by computing paths
for individual robots ignoring other robots. Note that the path
diversification heuristics is embedded here. Then, a simulated
execution (line 3-8) is carried out and as local conflicts are
detected, they are resolved within local sub-graphs (line 7).

Algorithm 1: Our Method for One-shot MPP
1 XC ← XI

2 for i ∈ R do Pi ← GETPATHS(G, xI
i , x

G
i )

3 while XC ̸= XG do
4 XN ← GETNEXTSTEP(P1, . . . , Pn)
5 if HASCOLLISION(XC , XN ) then
6 for each colliding pair of robots i, j do
7 P1, . . . , Pn ← CHECKDATABASE(G,XC , i, j)

8 XC ← EXECUTEPATHS(XC , P1, . . . , Pn)

A. Path Diversification

Briefly, path diversification is achieved using a heuristic
during the path planning phase. As the priority queue of A*



or uniform-cost search is maintained, we perform some fine
sort of the items with the same value so that vertices or edges
that are have so far been used more frequently will be put
toward the end of the queue. This has the effect to cause the
path footprint use the workspace more evenly. In particular,
this makes paths less likely aggregate at corners of obstacles
in our preliminary evaluation.

B. Solution Database

To realize the solution database functionality, we exhaus-
tively compute solutions to all possible 3× 3 sub-problems.
A technical challenge here is how to store all the resulting
entries in memory for fast look-up. This is achieved by
exploring the (mirror and rotation) symmetries that exist in
the 3×3 problems. In the end, we were able to successfully
store solutions to all 3 × 3 problems in the memory of a
commodity PC.

IV. PRELIMINARY EXPERIMENTAL RESULT

In this section, we compare our algorithm with integer
linear programming (ILP) and ILP with split heuristic [17],
which appears to be one of the fastest (near-)optimal solvers
available for our target problem. ILP is an exact algorithm,
while the split heuristic reduces ILP’s computation time but
makes it sub-optimal. The results indicate that our method
has superior scalability as well as competitive optimality.

Fig. 1 shows the tested algorithms’ performance on a 24×
18 grid without obstacles. We observe that our method is
at least 25 times quicker than the other approaches, while
generates better solutions than ILP with split heuristic when
the graph is not too crowded; the optimality of our method
remains competitive when n gets larger. We also observe a
noticeable benefit of using the path diversification heuristics.
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Fig. 1. Evaluation results of one-shot MPP on a 24 × 18 obstacle-free
grid. We use notation diverse and random to indicate whether the path
diversification heuristic is used.
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Fig. 2. Evaluation results of one-shot MPP in the warehouse-style
workspace. The figure style follows the style in Fig. 1.
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