
Taming Combinatorial Challenges in Clutter Removal

Wei N. Tang Jingjin Yu

Department of Computer Science, Rutgers University
{wei.tang, jingjin.yu}@rutgers.edu

Abstract. We examine an important combinatorial challenge in clearing clutter
using a mobile robot equipped with a manipulator, seeking to compute an optimal
object removal sequence for minimizing the task completion time, assuming that
each object is grasped once and then subsequently removed. On the structural
side, we establish that such an optimal sequence can be NP-hard to compute,
even when no two objects to be removed have any overlap. Then, we construct
asymptotically optimal and heuristic algorithms for clutter removal. Employing
dynamic programming, our optimal algorithm scales to 40 objects. On the other
hand, for random clutter, fast greedy algorithms tend to produce solutions com-
parable to these generated by the optimal algorithm.

1 Introduction
We investigate the challenge of clearing clutter with a mobile robot, as an initial step to-
ward the autonomous execution of clean-up tasks, e.g., the handling of the aftermath of
earthquakes in urban environments or the tidying up of the daily mess in a kid’s room.
Specifically, the study focuses on the task and motion planning (TAMP) for removing
scattered cuboid-like objects with known poses, in a bounded 2D region with exit(s),
where each object is grasped once and subsequently removed. We call this the clutter
removal problem (CRP) and our main goal is to design effective algorithms for comput-
ing high quality object removal sequences for minimizing the overall task completion
time. A typical setting examined in this paper is illustrated in Fig. 1.

Due to the extremely high complexity of clutter removal as a general TAMP task,
we explicitly note that the current work has a limited scope on the stated combinato-
rial challenge and does not consider other important issues such as uncertainties rising
from perception or non-prehensile manipulation. Nevertheless, the addressed problem
remains relevant when other factors are considered; therefore, the results we provided
in this paper has general applicability. Reasoning about the inherent constraints associ-
ated with the challenge including objects’ shapes, poses (location and orientation), and
their relative placement with respect to each other, we are able to establish that finding
optimal plans for CRP is an intractable task, even when objects assume a planar setting.
On the algorithmic side, first, for the single-exit case, we develop an backtracking-
based asymptotically optimal algorithm for solving CRP, capable of handling 40 ob-
jects, which is fairly practical. Then, multiple sub-optimal, best-first type algorithms
are developed that perform very well under practical settings. Building on the single-
exit solution, we further develop Voronoi-based algorithms for the case of multiple exits
that achieve both high solution quality and decent computational efficiency.

Our study is mainly motivated by the need and potential of deploying autonomous
robots in disaster response scenarios [19, 25]. The realization of this goal demands the

Fig. 1. A clutter removal scenario addressed in this work, where a KUKA youBot is tasked to
grasp and remove all scattered objects in clutter, one at a time, in a room with four static obstacles.

efficient resolution of TAMP challenges [4,6,24]. These TAMP challenges, involving both
discrete combinatorial reasoning and (continuous) motion planning, can often be noto-
riously hard to solve. For example, a class of problems related to this work, Navigation
among Movable Obstacles (NAMO), are known to be computationally intractable in many
forms [21, 30]. Nevertheless, practical algorithms have been proposed that effectively
solve the monotone case (i.e., where a solution exists that requires moving each obstacle
once) via standard backtracking techniques [26]. Probabilistically complete solutions
for general settings have also been proposed [28]. The current study emphasizes opti-
mality issues in CRP as a TAMP problem similar to [8, 29]. This contrasts studies with
integrated TAMP solutions, e.g., [4, 6, 24] which do not provide optimality assurances.

Object Rearrangement is another related problem class. Some results in this area,
e.g., [9, 22], can be viewed as variations of NAMO. Whereas a search based approach is
used in [22], symbolic reasoning is applied in [9] which appears to be more general. In
contrast, [8,15] put more emphasis on taming the combinatorial explosion caused by the
sheer number of objects involved, with [8] further computing (near) optimal solutions
under a metric considering both grasping costs and end-effector travel costs.

Clutter removal is also intimately linked to (dis)assembly, where multiple parts need
to be put together to yield a product, e.g., [18,20]. The (dis)assembly problem is hard in
general [11] and remains so even if the parts are put together two at a time [13]. From the
algorithmic perspective, planning of (dis)assembly algorithms is studied in [31], which
also proposed measures for evaluating the complexity of the resulting algorithms. Sub-
sequently, a more general motion space approach was developed [7], which proposed a
block graph abstraction for representing dependency between components.

The main contributions of the work are three-fold. First, we show that computing
an optimal sequence for CRP, as a fundamental discrete combinatorial TAMP challenge
independent of the geometrical grasp and motion planning components, is NP-hard.
Second, we develop a sampling-based, asymptotically optimal algorithm for CRP. Em-
ploying dynamic programming and other techniques, the algorithm is capable of han-
dling up to 40 objects given limited computation time. This is significant because there
are n! possible sequences to consider for n objects. Third, we continue to develop fast

best-first type algorithms that are empirically shown to compute near-optimal solutions
under randomized settings to be expected in real-world scenarios.

The rest of the manuscript is organized as follows. Section 2 describes the clutter re-
moval problem (CRP) studied in this paper. Section 3 then provides some initial analysis
regarding feasibility and completeness, and outlines the general algorithmic solution.
Section 4 shows that the combinatorial elements of optimal clutter removal is NP-hard
even when the objects do not overlap, i.e., in a planar setting. Section 5 proceeds to
develop resolution-complete asymptotically optimal algorithms as well as fast best-first
algorithms, and shows that there are cases where greedy algorithms yield rather sub-
optimal solutions. Section 6 evaluates the performance of the proposed algorithms on
computation effort and solution optimality. Section 7 concludes the work.

2 The Clutter Removal Problem
Consider the setting in which n rigid objects O = {o1, . . . ,on} are scattered on the
ground of a bounded 3D workspace, with oi representing the known pose (i.e., loca-
tion and orientation) of the i-th object, 1 ≤ i ≤ n. Let W ⊂ R2 be the ground plane of
the workspace, which may also contain static obstacles, i.e., inaccessible regions. Let
∂W be the boundary of W . The workspace can be accessed through exits along ∂W by
a mobile robot capable of grasping and transporting objects, one at a time. The task in
a clutter removal problem (CRP) is to remove all objects from the workspace. An object
is considered cleared after it is carried by the robot outside an exit. Initially, the mobile
robot starts at a specific exit. The robot may travel between exits along ∂W . We note
that, due to inherent limitations of mobile robots and the placement of the objects (e.g.,
an object o j close to another object oi may prevent the robot from successfully grasping
oi), some objects may be inaccessible to the robot at any given time. Fig. 2 illustrates
the top view of a problem instance with static obstacles and three exits.

Fig. 2. An example CRP in 2D (viewed from above) where W is the region within the large
rectangle. Three exits are marked red on ∂W . The black polygons inside W are static obstacles
(in additional to ∂W). The rest of the objects, each simplified as a rectangle, are to be removed.

Focusing on the combinatorial problem of computing the optimal clutter removal se-
quence and given the extreme complexity of the general TAMP problem, this work does
not consider non-prehensile manipulation, grasping failures, object pose uncertainty, or
multiple grasps per object. Under these assumptions, we work with cuboid-like objects
with known poses, for which we may assume that it takes the same amount of time to
grasp an object at different poses. Subsequently, solving the CRP formulation optimally

reduces to computing a clutter removal sequence to minimize the travel time of the
robot. This remains highly challenging because: (i) grasp planning and robot base mo-
tion planning must be performed continuously to reason about object accessibility and
how they can be removed, and (ii) given n objects, there are n! possible sequences with
which they may be removed; any optimal solution must consider every one of these
removal sequences during its computation phase.

3 Preliminary Structural Analysis and Algorithm Design
3.1 Feasibility and Completeness
To solve a CRP instance and obtain an object removal sequence, one must first identify at
any point the current set of graspable objects. Then, one of the accessible objects must
be removed and the process repeats. One of the first issue here is whether an algorithm
we design needs to be careful so that an initially feasible problem is not made infeasible.
We make the observation that when non-prehensile manipulation is not considered, a
feasible CRP instance will remain feasible regardless of the object removal order.

Proposition 1. Adopting a proper (resolution-)complete motion planning algorithm,
the clutter removal problem, in the absence of interactions among objects, can be solved
with (resolution) completeness guarantees.

Proof. No explicit requirement is placed on the feasibility of a CRP instance. However,
we note that, to be able to remove all objects sequentially, there must exist at least one
ordering of the n objects with which they can be removed one by one. If such an order
does exist, since non-prehensile manipulation is not considered in this study, i.e., grasp-
ing an object will not make another object accessible to the robot become inaccessible,
this implies the existence of a feasible solution for removing objects regardless of the
actual object removal order. Therefore, if the initial problem admits a solution, then,
at any stage, some object can be removed from the workspace. Subsequently, using a
complete [2] (resp., resolution-complete [10, 12, 16]) motion planning algorithm can
guarantee the completeness (resp., resolution completeness). ⊓⊔

3.2 Algorithm Structure and Common Routines
With Proposition 1 characterizing the feasibility and completeness for clutter removal,
we shift the attention to algorithm design. Since the objects must be grasped and re-
moved one by one, we need subroutines for computing the current set of graspable
objects and the shortest distance to reach these objects.

Motion planning for the robot base. Motion planning for the mobile robot (base) is
carried out for two purposes: to compute optimal trajectories and to identify objects
within the robot’s reach. In this work, these are achieved using a variant of the RRT∗

algorithm [10], augmented with an updating heuristic proposed as part of RRTX [23].
The cluttered objects (with known poses) are projected over W (recall that W ⊂

R2 is the 2D projection of the 3D work space onto the ground plane). Treating the
projection and the workspace boundary (i.e. ∂W without the exits) as obstacles, one
or more RRT∗ structures can be computed. An illustration of the RRT∗ structure (for a
single exit) before and after an object removal is shown in Fig. 3. In the RRT∗ update,

Fig. 3. An illustration of the maintenance of the RRT∗ structure before and after the removal of
an object (the cyan one on the left). The small red rectangles at the bottom indicate the (single)
exit, the green rectangles with black borders are the rest of the objects to be removed.

the idea of cascade rewiring with a larger radius [23] is adopted, which uses all relevant
existing RRT∗ samples and add new ones only in the area of the newly removed object.

We mention here that for symmetric omnidirectional robot, it is also possible to use
the visibility graph [17] to compute optimal trajectories when a polygonal approxima-
tion of the 2D projection can be obtained, which can be much faster.

Grasp planning. With the RRT∗ computed for the current envi-
ronment, reachable objects can be identified. For all these objects,
a grasp planner is invoked to compute potential grasps. Per the as-
sumption that the objects to be removed are cuboid-like, a relatively
basic grasp planner is applied: for each potential object, the planner
first finds a top face (i.e., one with surface normals pointing up) and samples the nor-
mals for possible grasps by a 2-finger gripper. In the figure on the right, the gray block
illustrates a possible sampled grasp for an accessible object identified by the planner.

General algorithm structure. Based on the sampled grasps returned by the grasp
planner and the RRT∗, travel distance costs for reaching the grasp by the robot can
be computed accordingly. We note that as we increase the resolution of the two sam-
pling process, the costs that are computed will be asymptotically optimal. With these
costs, what is left is the computation of an object removal sequence. As such, all the
algorithms proposed in this paper share common grasp planning and robot-base mo-
tion planning subroutines, and differ on how they use the information returned by the
subroutines to compute the object removal sequence, where there are up to n! choices.

4 Hardness of Optimal Clutter Removal
Before constructing full algorithms for CRP, we establish that computing the optimal
object removal sequence is computationally intractable, even when objects to be re-
moved do not overlap, i.e., the setting is planar. In this section, NP-hard is shown for
cases with two or more exits. The proof for the single exit case follows similar general
logic but is significantly more involved; due to the page limit, details are provided in
the extended manuscript [27].

Our proof of the hardness result is via a reduction from monotone planar 3-SAT [1],
with the help of some special gadgets. In the construction, we assume that the robot is
omnidirectional and powerful enough to grasp and transport large objects providing that
the object has suitable graspable handles.

4.1 Monotone Planar 3-SAT
Monotone planar 3-SAT (MPSAT) is a variation of 3-SAT [5] with three additional
restrictions: (i) each clause contains exclusively positive literals or exclusively nega-
tive literals, (ii) the graph connecting clauses to literals has a planar embedding, and
(iii) the planar embedding can be arranged such that positive clauses and negative
clauses reside on two sides of a line connecting all the variables. As an illustration,
Fig. 4 provides a planar embedding for the MPSAT instance with variables x1–x5 and
clauses c1 = x1 ∨ x2,c2 = x1 ∨ x3 ∨ x4,c3 = x1 ∨ x4 ∨ x5,c4 = ¬x1 ∨ ¬x2 ∨ ¬x3, and
c5 = ¬x3 ∨¬x4 ∨¬x5. We will be using this example for illustrating the NP-hardness
reduction to planar optimal clutter removal.

x1 x2 x3 x4 x5

c3 : x1∨ x4∨ x5

c2 : x1∨ x3∨ x4

c1 : x1∨ x2

c4 : ¬x1∨¬x2∨¬x3 c5 : ¬x3∨¬x4∨¬x5

Fig. 4. The planar embedding of the MPSAT instance with variables x1–x5 and clauses c1 = x1 ∨
x2,c2 = x1∨ x3∨ x4,c3 = x1∨ x4∨ x5,c4 = ¬x1∨¬x2∨¬x3, and c5 = ¬x3∨¬x4∨¬x5.

4.2 The Variable Gadget
For each variable in a given MPSAT instance, we build a gadget for it; Fig. 5(a) illustrates
such a gadget for variable x1. The boundaries of individual objects are marked with
black lines. Here, the green object og, representing assigning x1 to be true, can be lifted
at either its left most part or its lowest part (when fully exposed), as indicated by the
red arrows. The orange object oo mirrors og and represents assigning x1 to false. After
either og or oo is removed, the top purple object op can be removed. The partially
shown (three) lime objects (call these ol1,ol2,ol3) and (one) yellow object oy are long
rectangles representing connections between the variable gadget and clause gadgets (to
be detailed soon in Section 4.3), corresponding to the vertical lines shown in Fig. 4. In
this particular case, they are connected to the clause gadgets for c1–c4.

og oo

op

c1← ol1
c2← ol2
c3← ol3

ob
oy→ c4
oc

(a)

→ x5

→ x4

→ x1

(b)
Fig. 5. (a) The variable gadget for x1, which appears positively in c1–c3 and negatively in c4. (b)
The clause gadget for c3, which connects the variable gadgets for x1, x4, and x5. Notice that the
figures are not drawn to scale.

On the positive side, once og is removed, in addition to being able to remove op, ol1–
ol3 can be removed by grasping them from their rightmost locations. The blue, partially

shown object ob belongs to the clause gadget for c3. Alternatively, if ob is removed, then
ol3 can be removed from the right side. Following this, og can be lifted at its lowest point
and removed. ol1 and ol2 can be subsequently removed as well. On the negative side,
because x1 only appears negatively in c4, there is a single yellow object oy connecting
oo to the gadget for c4, which contains the cyan object oc. We note that the figure is not
drawn to scale. The horizontal span (i.e., the width) of the gadget is much larger than
its vertical span. This will be quantified later.

4.3 The Clause Gadget
The clause gadget is fairly simple and the construction for the clause c3 = x1 ∨ x4 ∨ x5
is shown in Fig. 5(b). If any of the lime objects are removed, then the blue object will
have an exposed thin handle (marked by the red arrows) that can be used for lifting and
removing the (blue) clause object. A clause gadget will have an extension piece for a
connecting variable if the rectangle (e.g., the lime piece) connecting the clause gadget
and the variable gadget is the lowest one on the variable gadget side. In this example, the
clause gadget for c3 has extensions for x1 and x5 (the long horizontal blue extrusions).
Comparing with Fig. 4, if a connection between a clause and a variable is the leftmost
one for the variable, then there is an extension piece for the gadget for that connection.

4.4 Reducing MPSAT to Optimal Clutter Removal
The complete CRP instance constructed from the MPSAT instance is given in Fig. 6,
which is a straightforward assembly of the variable and clause gadgets. The additional
items are: (i) two extra gray objects at the bottom that can only be lifted and removed
after the lowest placed positive and negative clause gadgets are removed, (ii) the black
“cap” object ocap that surrounds all other objects, and (iii) three exits (marked with
red hexagons). W is not shown but can be understood as the region occupied by the
construction with some padded space between the construction and ∂W . Object ocap
isolates all other objects from left and right exits. The robot starts at the middle exit.
The instance is not drawn to scale. The important dimensions are w1 and w2 as marked.
The distance 2w1 is the horizontal span of the two symmetric objects in a variable
object. w1 +w2 is the horizontal distance from the middle exit to a vertical segment of
a clause gadget. We assume that all other distances are small when compared with w1
and w2, including the vertical span of the instance and all other horizontal distances.
Vertical span being minimal means all objects are relatively “long and thin”. Given the
assumption, the distance between the middle exit and other exits is w1 +w2. Moreover,
in Fig. 6, the lifting points within a dotted rectangle are ε-close to the corresponding
exit in the same (dotted) rectangle with ε being very small when compare with w1 or
w2. Lastly, for an MPSAT instance with n variables, the construction ensures w2≫ nw1.

The CRP instance is feasible: all green and orange objects can be removed first,
exposing the connecting rectangular objects, which can be subsequently removed. The
purple objects and the black object can also then be removed. Afterward, the clause
objects can be lifted and removed. Lastly, the gray objects at the bottom can be removed.
On the other hand, computing an optimal solution for the problem is hard. First, we
establish that the CRP instance requires at least a travel cost of (2n+4)w1 +4w2.

Lemma 1. The CRP instance requires a minimum possible cost of (2n+4)w1 +4w2.

2w1w2 w2

Fig. 6. The CRP instance from the MPSAT instance. In the middle are the five variable gadgets for
x1–x5, from bottom to top. On the left side are the three (blue) positive clause gadgets for c1–c3,
from right to left. On the right side are the two (cyan) negative clause gadgets c4 (lower) and c5
(upper). The three red hexagons mark the three exits. The robot is initially located at the middle
exit. The figure is not drawn to scale.

Proof. First, given a feasible assignment to the MPSAT instance, we show that the CRP

instance admits a solution with a total travel distance of (2n+ 4)w1 + 4w2. Starting in
the middle, if a variable xi is assigned to be positive (resp., negative), the robot removes
the green (resp., orange) object from the i-th variable gadget from the bottom, which
incurs a distance cost of 2w1 per variable. Then, the associated purple object and lime
(resp., yellow) objects can be removed, which incurs minimum extra cost. The step
ends with the removal of the black cap object. The total distance cost so far is 2nw1. At
this point, every clause gadget object has at least one connecting rectangular (lime or
yellow) object removed, allowing the clause object to be lifted. The robot then moves
to leftmost and clears all blue (positive) clause gadget objects through the leftmost exit,
followed by clearing all leftover connecting lime objects. The same is then performed
on the right side. Lastly, the robot moves back to the middle to clear everything else.
The main cost in this step is incurred by the travel from the middle to the left, then the
right, then back, totaling 4(w1 +w2). The grand total is (2n+4)w1 +4w2.

Next, we show the cost is minimal. Beside the above stated removal sequence, there
are two alternatives. A first is to start with removing the black cap object from the top
(e.g., through the leftmost exit to the top of the black object) . This incurs a cost of
3(w1+w2) and the robot will be at either the leftmost exit or the rightmost exit after the
removal. Suppose without loss of generality it is the leftmost exit. Then, to remove the
cyan clause objects (which can only be removed from the rightmost) and subsequently

the right gray object, the robot must travel another 3(w1 +w2) distance. The total by
now is already 6(w1 +w2)> (2n+4)w1 +4w2 because w2≫ nw1.

The second alternative is to remove some of the green/orange/purple objects but
does not go all the way to the black object before moving to the leftmost or rightmost to
work on clause objects. Since the two gray objects can only be removed from the middle
after corresponding clause objects are removed, this means that if the robot goes to, e.g.,
the leftmost and then rightmost and then come back to the center, it will already incur a
cost of 4(w1+w2), which means the robot can only go to the leftmost and the rightmost
once each. This is however insufficient because before the black cap object is removed,
a blue or cyan clause object can only be removed from the center exit and therefore,
multiple trips to the leftmost or the rightmost are necessary. ⊓⊔
Theorem 1. Planar optimal clutter removal is NP-hard.

Proof. The proof of Lemma 1 already shows that a solution to the MPSAT instance
leads to a CRP solution of cost (2n + 4)w1 + 4w2; we only need to prove the other
direction. Assume the constructed CRP problem has an optimal solution with a total
cost of (2n+4)w1 +4w2. As has been established, the robot must travel to the leftmost
and rightmost side at most once and then eventually return to the middle (with costs
4(w1 + w2)), suggesting that the black cap object must be removed first before any
clause objects can be removed. To be able to remove the black cap object, at least n
variable objects must be removed, which incur a cost of 2nw1. Because this already
exhausted the total cost, No more than n variable objects can be removed before the
black cap object is. Afterward, we may assume without loss of generality that the robot
moves to the leftmost to remove the blue clause objects through the left exit and must
remove all of them before traveling back. This implies that the removed green variable
objects “satisfies” all the blue (positive) clause objects. Similarly, the cyan (negative)
clause objects must also be “satisfied” by the removed orange variable objects. This
yields a satisfactory assignment for the MPSAT problem. ⊓⊔

Since it is easy to verify whether a given solution is optimal or not, planar CRP (the
simplified combinatorial version without considering complex motion planning) is also
in NP. Therefore, this version of optimal clutter removal is NP-complete. A corollary
follows that applies to two exits.

Corollary 1. Planar optimal clutter removal is NP-hard with two exits.

Proof. We note that the CRP instance can be “bent” in the middle with the left and
right sides bending up until they almost meet. Since the initial vertical span of the
CRP instance is negligible, this causes the two exits to also be ε-close, i.e., they can
be merged into a single exit. This yields a new CRP instance with two exits. The NP-
hardness proof continues to work with the updated optimal cost being no more than
(2n+2)w1 +2w2. ⊓⊔

Remark. Though the robot can lift large objects by assumption, lifting a long object
in the middle and then going through an exit can potentially lead to issues. In the con-
structed CRP instance, these are the purple objects and the black cap object; all other
objects are lifted from one end (recall that the vertical span of the construction is negli-
gible). The issue can be resolved by breaking an involved object into two equal pieces

in the middle which can then be taken away separately (see Fig. 7), without incurring
much additional travel cost (the vertical span of the black object is assumed to be very
small). By doing this, the robot will always be holding a long object from one end.

Fig. 7. How the purple and black objects can be broken into more manageable pieces, as indicated
by the yellow lines, without affecting solution structure. Objects are not drawn to scale.

5 Resolution-Complete Algorithms for CRP
By Proposition 1, applying a resolution-complete algorithm for identifying candidate
objects for removal will result in a resolution-complete algorithm for CRP. In this sec-
tion, we will construct several resolution-complete algorithms realizing varying levels
of optimality guarantees. With the preparation done in Section 3.2, our construction
assumes knowledge of currently graspable objects and the costs of reaching them, and
focuses on the selection of clutter removal sequence based on these information.

Before introducing the algorithms, we present an example that illustrates additional
structures of CRP in Fig. 8(a), for which a greedy removal sequence is indicated in
Fig. 8(b) and an optimal one is given in Fig. 8(c). Assuming similar grasping cost, the
travel time used by the greedy approach is about 1.3 times of that used by the opti-
mal sequence. On the other hand, Theorem 1 indicates that optimal removal sequences
can be hard to come by. This motivates the construction of both optimal and greedy
algorithms for CRP.

1
2

3

4 1

23

4

(a) (b) (c)
Fig. 8. (a) A CRP instance. (b) A greedy removal sequence, with the gray bar marking the grasping
position by a 2-finger gripper (top view). (c) An optimal removal sequence.

5.1 Single Exit: Exhaustive Search with Dynamic Programming
An exhaustive search approach based on backtracking [28] may be applied to derive an
algorithm to search for the optimal object removal sequence. The basic idea is straight-
forward: all possible object removal sequences are examined and the one with the best
cost is chosen. In the context of the current study, a search tree is grown and explored
in a depth first manner, with each path from the root to a leaf node representing a com-
plete object removal sequence. Since all permutations are examined, this guarantees an
optimal solution is found as long as the cost estimate for grasping and transporting each
object is accurate. This later part is in turn guaranteed in a resolution-complete man-
ner in this work, because resolution-complete algorithms are used to build the common
motion and grasp planning components. Complete exhaustive search is also possible.

A daunting challenge in examining all branches of a search tree with depth n is
the nominal time complexity of O(n!), prohibitively expensive for even small n (e.g.,
n > 5). For the CRP problem, a form of dynamic programming (DP) may be applied to
significantly reduce this complexity as follows. Let I = {1, . . . ,n} and I′ ⊂ I. Let J(I′)
denote the optimal cost of removing all objects with indices in I′ assuming that objects
with indices in I\I′ are already removed. Then we have the key DP recursion

J(I′) = min
i∈I′
{ci + J(I′\{i})}, (1)

where ci is the cost of removing oi assuming that objects with indices in I\I′ are already
removed. For |I′| = k, there are

(︁n
k

)︁
possible I′ and for each, computing (1) requires a

cost of O(n). This then yields a total computational cost of

O(n)
[︁(︃n

0

)︃
+

(︃
n
1

)︃
+ . . .+

(︃
n

n−1

)︃]︁
= O(n2n).

We note that 2n grows much slower than n!∼
√

2πn(n/e)n.
In addition to DP, two additional structural properties of CRP can be exploited to

further boost computational efficiency without affecting solution optimality, namely:

– Reachability. Objects in clutter naturally create workspace obstacles, limiting the
access to other objects and thus reducing effective search branching factor. For ex-
ample, the purple object in Fig. 8(a) may be inaccessible initially.

– Object clustering. It is possible that the objects form clusters that are independent in
terms of the removal cost, i.e., there may be two or more isolated “piles” of objects.
Note that in some cases, a pile may need to be removed first before another can be
removed effectively. Clusters can be readily identified by grouping objects that are
close to each other.

5.2 Single Exit: Greedy Best-First Search

The NP-Hardness of optimally solving CRP means that exhaustive search cannot run
in polynomial time, which prompts the development of greedy approaches: the object
with the lowest local removal cost is selected and removed; the same process is then
recursively applied until all objects are cleared. In addition to the basic greedy best-first
strategy which only looks at a single step, two more involved methods are also explored:

– Multi-step best-first search. This method computes cost after growing the search
tree to some depth k≥ 1. The approach, a finite-horizon technique, balances between
increased computation and better solution optimality. For example, if k is set to 3,
then the case from Fig. 8 can be solved optimally using multi-step best-first search.

– Monte Carlo Tree Search (MCTS). As the core complexity arises from finding a
best path along a search tree, another natural choice is Monte Carlo Tree Search
(MCTS) [3, 14], which performs limited search tree exploration with varying depth
along different tree branches. This can be viewed as a Monte Carlo version of the
multi-step best-first search strategy.

In terms of computational complexity, all greedy approaches described here have
low polynomial dependency on n, the number of objects.

5.3 Multiple Exits: Extending Exhaustive Search with Dynamic Programming

Algorithms for the single-exit case generalize to multiple exits. Whereas the greedy
algorithm requires little change, exhaustive search with DP requires a non-trivial ex-
tension. Let I = {1, . . . ,n} and I′ ⊂ I. Let Ji j(I′) denote the optimal cost of removing
all objects with indices in I′ with the robot starting from exit i, and ending at exit j,
assuming that objects with indices in I\I′ are already removed. Let E denote the set of
all exits of the environment. The updated DP recursion is

Ji j(I′) = min
e∈E

min
k∈I′
{ce j(k)+ Jie(I′\{k})}, (2)

where ci j(k) is the cost of starting at exit i and removing ok from through exit j, assum-
ing that objects with indices in I\I′ are already removed. For |I′|= k, if we assume the
robot always start from a fixed exit, there are |E|

(︁n
k

)︁
possible I′ and for each, computing

(2) costs O(|E|n). The total is

O(|E|n)
[︁
|E|

(︃
n
0

)︃
+ |E|

(︃
n
1

)︃
+ . . .+ |E|

(︃
n

n−1

)︃]︁
= O(n2n|E|2).

5.4 Multiple Exits: Voronoi Partitions

Fig. 9. The Voronoi partition of
the example CRP (Fig. 2).

An alternative algorithm for multiple exits may look
at the Voronoi partitions induced by W and the ex-
its, and let the mobile robot remove objects through an
exit if the object falls within the corresponding Voronoi
region. After the robot finishes working with objects
within a Voronoi partition, it moves to the next Voronoi
partition. As an example, the Voronoi regions for the
three-exit scenario in Fig. 2 is given Fig. 9. Through
each exit, the robot will remove around four objects.

When objects are not heavily entangled, using Voronoi partition plus any single-
exit method incurs an additional travel cost equaling at most the length of ∂W . Indeed,
simulation study shows that an Voronoi based algorithm performs quite well when com-
pared with direct extensions of single-exit methods. Moreover, Voronoi partitions can
be readily obtained based on the shape of W and the exits’ locations, whereas direct
extensions of single-exit methods may require additional sensing information to work.
That is, to make estimates on which objects can be removed and the associated costs,
the robot may need to physically travel through each exit to acquire that information.

6 Experimental Evaluation
A sequence of experiments were designed to evaluate the effectiveness of the algorithms
for CRP. Each experiment also provides additional new insights into the structure of
CRP. The algorithms were implemented in C++ and executed on a quad-core Intel CPU
at 3.3GHz with 32GB RAM. A video of a simulated Kuka youBot carrying out CRP
tasks is provided that corroborates the evaluation described in this section.

6.1 Single-Exit Scenarios
There are cases (e.g., Fig. 8) where a greedy algorithm for CRP
can be rather sub-optimal when compared with the exhaustive
algorithm. One may ask the natural question of whether such
differences actually matter in practice. To evaluate this, we in-
tegrated the full solution pipeline with Gazebo using KUKA
youBot as the mobile robot (see, e.g., Fig. 1). As a first experiment, we evaluated the
execution time of plans obtained by both the exhaustive and greedy algorithm for the
scene illustrated on the right. While the plan provided by the greedy algorithm has a
total travel distance that is 2.1 times that from the exhaustive one, the ratio of execution
time in Gazebo for the two cases is about 1.4 (see the submitted video). The difference
in the two ratios (2.1 v.s. 1.4) is due to the time required for grasping/releasing the
objects, which is almost the same for both. The example can be readily generalized to
yield a family of “bad cases” by stacking the same pattern over and over.

CRP scenarios such as these illustrated in Fig. 6, Fig. 8, and the previous example
are highly non-random. It is unlikely to encounter these in practice, where clutter tends
to have a more random placement. Our second experiment focuses on different random
single-exit clutter removal scenarios with the following possible opposing properties:
S/C: Whether the objects are scattered uniformly in the room or centered in the room.
R/A: Whether the objects are oriented in random directions or they are axis-aligned.
O/N: Whether the objects are overlapping or not.
Among the eight combinations that were attempted, we select four representative set-
tings as illustrated in Fig. 10. The objective of the second experiment is to evaluate the

(a) (b) (c) (d)

Fig. 10. Four selected settings: (a) SRN. (b) SRO. (c) SAN. (d) CRN.

relative computational complexity of different cluttered scenes. For this, both exhaus-
tive search and greedy search are attempted, with the results for exhaustive search (with
heuristics) shown in Fig. 11. We note that all test cases are generated randomly with
varying object numbers and lengths; for each setting and each number of objects (5-
40), 20 test cases are created. A data point corresponds to the average over the 20 cases.
For each case, a time limit of 400 seconds is placed. If one of the 20 cases exceeds the
limit, no data point for that setting is included. The travel cost is unit-less. From the
result the following observations can be made:

– Scenes with overlapping objects (SRO, Fig. 10(b)) are easier than scenes with non-
overlapping objects (SRN, Fig. 10(a)). Axis-aligned cases (SAN, Fig. 10(c)) are
slightly harder than cases where objects’ orientations are more random (SRN, SRO).

– Centered cases (CRN, Fig. 10(d)) are much more challenging (notice the logarithmic
scale computation time in Fig. 11). This is due to two reasons: the objects are closer
and more objects are graspable, making the branching factor larger in the search tree.

C
om

pu
ta

tio
n

Ti
m

e

To
ta

lC
os

t

Fig. 11. The computational time and total distance cost using Exhaustive search (with heuristics)
on four different settings as illustrated in Fig. 10. The x-axis legends show the number of robots.

We further observe that (from data omitted due to space constraint) somewhat sur-
prisingly, the greedy algorithm computes solutions for all cases with nearly the same
total distance costs and does so with much less computation time. To study this further,
we fixate on SRN as we expect this to be typical and also harder than SRO. Multiple
algorithms were tested and the result is given in Fig. 12, which clearly shows that the
basic greedy approach works quite well in terms of optimality and runs much faster
than other methods as the number of objects in clutter increases. Other greedy methods
(multi-step, MCTS) take more time but also produce slightly more optimal solutions.

C
om

pu
ta

tio
n

Ti
m

e

To
ta

lC
os

t

Fig. 12. Computation times and total travel costs from multiple algorithms.

Experiments were also carried out to evaluate the effect of
two additional factors: obstacles and more complex shapes. A
typical test case of the former is shown in Fig. 1 and a typical
case for the later is illustrated on the right, with Tetris-like
objects, for which grasp planning becomes more challenging.
For both settings, results are highly similar to what is shown in Fig. 12.

6.2 Multi-Exit Setup

For the multi-exit setup, we also attempted a number of experiments. Given the similar-
ity to the single-exit case, little new insights were obtained in running the experiments
similar to the single-exit case, except that the branching factor becomes larger due to
the availability of more exits, which makes more objects accessible at once. A new set
of experiments were also created to evaluate the effectiveness of the Voronoi partition
based algorithm, which is compared with exhaustive search and the basic greedy algo-
rithm without the Voronoi heuristic. The test cases are the single-exit SRN ones now
with three exits selected randomly along the boundary ∂W . The robot may travel along
the outside of ∂W between exits. The experimental result is plotted in Fig. 13.

C
om

pu
ta

tio
n

Ti
m

e

To
ta

lC
os

t

Fig. 13. Multi-exit experiments running exhaustive with dynamic programming, greedy, and
Voronoi partition based greedy algorithms.

Again, we observe that the total costs exhibit little difference among the methods.
However, the Voronoi based method demonstrates superior scalability, running much
faster than the basic greedy algorithm and exhaustive search. At the same time, DP-
based exhaustive search can effectively handle over 20 objects efficiently and provides
slightly better cost than the greedy methods.

7 Conclusion and Discussion
In this paper, we investigate the clutter removal problem (CRP), performing extensive
structural and algorithmic studies for both single- and multi-exit cases. After showing
that the problem can be NP-hard to optimally solve, we develop resolution-complete
exhaustive search algorithms for CRP. With DP, the algorithms are effective for both
single and multiple exits. We also show that typical settings can be efficiently solved
using greedy algorithms, which have even better scalability and produce solutions that
are fairly close to being optimal. Our algorithms are capable of computing high-quality
solutions in seconds for scenes with tens of objects. A key conclusion from the empiri-
cal evaluation is that greedy approaches may be applied as a first resort; when there are
additional computational resources, longer horizons may also be explored using more
exhaustive approaches to further enhance plan optimality.

Acknowledgement. This work is supported by NSF awards IIS-1617744, IIS-1734419,
and IIS-1845888. Opinions expressed here do not reflect the views of the sponsor.

References

1. de Berg, M., Khosravi, A.: Optimal binary space partitions in the plane. In: International
Computing and Combinatorics Conference, pp. 216–225. Springer (2010)

2. Canny, J.: The complexity of robot motion planning. MIT press (1988)
3. Coulom, R.: Efficient selectivity and backup operators in monte-carlo tree search. In: Inter-

national conference on computers and games, pp. 72–83. Springer (2006)
4. Dantam, N.T., Kingston, Z.K., Chaudhuri, S., Kavraki, L.E.: Incremental task and motion

planning: A constraint-based approach. In: Robotics: Science and Systems, pp. 1–6 (2016)
5. Garey, M.R., Johnson, D.S.: Computers and intractability. WH Freeman, New York (2002)
6. Garrett, C.R., Lozano-Pérez, T., Kaelbling, L.P.: Ffrob: An efficient heuristic for task and

motion planning. In: Algorithmic Foundations of Robotics XI, pp. 179–195. Springer (2015)
7. Halperin, D., Latombe, J.C., Wilson, R.H.: A general framework for assembly planning: The

motion space approach. Algorithmica 26(3-4), 577–601 (2000)
8. Han, S.D., Stiffler, N.M., Krontiris, A., Bekris, K.E., Yu, J.: Complexity results and fast

methods for optimal tabletop rearrangement with overhand grasps. The International Journal
of Robotics Research 37(13-14), 1775–1795 (2018)

9. Havur, G., Ozbilgin, G., Erdem, E., Patoglu, V.: Geometric rearrangement of multiple mov-
able objects on cluttered surfaces: A hybrid reasoning approach. In: Robotics and Automa-
tion (ICRA), 2014 IEEE International Conference on, pp. 445–452. IEEE (2014)

10. Karaman, S., Frazzoli, E.: Sampling-based algorithms for optimal motion planning. The
international journal of robotics research 30(7), 846–894 (2011)

11. Kavraki, L., Latombe, J.C., Wilson, R.H.: On the complexity of assembly partitioning. In-
formation Processing Letters 48(5), 229–235 (1993)

12. Kavraki, L., Svestka, P., Overmars, M.H.: Probabilistic roadmaps for path planning in high-
dimensional configuration spaces, vol. 1994. Unknown Publisher (1994)

13. Kavraki, L.E., Kolountzakis, M.N.: Partitioning a planar assembly into two connected parts
is np-complete. Information Processing Letters 55(3), 159–165 (1995)

14. Kocsis, L., Szepesvári, C.: Bandit based monte-carlo planning. In: European conference on
machine learning, pp. 282–293. Springer (2006)

15. Krontiris, A., Bekris, K.E.: Dealing with difficult instances of object rearrangement. In:
Robotics: Science and Systems (2015)

16. LaValle, S.M., Kuffner Jr, J.J.: Randomized kinodynamic planning. The international journal
of robotics research 20(5), 378–400 (2001)

17. Lozano-Pérez, T., Wesley, M.A.: An algorithm for planning collision-free paths among poly-
hedral obstacles. Communications of the ACM 22(10), 560–570 (1979)

18. Lozano-Perez, T., Wilson, R.H.: Assembly sequencing for arbitrary motions. In: Proceedings
IEEE International Conference on Robotics & Automation (ICRA), pp. 527–532 (1993)

19. Murphy, R.R.: Disaster robotics. MIT press (2014)
20. Natarajan, B.K.: On planning assemblies. In: Proceedings of the fourth annual symposium

on Computational geometry, pp. 299–308. ACM (1988)
21. Nieuwenhuisen, D., van der Stappen, A.F., Overmars, M.H.: An effective framework for

path planning amidst movable obstacles. In: Algorithmic Foundation of Robotics VII, pp.
87–102. Springer (2008)

22. Ota, J.: Rearrangement planning of multiple movable objects by a mobile robot. Advanced
Robotics 23(1-2), 1–18 (2009)

23. Otte, M., Frazzoli, E.: RRT X : Real-time motion planning/replanning for environments with
unpredictable obstacles. In: Algorithmic Foundations of Robotics XI, pp. 461–478. Springer
(2015)

24. Plaku, E., Hager, G.D.: Sampling-based motion and symbolic action planning with geometric
and differential constraints. In: Robotics and Automation (ICRA), 2010 IEEE International
Conference on, pp. 5002–5008. IEEE (2010)

25. Pratt, G., Manzo, J.: The darpa robotics challenge [competitions]. IEEE Robotics & Au-
tomation Magazine 20(2), 10–12 (2013)

26. Stilman, M., Kuffner, J.: Planning among movable obstacles with artificial constraints. The
International Journal of Robotics Research 27(11-12), 1295–1307 (2008)

27. Tang, W.N., Yu, J.: Taming combinatorial challenges in optimal clutter removal tasks.
arXiv:1905.13530 (2019)

28. Van Den Berg, J., Stilman, M., Kuffner, J., Lin, M., Manocha, D.: Path planning among
movable obstacles: a probabilistically complete approach. In: Algorithmic Foundation of
Robotics VIII, pp. 599–614. Springer (2009)

29. Vega-Brown, W., Roy, N.: Asymptotically optimal planning under piecewise-analytic con-
straints. In: The 12th International Workshop on the Algorithmic Foundations of Robotics
(2016)

30. Wilfong, G.: Motion planning in the presence of movable obstacles. Annals of Mathematics
and Artificial Intelligence 3(1), 131–150 (1991)

31. Wilson, R.H., Latombe, J.C.: Geometric reasoning about mechanical assembly. Artificial
Intelligence 71(2), 371–396 (1994)

	Taming Combinatorial Challenges in Clutter Removal

