
Integer Programming as a General Solution Methodology for Path-Based
Optimization in Robotics: Principles, Best Practices, and Applications

Shuai D. Han Jingjin Yu

Abstract— Integer programming (IP) has proven to be highly
effective in solving many path-based optimization problems in
robotics. However, the applications of IP are generally done
in an ad-hoc, problem-specific manner. In this work, after
examined a wide range of path-based optimization problems, we
describe an IP solution methodology for these problems that is
both easy to apply (in two simple steps) and high-performance
in terms of the computation time and the achieved optimal-
ity. We demonstrate the generality of our approach through
the application to three challenging path-based optimization
problems: multi-robot path planning (MPP), minimum constraint
removal (MCR), and reward collection problems (RCPs). Associ-
ated experiments show that the approach can efficiently produce
(near-)optimal solutions for problems with large state spaces,
complex constraints, and complicated objective functions. In
conjunction with the proposition of the IP methodology, we
introduce two new and practical robotics problems: multi-robot
minimum constraint removal (MMCR) and multi-robot path
planning (MPP) with partial solutions, which can be quickly
and effectively solved using our proposed IP solution pipeline.

I. INTRODUCTION

The study of robot task and motion planning problems
aims at finding a path (resp., paths) for the robot (resp.,
robots) to optimize certain cumulative cost or reward. While
some settings admit efficient search-based algorithmic so-
lutions, e.g., via dynamic programming, such problems
are frequently computationally intractable [1], [2]. In such
cases, two approaches are often employed: (i) designing
polynomial-time algorithms that compute approximately op-
timal solutions, and (ii) applying greedy search, assisted
with heuristics. Both approaches have their fair share of
drawbacks in practical applications: the former does not
always ensure good optimality and the later often does not
scale well as the problem instance becomes larger.

In this paper, we describe an integer programming (IP)
methodology as a third general solution approach toward
challenging path-based optimization problems. The key to
building an IP-based solution is the construction of a model
constituting of variables and inequalities that encodes all
constraints of the target problem. For optimizing over paths,
we make the important observation that it is natural to
partition the model construction process into a path-encoding
step followed by a second step that adds the optimization
constraints. Following this methodology, we can readily
solve many distinct and challenging path-based optimiza-

S. D. Han and J. Yu are with the Department of Computer Science,
Rutgers, the State University of New Jersey, Piscataway, NJ, USA. E-Mails:
{shuai.han, jingjin.yu}@ rutgers.edu.

This work is supported by NSF awards IIS-1734419 and IIS-1845888.
Opinions or findings expressed here do not reflect the views of the sponsor.

tion problems including multi-robot path planning (MPP),
minimum constraint removal (MCR), and reward collection
problems (RCPs). As shown with extensive evaluation, the
IP approaches often come with competitive performance in
terms of both computation time and solution optimality. In
conjunction with the proposition of the IP methodology, we
introduce two new robotics problems: multi-robot minimum
constraint removal (MMCR) and multi-robot path planning
(MPP) with partial solutions. These problems are natural
generalizations of MCR and MPP, respectively, that are
practical but can be more challenging computationally.
Related Work. Integer programming (IP) methods are
widely used to tackle combinatorial optimization challenges
since their inception [3], [4], with applications to a variety
of problems spanning the traveling salesperson problem
(TSP) [5], network flow [6], multi-target tracking [7], etc.
More recent studies have applied IP on path optimization
problems in robotics including multi-robot path planning [8]–
[10] and robotic manipulation [11], [12], to list a few.

This work is motivated by and builds on a long line of
work that used IP, starting with the surprising initial success
as IP was applied to multi-robot path planning (MPP) [10],
which achieved a leap in performance in optimally solving
MPP. MPP is an important problem that finds applications
in a diverse array of areas including evacuation [13], forma-
tion [14], [15], localization [16], microdroplet manipulation
[17], object transportation [18], search and rescue [19], and
human robot interaction [20]. In the past decade, significant
progress has been made on optimally solving MPP problems
in discrete, graph-base environments. Algorithmic solutions
for such a discrete MPP are often through reduction to other
problems [10], [21], [22]. Decoupling-based heuristics are
also proven to be useful [23]–[25]. Similar to the partial
solution aspect examined in this paper, a recent work [26]
provides a search-based solver which optimizes the number
of robots that reach goals in a limited time horizon.

To demonstrate the generality and ease of application of
our methodology, we also examined the minimum constraint
removal (MCR) and a class of robotic reward collection prob-
lems (RCPs). MCR, which requires finding a path while re-
moving the least number of blocking obstacles, is relevant to
constraint-based task and motion planning [27], [28], object
rearrangement [12], [29], and control strategy design [30].
Two search-based solvers are provided in [1] that extend to
weighted obstacles [31]. Methods exist that balance between
optimality, path length and computation time [32]. Recent
studies on MCR reduce the gap between lower and upper

bounds regarding optimality [33]. Reward collection prob-
lems (RCPs) are generally concerned with gathering rewards
without exceeding some (e.g., time or distance) budget.
There is a variety of such problems including the classical
traveling salesperson problem (TSP) [34] and the orienteer-
ing problem (OP) [35]. Our focus here is geared toward the
more complex variations [36], [37] involving non-additive
optimization objectives. Such problems model challenging
information gathering tasks, e.g., precision agriculture [38],
monitoring environmental attributes of the ocean [39], and
infrastructure inspection [40]. These problems are generally
at least NP-hard [1], [35], [41].
Contributions. This study brings two main contributions:
• Building on previous studies, we propose a general inte-

ger programming (IP) solution framework for path-based
optimization problems in robotics. The two-step pipeline
of the framework is easy to apply and also frequently
produces highly optimal solutions efficiently.

• We formulate the multi-robot minimum constraint removal
(MMCR) problem and the multi-robot path planning
(MPP) with partial solutions problem, as practical gen-
eralizations of MCR and MPP, respectively. We show that
the IP approach can effectively solve these new problems.

In addition to the main contributions, the study provides
many additional, problem-specific heuristics that signifi-
cantly enhance the performance of the baseline IP for-
mulation; some of these heuristics are also generally ap-
plicable. Unless explicitly mentioned and referenced, the
enhancements (e.g., heuristics) described in the paper are
also presented here for the first time. While IP-based methods
have already been used in robotics, to the best of our
knowledge, this work is the first one that summarizes a
general IP framework that can be readily applied to a variety
of path-based optimization problems, backed by thorough
simulation-based experimental evaluations.
Organization. The rest of this paper is structured as follows.
In Section II, we formally define MPP, multi-robot MCR,
and RCP. In Section III, we outline the general IP solution
methodology and describe two tried-and-true approaches for
path encoding. In Sections IV–VI, we demonstrate how the
IP model may be completed for the three diverse robotics
problems and introduce many best practices along the way.
We conclude in Section VII. In Appendix (available at
https://arxiv.org/abs/1902.02652), we provide
a guidance to IP implementation.

II. PRELIMINARIES

A. Path-Based Optimization Problems

For stating path-based optimization problems, we adopt
the standard graph-theoretic encoding of paths. Consider a
connected undirected graph G(V,E) with vertex set V and
edge set E. For vi ∈ V , let N(vi) = {vj | (vi, vj) ∈ E}
be the neighborhood of vi. For a robot with initial and goal
vertices xI , xG ∈ V , a path is defined as a sequence of
vertices P = (p0, . . . , pT) satisfying: (i) p0 = xI ; (ii) pT =
xG; (iii) ∀1 ≤ t ≤ T , pt−1 = pt or (pt−1, pt) ∈ E. For
n robots with their initial and goal configurations given as

XI = {xI
1, . . . , x

I
n} and XG = {xG

1 , . . . , x
G
n }, the paths are

then P = {P1, . . . , Pn}, where Pi = (p0i , . . . , p
T
i). These

paths are not necessarily collision-free. We now outline three
diverse classes of path-based optimization problems.
1) Multi-Robot Path Planning (MPP): The main task in

multi-robot path planning (MPP) is routing robots to their
goals while avoiding robot-robot collisions, which happen
when two robots meet at a vertex or an edge. Note that the
graph-theoretic formulation already considers static obsta-
cles. For P to be collision-free, ∀1 ≤ t ≤ T , Pi, Pj ∈ P
must satisfy: (i) pti ̸= ptj ; (ii) (pt−1

i , pti) ̸= (ptj , p
t−1
j). The

objective for MPP is to minimize the makespan T , which is
the time for all the robots to reach the goal vertices.

In this paper, we also introduce a practical MPP gen-
eralization that allows partial solutions, i.e., only k ≤ n
robots are required to reach their pre-specified goals. This
formulation models diminishing reward scenarios where the
payoff stops accumulating after a certain amount of targets
are reached. Here, the ending vertices for the other (n− k)
paths can be arbitrary vertices in V . Note that P must still be
collision-free. Being more general, the problem is also much
more difficult to solve. We note that this setting is different
from the case where the robots are indistinguishable, which
is much simpler and admits fast polynomial time algorithms.

Problem 1 (Generalized Time-Optimal MPP). Given
⟨G,XI , XG, k⟩, find a collision-free path set P that routes
at least k robots to the goals and minimizes T .

xG
2

xI
1

xI
2, x

G
1

Fig. 1. A MPP example with V and E colored in black. When k = n = 2,
a 3 step collision-free min-makespan solution requires robot 1 to stay still
in the beginning as robot 2 moves to the middle vertex. When k = 1, the
2 step optimal solution only moves robot 2 to its goal.

An example for (partial) MPP is provided in Fig. 1.
2) Multi-Robot Minimum Constraint Removal (MMCR):

Given a graph (V,E), let an obstacle O ⊂ V be a subset of
vertices in V . Given a finite set of obstacles O = {O1, . . . },
the multi-robot minimum constraint removal problem seeks
a solution P and a set of obstacles to be removed Or ⊂ O,
such that paths in P do not traverse through any obstacles in
O\Or. The objective is to minimize the number of obstacles
to be removed, i.e., |Or|. More formally:

Problem 2 (MMCR). Given ⟨G,XI , XG,O⟩, find P and Or

which minimizes |Or|, and for all Pi ∈ P, O ∈ O\Or, 0 ≤
t ≤ T : pti /∈ O.

An illustration of MMCR is provided in Fig. 2.
3) Reward Collection Problem (RCP): Denote R≥0 as the

set of non-negative real numbers. In a reward collection
problem (RCP), a robot is tasked to travel on a graph G
for a limited amount of time c∗ ∈ R≥0, while maximizing
the reward it collects1. Such a setup defines two functions: a

1Multi-robot RCP can be readily defined; we omit the such discussions
given the already extensive multi-robot coverage and the page limit.

https://arxiv.org/abs/1902.02652

(a) (b)

(c) (d)
Fig. 2. A MMCR example. (a) The (gray) square grid G and 5 obstacles
colored in red, blue, green, orange and purple. G is not drawn in the other
sub-graphs for better visibility. (b) An optimal solution which removes the
blue obstacle when n = 1. The dashed line shows a feasible path for the
robot to move from its start (the circle) to the goal (the black dot). An
alternative optimal solution is to remove the green obstacle. (c) The only
optimal solution when n = 2. (d) An optimal solution when n = 3;
alternative optimal solutions are also avaliable.

cost function C : P → R≥0 specifies the time already spent,
and a reward function R : P → R≥0 tracks the reward
collected along P . Obviously, time here may be replaced by
other types of bounded resources, e.g., fuel.

Problem 3 (RCP). Given ⟨G, xI , xG, C,R, c∗⟩, find P that
maximize R(P) under the constraint C(P) ≤ c∗,

We work with two variations of RCP in this paper: the
quadratic correlated orienteering problem (QCOP) and the
optimal tourist problem (OTP).

In a Quadratic Correlated Orienteering Problem (QCOP),
each vertex vi ∈ V is associated with a reward ri ∈ R≥0.
If vi ∈ P , not only ri but also partial rewards from vertices
in N(vi) are collected if P does not contain these vertices.
Denote the correlated weights as {wij = 1/|N(vj)| |vj ∈
N(vi)}, the maximum possible reward collected from vi is
ri+

∑︁
vj∈N(vi)

wijrj . Suppose xi ∈ {0, 1} indicates whether
vi ∈ P , the total reward collected is

RQCOP (P) =

|V |∑︂
i=1

(rixi +
∑︂

vj∈N(vi)

rjwijxi(xj − xi)). (1)

In QCOP, each edge (vi, vj) ∈ E is associated with a time
cost cij ∈ R≥0. The time constraint of QCOP requires that

CQCOP (P) =

T∑︂
t=1

cpt−1,pt ≤ c∗. (2)

In an Optimal Tourist Problem (OTP), the reward collected
at vertex vi ∈ V is described by a non-decreasing function
Ri(ti), where ti is the length of time that the robot spends
at vi. The total reward is then expressed as

ROTP (P) =
∑︂
vi∈P

Ri(ti). (3)

Similar to QCOP, the time constraint of OTP requires that

COTP (P) =

T∑︂
t=1

cpt−1,pt +
∑︂
vi∈P

ti ≤ c∗. (4)

It has been shown that optimal MPP, QCOP, and OTP
are all NP-hard [2], [36], [37]. MMCR is a multi-robot

generalization of the single-robot MCR problem, which is
known to be NP-hard [1]. As a consequence, MMCR is also
computationally intractable.

B. Integer Programming Basics

Integer programming (IP), roughly speaking, addresses a
class of problems that optimize an objective function subject
to integer constraints. A typical IP sub-class is integer linear
programming (ILP). Given a vector x consists of integer
variables, a general ILP model is expressed as:

minimize cTx subject to Ax ≤ b.

Here, c,b are vectors and A is a matrix. In general, solu-
tion to x must contain only integers. Note that the formula-
tion is compatible with equality constraints since an equality
constraint can be interpreted as two inequality constraints.
As will be demonstrated, due to IP’s rather straightforward
formulation, the reduction from path-planning problems to IP
are often not hard to achieve in low polynomial time using
our methodology. Apart from the unsophiscated reductions,
IP is also a well-known fundamental mathematical problem
that has been studied extensively. Thus, an IP model can
often be solved quickly and optimally using solvers like
Gurobi [42], Cplex [43] and GLPK [44].
Remark. As a note on scope, our work studies IP for-
mulations and path-based optimization problems from an
algorithmic perspective. We do not handle execution de-
tails such as workspace discretization, uncertainties, and
communication issues. These items are eventually to be
managed by other parts in the system. For example, with
proper synchronization and feedback based control, solutions
generated by the ILP-based MPP solver [10] can be readily
executed on multi-robot hardware platforms [45].

III. GENERAL METHODOLOGY AND PATH ENCODING

Our methodology for path-based optimization problems
generally follows a straightforward two-step process. In the
first step, a basic IP model is constructed that ensures only
feasible paths are produced. This is the path encoding step.
For example, in the case of a multi-robot path planning prob-
lem, the IP model must produce multiple paths that connect
the desired start and goal configurations. In the second step,
the optimization criteria and additional constraints, e.g., for
collision avoidance, is enforced. In our experience, the path
encoding step has a limited variations whereas the second
step often has more variations and requires some creativity.

In this section, we provide detailed descriptions of two
IP models for encoding paths: a base-graph encoding that
works with the original edge set E, and a time-expanded-
graph encoding that encodes paths on a new graph generated
by making multiple time-stamped copies of the vertex set
V . Feasible assignments to the integer variables in a given
model correspond (in a one-to-one manner) to all possible
paths in the original problem. The optimization step will be
introduced in the next section.
A. Base-Graph Encoding

We define a non-cyclic path as a path P that goes through
any vertex at most once, i.e., ∀0 ≤ i < j ≤ T, pi ̸= pj . Given

⟨G, xI , xG⟩, the base graph encoding introduces a binary
variable xvi,vj for each edge (vi, vj) ∈ E to indicate whether
P uses (vi, vj). The following constraints must be satisfied:∑︂

vi∈N(xI)

xxI ,vi =
∑︂

vi∈N(xG)

xvi,xG = 1; (5)∑︂
vi∈N(xI)

xvi,xI =
∑︂

vi∈N(xG)

xxG,vi = 0; (6)∑︂
vj∈N(vi)

xvi,vj =
∑︂

vj∈N(vi)

xvj ,vi ≤ 1,∀vi ∈ V \{xI , xG}.

(7)
Here, constraint (5) and (6) make P starts from xI and
ends at xG. Constraint (7) ensures that for each vertex, one
outgoing edge is used if and only if an incoming edge is
used. It prevents the path from creating multiple branches,
and also forces each vertex to appear in P at most once.

A solution from this formulation could contain subtours,
which are cycles formed by edges that are disjoint from P
(see Fig. 3). As introduced in [36], these subtours can be
eliminated by creating integer variables 3 ≤ ui ≤ |V | for
each vi ∈ V \{xI , xG}, and adding the following constraint
for each pair of vertices vi, vj ∈ V \{xI , xG}:

ui − uj + 1 ≤ (|V | − 3)(1− xvi,vj). (8)

xI

xG

Fig. 3. Illustration of a subtour in a base-graph encoding formulation. The
blue lines show a feasible path from xI to xG. The green cycle is a possible
undesirable disjoint subtour.

Proposition III.1. Given ⟨G, xI , xG⟩, there exists a bijection
between solutions to the base-graph encoding IP model and
all non-cyclic paths in G from xI to xG.
Proof. (⇒) Given a feasible solution of the base-graph
encoding IP model, a non-cyclic path starts from xI is
constructed by following positive edge variables until reach-
ing xG. The path is guaranteed to be feasible since (i) by
constraint (5) and (6), the path can only start at xI and end
at xG, (ii) by constraint (7) and (8), the path is composed of
non-repetitive vertices in V connected by edges in E.

(⇐) A non-cyclic path P = (p0, . . . , pT) can be translated
to a feasible solution to the IP model by assigning the
corresponding edge variables to 1 and all others to 0. These
values satisfies constraint (5) (6) (7) (8) because P is a
sequence of vertices starts from xI , ends at xG, connected
by edges, and has no subtours.

When xI = xG, we split xI (xG) into two vertices vin, vout
and connect them to all the vertices in N(xI). A path can
then be formulated on the graph with vertex set (V \{xI})∪
{vin, vout}. The resulting path is acyclic in the new graph,
but interpreted as a cycled path in G and contains xI (xG).
B. Time-Expanded-Graph Encoding

This path encoding method uses a time-expanded-graph
instead of the original graph G(V,E). Given a fixed time
horizon T ∈ N, we make T + 1 copies of V , namely
V 0, . . . , V T . Neighboring vertices in adjacent time steps

xI

xG

t = 0 t = 1 t = 2
Fig. 4. The construction of a time-expanded graph. The original graph is
shown on the left, with two vertices connected by an undirected edge. The
time-expanded-graph with T = 2 is shown on the right. Directed edges
(blue and grey dashed lines) are added to the adjacent vertices in the three
copies of V . The feedback edge is shown as an orange dashed line. The
grey edges are removed by reachability tests.

are then connected by directed edges: for 1 ≤ t ≤ T ,
the edge set between V t−1 and V t is {(vt−1

i , vtj)|∀vi ∈
V, vj ∈ N(vi) ∪ {vi}}. We then add a directed feedback
edge connecting xG,T ∈ V T to xI,0 ∈ V 0. An example
is provided in Fig. 4. Similar to base-graph encoding, we
use a binary variable xt

vi,vj to indicate whether (vt−1
i , vtj)

is used. The variable associated with the feedback edge is
x0
xG,xI . By denoting the outgoing (resp. incoming) edges of

vi in this time-expanded graph as N−(vi) (resp. N+(vi)),
∀1 ≤ t ≤ T , constraints (5) (6) (7) are now expressed as:∑︂

vi∈N+(xG)

xT
vi,xG = x0

xG,xI = 1; (9)∑︂
vj∈N−(vi)

xt
vi,vj

=
∑︂

vj∈N+(vi)

xt−1
vj ,vi , ∀vi ∈ V 1 ∪ · · · ∪ V T .

(10)
The representation of a feasible path in this time-expanded

graph is a sequence of directed edges that starts from xI,0,
travel through exactly one vertex in each of V 0, . . . , V T , and
finally goes back to xI,0 uses the feedback edge. Similarly,
a 1-1 solution correspondence exists in this case [10].

Proposition III.2. There is a bijection function between
feasible paths in G with length less than T +1, and feasible
paths in the T -step time-expanded-graph.

In a time-expanded-graph encoding, the length of the path
generated is limited by the time horizon T . The path can
contain any vertex for multiple times. The number of vari-
ables in the time-expanded-graph encoding can be reduced
by performing reachability tests [10] (see Fig. 4), which
remove edges not reachable from xI or xG. Reachability
tests do not affect completeness and optimality. Scalability
can be further improved using k-way split [10], a divide-
and-conquer heuristic that splits a problem into smaller sub-
problems. The sub-problems require much shorter time to
solve together than solving a single large problem.

C. Basic Extensions of the Two Encoding

Both encoding can handle the case when a robot has
multiple initials or goals to choose. In base-graph encoding,
this is done by adding one virtual vertex, and connecting it
to all possible initials and goals. In the time-expanded-graph
encoding formulation, the same objective can be achieved by
adding multiple feedback edges.

Both encoding can be extended to the multi-robot sce-
nario by making one copy of all variables for each robot.
Although it is tricky for the base graph encoding to avoid
all mutual collisions since it does not take the time domain

into account, as we will show in the next section, with
additional constraints, the time-expanded-graph encoding is
able to generate true collision-free paths.

Here we note that our IP models are solved using Gurobi
Solver [42]. All experiments are executed on an Intel R⃝

CoreTM i7-6900K CPU with 32GB RAM at 2133MHz.

IV. TIME-OPTIMAL MULTI-ROBOT PATH PLANNING

A high-performance time-optimal MPP IP model was
proposed in [10] using the time-expanded-graph encoding.
We review this baseline model and introduce two generic new
heuristics for trimming the state space. We then introduce an
updated IP model for MPP with partial solution.

The basic method [10] first calculates an underestimated T
by routing each robot to its goal without considering robot-
robot collisions. This is achieved by running n A* searches
and taking the maximum path length. Then, an IP model is
built and the feasibility is checked: for each robot 1 ≤ r ≤ n,
a set of variables {xt

vi,vj} satisfying constraints (9) and (10)
is created and renamed as {xt

r,vi,vj}. The method tries to
find a feasible variable value assignment with the following
additional constraints: for all 0 ≤ t ≤ T, vi ∈ V t,

n∑︂
r=1

∑︂
vj∈N+(vi)

xt
r,vj ,vi ≤ 1, (11)

n∑︂
r=1

xt
r,vi,vj +

n∑︂
r=1

xt
r,vj ,vi ≤ 1,∀vj ∈ N+(vi). (12)

Here, constraint (11) prevents robots from simultaneously
occupying the same vertex, while constraint (12) eliminates
head-to-head collisions on edges in E. By Proposition III.2,
an infeasible model indicates that no feasible solution exists
in makespan T . Then, with T incremented by 1, the model
is re-constructed and solved again. Once the model has a
feasible solution, a solution to MPP with optimal makespan
is then extracted.
Effective new heuristics. Intuitively, the time to solve an IP
is often negatively correlated with the number of variables
in the model. This suggests that the computation time may
be reduced if we remove vertices in V 0, . . . , V T which are
not likely to be part of the solution path. Recall that when
calculating the underestimated makespan, for each robot
r, a shortest path P ∗

r from xI
r to xG

i is obtained. When
the graph is not densely occupied, we are likely to find a
solution by make some minor modifications to these initial
candidate paths. Building on the analysis, we propose two
new heuristics, based on reachability analysis, to reduce the
number of variables in the IP model.

1) Tubular Neighborhood: Fixing some parameter ht ∈ N,
for robot r, the time-expanded-graph includes vi only if vi is
within ht distance from some vertices in P ∗

r . The reachability
region in this case mimics a tube around the candidate path.
The rationale behind the heuristic is that, in general, the
actual path a robot takes is not likely to significantly deviate
from the reference path P ∗

r .

2) Reachability Sphere: Fixing some parameter hs ∈ N,
for robot r, the time-expanded-graph includes vi only if vi

is within hs distance from the ⌊t|P ∗
r |/T ⌋-th element in P ∗

r .
The basic principle behind the reachability sphere heuristic
is similar to that for the tubular neighborhood heuristic.

The effect of tubular neighborhood and reachability sphere
heuristics are visualized on the left and right of Fig. 5,
respectively. In this example, we visualize the variables when
t = 0.4T and assume for robot r, |P ∗

r | = 0.7T . The dashed
straight lines indicate P ∗

r , with their left ends xI
r and right

ends xG
r . For clearness, all other vertices are not shown.

If no heuristic is applied, V t contains all the vertices in
the entire canvas. Through reachability tests, a vertex is
removed from V t if it is not reachable from xI in time t,
or from xG in time T − t. Reachability tests remove all the
vertices not in the intersection of the two arcs centered at xI

and xG, making V t contain only the vertices in the region
with red boundaries. The tubular neighborhood heuristic with
ht = 0.12T on the left sub-graph and the reachability sphere
heuristic with hs = 0.18T on the right then removes all the
vertices out of the shapes with blue borders. The vertices
that are copied to V t are colored in orange.

xI xG xI xG

Fig. 5. Illustration of tubular neighborhood (left) and reachability sphere
(right) heuristics.

We evaluate how the heuristics influence the performance
using randomly generated test cases on a 24 × 18 grid. As
it is shown in Fig. 6, the number of variables is reduced by
more than 70% when ht ≤ 2 or hs ≤ 2; the computation
time is reduced by at least 60% when n ≤ 60. In the best
case (the red curve), the reduction in computation time is
over ten fold, which is very significant. Somewhat to our
surprise, for more than 60 robots, reduced variable count
in the IP model does not always translate to faster solution
time. After digging in further, this seems to be related to how
the Gurobi solver works: we could verify that our heuristics
interfere with Gurobi’s own heuristics when there are too
many robots. We report that the achieved optimality is not
affected by the new heuristics for all the test cases.

50 100
Number of Robots

104

105

106

N
um

be
ro

fV
ar

ia
bl

es

50 100
Number of Robots

100

101

102

C
om

pu
ta

tio
n

Ti
m

e
(s

)

Exact ht = 1 ht = 2 hs = 1 hs = 2

Fig. 6. Evaluation result of the proposed new heuristics for MPP. (left)
The number of vertices in the IP models versus n, (right) computation time
of the IP method versus n, with different heuristic parameters. The Exact
entries indicate the original IP method.

Partial Solutions. To accommodate the k ≤ n constraint in

Problem 1, we prioritize using the individual path lengths
in determining the time expansion parameter T . That is, we
pick T to the maximum length of the shortest k robot paths
out of the n paths. For the rest of the n − k robots, we
allow their goals in the IP model to be in a neighborhood of
their respective specified goals. This is achieved through the
heuristics of adding additional feedback edges (see Fig. 7)
for these (n− k) robots. Note that now the reachability test
should not be applied to the goals of these (n− k) robots.

xI

xG

Fig. 7. Multiple feedback edges for the same example in Fig. 4 visualized
using the same color and dash style.

Fig. 8. An example of 24×18 grid with 10% vertices removed (visualized
as black cells) and 100 randomly placed robots (visualized as blue circles).

20 40 60 80 100
Number of Robots

0

10

20

C
om

pu
ta

tio
n

Ti
m

e
(s

) Exact
k = 0.8n
k = 0.6n
k = 0.4n
k = 0.2n

Fig. 9. Computation time of the MPP partial solver versus n, with different
k values. The Exact entry indicates the original IP method.

In evaluating the general MPP solver, we use a 24 × 18
grid with 10% vertices removed to simulate obstacles (see
Fig. 8 for an example). As shown in Fig. 9, running time is
significantly reduced when we only need a partial solution.
Support for a non-fully labeled problem. We can also
adapt the existing IP model to resolve the problem in which a
group of robots are indistinguishable, i.e., they are assigned a
set of goals without individual targets. The final configuration
of these robots in a solution can be an arbitrary permutation
of the goals. This is also known as the k-colored motion
planning problem [46]. To update the model, suppose a group
of m robots share m goal vertices, we create a single copy of
{xt

vi,vj
} for this group, and add m2 feedback edges between

all the pairs of initials and goals. The summation of the
variables associated with these edges is set to be m.

V. MULTI-ROBOT MINIMUM CONSTRAINT REMOVAL

As implicitly stated in [1], the state space of MCR can be
reduced by building a graph reflecting the coverage of differ-
ent combinations of obstacles. Here, we explicitly construct
this graph GMCR(VMCR, EMCR) such that each element in

VMCR is a set of connected vertices that exist in the same set
of obstacles. Specifically, Vi ∈ VMCR satisfies the following
constraints: (i) Vi ⊂ V ; (ii) ∀vj , vk ∈ Vi, O ∈ O, vj ∈ O
if and only if vk ∈ O; (iii) ∀vj , vk ∈ Vi, there exists a
path P from vj to vk, and formed by elements in Vi. Under
this definition,

⋃︁
Vi∈VMCR

Vi = V , and ∀Vi, Vj ∈ VMCR,
Vi ∩ Vj = ∅. In our implementation, VMCR is built by
iteratively selecting a random v ∈ V and run breadth first
search from v until all the leaf nodes collide with different
sets of obstacles from v. An undirected edge (Vi, Vj) is added
to the edge set EMCR if there exist vi ∈ Vi and vj ∈ Vj , such
that (vi, vj) ∈ E. An example GMCR is shown in Fig. 10.

Fig. 10. GMCR for the problem instance in Fig 2 illustrated using black
dots and black lines. Note that each vertex can be considered as a high level
abstraction of a set of vertices in a more detailed roadmap (i.e. G).

For each robot 1 ≤ r ≤ n, we denote V I
r ∈ VMCR as the

set contains xI
r and V G

r ∈ VMCR as the set contains xG
r . We

assume V I
r ̸= V G

r since otherwise the set of obstacles that
need to be removed for robot r is trivially {O ∈ O|O∩V I

r ̸=
∅}. With slight abuse of notation, we denote N(Vi) as the
neighborhood of Vi. Following base-graph encoding, for each
robot 1 ≤ r ≤ n, a set of variables {xVi,Vj

} satisfying
constraints (5) (6) (7) are created and renamed as {xr,Vi,Vj

}.
In the rest of this section, unless otherwise stated, a path

refers to a path in GMCR. We introduce binary variables
{xVi

|Vi ∈ VMCR} to indicate if at least one of n paths
contains Vi, and {xOi

|Oi ∈ O} to indicate whether Oi must
be removed to make the paths do not collide with obstacles.
The constraints for these variables are:

L xVi ≥
n∑︂

r=1

∑︂
Vj∈N(Vi)

(xr,Vi,Vj + xr,Vj ,Vi); (13)

L xOi
≥

∑︂
Vi∈VMCR,Vi⊂Oi

xVi
. (14)

Here, L is a large constant. Constraint (13) assigns positive
values to xVi

only if Vi is in any path. Constraint (14) ensures
that ∀Vi ∈ VMCR, if xVi

= 1, then {xOj
|Oj ∈ O, Vi ⊂ Oj}

are all assigned positive values. The objective for this model
is to minimize

∑︁
Oi∈O xOi

, i.e., the number of obstacles to
be removed. Note that subtour elimination is unnecessary in
MMCR since neither a subtour nor duplicate elements in a
path reduce the objective value. Robot-robot collision is not
considered (but can be if needed). After solving this IP, the
obstacles to be removed can be extracted from the model,
after which an actual robot trajectory can be found easily.

We compare the IP approach to two search-based solvers
from [1]. For MCR, a search node in these solvers is a tuple
⟨v,Or⟩, where v is the robot’s current location, and Or is the
set of all the obstacles encountered from v tracing back to
xI . Different pruning methods are then applied to reduce the

search space, giving rise to exact and greedy solvers. Both
the exact and greedy solvers can be extended to MMCR via
maintaining locations for all robots in the search state.

The comparison results are given in Fig. 11. The left figure
is for MCR evaluated on a 100× 100 grid and the right one
for MMCR with n = 2 on a 10× 10 grid. All test cases are
generated by randomly placing arbitrary sized rectangular
obstacles in the grids.

100 200
Number of Obstacles

10−1

100

101

102

103

C
om

pu
ta

tio
n

Ti
m

e
(s

)

50 100
Number of Obstacles

10−2

10−1

100

101

C
om

pu
ta

tio
n

Ti
m

e
(s

)

IP Exact Greedy

Fig. 11. Computation time of different MCR and MMCR methods versus
the number of obstacles. The left subfigure shows the result for MCR, while
the right subfigure shows the result for MMCR. The Exact and Greedy
entries indicate the exact and greedy search-based solvers, respectively.

We observe that the exact IP method runs slower than
the exact discrete search-based method for MCR but signif-
icantly outperforms both search-based methods on MMCR.
We believe the reason is that with a single robot in a grid-
based environment, the problem is not “complex” enough for
IP-based method to utilize its structural advantages. Further
evaluation shows that our IP method can solve a problem
on a 50 × 50 grid with 100 robots and 100 obstacles in
around 5 seconds, while the search-based solvers would fail
to complete in such a case.

As may be observed in Fig. 11, left, the computation time
does not grow monotonically as the number of obstacles
increases, even though the data is already averaged over 20
instances. This is due to the NP-hardness of MCR and there
could be some random instances that are particularly hard to
solve. However, note that the relative performance difference
between methods remains consistent.

VI. REWARD COLLECTION PROBLEMS

In this section, we examine some complex reward collec-
tion problems (RCPs) to further demonstrate the flexibility
of our IP methodology. The initial work on QCOP [36]
and OTP [37] used base-graph encoding. We show here
these problems can also be solved using time-expanded-
graph encoding to gain better computational performance.

In QCOP, the initial and goal vertices can be freely chosen
from fixed sets XI ⊂ V,XG ⊂ V . To handle this, we create
a virtual vertex u and add directed edges from u to all the
candidacy initial vertices in V 0, and from all the possible
goal vertices in V 0, . . . , V T to u. Specifically, these directed
edges are added to the time-expanded-graph: {(u, v0)|v ∈
XI} ∪ {(vt, u)|v ∈ XG, 0 ≤ t ≤ T}. For a fixed time
horizon T , constraint (9) is now expressed as∑︂

vi∈N−(u)

x0
u,vi =

T∑︂
t=0

∑︂
vi∈N+(u)

xt
vi,u = 1. (15)

Using a binary variable xvi to indicate whether vi ∈ V is in
the path, the constraint to assign a correct value to xvi is

xvi ≤
T∑︂

t=0

∑︂
vj∈N+(vt

i)

xt
vj ,vi . (16)

With binary variables indicating whether vertices and edges
are used, the objective value (1) (to be maximized) is
directly encoded into the IP model. The time consumption
requirement (2) is added as a constraint.

The time-expanded model for OTP is similar to QCOP
with one extra set of constraints x0

u,vi =
∑︁T

t=0 x
t
vi,u,∀vi ∈

XI to ensure xI = xG, and an additional set of non-integer
non-negative variables ti to indicate how long the robot stays
at vi. The constraint ti ≤ L xvi ensures that ti is a positive
value only if vi is in the path where L is a large constant.

We use variable size grid settings similar to those from
[36], [37] for evaluation. We let XI contain 2 randomly
selected vertices. In QCOP, xG = V ; a random reward
weight r is assigned to each vertex. In OTP, we assume
Ri(ti) are linear functions with random positive coefficients.
We observe from the result (Fig. 12) that the time-expanded-
graph encoding is always competitive and performs signifi-
cantly better as the size of the problem gets larger.

20 40 60
Number of Vertices

0

50

100

C
om

pu
ta

tio
n

Ti
m

e
(s

)

20 40 60
Number of Vertices

0

20

40

C
om

pu
ta

tio
n

Ti
m

e
(s

)
time-expanded-graph encoding base-graph encoding

Fig. 12. Computation time of the two path encoding methods versus the
number of vertices in G: (left) QCOP result, the fluctuation for base-graph
encoding is due to its sensitivity to grid aspect ratio; (right) OTP result.

VII. DISCUSSION AND CONCLUSION

In this work, building on previous efforts, we propose a
two-step integer programming (IP) methodology for solving
path-based optimization problems. The approach is applica-
ble to a variety of computationally hard problems in robotics
involving filtering through a huge set of candidate paths.
Although simple to use, harnessing the power of heavily
optimized solvers, the IP method comes with performance
that is often competitive or even beats conventional methods.
We point out two major strengths that come with the IP
solution method: (i) due to its ease of use, the time that is
required for developing a solution can be greatly reduced,
and (ii) the method can provide reference optimal solutions
to help speed up the design of conventional algorithms. With
the study, which provides principles and many best practices
for IP model construction for path-based optimization, we
hope to promote the adoption of the method as a first choice
when practitioners in robotics attack a new problem.

REFERENCES

[1] K. Hauser, “The minimum constraint removal problem with three
robotics applications,” The International Journal of Robotics Research,
vol. 33, no. 1, pp. 5–17, 2014.

[2] J. Yu, “Intractability of optimal multi-robot path planning on planar
graphs,” IEEE Robotics and Automation Letters, vol. 1, no. 1, pp.
33–40, 2016.

[3] G. Dantzig, Linear programming and extensions. Princeton university
press, 2016.

[4] G. L. Nemhauser and L. A. Wolsey, “Integer programming and
combinatorial optimization,” Wiley, Chichester. GL Nemhauser, MWP
Savelsbergh, GS Sigismondi (1992). Constraint Classification for
Mixed Integer Programming Formulations. COAL Bulletin, vol. 20,
pp. 8–12, 1988.

[5] C. E. Miller, A. W. Tucker, and R. A. Zemlin, “Integer programming
formulation of traveling salesman problems,” Journal of the ACM
(JACM), vol. 7, no. 4, pp. 326–329, 1960.

[6] T. C. Hu, “Integer programming and network flows,” WISCONSIN
UNIV MADISON DEPT OF COMPUTER SCIENCES, Tech. Rep.,
1969.

[7] C. Morefield, “Application of 0-1 integer programming to multitarget
tracking problems,” IEEE Transactions on Automatic Control, vol. 22,
no. 3, pp. 302–312, 1977.

[8] T. Schouwenaars, B. De Moor, E. Feron, and J. How, “Mixed integer
programming for multi-vehicle path planning,” in Control Conference
(ECC), 2001 European. IEEE, 2001, pp. 2603–2608.

[9] J. Peng and S. Akella, “Coordinating multiple robots with kinody-
namic constraints along specified paths,” The International Journal of
Robotics Research, vol. 24, no. 4, pp. 295–310, 2005.

[10] J. Yu and S. M. LaValle, “Optimal multi-robot path planning on
graphs: Complete algorithms and effective heuristics,” IEEE Trans-
actions on Robotics, vol. 32, no. 5, pp. 1163–1177, 2016.

[11] H. Ding, G. Reißig, D. Groß, and O. Stursberg, “Mixed-integer
programming for optimal path planning of robotic manipulators,” in
Automation Science and Engineering (CASE), 2011 IEEE Conference
on. IEEE, 2011, pp. 133–138.

[12] S. D. Han, N. M. Stiffler, A. Krontiris, K. E. Bekris, and J. Yu,
“Complexity results and fast methods for optimal tabletop rearrange-
ment with overhand grasps,” The International Journal of Robotics
Research, p. 0278364918780999, 2017.

[13] S. Rodriguez and N. M. Amato, “Behavior-based evacuation plan-
ning,” in Proceedings IEEE International Conference on Robotics &
Automation, 2010, pp. 350–355.

[14] S. Poduri and G. S. Sukhatme, “Constrained coverage for mobile
sensor networks,” in Proceedings IEEE International Conference on
Robotics & Automation, 2004.

[15] B. Smith, M. Egerstedt, and A. Howard, “Automatic generation of per-
sistent formations for multi-agent networks under range constraints,”
ACM/Springer Mobile Networks and Applications Journal, vol. 14,
no. 3, pp. 322–335, June 2009.

[16] D. Fox, W. Burgard, H. Kruppa, and S. Thrun, “A probabilistic ap-
proach to collaborative multi-robot localization,” Autonomous Robots,
vol. 8, no. 3, pp. 325–344, June 2000.

[17] E. J. Griffith and S. Akella, “Coordinating multiple droplets in planar
array digital microfluidic systems,” International Journal of Robotics
Research, vol. 24, no. 11, pp. 933–949, 2005.

[18] D. Rus, B. Donald, and J. Jennings, “Moving furniture with teams of
autonomous robots,” in Proceedings IEEE/RSJ International Confer-
ence on Intelligent Robots & Systems, 1995, pp. 235–242.

[19] J. S. Jennings, G. Whelan, and W. F. Evans, “Cooperative search
and rescue with a team of mobile robots,” in Proceedings IEEE
International Conference on Robotics & Automation, 1997.

[20] R. A. Knepper and D. Rus, “Pedestrian-inspired sampling-based multi-
robot collision avoidance,” in 2012 IEEE RO-MAN: The 21st IEEE
International Symposium on Robot and Human Interactive Communi-
cation. IEEE, 2012, pp. 94–100.

[21] P. Surynek, “Towards optimal cooperative path planning in hard
setups through satisfiability solving,” in Proceedings 12th Pacific Rim
International Conference on Artificial Intelligence, 2012.

[22] E. Erdem, D. G. Kisa, U. Öztok, and P. Schueller, “A general formal
framework for pathfinding problems with multiple agents.” in AAAI,
2013.

[23] T. Standley and R. Korf, “Complete algorithms for cooperative
pathfinding problems,” in Proceedings International Joint Conference
on Artificial Intelligence, 2011, pp. 668–673.

[24] G. Wagner and H. Choset, “Subdimensional expansion for multirobot
path planning,” Artificial Intelligence, vol. 219, pp. 1–24, 2015.

[25] E. Boyarski, A. Felner, R. Stern, G. Sharon, O. Betzalel, D. Tolpin,
and E. Shimony, “Icbs: The improved conflict-based search algorithm
for multi-agent pathfinding,” in Eighth Annual Symposium on Combi-
natorial Search, 2015.

[26] H. Ma, G. Wagner, A. Felner, J. Li, T. K. S. Kumar, and
S. Koenig, “Multi-agent path finding with deadlines,” in Proceedings
of the Twenty-Seventh International Joint Conference on Artificial
Intelligence, IJCAI-18. International Joint Conferences on Artificial
Intelligence Organization, 7 2018, pp. 417–423. [Online]. Available:
https://doi.org/10.24963/ijcai.2018/58

[27] T. Lozano-Pérez and L. P. Kaelbling, “A constraint-based method
for solving sequential manipulation planning problems,” in Intelligent
Robots and Systems (IROS 2014), 2014 IEEE/RSJ International Con-
ference on. IEEE, 2014, pp. 3684–3691.

[28] N. T. Dantam, Z. K. Kingston, S. Chaudhuri, and L. E. Kavraki,
“An incremental constraint-based framework for task and mo-
tion planning,” The International Journal of Robotics Research, p.
0278364918761570, 2018.

[29] A. Krontiris and K. E. Bekris, “Efficiently solving general rearrange-
ment tasks: A fast extension primitive for an incremental sampling-
based planner,” in Robotics and Automation (ICRA), 2016 IEEE
International Conference on. IEEE, 2016, pp. 3924–3931.

[30] L. I. R. Castro, P. Chaudhari, J. Tumova, S. Karaman, E. Frazzoli,
and D. Rus, “Incremental sampling-based algorithm for minimum-
violation motion planning,” in Decision and Control (CDC), 2013
IEEE 52nd Annual Conference on. IEEE, 2013, pp. 3217–3224.

[31] C. R. Garrett, T. Lozano-Pérez, and L. P. Kaelbling, “Ffrob: An
efficient heuristic for task and motion planning,” in Algorithmic
Foundations of Robotics XI. Springer, 2015, pp. 179–195.

[32] A. Krontiris and K. Bekris, “Computational tradeoffs of search
methods for minimum constraint removal paths,” in Eighth Annual
Symposium on Combinatorial Search, 2015.

[33] E. Eiben, J. Gemmell, I. A. Kanj, and A. Youngdahl, “Improved results
for minimum constraint removal.” in AAAI, 2018.

[34] E. Lawler, J. Lenstra, A. Rinnooy Kan, and D. Shmoys, “The traveling
salesman problem. 1985,” John Wiley&Sons, Essex, England, 1985.

[35] P. Vansteenwegen, W. Souffriau, and D. Van Oudheusden, “The
orienteering problem: A survey,” European Journal of Operational
Research, vol. 209, no. 1, pp. 1–10, 2011.

[36] J. Yu, M. Schwager, and D. Rus, “Correlated orienteering problem
and its application to persistent monitoring tasks,” IEEE Transactions
on Robotics, vol. 32, no. 5, pp. 1106–1118, 2016.

[37] J. Yu, J. Aslam, S. Karaman, and D. Rus, “Optimal tourist problem and
anytime planning of trip itineraries,” arXiv preprint arXiv:1409.8536,
2014.

[38] P. Tokekar, J. Vander Hook, D. Mulla, and V. Isler, “Sensor planning
for a symbiotic uav and ugv system for precision agriculture,” IEEE
Transactions on Robotics, vol. 32, no. 6, pp. 1498–1511, 2016.

[39] K.-C. Ma, L. Liu, and G. S. Sukhatme, “An information-driven and
disturbance-aware planning method for long-term ocean monitoring,”
in Intelligent Robots and Systems (IROS), 2016 IEEE/RSJ Interna-
tional Conference on. IEEE, 2016, pp. 2102–2108.

[40] C. Papachristos, K. Alexis, L. R. G. Carrillo, and A. Tzes, “Distributed
infrastructure inspection path planning for aerial robotics subject
to time constraints,” in Unmanned Aircraft Systems (ICUAS), 2016
International Conference on. IEEE, 2016, pp. 406–412.

[41] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide
to the Theory of NP-Completeness. W. H. Freeman, 1979.

[42] Gurobi Optimization, Inc., “Gurobi optimizer reference manual,”
2014. [Online]. Available: http://www.gurobi.com

[43] “Ibm ilog cplex optimization studio.” [Online]. Available: https:
//www.ibm.com/analytics/cplex-optimizer

[44] “Gnu linear programming kit.” [Online]. Available: https://www.gnu.
org/software/glpk/

[45] S. D. Han, E. J. Rodriguez, and J. Yu, “Sear: A polynomial-time multi-
robot path planning algorithm with expected constant-factor optimality
guarantee,” in 2018 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). IEEE, 2018, pp. 1–9.

[46] K. Solovey and D. Halperin, “k-color multi-robot motion planning,” in
Proceedings Workshop on Algorithmic Foundations of Robotics, 2012.

https://doi.org/10.24963/ijcai.2018/58
http://www.gurobi.com
https://www.ibm.com/analytics/cplex-optimizer
https://www.ibm.com/analytics/cplex-optimizer
https://www.gnu.org/software/glpk/
https://www.gnu.org/software/glpk/

	introduction
	Preliminaries
	Path-Based Optimization Problems
	Multi-Robot Path Planning (MPP)
	Multi-Robot Minimum Constraint Removal (MMCR)
	Reward Collection Problem (RCP)

	Integer Programming Basics

	General Methodology and Path Encoding
	Base-Graph Encoding
	Time-Expanded-Graph Encoding
	Basic Extensions of the Two Encoding

	Time-Optimal Multi-Robot Path Planning
	Tubular Neighborhood
	Reachability Sphere

	Multi-Robot Minimum Constraint Removal
	Reward Collection Problems
	Discussion and Conclusion
	References

