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Abstract

Deep Neural Networks (DNNs) typically require massive

amount of computation resource in inference tasks for computer

vision applications. Quantization can significantly reduce DNN

computation and storage by decreasing the bitwidth of network

encodings. Recent research affirms that carefully selecting the

quantization levels for each layer can preserve the accuracy

while pushing the bitwidth below eight bits. However, without

arduous manual effort, this deep quantization can lead to signifi-

cant accuracy loss, leaving it in a position of questionable utility.

As such, deep quantization opens a large hyper-parameter space

(bitwidth of the layers), the exploration of which is a major chal-

lenge. We propose a systematic approach to tackle this problem,

by automating the process of discovering the quantization levels

through an end-to-end deep reinforcement learning framework

(ReLeQ). We adapt policy optimization methods to the problem

of quantization, and focus on finding the best design decisions

in choosing the state and action spaces, network architecture

and training framework, as well as the tuning of various hyper-

paramters. We show how ReLeQ can balance speed and quality,

and provide an asymmetric general solution for quantization

of a large variety of deep networks (AlexNet, CIFAR-10, LeNet,

MobileNet-V1, ResNet-20, SVHN, and VGG-11) that virtually

preserves the accuracy (≤ 0.3% loss) while minimizing the com-

putation and storage cost. With these DNNs, ReLeQ enables

conventional hardware to achieve 2.2× speedup over 8-bit ex-

ecution. Similarly, a custom DNN accelerator achieves 2.0×

speedup and energy reduction compared to 8-bit runs. These

encouraging results mark ReLeQ as the initial step towards

automating the deep quantization of neural networks.

1. Introduction

Deep Neural Networks (DNNs) have made waves across a

variety of domains, from image recognition [16] and synthesis,

object detection [25, 28], natural language processing [7],

medical imaging, self-driving cars, video surveillance, and

personal assistance [9, 17, 11, 18]. DNN compute efficiency

has become a major constraint in unlocking further applications

and capabilities, as these models require rather massive amounts

of computation even for a single inquiry. One approach to

reduce the intensity of the DNN computation is to reduce the

complexity of each operation. To this end, quantization of neural

networks provides a path forward as it reduces the bitwidth of

the operations as well as the data footprint [13, 27, 14]. Albeit

alluring, quantization can lead to significant accuracy loss if not

employed with diligence. Years of research and development

has yielded current levels of accuracy, which is the driving force

behind the wide applicability of DNNs nowadays. To prudently

preserve this valuable feature of DNNs, accuracy, while

benefiting from quantization the following two fundamental

problems need to be addressed. (1) learning techniques need

to be developed that can train or tune quantized neural networks

given a level of quantization for each layer. (2) Algorithms need

to be designed that can discover the appropriate level of quanti-

zation for each layer while considering the accuracy. This paper

takes on the second challenge as there are inspiring efforts that

have developed techniques for quantized training [32, 33, 22].

This paper builds on the algorithmic insight that the bitwidth

of operations in DNNs can be reduced below eight bits without

compromising their classification accuracy. However, this

possibility is manually laborious [20, 21, 30] as to preserve

accuracy, the bitwidth varies across individual layers and

different DNNs [32, 33, 19, 22]. Each layer has a different

role and unique properties in terms of weight distribution.

Thus, intuitively, different layers display different sensitivity

towards quantization. Over-quantizing a more sensitive layer

can result in stringent restrictions on subsequent layers to

compensate and maintain accuracy. Nonetheless, considering

layer-wise quantization opens a rather exponentially large

hyper-parameter space, specially when quantization below

eight bits is considered. For example, ResNet-20 exposes a

hyper-parameter space of size 8l
=820

>1018, where l=20 is

the number of layers and 8 is the possible quantization levels.

This exponentially large hyper-parameter space grows with

the number of the layers making it impractical to exhaustively

assess and determine the quantization level for each layer.

To that end, this paper sets out to automate effectively
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navigating this hyper-parameter space using Reinforcement

Learning (RL). We develop an end-to-end framework, dubbed

ReLeQ, that exploits the sample efficiency of the Proximal

Policy Optimization [26] to explore the quantization hyper-

parameter space. The RL agent starts from a full-precision

previously trained model and learns the sensitivity of final

classification accuracy with respect to the quantization level of

each layer, determining its bitwidth while keeping classification

accuracy virtually intact. Observing that the quantization

bitwidth for a given layer affects the accuracy of subsequent lay-

ers, our framework implements an LSTM-based RL framework

which enables selecting quantization levels with the context

of previous layers’ bitwidths. Rigorous evaluations with a

variety of networks (AlexNet, CIFAR, LeNet, SVHN, VGG-11,

ResNet-20, and MobileNet) shows that ReLeQ can effectively

find heterogenous deep quantization levels that virtually

preserve the accuracy (≤0.3% loss) while minimizing the

computation and storage cost. The results (Table 2) show that

there is a high variance in quantization levels across the layers of

these networks. For instance, ReLeQ finds quantization levels

that average to 6.43 bits for MobileNet, and to 2.81 bits for

ResNet-20. With the seven benchmark DNNs, ReLeQ enables

conventional hardware [5] to achieve 2.2× speedup over 8-bit

execution. Similarly, a custom DNN accelerator [15] achieves

2.0× speedup and 2.0× energy reduction compared to 8-bit runs.

These results suggest that ReLeQ takes an effective first step

towards automating the deep quantization of neural networks.

2. Related Work

ReLeQ is the initial step in utilizing reinforcement learning

to automatically find the level of quantization for the layers

DNNs such that their classification accuracy is preserved.

As such, it relates to the techniques that given a level of

quantization, train a neural network or develop binarized

DNNs. Furthermore, the line of research that utilizes RL

for hyper-parameter discovery and tuning inspires ReLeQ.

Nonetheless, ReLeQ, uniquely and exclusively, offers an

RL-based approach to determine the levels of quantization.

Training algorithms for quantized neural networks. There

have been several techniques [32, 33, 22] that train a neural

network in a quantized domain after the bitwidth of the layers

is determined manually. DoReFa-Net [32] trains quantized con-

volutional neural networks with parameter gradients which are

stochastically quantized to low bitwidth numbers before they are

propagated to the convolution layers. [22] introduces a scheme

to train networks from scratch using reduced-precision activa-

tions by decreasing the precision of both activations and weights

and increasing the number of filter maps in a layer. [33] per-

forms the training phase of the network in full precision, but for

inference uses ternary weight assignments. For this assignment,

the weights are quantized using two scaling factors which are

learned during training phase. PACT [6] introduces a quantiza-

tion scheme for activations, where the variable α is the clipping

level and is determined through a gradient descent based method.

ReLeQ is an orthogonal technique with a different objective:

automatically finding the level of quantization that preserves ac-

curacy and can potentially use any of these training algorithms.

Binarized neural networks. Extensive work, [13, 24, 19]

focuses on binarized neural networks, which impose accuracy

loss but reduce the bitwidth to lowest possible level. In

BinaryNet [12], an extreme case, a method is proposed for

training binarized neural networks which reduce memory size,

accesses and computation intensity at the cost of accuracy.

XNOR-Net [24] leverages binary operations (such as XNOR) to

approximate convolution in binarized neural networks. Another

work [19] introduces ternary-weight networks, in which the

weights are quantized to -1, 0, +1 values by minimizing the Eu-

clidian distance between full-precision weights and their ternary

assigned values. ReLeQ aims to utilize the levels between binary

and 8 bits to avoid loss of accuracy while offering automation.

Reinforcement learning for hyper-parameter tuning. Few

works leverage RL in the context of hyper-parameter search.

Two of these inspiring efforts [34, 3] use RL to determine the

architecture of the neural network and its kernels. Another re-

search [10] employs an RL policy gradient method to automati-

cally find the compression ratio for different layers of a network.

Techniques for selecting quantization levels. Recent work

ADMM [31] runs a binary search to minimize the total square

quantization error in order to decide the quantization levels for

the layers. Then, they use an iterative optimization technique

for fine-tuning. NVIDIA also released an automatic mixed

precision (AMP) [23] which employs mixed precision during

training by automatically selecting between two floating point

(FP) representations (FP16 or FP32).

There is a concurrent work HAQ [29] which also uses RL in

the context of quantization. The following highlights some of the

differences. ReLeQ uses a unique reward formulation and shap-

ing that enables simultaneously optimizing for two objectives

(accuracy and reduced computation with lower-bitwidth) within

a unified RL process. In contrast, HAQ utilizes accuracy in the

reward formulation and then adjusts the RL solution through

an approach that sequentially decreases the layer bitwidths to

stay within a predefined resource budget. This approach also

makes HAQ focused more towards a specific hardware platform

whereas we are after a strategy than can generalize. Addi-

tionally, we also provide a systemic study of different design

decisions, and have significant performance gain across diverse

well known benchmarks. The initial version of our work [2],

predates HAQ, and it is the first to use RL for quantization1.

3. RL for Deep Quantization of DNNs

Overview. ReLeQ trains a reinforcement learning agent that

determines the level of deep quantization (below 8 bits) for each

1We have disclosed our arXiv paper to the program committee chairs while

anonymizing it in the references.
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