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ABSTRACT

Fairness is increasingly recognized as a critical component
of machine learning systems. However, it is the underlying
data on which these systems are trained that often reflect
discrimination, suggesting a database repair problem. Ex-
isting treatments of fairness rely on statistical correlations
that can be fooled by statistical anomalies, such as Simp-
son’s paradox. Proposals for causality-based definitions of
fairness can correctly model some of these situations, but
they require specification of the underlying causal models.
In this paper, we formalize the situation as a database repair
problem, proving sufficient conditions for fair classifiers in
terms of admissible variables as opposed to a complete causal
model. We show that these conditions correctly capture sub-
tle fairness violations. We then use these conditions as the
basis for database repair algorithms that provide provable
fairness guarantees about classifiers trained on their training
labels. We evaluate our algorithms on real data, demonstrat-
ing improvement over the state of the art onmultiple fairness
metrics proposed in the literature while retaining high utility.
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1 INTRODUCTION

In 2014, a team of machine learning experts from Amazon
Inc. began work on an automated system to review job ap-
plicants’ resumes. According to a recent Reuters article [12],
the experimental system gave job candidates scores ranging
from one to five and was trained on 10 years of recruiting
data from Amazon. However, by 2015 the team realized that
the system showed a significant gender bias towards male
over female candidates because of historical discrimination
in the training data. Amazon edited the system to make it
gender agnostic, but there was no guarantee that discrimi-
nation did not occur through other means, and the project
was totally abandoned in 2017.

Fairness is increasingly recognized as a critical compo-
nent of machine learning (ML) systems, which make daily
decisions that affect people’s lives [11]. The data on which
these systems are trained reflect institutionalized discrimina-
tion that can be reinforced and legitimized through automa-
tion. A naive (and ineffective) approach sometimes used
in practice is to simply omit the protected attribute (say,
race or gender) when training the classifier. However, since
the protected attribute is frequently represented implicitly
by some combination of proxy variables, the classifier still
learns the discrimination reflected in training data. For ex-
ample, zip code tends to predict race due to a history of
segregation [21, 46]; answers to personality tests identify
people with disabilities [4, 53]; and keywords can reveal
gender on a resume [12]. As a result, a classifier trained
without regard to the protected attribute not only fails to re-
move discrimination, but it can complicate the detection and
mitigation of discrimination downstream via in-processing
or post-processing techniques [9, 10, 18, 24, 25, 34, 43, 51],
which we next describe.

The two main approaches to reduce or eliminate sources
of discrimination are summarized in Fig. 1. The most pop-
ular is the in-processing, where the ML algorithm itself is
modified; this approach must be reimplemented for every
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ML application. The alternative is to process either the train-
ing data (pre-processing) or the output of the classifier itself
(post-processing). We advocate for the pre-processing strat-
egy, which is agnostic to the choice of ML algorithm and
instead interprets the problem as a database repair task.

One needs a quantitative measure of discrimination in or-
der to remove it. A large number of fairness definitions have
been proposed (see Verma and Rubin for a recent discussion
[52]), which we broadly categorize in Fig. 1. The best-known
measures are based on associative relationships between the
protected attribute and the outcome. For example, Equal-
ized Odds requires that both protected and privileged groups
have the same true positive (TP) and false positive (FP) rates.
However, it has been shown that associative definitions of
fairness can be mutually exclusive [9] and fail to distinguish
between discriminatory, non-discriminatory and spurious
correlations between a protected attribute and the outcome
of an algorithm [13, 24, 34].

Example 1.1. In a well-studied case, UC Berkeley was sued
in 1973 for discrimination against females in graduate school
admissions when it was found that 34.6% of females were
admitted in 1973 as opposed to 44.3% of males. It turned
out that females tended to apply to departments with lower
overall acceptance rates [44]. When broken down by depart-
ment, a slight bias toward female applicant was observed,
a result that did not constitute evidence for gender-based
discrimination.

Such situations have recently motivated a search for a
more principledmeasure of fairness and discrimination based
on causality [18, 24, 25, 34, 43]. These approaches measure
the discriminatory causal influence of the protected attribute
on the outcome of an algorithm. However, they typically
assume access to background information regarding the un-
derlying causal model, which is unrealistic in practice. For
example, Kilbertus et al. assume the underlying casual model
is provided as a structural equation model [24]. Moreover,
no existing proposals describe comprehensive systems for
pre-processing data to mitigate causal discrimination.

This paper describes a new approach to removing discrim-
ination by repairing the training data in order to remove
the effect of any inappropriate and discriminatory causal
relationship between the protected attribute and classifier
predictions, without assuming adherence to an underlying
causal models.
Our system, Capuchin, accepts a dataset consisting of

a protected attribute (e.g., gender, race, etc.), an outcome
attribute (e.g., college admissions, loan application, or hiring
decisions), and a set of admissible variables through which it
is permissible for the protected attribute to influence the out-
come. For example, the applicant’s choice of department in
Example 1.1 is considered admissible despite being correlated

Associational Causal
In-processing [6, 23, 24, 34, 58] [24, 34, 43]

(Modify the ML Algorithm)
Pre/post-processing [7, 16, 19, 55] Capuchin

(Modify the input/output Data) (this paper)

Figure 1: Fairness metrics and enforcement methods.

with gender. The system repairs the input data by inserting
or removing tuples, changing the empirical probability dis-
tribution to remove the influence of the protected attribute
on the outcome through any causal pathway that includes
inadmissible attributes. That is, the repaired training data
can be seen as a sample from a hypothetical fair world. We
make this notion more precise in Section 3.1.
Unlike previous measures of fairness based on causal-

ity [24, 34, 43], which require the presence of the underlying
causal model, our definition is based solely on the notion of
intervention [36] and can be guaranteed even in the absence
of causal models. The user need only distinguish admissible
and inadmissible attributes; we prove that this information is
sufficient to support the causal inferences needed to mitigate
discrimination.

We use this interventional approach to derive in Sec. 3.1 a
new fairness definition, called justifiable fairness. Justifiable
fairness subsumes and improves on several previous defini-
tions and can correctly distinguish fairness violations and
non-violations that would otherwise be hidden by statistical
coincidences, such as Simpson’s paradox. We prove next, in
Sec. 3.2, that, if the training data satisfies a simple saturated
conditional independence, then any reasonable algorithm
trained on it will be fair.
Our core technical contribution, then, consists of a new

approach to repair training data in order to enforce the sat-
urated conditional independence that guarantees fairness.
The database repair problem has been extensively studied in
the literature [3], but in terms of database constraints, not
conditional independence. In Sec. 4 we first define the prob-
lem formally and then present a new technique to reduce it
to a multivalued functional dependency MVD [1]. Finally, we
introduce new techniques to repair a dataset for an MVD by
reduction to the MaxSAT and Matrix Factorization problems.
We evaluate our approach in Sec 6 on two real datasets

commonly studied in the fairness literature, the adult dataset
[28] and the COMPAS recidivism dataset [49]. We find that
our algorithms not only capture fairness situations other
approaches cannot, but that they outperform the existing
state-of-the-art pre-processing approaches even on other fair-
ness metrics for which they were not necessarily designed. Sur-
prisingly, our results show that our repair algorithms can
mitigate discrimination as well as prohibitively aggressive
approaches, such as dropping all inadmissible variables from



the training set, while maintaining high accuracy. For exam-
ple, our most flexible algorithm, which involves a reduction
to MaxSAT, can remove almost 50% of the discrimination
while decreasing accuracy by only 1% on adult data.

We make the following contributions: We develop a new
framework for causal fairness that does not require a com-
plete causal model; We prove sufficient conditions for a fair
classifier based on this framework; We reduce fairness to
a database repair problem by linking causal inference to
multivalued dependencies (MVDs); We develop a set of al-
gorithms for the repair problem for MVDs; We evaluate our
algorithms on real data and show that they meet our goals
and outperform competitive methods on multiple metrics.
Section 2 presents background on fairness and causality,

while Section 3 describes sufficient conditions for a fair classi-
fier and derives the database repair problem. In Section 4, we
present algorithms for solving the database repair problem
and show, in Section 6, experimental evidence that our algo-
rithms outperform the state-of-the-art on multiple fairness
metrics while preserving high utility.

2 PRELIMINARIES

We review in this section the basic background on data-
base repair, algorithmic fairness and models of causality, the
building blocks of our paper. See the full version of this paper
([45]) for more details.

The notation used is summarized in Table 1. We denote
variables (i.e., dataset attributes) by uppercase letters,X ,Y ,Z ,
V ; their values with lower case letters, x ,y, z,v ; and denote
sets of variables or values using boldface (X or x). The domain
of a variableX isDom(X ), and the domain of a set of variables
is Dom(X) =

∏
Y ∈X Dom(Y ). In this paper, all domains are

discrete and finite; continuous domains are assumed to be
binned, as is typical. A database instanceD is a relation whose
attributes we denote as V. We assume set semantics (i.e.,
no duplicates) unless otherwise stated, and we denote the
cardinality of D as n = |D |. Given a partition X ∪ Y ∪ Z = V,
we say that D satisfies the multivalued dependency (MVD)
Z ↠ X if D = ΠXZ(D) Z ΠZY(D).
Typically, training data for ML is a bag B. We convert it

into a set D (by eliminating duplicates) and a probability
distribution Pr, which accounts for multiplicies;1 We call D
the support of Pr. We say that Pr is uniform if all tuples have
the same probability. We say X and Y are conditionally inde-
pendent (CI) given Z, written (X⊥⊥PrY|Z), or just (X⊥⊥Y|Z)
if Pr(x|y, z) = Pr(x|z) whenever Pr(y, z) > 0. Conditional
independences satisfy the Graphoid axioms [39], which are
reviewed in Appendix 8.1 and are used in proofs. When
V = XYZ, then the CI is said to be saturated. A uniform Pr
satisfies a saturated CI iff its support D satisfies the MVD

1Pr(v) def= 1
|B |

∑
t∈B 1t=v.

Symbol Meaning

X , Y , Z attributes (variables)
X, Y, Z sets of attributes
Dom(X ), Dom(X) their domains
x ∈ Dom(X ), x ∈ Dom(X) a single value, a tuple of values
D the database instance
V the attributes of the database D
G causal DAG
X → Y an edge in G
Pa(X ) the parents of X in G
P a path in G
X⊥⊥PrY |Z or X⊥⊥Y |Z conditional independence
(X⊥⊥Y |d Z) d-Separation in G .
MB(X ) The Markov boundary of X
I Inadmissible attributes
A Admissible attributes

Table 1: Notation used in the paper.

Z ↠ X. Training data usually does not have a uniform Pr,
and in that case the equivalence between the CI and MVD
fails [54]; we address this issue in Sec. 4.

The database repair problem is the following: we are given
a set of constraints Γ and a database instance D, and we
need to perform a minimal set of updates on D such that
the new database D ′ satisfies Γ [3]. The problem has been
studied extensively in database theory for various classes of
constraints Γ. It is NP-hard even when D consists of a single
relation (as it does in our paper) and Γ consists of functional
dependencies [29]. In our setting, Γ consists of conditional
independence statements, and it remains NP-hard, as we
show in Sec. 4.

2.1 Background on Algorithmic Fairness

Algorithmic fairness considers a protected attribute S , a re-
sponse variable Y , and a prediction algorithm A : Dom(X) →
Dom(O), where X ⊆ V, and the prediction of A is denoted O
(some references denote it Ỹ ) and called outcome. For simplic-
ity, we assume S classifies the population into protected S = 1
and privileged S = 0, for example, female and male. Fairness
definitions can be classified as associational or causal.
Associational fairness is based on statistical measures on

the variables of interest; a summary is shown in Fig. 2. Demo-
graphic Parity (DP) [6, 13, 22, 47, 59], requires an algorithm
to classify both the protected and the privileged group with
the same probability. As we saw in Example 1.1, the lack of
statistical parity cannot be considered as evidence for gender-
based discrimination; this has motivated the introduction of
Conditional Statistical Parity (CSP) [10], which controls for a
set of admissible factorsA. Another popularmeasure used for
predictive classification algorithms is Equalized Odds (EO),
which requires that both protected and privileged groups
to have the same false positive (FP) rate, and the same false
negative (FN) rate. Finally, Predictive Parity (PP) requires
that both protected and unprotected groups have the same
predicted positive value (PPV) It has been shown that these



Fairness Metric Description

Demographic Parity (DP) [5, 13, 47] S⊥⊥O
Conditional Statistical parity [10] S⊥⊥O |A
Equalized Odds (EO) [19, 57] S⊥⊥O |Y
Predictive Parity (PP)[9, 9, 19, 47] S⊥⊥Y |O

Figure 2: Common associational definitions of fairness.

OD

H

G

a)

OD

H

G

do(D=cs)

b)

Figure 3: Causal DAGs related to Ex.2.2.

measures can be mutually exclusive [9]. Recently, associa-
tional fairness has bee studied in the context of statistical
relational learning [14, 15].
Causal fairness [18, 24, 25, 34, 43] was motivated by the

need to address difficulties generated by associational fair-
ness and assumes an underlying causal model. We first dis-
cuss causal DAGs before reviewing causal fairness.

2.2 Background on Causal DAGs

Causal DAG. A causal DAG G over set of variables V is a
directed acyclic graph that models the functional interaction
between variables in V. Each node X represents a variable
in V that is functionally determined by: (a) its parents Pa(X )
in the DAG, and (b) some set of exogenous factors that need
not appear in the DAG, as long as they are mutually inde-
pendent. This functional interpretation leads to the same
decomposition of the joint probability distribution of V that
characterizes Bayesian networks [36]:

Pr(V) =
∏
X ∈V

Pr(X |Pa(X )) (1)

d-Separation and Faithfulness. A common inference
question in a causal DAG is how to determine whether a CI
(X⊥⊥Y|Z) holds. A sufficient criterion is given by the notion
of d-separation, a syntactic condition (X⊥⊥Y|dZ) that can be
checked directly on the graph. Pr and G are called Markov
compatible if (X⊥⊥Y|dZ) implies (X⊥⊥PrY|Z); if the converse
implication holds, then we say that Pr is faithful to G. The
following is known:
Proposition 2.1. If G is a causal DAG and Pr is given by

Eq.(1), then they are Markov compatible.

Counterfactuals and do Operator. A counterfactual is
an intervention where we actively modify the state of a set
of variables X in the real world to some value X = x and
observe the effect on some output Y . Pearl [36] described
the do operator that allows this effect to be computed on
a causal DAG, denoted Pr(Y |do(X = x)). To compute this

value, we assume thatX is determined by a constant function
X = x instead of a function provided by the causal DAG.
This assumption corresponds to a modified graph with all
edges into X removed, and values of these variables are set
to x. The Bayesian rule Eq.(1) for the modified graph defines
Pr(Y |do(X = x)); the exact expression is in [36, Theorem
3.2.2]. We give an alternative and, to our best knowledge,
new formula expressed by introducing some compensating
factors; the proof is in Appendix 8.2:

Theorem 2.1. Given a causal DAGG and a set of variables
X ⊆ V, suppose X = {X0,X1 . . .Xm} are ordered such that
Xi is a non-descendant of Xi+1 in G. The effect of a set of
interventions do(X = x) is given by the following extended
adjustment formula:
Pr(y |do(X = x)) =∑

z∈Dom(Z)

Pr(y |x, z)
( m∏
i=0

Pr
(
pa(Xi )

���� i−1⋃
j=0

pa(X j ),

i−1⋃
j=0

x j
) )

(2)

where Z =
⋃

X ∈X Pa(X ) and j ≥ 0.

In particular, if X has no parents, then intervention coin-
cides with conditioning, Pr(y |do(X = x)) = Pr(y |X = x).
Example 2.2. Continuing Example 1.1, Fig. 3(a) shows a

small fragment of the causal DAG of the admission process
in a college. Admissions decisions are made independently
by each department and are based on a rich collection of
information about the candidates, such as test scores, grades,
etc. These characteristics affect not only the admission deci-
sions, but also which department the candidate chooses to
apply to. We show only a tiny fragment of the causal graph,
where O = admission outcome, D = department,G = candi-
date’s gender, and H = hobbies, which can be influenced by
gender. 2 The admissions office anonymizes gender, but it
does consider extracurricular activities such as hobbies, so
we include an edge H → O . Since different genders apply to
departments at different rates, there is an edgeG → D. Some
departments may tend to attract applicants with certain hob-
bies (e.g., the math department may attract applicants who
play chess), so we also include an edge H → D. The joint
distribution is given by

Pr(д,h,d,o) = Pr(д)Pr(h |д)Pr(d |д,h)Pr(o |h,d) (3)

Consider the counterfactual: update the applicant’s depart-
ment to cs . We compare the marginal probability of O , the
conditional probability, and the intervention:

Pr(o |D = cs) =
∑
д,h

Pr(д)Pr(h |д)Pr(D = cs|д,h)Pr(o |D = cs,h)

Pr(o |do(D = cs)) =
∑
д,h

Pr(д)Pr(h |д)Pr(o |D = cs,h) (4)

The expression for intervention (4), based on [36, Theo-
rem 3.2.2] is obtained from the conditional probability by
2In the Amazon hiring example [12], hobbies correlated with gender, e.g.,
Captain of the women’s chess team.



removing the term Pr(D = cs|д,h), or equivalently deleting
the edge G → D from the graph in Fig. 3(b). Alternatively,
we can express the intervention using Eq.(2) (notice that
Pa(D) = {G,H }):

Pr(o |do(D = cs)) =
∑
д,h

Pr(o |д,h,D = cs)Pr(h |д)Pr(д) (5)

2.3 Causal Fairness

Counterfactual Fairness. Kusner et al. [25, 26] (see also
the discussion in [30]) defined a classifier as counterfactually
fair if the protected attribute of an individual is not a cause
of the outcome of the classifier for that individual, i.e., had
the protected attributes of the individual been different, and
other things being equal, the outcome of the predictor would
have remained the same. However, the definition of coun-
terfactual fairness in [25] captures individual-level fairness
only under certain assumptions (see Appendix 8.1). Indeed,
it is known that individual-level counterfactuals can not be
estimated from data [40–42].

Proxy Fairness. To avoid individual-level counterfactu-
als, a common is to study population-level counterfactuals
or interventional distributions that capture the effect of in-
terventions at population level rather than individual level
[38, 40, 41]. Kilbertus et. al. [24] defined proxy fairness as
follows:

P(Ỹ = 1|do(P = p)) = P(Ỹ = 1|do(P = p′)) (6)

for any p, p′ ∈ Dom(P), where P consists of proxies to a
sensitive variable S (and might include S). Intuitively, a clas-
sifier satisfies proxy fairness in Eq 6, if the distribution of Ỹ
under two interventional regimes in which P set to p and p′
is the same. Thus, proxy fairness is not an individual-level
notion. Next example shows proxy fairness fails to capture
group-level discrimination in general.
Example 2.3. To illustrate the difference between coun-

terfactual and proxy fairness, consider the college admis-
sion example. Both departments make decisions based on
students’ gender and qualifications, O = f (G,D,Q), for a
binaryG and Q . The causal DAG isG → O,D → O,Q → O .
Let D = UD and Q = UQ , where UD and UQ are exoge-
nous factors that are independent and that are uniformly
distributed, e.g., P(UQ = 1) = P(UQ = 0) = 1

2 . Further sup-
pose f (G, ’A’,Q) = G ∧Q and f (G, ’B’,Q) = (1−G) ∧Q , i.e.,
dep. A admits only qualified males and dep. B admits only
qualified females. This admission process is proxy-fair3, be-
cause P(O = 1|do(G = 1)) = P(O = 1|do(G = 0)) = 1

2 . On the
other hand, it is clearly individually-unfair, in fact it is group-
level unfair (for all applicants to the same department). To
capture individual fairness, counterfactual fairness [25, 26] is
a non-standard definition that does both conditioning and in-
tervention on the sensitive attribute. Conditioning “extracts

3Here D is not a proxy to G , because D⊥⊥G by assumption.

information from the individual to learn the background
variables” [30, pp.11, footnote 1].

Path-specific fairness. These definitions are based on
graph properties of the causal graph, e.g., prohibiting specific
paths from the sensitive attribute to the outcome [30, 34];
however, identifying path-specific causality from data re-
quires very strong assumptions and is often impractical [2].

3 DEFINING AND ENFORCING

ALGORITHMIC FAIRNESS

In this section we introduce a new definition of fairness,
which, unlike proxy fairness [24], captures correctly group-
level fairness, and, unlike counterfactual fairness [25, 26] is
based on the standard notion of intervention and, hence, it
is testable from the data. In the next section we will describe
how to repair an unfair training dataset to enforce fairness.

3.1 Interventional Fairness

This section assumes that the causal graph is given. The al-
gorithm computes an output variableO from input variables
X (Sec. 2.1). We begin with a definition describing when an
outcomeO is causally independent of the protected attribute
S for any possible configuration of a given set of variables K.

Definition 3.1 (K-fair). Fix a set of attributesK ⊆ V−{S,O}.
We say that an algorithm A : Dom(X) → Dom(O) is K-fair
w.r.t. a protected attribute S if, for any context K = k and
every outcome O = o, the following holds:
Pr(O = o |do(S = 0),do(K = k)) = Pr(O = o |do(S = 1),do(K = k)) (7)

We call an algorithm interventionally fair if it is K-fair
for every set K. Unlike proxy fairness, this notion captures
correctly group-level fairness, because it ensures that S does
not affect O in any configuration of the system obtained by
fixing other variables at some arbitrary values. Unlike coun-
terfactual fairness, it does not attempt to capture fairness
at the individual level, and therefore it uses the standard
definition of intervention (the do-operator). In fact, we argue
that interventional fairness is the strongest notion of fairness
that is testable from data, yet captures correctly group-level
fairness. We illustrate with an example (see also Ex 3.6).

Example 3.2. In contrast to proxy fairness, interventional
fairness correctly identifies the admission process in Ex. 2.3
as unfair at department-level. This is because the admission
process fails to satisfy {D}-fairness since, P(O = 1|do(G =
0),do(D = ’A’)) = 0 but P(O = 1|do(G = 1),do(D = ’A’)) =
1
2 . Therefore, interventional fairness is a more fine-grained
notion than proxy fairness. We note however that, interven-
tional fairness does not guarantee individual faintness in gen-
eral. To see this suppose the admission decisions in both de-
partments are based on student’s gender and an unobserved
exogenous factorUO that is uniformly distributed, i.e., O =
f (G,UO ), such that f (G, 0) = G and f (G, 1) = 1 −G. Hence,



the causal DAG is G → O . Then the admission process is ∅-
fair because, P(O = 1|do(G = 1)) = P(O = 1|do(G = 0)) = 1

2 .
Therefore, it is interventionally fair (since V − {O,G} = ∅).
However, it is clearly unfair at individual level. If the variable
U0 were endogenous (i.e. known to the algorithm), then the
admission process is no longer interventionally fair, because
it is not {Uo}-fair: P(O = 1|do(G = 1),do(Uo = 1)) = P(O =
1|G = 1,Uo = 1) = 0, while P(O = 1|do(G = 1),do(Uo =

1)) = P(O = 1|G = 0,Uo = 1) = 1. Under the same setting
counterfactual fairnesses [25, 26] fails to capture individual-
level discrimination in this example (see Appendix 8.1).

In practice, interventional fairness is too restrictive, as we
show below. To make it practical, we allow the user to clas-
sify variables into admissible and inadmissible. The former
variables through which it is permissible for the protected
attribute to influence the outcome. In Example 1.1, the user
would label department as admissible since it is considered a
fair use in admissions decisions, and would (implicitly) label
all other variables as inadmissible, for example, hobby. Only
users can identify this classification, and therefore admissible
variables are part of the problem definition:

Definition 3.3 (Fairness application). A fairness applica-
tion over a domain V is a tuple (A, S,A, I), where A is an
algorithm Dom(X) → Dom(O); X ⊆ V are its input vari-
ables; S,O ∈ V are the protected attribute and outcome,
and A ∪ I = V − {S,O} is a partition of the variables into
admissible and inadmissible.

We can now introduce our definition of fairness:
Definition 3.4 (Justifiable fairness). A fairness application
(A, S,A, I) is justifiability fair if it is K-fair w.r.t. all supersets
K ⊇ A.

Notice that interventional fairness corresponds to the case
where no variable is admissible, i.e., A = ∅.

We give next a characterization of justifiable fairness in
terms of the structure of the causal DAG:
Theorem 3.5. If all directed paths from S to O go through

an admissible attribute in A, then the algorithm is justifiably
fair. If the probability distribution is faithful to the causal DAG,
then the converse also holds.

To ensure interventional fairness, a sufficient condition
is that there exists no path from S to O in the causal graph
(because A = ∅). (Hence, under faithfulness, interventional
fairness implies fairness at individual-level, i.e., intervening
on the sensitive attribute does not change the counterfactual
outcome of individuals.) Since this is too strong in most
scenarios, we adopt justifiable fairness instead. We illustrate
with an example.

Example 3.6. Fig 4 shows how fair or unfair situations may
be hidden by coincidences but exposed through causal analy-
sis. In both examples, the protected attribute is genderG , and

OD

H

G

a) College I

OD

Q

G

b) College II

College I

Dept. A Dept. B Total

Admitted Applied Admitted Applied Admitted Applied

Male 16 20 16 80 32 100
Female 16 80 16 20 32 100

College II

Dept. A Dept. B Total

Admitted Applied Admitted Applied Admitted Applied

Male 10 10 40 90 50 100
Female 40 50 10 50 50 100

Figure 4: Admission process representation in two colleges
where the associational notions of fairness fail (see Ex.3.6).

the admissible attribute is department D. Suppose both de-
partments in College I are admitting only on the basis of their
applicants’ hobbies. Clearly, the admission process is discrim-
inatory in this college because department A admits 80% of
its male applicants and 20% of the female applicants, while de-
partment B admits 20% of male and 80% of female applicants.
On the other hand, the admission rate for the entire college
is the same 32% for both male and female applicants, falsely
suggesting that the college is fair. Suppose H is a proxy toG
such that H = G (G and H are the same), then proxy fairness
classifies this example as fair: indeed, since Gender has no
parents in the causal graph, intervention is the same as con-
ditioning, hence Pr(O = 1|do(G = i)) = Pr(O = 1|G = i)
for i = 0, 1. Of the previous methods, only conditional
statistical parity correctly indicates discrimination. We il-
lustrate how our definition correctly classifies this exam-
ples as unfair. Indeed, assuming the user labels the depart-
ment D as admissible, {D}-fairness fails because, by Eq.(2),
Pr(O = 1|do(G = 1),do(D = ’A’)) =

∑
h Pr(O = 1|G =

1,D = ’A’,h)Pr(h |G = 1) = Pr(O = 1|G = 1,D = ’A’) = 0.8,
and, similarly Pr(O = 1|do(G = 0),do(D = ’A’)) = 0.2. There-
fore, the admission process is not justifiably fair.

Now, consider the second table for College II, where both
departments A and B admit only on the basis of student qual-
ifications Q . A superficial examination of the data suggests
that the admission is unfair: department A admits 80% of
all females, and 100% of all male applicants; department B
admits 20% and 44.4% respectively. Upon deeper examination
of the causal DAG, we can see that the admission process
is justifiably fair because the only path from Gender to the
Outcome goes through department, which is an admissible
attribute. To understand how the data could have resulted
from this causal graph, suppose 50% of each gender have



high qualifications and are admitted, while others are re-
jected, and that 50% of females apply to each department
but more qualified females apply to department A than to B
(80% v.s. 20%). Further, suppose fewer males apply to depart-
ment A, but all of them are qualified. The algorithm satisfies
demographic parity and proxy fairness but fails to satisfy con-
ditional statistical parity since Pr(A = 1|G = 1,D = A) = 0.8
but Pr(A = 1|G = 0,D = A) = 0.2). Thus, conditioning
on D falsely indicates discrimination in College II. One can
check that the algorithm is justifiably fair, and thus our defini-
tion also correctly classifies this example; for example, {D}-
fairness follows from Eq.(2): Pr(O = 1|do(G = i),do(D =
d)) =

∑
q Pr(O = 1|G = i,d,q))Pr(q |G = i) = 1

2 . To sum-
marize, unlike previous definitions of fairness, justifiable
fairness correctly identifies College I as discriminatory and
College II as fair.
3.2 Testing Fairness on the Training Data

In this section we introduce a sufficient condition for testing
justifiable fairness, which uses only the training data D, Pr
(Sec. 2) and does not require access to the causal graphG . We
assume only that G and Pr are Markov compatible (Sec. 2.2).
The training data has an additional response variable Y . As
before, we assume a fairness application (A, S,A, I) is given
and that the algorithm is a good prediction of the response
variable, i.e. Pr(Y = 1|X = x) ≈ Pr(O = 1|X = x); we call the
algorithm a reasonable classifier to indicate that it satisfies
this condition. Note that this is a typical assumption in pre-
processing approachs, see e.g., [7] and needed to decouple
the the issues of model accuracy and fairness.

We first establish a technical condition for fairness based
on the Markov boundary, and then we simplify it. Recall
that, give a probability distribution Pr, the Markov boundary
of a variable Y ∈ V, denoted MB(Y ), is a minimal subset
of V − {Y } that satisfies the saturated conditional indepen-
dence (Y⊥⊥PrV − (MB(Y ) ∪ {Y })|MB(Y )). Intuitively,MB(Y )
shields Y from the influence of other variables. It is usually
assumed that the Markov boundary of a variable is unique
(see Appendix 8.1). We prove:

Theorem 3.7. A sufficient condition for a fairness applica-
tion (A, S,A, I) to be justifiably fair is MB(O) ⊆ A.

If Pr is faithful to the causal graph, then the theorem fol-
lows immediately from Theorem 3.5; but we prove it without
assuming faithfulness in Appendix 8.2. The condition in
Theorem 3.7 can be checked without knowing the causal
DAG, but requires the computation of the Markov boundary;
moreover, it is expressed in terms of the outcome O of the
algorithm. We derive from here a sufficient condition with-
out reference to the Markov boundary, which refers only to
the response variable Y present in the training data.
Corollary 3.8. Fix a training data D, Pr, where Y ∈ V is

the training label, and A, I are admissible and inadmissible

attributes. Then any reasonable classifier trained on a set of
variables X ⊆ V is justifiably fair w.r.t. a protected attribute S ,
if any of the following hold:

(a) Pr satisfies the CI (Y⊥⊥X ∩ I|X ∩ A), or
(b) X ⊇ A and Pr satisfies the saturated CI (Y⊥⊥I |A).

The proof is the Appendix. While condition (a) is the
weaker assumption, condition (b) has the advantage that
the CI is saturated. Our method for building a fair classifier
is to repair the training data in order to enforce (b).

3.3 Building Fair Classifiers

This leads us to the following methods for building justifiably
fair classifiers.

Dropping Inadmissible Attributes. A naive way to sat-
isfy Corollary 3.8(a) is to set X = A, in other words to train
the classifier only on admissible attributes This method guar-
antees fairness, but, as we will show in Sec. 6, dropping even
one inadmissible variable can negatively affect the accuracy
of the classifier. Moreover, this approach cannot be used in
data release situations, where all variables must be included.
Releasing data that reflect discrimination can unintention-
ally reinforce and amplify discrimination in other contexts
that data is used.

Repairing Training Data. Instead, our approach is to
repair the training data to enforce the condition in Corol-
lary 3.8(b). We consider the saturated CI (Y⊥⊥I|A) as an in-
tegrity constraint that should always hold in training data
D, Pr. Capuchin performs a sequence of database updates
(viz., insertions and deletions of tuples) to obtain another
training database D ′ to satisfy (Y⊥⊥I|A). We describe this
repair problem in Sec. 4. To the causal DAG, this approach
can be seen as modifying the underlying causal model to
enforce the fairness constraint. However, instead of inter-
vening on the causal DAG, which we do not know and over
which we have no control, we intervene on the training data
to ensure fairness. Note that minimal repairs are crucial for
preserving the utility of data.

4 REPAIRING TRAINING DATA TO

ENSURE FAIRNESS

We have shown in Corollary 3.8 that, if the training data D
satisfies a certain saturated conditional independence (CI),
then a classification algorithm trained on D, Pr is justifiably
fair. We show here how to modify (repair) the training data to
enforce the CI and thus ensure that any reasonable classifier
trained on it will be justifiably fair.

4.1 Minimal Repair for MVD and CI

We first consider repairing an MVD. Fix an MVD Z ↠ X and
a database D that does not satisfy it. The minimal database
repair problem is this: find another database D ′ that satisfies



D: X Y Z Pr
t1 a a c 3/8
t2 a b c 2/8
t3 b a c 2/8
t4 b b d 1/8

D1 : X Y Z
t1 a a c
t2 a b c
t3 b a c
t4 b b c
t5 b b d

D2 : X Y Z
t1 a a c
t2 a b c
t4 b b d

Figure 5: A simple database repair: D does not satisfy the MVD
Z ↠ X . In D1, we inserted the tuple (b,b, c) to satisfy the MVD,
and in D2 we deleted the tuple (b,a, c) to satisfy the MVD.

the MVD such that the distance between D and D ′ is min-
imized. In this section, we restrict the distance function to
the symmetric difference, i.e, |∆(D,D ′)|.
Example 4.1. Consider the database D in Fig. 5 (ignoring

the probabilities for the moment), and the MVD Z ↠ X . D
does not satisfy the MVD. The figure shows two minimal
repairs, D1,D2, one obtained by inserting a tuple, and the
other by deleting a tuple.

However, our problem is to repair for a saturated CI, not
an MVD, since that is what is required in Corollary 3.8. The
repair problem for a database constraint is well-studied in the
literature, but here we need to repair to satisfy a CI, which is
not a database constraint. We first formally define the repair
problem for a CI then show how to reduce it to the repair
for an MVD. More precisely, our input is a database D and a
probability distribution Pr, and the goal is to define a “repair”
D ′, Pr′ that satisfies the given CI.

We assume that all probabilities are rational numbers. Let
the bag associated to D, Pr to be the smallest bag B such that
Pr is the empirical distribution on B. In other words, B is
obtained by replicating each tuple t ∈ D a number of times
proportional to Pr(t). 4 If Pr is uniform, then B = D.

Definition 4.2. The minimal repair of D, Pr for a saturated
CI (X;Y|Z) is a pair D ′, Pr′ such that Pr′ satisfies the CI
and |∆(B,B′)| is minimized, where B and B′ are the bags
associated to D, Pr and D ′, Pr′, respectively.

Recall that V denotes the set of attributes of D. Let Pr be
any probability distribution on the variables {K} ∪ V, where
K is a fresh variable not in V.

Lemma 4.3. If Pr satisfies (KX;Y|Z), then it also satisfies
(X;Y|Z).

The lemma follows immediately from the Decomposition
axiom in Graphoid (see Appendix 8.1).
We now describe our method for computing a minimal

repair of D, Pr for some saturated CI. First, we compute the
bag B associated to D, Pr. Next, we add the new attribute
4Equivalently, if the tuples have probabilities p1/q, p2/q, . . . (same denom-
inator), then each tuple ti occurs exactly pi times in B .

B: X Y Z
a a c
a a c
a a c
a b c
a b c
b a c
b a c
b b d

DB : K X Y Z
1 a a c
2 a a c
3 a a c
1 a b c
2 a b c
1 b a c
2 b a c
1 b b d

D′B : K X Y Z
1 a a c
2 a a c
1 a b c
2 a b c
1 b a c
1 b b c
1 b b d

D′ : X Y Z Pr′
a a c 2/7
a b c 2/7
b a c 1/7
b b c 1/7
b b d 1/7

Figure 6: Repairing a conditional independence (CI).

K to the tuples in B and assign distinct values to t .K to
all duplicate tuples t , thus converting B into a set DB with
attributes K ∪ V. Importantly, we use as few distinct values
for K as possible, i.e., we enumerate the instances of each
unique tuple. More precisely, we define:

DB =
{
(i, t)|t ∈ B, i = 1, . . . , |tB |

}
(8)

were |tB | denotes the number of occurrences (or multiplic-
ity) of a tuple t in the bag B. Then, we repair DB w.r.t. to
the MVD Z ↠ KX, obtaining a repaired database D ′B . Fi-
nally, we construct a new training set D ′ = ΠV(D

′
B ), with

the probability distribution obtained by marginalizing the
empirical distribution on D ′B to the variables V. We prove
the following:
Theorem 4.4. Let D be a database and Pr a probability

distribution on its tuples, and let B be the associated bag (with
attributes {K} ∪ V). Fix a saturated CI (X;Y|Z), and let B′

be a minimal repair for the MVD Z ↠ KX. Then, D ′, Pr′
is a minimal repair of D, Pr for the CI, where D ′ is B′ with
duplicates removed, and Pr′ is the empirical distribution on B′.

We illustrate with an example.
Example 4.5. In Example 4.1 we showed two repairsD1,D2

of the databaseD in Fig 5 for the MVDZ ↠ X . Consider now
the probability distribution, Pr shown in the figure. Suppose
we want to repair it for the CI (X ;Y |Z ). Clearly, both D1
and D2, when endowed with the empirical distribution do
satisfy this CI, but they are very poor repairs because they
completely ignore the probabilities in the original training
data, which are important signals for learning. Our definition
captures this by insisting that the repaired bag B′ be close to
the bag B associated to D, Pr (see B in Fig. 6), but the sets D1
and D2 are rather far from B. Instead, our method first con-
verts B into a set DB by adding a new attribute K (see Fig. 6)
then, it repairs DB for the MVD Z ↠ KX , obtaining D ′B . The
final repair D ′, Pr′ consists of the empirical distribution on
D ′B , but with the attribute K and duplicates removed.

We note that, in order for Theorem 4.4 to hold, it is critical
that we use minimum distinct values for the attribute K in



DB ; otherwise minimal repairs of DB are no longer minimal
repairs of the original data D, Pr′. For example, if we use
distinct values for K , thus making K a key, then only subset
of DB that satisfies the MVD Z ↠ KX is the empty set.

4.2 Reducing Minimal Repair to 3SAT

Corollary 3.8 requires us to repair the training data D to
satisfy a CI. We have shown how to convert this problem
into the problem of repairing a derived data DB to satisfy
an MVD. In this section we describe how to find a minimal
repair for an MVD by reduction to the weighted MaxSAT
problem.

We denote the database by D, the MVD by φ : Z ↠ X, and
assume that D’s attributes are V = X ∪ Y ∪ Z. Recall that D
satisfies the MVD iff D = ΠXZ(D) Z ΠYZ(D). Since we want
to allow repairs that include both insertions and deletions,
we start by finding an upper bound on the set of tuples that
we may want to insert in the database. For example, one can
restrict the set of tuples to those that have only constants
that already occurring in the database, i.e., an upper bound is
ADomk , where ADom is the active domain of D, and k is the
arity of D. However, this set is too large in practice. Instead,
we prove that it suffices to consider candidate tuples in a
much smaller set, given by: D∗ def

= ΠXZ(D) Z ΠZY(D).

Proposition 4.1. Any minimal repair D ′ of D for an MVD
satisfies D ′ ⊆ D∗.

Next, we associate the following Boolean Conjunctive
query to the MVD φ:

Qφ ← D(X1,Y1,Z),D(X2,Y2,Z),¬D(X1,Y2,Z) (9)

It follows immediately that D ̸ |= φ iff D |= Qφ , and there-
fore the repair problem becomes: modify the database D to
make Qφ false. For that purpose, we use the lineage of the
query Qφ . By the previous proposition, we know that we
need to consider as candidates for insertions only those tu-
ples in D∗; hence we compute the lineage over the set of
possible tuples D∗. We briefly review here the construction
of the lineage and refer the reader to [56] and the references
there for more detail. We associate a distinct Boolean vari-
able Xt to each tuple t ∈ D∗, and consider all mappings
θ : Var (Qφ ) → ADom(D) such that each of the three tuples–
D∗(θ (X1),θ (Y1),θ (Z )),D

∗(θ (X2),θ (Y2),θ (Z )), and D∗(θ (X1),
θ (Y2),θ (Z ))– are in D∗. Then, the lineage and its negation
are:

Φφ =
∨
θ

(
XD∗(θ (X1),θ (Y1),θ (Z )) ∧ XD∗(θ (X2),θ (Y2),θ (Z )) ∧ ¬XD∗(θ (X1),θ (Y2),θ (Z ))

)
(10)

¬Φφ =
∧
θ

(
¬XD∗(θ (X1),θ (Y1),θ (Z )) ∨ ¬XD∗(θ (X2),θ (Y2),θ (Z )) ∨ XD∗(θ (X1),θ (Y2),θ (Z ))

)
(11)

Recall that an assignment is a mapping from Boolean vari-
ables Xt to {0, 1}. Thus, our goal is to find an assignment
satisfying the 3CNF ¬Φφ , which is as close as possible to the
initial assignment Xt = 1 for t ∈ D, Xt = 0 for t ∈ D∗ − D.
We briefly review the weighted MaxSAT problem here.

Its input is a 3CNF F whose clauses are partitioned into F =
(Fh , Fs ,C), where Fh are called the hard clauses, and Fs are
the soft clauses, and a function C : Fs → R+ associates a non-
negative cost with each soft clause. A solution to the problem
finds an assignment that satisfies all hard constraints, and
maximizes the weight of the satisfied soft constraints.
To ensure “closeness” to the initial assignment, we add

to the Boolean formula a clause Xt for every t ∈ D, and a
clause ¬Xt for every t ∈ D∗ − D. The final 3CNF formula is:

Ψ = (¬Φφ )︸︷︷︸
hard clauses

∧
∧
t ∈D

Xt ∧
∧

t ∈D∗−D
(¬Xt )︸                        ︷︷                        ︸

soft clauses

The algorithm constructing Ψ is shown in Algorithm 1.

Algorithm 1: Converts the problem of finding a database
repair w.r.t. a CI statement into solving a general CNF formula.
Input: A database D with vairables X∪Y∪Z and a saturated CI φ : (X⊥⊥Y |Z)
Output: A 3CNF Ψ consisting of hard and soft clauses.

1 Compute D∗(X1, Y2, Z) = D(X1, Y1, Z) ∧ D(X2, Y2, Z)
2 for t ∈ D∗ do
3 If t ∈ D , add the soft clause Xt to Ψ
4 If t ∈ D∗ − D add the soft clause (¬Xt ) to Ψ

5 Compute C(X1, Y1, X2, Y2, Z) = D∗(X1, Y1, Z) ∧ D∗(X2, Y2, Z)
6 for t ∈ C do

7 t1 ← t [X1, Y1, Z]; t2 ← t [X2, Y2, Z]; t3 ← t [X1, Y2, Z]
8 Add the hard clause (¬Xt1 ∨ ¬Xt2 ∨ Xt3 ) to Ψ

Example 4.6. Continuing Ex. 4.1, we observe thatD∗ = D1;
hence, there are 5 possible tuples. The lineage expression for
φ and it negation are:

Φφ = (Xt1 ∧ Xt4 ∧ ¬Xt2 ) ∨ (Xt2 ∧ Xt3 ∧ ¬Xt1 ) ∨

(Xt3 ∧ Xt2 ∧ ¬Xt4 ) ∨ (Xt4 ∧ Xt1 ∧ ¬Xt3 )

Hence,
¬Φφ = (¬Xt1 ∨ ¬Xt4 ∨ Xt2 ) ∧ (¬Xt2 ∨ ¬Xt3 ∨ Xt1 ) ∧

(¬Xt3 ∨ ¬Xt2 ∨ Xt4 ) ∧ (¬Xt4 ∨ ¬Xt1 ∨ Xt3 )

The reader can check that the repairs D1 and D2 in Ex. 4.1
are corresponded to some satisfying assignment of ¬Φφ , e.g.,
D2 obtained from the truth assignment σ (Xt1 ) = σ (Xt2 ) = 1,
σ (Xt3 ) = σ (Xt5 ) = 0; both satisfy all clauses in ¬Φφ . The
formula Ψ that we give as input to the weighted MaxSAT
consists of ¬Φφ plus these five clauses:Xt1 ∧Xt2 ∧Xt3 ∧Xt4 ∧

¬Xt5 , each with cost 1. MaxSAT will attempt to satisfy as
many as possible, thus finding a repair that is close to the
initial database D.



Note that repairing a database w.r.t. a CI (X⊥⊥Y|Z) can be
reduced to repairing subsets σZ=z(D) for z ∈ Dom(Z ) w.r.t.
the marginal independence (X⊥⊥Y). Therefore, the problem
is highly parallelizable. Capuchin partition subsets ΠZ(D)
into chunks of even size (if possible) and repairs them in
parallel (see Sec 6.4).

Algorithm 2: Repair using Matrix Factorization.
Input: A bag B with attributes V = XYZ a CI statment (X⊥⊥Y |Z).
Output: B′ a repair of B

1 for z ∈ Dom(Z) do
2 MB′

X , MB′
Y ← Factorize(MBz

X,Y)

3 MB′z
X,Y ←

1
|BZ |

MB′
X

⊺
MB′

Y

4 return B′ associated withMB′
X,Y,Z = {M

B′z
X,Y }

4.3 Repair via Matrix Factorization

In this section, we use matrix factorization to repair a bag
w.r.t. a CI statement. We are given a bag B to which we asso-
ciate the empirical distribution Pr(v) = 1

|B |
∑

t ∈B 1t=v, and a
CI statement φ : (X⊥⊥Y|Z) such that B is inconsistent with φ,
meaning that φ does not hold in Pr. Our goal is to find a re-
pair of B, i.e., a bag B′ that is close to B such that (X⊥⊥Y|Pr′Z),
where Pr′ is the empirical distribution associated to B′.

First, we review the problem of non-negative rank-one
matrix factorization. Given a matrix M ∈ Rn×m , the prob-
lem of rank-one nonnegative matrix factorization (NMF) is
the minimization problem: argminU∈Rn×1+ ,V∈R1×m+

∥M − UV∥F ,
where R+ stands for non-negative real numbers and ∥.∥F is
the Euclidean norm of a matrix.5
We express the connection between our repair problem

and the NMF problem using contingency matrices. Given
three disjoint subsets of attributes X,Y,Z ⊆ V, let m =
|Dom(X)|, n = |Dom(Y)|, k = |Dom(Z)| and Bz = σZ=z(B).
A multiway-contingency matrix over X, Y and Z consists
of k n ×m matrices MB

X,Y,Z = {M
Bz
X,Y |z ∈ Dom(Z)} where,

MBz
X,Y(ij) =

∑
t ∈B 1t [XY]=i j . Intuitively, M

Bz
X,Y(ij) represents

the joint frequency of X and Y in a subset of bag with Z = z.
The following obtained immediately from the connection

between independence and rank of a contingency matrix.

Proposition 4.2. Let B be a bag and Pr be the empirical
distribution associated to B. It holds that (X⊥⊥Y|PrZ) iff each
contingency matrix M ∈ MB

X,Y,Z is of rank-one.

We illustrate with an example.

Example 4.7. Let M1 =

[
1 1
1 0

]
, M2 =

[
0 0
0 1

]
, M3 =[

1 1
1 1

]
,M4 =

[
1 1
0 0

]
. The following contingency matrices

5Recall that a matrix is of rank-one if and only if it can be represented by
the outer product of two vectors.

are associated toD,D1 andD2 in Ex. 4.1:MD
X,Y,Z = {M1,M2},

MD1
X,Y,Z = {M3,M2} andMD2

X,Y,Z = {M4,M2}. The reader can
verify thatM2,M3 andM4 are of rank-one butM1 is not. It
is clear that, D is inconsistent with φ but D1 and D2 are
consistent with φ.

The following implied from NP-hardness of NMF [50].

Proposition 4.3. The problem of repairing a database w.r.t.
a single CI is NP-hard in general.

Based on Prop 4.2, we propose Algorithm 2 for repairing
a bag w.r.t. a single CI φ : (X⊥⊥Y|Z). The algorithm works
as follows: for each z ∈ Dom(Z), it uses the Factorize sub-
routine to factorize the n ×m contingency matrix MBz

X,Y into
a 1 × n matrix MB′

X and a 1 ×m matrix MB′
Y . Then, it uses

the product ofMB′
X

⊺ andMB′
X to construct a new bag B′. It is

clear that MB′
X

⊺MB′
Y is of rank-one by construction; thus, the

algorithm always returns a bag B′ that is consistent with φ.
Note that any off-the-shelf NMF algorithm (such as [17]) can
be used in Algorithm 2, to minimize the Euclidean distance
between Pr and Pr′, the empirical distributions associated
to B and B′, respectively. In addition, we use the simple
factorization of MBz

X,Y into MBz
X and MBz

Y , i.e., the marginal
frequencies of X and Y in Bz. We refer to this simple factor-
ization as Independent Coupling (IC). It is easy to see that
KL-divergence between Pr and Pr′ is bounded by conditional
mutual information I (X⊥⊥Y|Z).
5 DISCUSSION

Generalizability toUnseenTest Data. In the following
we briefly discuss the generalizability of the proposed repair
algorithm to unseen test data. Recall that the bagB represents
the training data, B′ its repair, and let T be the unseen test
data. We prove the following in Appendix 8.2:

Lemma 5.1. If the repaired data satisfies (Y⊥⊥S, I|PrB′A) and
the unseen test data satisfies PrT (s, i|a) = PrB′(s, i|a), then the
unseen test data also satisfies (Y⊥⊥S, I|PrTA)

The goal of repair is precisely to satisfy (Y⊥⊥S, I|PrB′A),
hence the classifier trained on the repaired data B′ will be
justifiable fair on the test data T provided that PrT (s, i|a) =
PrB′(s, i|a). It is generally assumed that the test and train-
ing data are drawn from the same distribution Pr. By the
law of large numbers, the empirical distribution of i.i.d sam-
ples of size N → ∞ converges to Pr, hence PrT = PrB in
the limit. Therefore, the algorithm will be justifiable fair
on the test data, provided that the repair is done such that
PrB (s, i|a) = PrB′(s, i|a). This condition is satisfied by the IC
repair method which simply repair data by coupling mar-
ginal distributions, because it holds by construction that
PrB′(y, s, i, a) = PrB (y, a)PrB (s, i, a)/PrB (a). In contrast, the
condition is only approximately satisfied by the MaxSAT



and MF approaches, translating to slightly weaker fairness
guarantees on unseen test data. Nevertheless, we empirically
show in Sec 6 that MaxSAT and MF approaches maintain a
significantly better balance between accuracy and fairness.

Scalability. As shown in Sec 4, repairing data w.r.t. a sin-
gle CI is an NP-complete problem. Therefore, the scalability
of our proposed repair methods is equal to that of MaxSAT
solvers and approximation algorithms for matrix factoriza-
tion. However, our repair problem is embarrassingly parallel
and can be scaled to large datasets by partitioning data into
small chunks formed by the conditioning set (see Sec 6).
In this paper we focused on a single CI, which suffices for
many real world fairness applications. We leave the natural
extension to future work.

6 EXPERIMENTAL RESULTS

This section presents experiments that evaluate the feasi-
bility and efficacy of Capuchin. We aim to address the fol-
lowing questions. Q1: What is the end-to-end performance
of Capuchin in terms of utility and fairness, with respect
to our different algorithms? Q2: To what extent are the re-
paired datasets modified by the repair process of Capuchin?
Q3: How does Capuchin compare to state-of-the-art pre-
processing methods for enforcing fairness in predictive clas-
sification algorithms? Table 2 reports the running time of
the repair algorithms.

6.1 Degree of Discrimination

To assess the effectiveness of the proposed approaches, we
next propose a metric that quantifies the degree of discrimi-
nation of a classification algorithm.
If we have access to the causal DAG, we could directly

compute the degree of interventional discrimination of an algo-
rithm: given admissible variablesA, for eachK ⊇ A, compute
the ratio of the LHS and RHS of Eq. 17 using Theorem 2.1,
and average the results. However, in many practical settings
we must make judgments about the fairness of an algorithm
whose inputs are unknown. We cannot assume access to
an underlying causal DAG in these situations. Instead, we
propose a new metric for discovering evidence of potential
discrimination from data that uses the causal framework we
described but is still applicable in situations where all we
know is which attributes in the Markov boundary of O are
admissible.

Definition 6.1. Given afairness application (A, S,A, I), let
Ab = MB(O) − I. We quantify the ratio of observational
discrimination (ROD) of A against S in a context Ab = ab as
δ (S ;O |ab )

def
=

Pr(O=1 |S=0,ab )Pr(O=0 |S=1,ab )
Pr(O=0 |S=0,ab )Pr(O=1 |S=1,ab ) .

Intuitively, ROD calculates the effect of membership in a
protected group on the odds of the positive outcome of A

Dataset Att. [#] Rows[#] IC MF MS(H.) MS(S.)

Adult [28] 10 48k 12 20 40 30
Binned Adult [7] 4 48k 2 3 20 NA
COMPAS [49] 7 7k 2 3 7 8
Binned COMPAS [7] 5 7k 2 3 9 NA

Table 2: Runtime in seconds for experiments in Sec. 6.3.

for subjects that are similar on Ab = ab (Ab consists of ad-
missible attributes in the Markov boundary of the outcome).
If δ (S ;O |ab ) = 1 , then there is no observational evidence
thatA is discriminatory toward subjects with similar charac-
teristics ab . If δ (S ;O |ab ) > 1, then the algorithm potentially
discriminates against the protected group, and vice versa if
δ (S ;O |ab ) < 1. ROD is sensitive to the choice of a context
Ab = ab by design. The overall ROD denoted by δ (S,O |Ab )

can be computed by averaging δ (S,O |ab ) for all ab ∈ Ab . It
is easy to see for faithful distributions that ROD=1 coincides
with justifiable fairness (see Prop 8.2 in the Appendix 8.2).
6.2 Setup

The datasets used for experiments are listed in Table 2. We
implemented ourMaxSAT encoding algorithm in Python. For
every instance of the input data, our algorithm constructed
the appropriate data files inWCNF format.We used the Open-
WBO [33] solver to solve the weighted MaxSAT instances.

We report the empirical utility of each classifier using
Accuracy (ACC) = T P+T N

T P+F P+FN+T N via 5-fold cross-validation.
We evaluate using three classifiers: Linear Regression (LR),
Multi-layer Perceptron (MLP), and Random Forest (RF).
We evaluated using the fairness metrics in Table 3. For

computing these metrics, conditional expectations were es-
timated as prescribed in [44]. We used standard techniques
in meta-analysis to compute the pooled odds ratio [8], and
its statistical significance, needed to compute ROD. Specif-
ically, we reported the p-value of the ROD, where the null
hypothesis was ROD=1; (low p-values suggest the observed
ROD is not due to random variation). We combined the p-
values from cross-validation test datasets using Hartung’s
method [20]; p-values were dependent due to the overlap in
cross-validation tests. We normalized ROD between 0 and 1,
where 0 shows no observational discrimination. We reported
the absolute value of the averages of all metrics computed
from each test dataset, where the smaller the value, the less
the discrimination exhibited by the classifier.

6.3 End-To-End Results

In the following experiments, a fairness constraint was en-
forced on training data using Capuchin repair algorithms (cf.
Sec 4). Specifically, each dataset was split into five training
and test datasets. All training data were repaired separately
using Matrix Factorization (MF), Independent Coupling (IC)
and two versions of the MaxSAT approach: MS(Hard), which



Metric Description and Definition

ROD Ratio of Observation Discrimination:
(See Sec.6.1)

DP Demographic Parity:
Pr (O = 1 |S = 1) − Pr (O = 1 |S = 0)

TPB True Positive Rate Balance:
Pr (O = 1 |S = 1, Y = 1) − Pr (O = 1 |S = 0, Y = 1)

TNB True Negative Rate Balance:
Pr (O = 0 |S = 1, Y = 0) − Pr (O = 0 |S = 0, Y = 0)

CDP Conditional Statistical Parity:
Ea[Pr (O = 1 |S = 1, a) − Pr (O = 1 |S = 0, a)]

CTPB Conditional TPRB:
Ea[Pr (O = 1 |S = 1, Y = 1, a) − Pr (O = 1 |S = 0, Y = 1, a)]

CTNB Conditional TNRB:
Ea[Pr(O = 0 |S = 1, Y = 0, a) − Pr(O = 0 |S = 0, Y = 0, a)]

Table 3: Fairness metrics used in our experiments.

feeds all clauses of the lineage of a CI into MaxSAT, and
MS(Soft), which only feeds small fraction of the clauses. We
tuned MaxSAT to enforce CIs approximately. We then mea-
sured the utility and discrimination metrics for each repair
method as explained in Sec 6.2. For all datasets, the cho-
sen training variables included the Markov boundary of the
outcome variables, which were learned from data using the
Grow-Shrink algorithm [32] and permutation [44].
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Figure 7: Performance of Capuchin on Adult data.

Adult data. Using this dataset, several prior efforts in
algorithmic fairness have reported gender discrimination
based on a strong statistical dependency between income
and gender in favor of males [31, 48, 60]. However, it has
been shown that Adult data is inconsistent [44] because
its income attribute reports household income for married
individuals, and there are more married males in data. Fur-
thermore, data reflects the historical income inequality that
can be reinforced by ML algorithms. We used Capuchin to
remove the mentioned sources of discrimination from Adult
data. Specifically, we categorized the attributes in Adult data
as follows: (S) sensitive attributes: gender (male, female);
(A) admissible attributes: hours per week, occupation, age,
education, etc.; (N) inadmissible attributes: marital status;
(Y ) binary outcome: high income. As is common in the lit-
erature, we assumed that the potential influence of gender
on income through some or all of the admissible variables

was fair; However, the direct influence of gender on income,
as well as its indirect influence on income through marital
status, were assumed to be discriminatory. To remove the
bias, we enforced the CI (Y⊥⊥S,N|D) on training datasets
using the Capuchin repair algorithms. Then, we trained the
classifiers on both original and repaired training datasets
using the set of variables A ∪ N ∪ S. We also trained the
classifiers on original data using only A, i.e., we dropped the
sensitive and inadmissible variables.
Fig. 7 compares the utility and bias of Capuchin repair

methods on Adult data. As shown, all repair methods suc-
cessfully reduced the ROD for all classifiers. As shown in
Fig. 8 (see also Fig 15 in the appendix), the repaired data also
improved associational fairness measures: the Capuchin re-
pair methods had an effect similar to dropping the sensitive
and inadmissible variables completely, but they delivered
much higher accuracy (because the CI was enforced approx-
imately). The residual bias after repair was expected since:
(1) the classifier was only an approximation, and (2) we did
not repair the test data. However, as shown in most cases,
the residual bias indicated by ROD was not statistically sig-
nificant. This shows that our methods are robust (by design)
to the mismatch between the distribution of repaired data
and test data. These repair methods delivered surprisingly
good results: when partially repairing data using theMaxSAT
approach, i.e, using MS(Soft), almost 50% of the bias was re-
moved while accuracy decreased by only 1%. We also note
that the residual bias generally favored the protected group
(as opposed to the bias in the original data).

COMPAS. For the second experiment, we used the ProP-
ublica COMPAS dataset [27]. This dataset contains records
for all offenders in Broward County, Florida in 2013 and 2014.
We categorized the attributes in COMPAS data as follows: (S)
protected attributes: race (African American, Caucasian); (A)
admissible attributes: number of prior convictions, severity
of charge degree, age; (Y) binary outcome: a binary indica-
tor of whether the individual is a recidivist. As is common
in the literature, we assumed that it was fair to use the ad-
missible attributes to predict recidivism even though they
can potentially be influenced by race, and our only goal in
this experiment was to address the direct influence of race.
We pursued the same steps as explained in the first exper-
iment. Fig. 9 compares the bias and utility of Capuchin
repair methods to original data. As shown, all repair meth-
ods successfully reduced the ROD. However, we observed
that MF and IC performed better than MS on COMPAS data
(as opposed to Adult data); see 6.4 for an explanation.

6.4 Comparing Capuchin Repair Methods

To compare Capuchin repair methods beyond the utility
experiments in Sec 6.3, we compared the number of tuples
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Figure 8: Bias reduction performance of Capuchin for MLP classifier.
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Figure 9: Performance of Capuchin on COMPAS data.
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Figure 10: Comparison of different repair methods.

added and deleted for each method, as well as the bias reduc-
tion on training data. Fig 10 reports these measures for the
experiments in Sec 6.3. Note that all numbers were normal-
ized between 0 and 1, where ROD=1 shows no discrimination.
For Adult data, we tuned the MS approach to repair data only
by tuple deletion and compared it to a naive approach that
repaired data using lineage expression but without using the

MaxSat solver. As shown in Fig 10, the MaxSat approach
removed up to 80% fewer tuples than the naive approach.
In general, the MaxSAT approach was the most flexible

repair method (since it can be configured for partial repairs).
Further, it achieved better classification accuracy, and it bal-
anced tuple insertion and deletion. In terms of the utility of
classification, the MS approach performed better on sparse
data in which the conditioning groups consisted of several
attributes. Figure 11 shows that repairing a very small frac-
tion of inconsistencies (i.e., clauses in the lineage expression
of the associated CI) in the experiment conducted on Adult
data (Sec 6.3) led to a significant discrimination reduction.
This optimization makes the MS approach more appealing in
terms of balancing bias and utility. However, for dense data,
IC and MD performed better. This difference was because
the size of the lineage expression grew very large when the
conditioning sets of CIs consisted of only a few attributes.
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Figure 11: Bias-utility trade off in MaxSAT approach.

To evaluate the effect of partitioning and parallelizing on
different methods, we replicated the experiment in sec 6.3
and partitioned Adult data into several chunks of approxi-
mately equal sizes; we then repaired the chunks in parallel
on a cluster of 128 cores. Fig 12 shows the achieved speed
up; all approaches were parallelizable. Parallel processing
was most appealing for MaxSAT since MaxSAT solvers were
much more efficient on smaller input sizes. While partition-
ing had no effect on MF and IC on a single-core machine,
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Figure 12: Speed up achieved (a) by partitioning and parallel
processing on 128 cores; (b) by partitioning on a single core.

as shown in Fig 12(b), it sped up MaxSAT . Note that parti-
tioning data into several small chunks does not necessarily
speed up the MaxSAT approach, since MaxSAT solver must
be called for several small inputs. Hence, performance does
not increase linearly by increasing the number of chunks. In
general partitioning data into several instance of medium
size delivers the best performance.
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Figure 13: Comparison with other methods on Binned Adult data.

6.5 Comparing Capuchin to Other

Methods

We compared Capuchin with two reference pre-processing
algorithms, Feldman et al. [16] and Calmon et al. [7]. Feld-
man’s algorithm modifies each attribute so that the marginal
distributions based on the subsets of the attribute with a
given sensitive value are all equal. Calmon’s algorithm ran-
domly transforms all variables except for the sensitive at-
tribute to reduce the dependence between training labels and
the sensitive attribute subject to the following constraints:
(1) the joint distribution of the transformed data is close to
the original distribution, and (2) individual attributes are not
substantially distorted. Individual distortion is controlled for
using a distortion constraint, which is domain dependent.
We used these algorithm only to repair training datasets

and compare their bias and utility to Capuchin. In addition,
since the distortion function required in Calmon’s algorithm
is completely arbitrary, we replicated the same experiments
conducted in [16] using binned Adult data and binned COM-
PAS data. We note that the analysis in [16] was restricted to

only a few attributes, and the data was excessively binned
to few categories (to facilitate the definition of distortion
function). As a result, the bias and utility obtained in this
experiment was mismatched with Sec 6.3. For binned Adult
data, the analysis was restricted to age, education and gender.
For both datasets, we assumed all attributes were admissible.
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Figure 14: Comparison with other methods on Binned COMPAS.

Figs. 13 and 14 compares the utility and bias of Capuchin
to the reference algorithms. The insights obtained from this
experiment follow. For binned Adult data, all methods signif-
icantly reduced ROD, even though the goal of Calmon’s and
Fledman’s algorithm is essentially to reduce DP. Similarly,
Capuchin reduced DP and other associational metrics as a
side effect. However, Capuchin outperformed both methods
in terms of utility. Because COMPAS data was excessively
binned, the ROD in training labels became insignificant for
COMPAS, and accuracy dropped by 2%. We observe that
both reference algorithms enforced DP at the cost of in-
creasing ROD; however, in some cases the introduced bias
was not statistically significant. In terms of utility, all meth-
ods of Capuchin (except for MaxSAT) performed better
than Feldman’s algorithm, and all Capuchin methods out-
performed Calmon’s algorithm quite significantly. This ex-
periment shows that enforcing DP, while unnecessary, can
severely affect the accuracy of a classifier and, even more
importantly, introduce bias in sub-populations.

7 CONCLUSIONS

We considered a causal approach for fair ML, reducing it
to a database repair problem. We showed that conventional
associational and causal fairness metrics can over- and under-
report discrimination. We defined a new notion of fairness,
called as justifiable fairness, that addresses shortcoming of
the previous definitions and arguably the strongest notion
of fairness that is testable from data. We then proved suffi-
cient properties for justifiable fairness and use these results
to translate the properties into saturated conditional inde-
pendences that we can be seen as multivalued dependencies
with which to repair the data. We then propose multiple



algorithms for implementing these repairs. Our experimen-
tal results show that our algorithms not only outperform
state-of-the-art pre-processing approaches for fairness on
our own metrics, but that they are also competitive with
existing approaches on conventional metrics. We empirically
show that our methods are robust to unseen test data.
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8 APPENDIX

8.1 Additional Background

Implication Problem for CIs. The implication problem
for CI is the problem of deciding whether a CI φ is logically
follows from a set of CIs Σ, meaning that in every distribution
in which Σ holds, φ also holds. The following set of sound
but incomplete axioms, known as Graphoid, are given in [39]
for this implication problem.

• (Symmetry)

(X⊥⊥Y |Z) → (Y⊥⊥X |Z) (12)

• (Decomposition)

(X⊥⊥WY |Z) → (X⊥⊥W |Z) (13)

• (Weak Union)

(X⊥⊥WY |Z) → (X⊥⊥Y |ZW) (14)

• (Contraction)

(X⊥⊥Y |WZ) ∧ (X⊥⊥W |Z) → (X⊥⊥YW |Z) (15)

For strictly positive distribution in addition to the above
the following axiom also holds:

• (Intersection)

(X⊥⊥Y |WZ) ∧ (X⊥⊥W |YZ) → (X⊥⊥YW |Z) (16)

MarkovBlanket. Webriefly review the notion ofMarkov
blanket, which used in Sec 3.2.
Definition 8.1. [37] Fix a joint probability distribution

Pr(v) and a variableX ∈ V. A set of variables B(X ) ⊆ V−{X }
is called aMarkov Blanket ofX if (X⊥⊥V−B(X )−{X } |B(X ));
it is called a Markov Boundary if it is minimal w.r.t. set inclu-
sion, denotedMB(X ).

In the admission process in Fig 2.2 MB(X ) = {D,H }, sim-
ply because O⊥⊥G |H ,D (since {H ,D} d-separate O and G).
It is known that if Pr is a strictly positive distribution

(i.e., forall v ∈ Dom(V), P(v) > 0), then MB(V ) is unique
for all V ∈ V and can be learned from data in polynomial
time [32]. Strictly positive distributions do not allows for
logical functional dependencies between their variables. The
requirement can be satisfied in data by removing logical de-
pendencies [44]. Note that under the faithfulness assumption,
the Markov boundary of a node X in the causal graph con-
sists of the parents of X , the children of X , and the parents
of the children of X [35].



Counterfactual Fairness. Given a set of features X, a
protected attribute S , an outcome variable Y , and a set of un-
observed background variablesU, Kusner et al. [25] defined a
predictor Ỹ to be counterfactually fair if for any x ∈ Dom(X):

P (ỸS←0(U) = 1 |X = x, S = 1) = P (ỸS←1(U) = 1 |X = x; S = 1) (17)

where, ỸS←s (U) means intervening on the protected at-
tribute in an unspecified configuration of the exogenous
factors. The definition meant to capture the requirement
that the protected attribute S should not be a cause of Ỹ
at individual level. However, it fails on the simple example
in Ex 3.2. This is because, P(OG←д(UO ) = 1) = P(UO =

1)P(YG←д(UO ) = 1|UO = 1) = 1
2 for д = {0, 1}. We note that

the stricter version of counterfactual fairness in [26] also
fails to capture the individual-level unfairness in this exam-
ple. We report that this observation has been confirmed by
the authors of [26]. We defer the full comparison for future
work.

Proof of Lemma 5.1. Because the classifier is a determin-
istic function trained on PrB′ , it follows that PrT (o, s, i,a) =
PrB′(o, s, i,a) = PrB′(o |a)PrB′(i, s,a). Hence it is sufficient to
show thatDKL(PrT (o |s, i,a) | | PrT (o |a)) = 0 or PrT (o |s, i,a) =
PrT (o |a). We show this in the following steps:

PrT (o |s, i, a) =
PrT (o, s, i, a)
PrT (s, i, a)

(18)

=
PrB′ (o, s, i, a)
PrT (s, i, a)

(19)

=
PrB′ (o |a)PrB′ (s, i, a)

PrT (s, i, a)
(20)

PrT (o |a) =
PrT (o, a)
PrT (a)

(21)

=

∑
s,i PrB′ (o, i, s, a)

PrT (a)
(22)

=

∑
s,i PrB′ (o |a)PrB′ (s, i, a)

PrT (a)
(23)

=
PrB′ (o |a)PrB′ (a)

PrT (a)
(24)

Hence,

DKL (prT (o |s, i, a) | | prT (o |a)) (25)

= −
∑

PrT (o |i, s, a) log
PrT (o |a)

PrT (o |s, i, a)
(26)

= −
∑

PrT (o |i, s, a) log

PrB′ (o |a)PrB′ (a)
prT (a)

PrB′ (o |a)PrB′ (i,s,a)
PrT (s,i,a)

(27)

= −
∑

PrT (o |i, s, a) log
PrB′ (s, i |a)
PrT (s, i |a)

(28)

Thus,DKL(PrT (o |s, i,a) | | PrT (o |a)) = 0 if PrT (s, i |a)PrB′(s, i |a),
which implies PrT (o |s, i,a) = PrT (o |a) or equivalently that
(Y⊥⊥S, I|PrTA). This completes the proof.

□

8.2 Proofs and Supplementary

Propositions and graphs

Proof of Theorem 2.1. Recall that a causalG admits the
following factorization of the observed distribution:

Pr(v) =
∏
V ∈V

Pr(v |pa(V )) (29)

Now, each atomic intervention do(X = x) modifies the
causal DAG G by removing parents of X from G. Therefore,
the probability distribution P(v|do(X = x)) can be obtained
from the observed distribution P(v) by removing all factors
Pr(x |pa(X )), for X ∈ X, from P(v), i.e.,

Pr(v |do(X = x)) =
Pr(v)∏m

i=0 Pr(xi |pa(Xi ))
(30)

The following holds according to the chain rule of probabil-
ity:

Pr(v) =
m∏
i=0

(
Pr

(
pa(Xi ) |

i−1⋃
j=0

pa(X j ),

i−1⋃
j=0

x j
) ) (

Pr(xi |
i⋃
j=0

pa(X j ),

i−1⋃
j=0

x j )
)

Pr(w |x, z)
(31)

where, Z =
⋃

X ∈X Pa(X ), W = V − (X ∪ Z) and j ≥ 0. It
holds that in a causal DAG G, any node X ∈ V is indepen-
dent of its non-descendant condition on it parents Pa(X )
(known as Markov property [37]). This is simply because
Pa(X ) d-separates X from its non-descendants. Therefore,
the following is implied from the assumption that Xi is an
non-descendant of Xi+1:

Pr(xi |
i⋃
j=0

pa(X j ),

i−1⋃
j=0

x j ) = Pr(xi |pa(Xi )) for i = 0,m (32)

Hence,

Pr(v) =
( m∏
i=0

Pr
(
pa(Xi ) |

i−1⋃
j=0

pa(X j ),

i−1⋃
j=0

x j
) ) ( m∏

i=0
Pr(xi |Pa(Xi ))

)
Pr(w |x, z) (33)

The following implied from Eq. 33 and 30.

Pr(v |do(X = x)) =
Pr(v)∏m

i=0 Pr(xi |pa(Xi ))

=

( m∏
i=0

Pr
(
pa(Xi ) |

i−1⋃
j=0

pa(X j ),

i−1⋃
j=0

x j
) )
Pr(w |x, z) (34)

Now, by summation over all variables except for Y and X in
Eq. 34 we obtain the following, which proves the theorem.

P (y |do(X = x)) =
∑
z∈Z

Pr(y |x, z)
( m∏
i=0

Pr
(
pa(Xi ) |

i−1⋃
j=0

pa(X j ),

i−1⋃
j=0

x j
) )

(35)

□

Proof of Proposition 3.5. In one direction, we note that,
for any choice of K, the causal graph corresponding to an
intervention do(K = k) disconnects S and O , and therefore
intervening on S does not affect O . In the other direction,
let P be a path from S to O s.t. P ∩ A = ∅, and let K be the
set of all variables not in P; in particular, A ⊆ K. The causal
graph corresponding to an intervention on K consists of a
single path S →∗ O because all other edges are removed by
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Figure 15: Extra Graphs for experiments in Sec 6.

the intervention. Since S has no parents, intervening on S is
the same as conditioning on S , and, since Pr is faithful, we
have Pr(O = o |S = 0) , Pr(O = 0|S = 1) for some outcome
O = o, contradicting the assumption of K-fairness. □

Proof of Theorem 3.7. We show that an algorithm A is
A-fair if MB(O) ⊆ A. From Theorem 2.1, we obtain:

Pr(O = o |do(S = i), do(A = a)) =
∑

z∈Dom(Z)

Pr(y |S = i, A = a, z)

( m∏
i=0

Pr
(
pa(Xi )

���� i−1⋃
j=0

pa(X j ),

i−1⋃
j=0

x j
) )

(36)

where, Z =
⋃

A∈A Pa(A). Without loss of generality assume
Z ∩ A′ = ∅. Let A = MB(O) ∪ A′ and V′ = V − {A′ ∪
Z ∪ {S}}. From the definition of Markov boundary we have
(O⊥⊥V′,A′, S,Z|MB(O)). It follows from Decomposition and
Weak Union axioms in Graphoid that (O⊥⊥S,Z|MB(O),A′),
hence (O⊥⊥S,Z|A). We obtain the following for i = {0, 1}:

Pr(O = o |do(S = i), do(A = a)) = Pr(y |A = a)∑
z∈Dom(Z)

( m∏
i=0

Pr
(
pa(Xi )

���� i−1⋃
j=0

pa(X j ),

i−1⋃
j=0

x j
) )

= Pr(y |A = a) (37)

Note that (37) obtained by the fact that each product inside
the summation becomes 1 (simply because

∑
X Pr(X |Y ) = 1)

This proves the A-fairness of A. K-fairness for each K ⊇ A
can be proved in a similar way. □

Proof of Corollary 3.8. Without loss of generality, sup-
pose V = YDZWU with X = A ∪ Z and A = W ∪ Z. Since

the classifier is trained on X, there is a functional depen-
dency X → O , which implies (O⊥⊥Y,W,U|A,Z)(1), i.e., X
forms a Markov blanket for O . It is also implied from the
assumptions Pr(Y = 1|X = x) ≈ Pr(O = 1|X = x) and
(Y⊥⊥X−A|A∩X ) that (O⊥⊥A|Z) approximately holds (2). By
applying the Contraction axiom in Graphoid to (1) and (2),
we obtain (O⊥⊥YA,W,U|Z) i.e., MB(O) ⊆ A. Therefore, A
is justifiably fair according to Theorem 3.7. This completes
the proof of part (a). Part (b) is implied from part(1), def-
inition of Markov boundary and Decomposition axiom in
Graphoid. □

Proposition 8.2. Given a fairness application (A, S,A, I),
suppose the probability distribution of A is faithful to the
causal DAG. Then, the application is justifiably fair iff δ (S ;O |
MB(O) ∩ A) = 1.

Proof of Proposition 8.2. It is easy to see δ (S ;O |
MB(O) ∩ A) = 1 iff S⊥⊥O |MB(O) ∩ A. Under the faithful-
ness assumption, we obtain MB(O) ∩ A and d-separates S
and O . Hence, all directed paths from S to O go thorough
MB(O) ∩ A. Therefore, the algorithm is justifiably fair ac-
cording to Theorem 3.5. The converse is immediate from the
natural assumption thatO does not have any descendants in
the causal DAG; hence, its Markov boundary consists of the
algorithm’s inputs. □

Proof of Proposition 4.1. The proposition follows from
three facts, all easily verified. (1) D ⊆ D∗, (2) D∗ satisfies the



MVD Z ↠ X, and (3) If two databases D1,D2 satisfy the
MVD then so does D1 ∩ D2. Indeed, the three facts imply
that, for any repair D ′, the database D∗ ∩ D ′ is also a repair

and |∆(D,D∗ ∩ D ′)| ≤ ∆(D,D ′)|, hence, if D ′ is a minimal
repair, then D ′ ⊆ D∗. □
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