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Abstract

We develop and analyze a novel utility function
and a fast optimization algorithm for subset se-
lection in sequential data that incorporates the
dynamic model of data. We propose a cardinality-
constrained sequential facility location function
that finds a fixed number of representatives, where
the sequence of representatives is compatible with
the dynamic model and well encodes the data. As
maximizing this new objective function is NP-
hard, we develop a fast greedy algorithm based
on submodular maximization. Unlike the con-
ventional facility location, the computation of the
marginal gain in our case cannot be done by oper-
ations on each item independently. We exploit the
sequential structure of the problem and develop an
efficient dynamic programming-based algorithm
that computes the marginal gain exactly. We in-
vestigate conditions on the dynamic model, under
which our utility function is (e-approximately)
submodualr, hence, the greedy algorithm comes
with performance guarantees. By experiments
on synthetic data and the problem of procedure
learning from instructional videos, we show that
our framework significantly improves the compu-
tational time, achieves better objective function
values and obtains more coherent summaries.

1. Introduction

Subset selection, which is to find a small subset of most
informative items from a large ground set, is a fundamen-
tal task in machine learning with numerous applications,
including, image, video, speech and document summariza-
tion (Gong et al., 2014; Simon et al., 2007; Elhamifar &
De-Paolis-Kaluza, 2017a; Lin & Bilmes, 2012; Kulesza &
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Taskar, 2012; Frey & Dueck, 2007), data clustering (Kim
et al., 2011; Shah & Ghahramani, 2013; Elhamifar et al.,
2016), feature and model selection (Guyon & Elisseeff,
2003; Misra et al., 2014; Elhamifar et al., 2014), sensor
placement (Krause et al., 2008; Joshi & Boyd, 2009), so-
cial network marketing (Hartline et al., 2008) and product
recommendation (McSherry, 2002). From an optimization
perspective, subset selection consists of two parts. The first
component is the utility function, which characterizes the in-
formativeness of selected items. Different criteria have been
proposed in the literature, such as maximum cut (Hadlock,
1975; Motwani & Raghavan, 1995), maximum marginal rel-
evance (Carbonell & Goldstein, 1998), capacitated and un-
capacitated facility location (Mirchandani & Francis, 1990;
Nembhauser et al., 1978), linear coding (Elhamifar et al.,
2012a; Esser et al., 2012) and maximum volume parallelo-
tope (Kulesza & Taskar, 2012; Borodin & Olshanski, 2000).
The second component is the algorithm to optimize the util-
ity function. In fact, optimizing almost all subset selection
criteria is, in general, non-convex and NP-hard (Motwani
& Raghavan, 1995; Feige, 1998; Gonzalez, 1985; Civril
& Magdon-Ismail, 2009), which has motivated approxi-
mate methods, such as greedy algorithms for maximizing
submodular functions (Nemhauser et al., 1978; Krause &
Golovin, 2014), e.g., graph-cuts and facility location, sam-
pling from Determinantal Point Process (DPP) (Kulesza
& Taskar, 2012; Borodin & Olshanski, 2000) for approxi-
mately finding the maximum volume subset of points, as
well as convex relaxation for subset selection (Elhamifar
et al., 2016; Awasthi et al., 2015; Nellore & Ward, 2015;
Elhamifar et al., 2012b) .

Sequential Subset Selection: Sequential data, including
time-series and ordered data such as video, audio, sensor
measurements, text and gene expressions, constitute a large
part of today’s real-world data. There are two character-
istics of sequential data that must be taken into account
when developing subset selection techniques. The first is
the structured dependencies among data, imposed by under-
lying dynamic models. For instance, segments/sentences
in a video/text are connected in logical way, hence, can-
not be treated independently, which would result in losing
the semantic content of the video/document. The second
characteristic is the large scale of sequential data that needs
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Figure 1: Given a source set of items {@1,...,xn} with a
dynamic transition model and a target set of sequential items
(y1s---,yr), we propose the cardinality-constrained sequential
facility location function and a fast greedy algorithm to find a
sequence of representatives, of fixed cardinality, from the source
that well encodes the target data and follows the dynamic model.

to be dealt with efficiently, as we are constantly capturing
data, such as video, audio and text.These factors motivate
the development of new utility functions and optimization
algorithms that take into account structured dependencies
of and scale to large sequential data.

The majority of existing subset selection methods, however,
treat items independent from each other, ignoring depen-
dencies of sequential items. The work in (Affandi et al.,
2012; Gong et al., 2014) have studied interesting extensions
of DPP-based subset selection, by finding representatives
in a sequential fashion such that newly selected represen-
tatives are diverse with respect to the previously selected
ones. However, sequential diversity by itself is generally
insufficient, e.g., it results in selecting irrelevant but diverse
scenes/sentences in video/document summarization. (Tschi-
atschek et al., 2017) has extended submodular functions to
capture ordered preferences among items, where ordered
preferences are represented by a directed acyclic graph over
items, and has developed a greedy algorithm to pick edges
instead of items. However, it cannot deal with arbitrary
graphs, such as the ones with cycles. The recent work in
(Elhamifar & De-Paolis-Kaluza, 2017b) has introduced a
method for sequential subset selection that incorporates dy-
namics of data. However, the proposed message passing
algorithm has O(NN*) computational cost in the size of data,
N, making it impractical to apply to large datasets. More-
over, it has no explicit control over the exact number of
representatives, which is desired in many real problems.

Paper Contributions: We develop a new utility function
and a fast optimization algorithm for subset selection in
sequential data. We propose a cardinality-constrained se-
quential facility location function that incorporates dynam-
ics of data into subset selection, finding a fixed number of
representatives, where the sequence of representatives well
encodes the data and is compatible with the dynamic model,
see Figure 1. As maximizing this new objective function
is, in general, NP-hard, we develop a fast greedy algorithm
based on submodular maximization. Unlike conventional
facility location, due to the coupling of representatives via
the dynamic model, the computation of the marginal gain

cannot be done by operations on each item independently.
Hence, we exploit the sequential structure of the problem
and develop a dynamic programming-based algorithm to
compute the marginal gain exactly. We investigate condi-
tions on the dynamics of data, under which our utility func-
tion is (e-approximately) submodular, hence, the greedy
algorithm comes with performance guarantees. For a first
order Markov model, our theoretical conditions depend on
the variations of incoming transitions to each item, where
for a uniform transition the problem would become sub-
modular. By experiments on synthetic and on the problem
of procedure learning from instructional videos, we show
that our framework not only significantly improves the com-
putational time, but also achieves better objective function
values and more coherent summaries than existing methods.

2. Background Review

In this section, we review the sequential subset selection
algorithm in (Elhamifar & De-Paolis-Kaluza, 2017b) and ap-
proximate submodular functions. To handle large sequential
data, we build on these and introduce a new utility function,
a fast algorithm and study its theoretical guarantees.

2.1. Sequential Subset Selection

Consider a source set of items X = {x1,...,x) } witha
first-order Markov model transition dynamics, 7(x;|x;),
and a target set of sequential items ) = (yy,...,yr). The
goal of sequential subset selection is to find a representa-
tive subset of X that well encodes ), while the sequence
of representatives follow the dynamic model on X'. The
recent work in (Elhamifar & De-Paolis-Kaluza, 2017b) has
proposed a formulation for this problem based on a general-
ization of the uncapacitated facility location function.

Let d; ; denote the dissimilarity of x; to y,. A lower d; ;
means that x; better encodes y,. Define binary assignment
variables {z”}fj"'_‘_"%j, where z; ; € {0,1} indicates if x;
is a representative of :I,Jt. Assuming that each item y, is asso-
ciated with only one representative, we have sz\i1 zig = L.
To recover the assignment variables and representatives,
(Elhamifar & De-Paolis-Kaluza, 2017b) proposes to solve

T M
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where the first term measures the encoding cost of ) via
representatives, since we pay the penalty of d; ; for x; being



Greedy Sequential Facility Location

the representative of y,. The second term in the objec-
tive function counts the number of representatives, since
I [Zi,l e zi,T] |l would be 1 if x; becomes a representa-
tive of some items in ) and would be 0 otherwise. Finally,
the last two terms of the objective function measure the
corj{l/lpatibility of the sequence of representatives. The term
> i1log mo(x;)2;,1 promotes to select an x; as the first rep-
resentative, i.e., representative of y,, that has a large initial
probability 7. The term Z%,zllog (@i | @) 2ie—1 200 4
promotes to select ¢ and ¢’ as representatives of consecutive
items of ), when there is a high transition probability be-
tween them. As a result, incorporating the dynamic compat-
ibility term promotes to select a sequence of representatives
that follow the dynamic model. The regularization parame-
ter A > 0 controls the effect of the cardinality term, where
a close to zero A results in many representatives, while the
regularization parameter 5 > 0 controls the effect of the
dynamic compatibility term, where a close to zero [ results
in discounting the effect of the dynamics on X'.

Since (1) is non-convex, due to the dynamic cost and the
binary constraints on assignment variables, (Elhamifar &
De-Paolis-Kaluza, 2017b) proposes a max-sum message
passing algorithm to approximately solve the problem. How-
ever, a major drawback of this approach is that the mes-
sage passing algorithm (on the corresponding loopy graph)
is computationally complex, requiring O(M?T? + M3T)
computations per iteration of the message passing, hence,
does not scale to large sequential data. Moreover, it is not
clear how to choose A in order to find a certain number of
representatives, as is often desired in real applications. In
the next section, we propose a cardinality-constrained se-
quential facility location function that finds a fixed number
of representatives and study a fast greedy algorithm, which
significantly reduces the computational cost to O(MT).

2.2. Greedy Submodular Maximization

Consider a set function f defined on a ground set V, i.e., a
function that assigns a value f(S) to each subset S C V.
The function is submodular if it satisfies the diminishing
return property (Krause & Golovin, 2014).

Definition 1 A set function f : 2¥ — R is submodular
if forevery A C T C V and every i € V\I', we have

fAU{i}) = f(A) = fTU{d}) = f(I).

Roughly speaking, the diminishing return property states
that the added value of including an element to a set de-
creases as the size of the set increases. To maximize a set
function, we often use the marginal gain, defined as follows.

Definition 2 The marginal gain of a set function f : 2¥ —
R, at A with respect to i € V is defined as

ar(ilA) £ f(AU{i}) = f(A). 2)

Given a submodular set function f, maximization of f over
all subsets of size at most k of the ground set, i.e.,

ST, f(S), 3)
is an NP-hard problem (Feige, 1998), (Gonzalez, 1985).
An approximate method to solve this problem is a greedy
algorithm (Nembhauser et al., 1978) that starts by initial-
izing an active set A to be empty and, over k iterations,
incrementally adds to A the element that maximizes the
marginal gain. Algorithm 1 shows the steps of the greedy
method. For monotone submodular functions, i.e., func-
tions for which f(A) < f(T') for any A C T, the greedy
algorithm is guaranteed to obtain a solution that is within
(1 —1/e) of the global maximum of (3) (Nemhauser et al.,
1978), (Calinescu et al., 2011), (Feldman et al., 2011). The
recent result in (Bian et al., 2017) has shown that even for
non-submodular functions, the greedy algorithm has worst
case guarantees, which depend on the generalized curvature
and the submodularity ratio of the function.

Algorithm 1 : Greedy Maximization

Input: Set function f : 2¥ — R; Budget k.

1: Initialize: A = &;

2: forj=1,...,kdo

3: forie V\Ado

4 Compute 57 (i|A) 2 fF(AU {i}) — f(A);
5 end for
6:  Compute i" = argmax;cyn 5 07 (i|A);
7
8:

Update A < AU {i*};
end for
Output: Optimal set A of size k.

A more general class of set functions is e-approximately
submodular function that also has approximation guarantees
via the standard greedy algorithm (Horel & Singer, 2016).

Definition 3 A set function f : 2V — R is e-approximately
submodular, if there exists a submodular function g : 2¥ —
R, such that for every A C V),

(1-2)g(A) < f(A) < (1+e)g(A). (4)

Indeed, solving (3) for an e-approximately submodular func-
tion using the standard greedy algorithm has (1 — 1/e —
O(9)) approximation guarantees, where § = ¢k (Horel &
Singer, 2016).

3. Cardinality Constrained Sequential
Facility Location

In this section, we propose a cardinality-constrained max-
imization for sequential subset selection, develop a fast
greedy algorithm that maximizes the marginal gain via dy-
namic programming, and study conditions under which our
utility function is (approximately) submodular.
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3.1. Problem Formulation

Given a source set X = {x1,...,x )} with a first-order
Markov model dynamics, (7, ), and a sequential target
set Y = (yy,...,Yp), our goal is to find a representative
subset of X' of size at most k& that well encodes ), where
the sequence of representatives follows the dynamic model.
We consider a clustering-based subset selection scheme,
where each y, is assigned to one representative from X'.
Here, 7 (4) indicates the probability of selecting x; as the
representative of y, and m(i’|¢) denotes the probability of
selecting ;s as the representative of y, given that x; has
been selected as the representative of y,_;.

LetS C {1,..., M} denote the set of indices of representa-
tives. Let r, € S be the unknown index of the representative
ofy, fort € {1,..., T} and letr = (ry,72,...,77) de-
note the sequence of representatives for )). To recover S
and r, we propose the maximization

P (1) X D 5
S max enc () X @y (7)), §)

over all subsets S C {1,..., M} of size k and over all pos-
sible assignments » C S T where e (+) denotes an encod-
ing potential that favors selecting a representative set from
X that well encodes ) and Pgy,(-) denotes a dynamic po-
tential that favors selecting an ordered set of representatives
that follows the dynamic model (7, 7). The regularization
parameter 3 > 0 sets the effect of the dynamic potential,
where a close to zero /3 discounts the dynamics.

Since the encoding of each item of ) depends on its own
representative, we consider the factorization

H exp(sy, ) ©6)

where s;; > 0 denotes the similarity of x; to y,, which
is larger when x; better represents y,. For the dynamic
potential, we consider

T

Pyyn (1) = mo(1r1) X H w(re|ri—1), @)

t=2

where the selection of the representative of y, depends on
the representative of y, ;'. As a result, maximizing the
dynamic potential promotes to select a sequence of rep-
resentatives that follow the dynamic model on the source
set. Here, we assume that the dynamic model is given. In
the real experiments, we learn (7, 7) by fitting a hidden
Markov model to data. To simplify the notation, we define

q; = logmo(i), ¢ii = logm(i'|i). ®)

"We can generalize the method to higher order Markov models.
We focus on first-order models as they work well in practice.

Instead of maximizing the utility function in (5), we equiva-
lently maximize its logarithm. Using the definition of the
encoding and dynamic potentials in (6) and (7), we get

g, 1 A Y ) O
Without loss of generality, we can Shlft the values of log
initial and log transition probabilities to become positive, by
adding a constant to each vector/matrix. This would make
the objective function always non-negative, while does not
change the optimal solution, as it is equivalent to adding a
constant to the entire objective function.

Remark 1 Instead of using (7), we can define

D4y (1) = — ¢ XH elre—1re (10)
where the vector ¢° and the matrix q correspond to the
preference or score of initial and transition in representative
assignments, respectively. ¢° and q could be defined by the
user or be estimated from data. For example, we can set
a7, =mo(r1) and qr,_, ;. = m(refre-1).

Remark 2 For 3 = 0, the utility function in (9) reduces
to the cardinality-constrained facility location, which is
submodular and for which the standard greedy algorithm
has (1 — 1/e) worst case performance guarantees. In this
case, if we know the optimal representative set S, computing
r¢ can be done independently for each t by assigning the
closest element from S to y,, i.e., 7y = argmax;cs S; 4. On
the other hand, for B > 0, it is not clear if the utility function
in (9) is submodular. Moreover, computing the assignment
variables cannot be done independently over t, due to the
coupling of the sequence of representatives via  (or q).

Next, we use a greedy linear time algorithm based on dy-
namic programming in each iteration and investigate con-
ditions under which our utility function is (approximately)
submodular, hence, has approximation guarantees.

3.2. Greedy Sequential Facility Location

To solve our proposed optimization in (9), we first rewrite it
in the form of the maximization of a set function as in (3),
by defining f over the ground set V £ {1,..., M} as

f(S) £ max Zwm (11)

where, for compactness of notatlon, for every t in
{2,...,T}, we have defined

Srepi—1 6((]791,—1 + q’ft—lﬂ“f,)v ift =2,
s"‘t—l,tfl + ﬂq’l"tfl,?”tv 1f2 <t < T,

Sry_q,t—1 + Sry,t + 5%,17”» ift="T.
(12)

w"‘t—lﬂ't:
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Notice that (@) = 0 and it is easy to verify that f is
monotone, i.e., f(A) < f(T') for any A C I". To solve (9)
via the greedy method in Algorithm 1, we need to compute
the marginal gain, d7(i|A), for f defined in (11), which in
turn requires evaluations of f on A and A U {i}, see (2).

Evaluation of f(A), in principle, requires a search over an
exponentially large parameter space, » C AT, and, unlike
the case with 8 = 0, cannot be done independently over
each time instant. However, we use the sequential structure
of the problem to efficiently evaluate f. More specifically,
we use the fact that computing the right hand side of (11) in-
volves maximizations over sum of pairs of variables. Hence,
we can distribute the maximization over the summation, i.e.,

f(A)= P;EEEX(WTT LT +£12125\((w7z rgt még\( Wy 1))
(13)

Thus, we can exactly compute f(A) and f(A U {i}), hence,
the marginal gain, in each iteration of the greedy algorithm
using dynamic programming (Bellman, 2003).

Computational Complexity. Notice that at each iteration
of the greedy, computing f(A U {i}) via (13) requires per-
forming T' maximizations, where each maximization re-
quires computing a table with (|A| + 1)? pairs. Given that
|A|? pairs have already been computed in the previous itera-
tion of the greedy, we need to compute O(]A|) new values,
hence, O(kT) cost for computing (13), given that |A| < k.
At each iteration, we need to compute the marginal gain for
each i in V\A, hence, O(kMT) cost per greedy iteration.
Finally, to find k representatives, we need to run the greedy
algorithm for k iterations, hence, a total cost of O(k*>MT).
Thus, our algorithm runs linearly in the size of the source
and target sets as opposed to the O(M?2T? + M3T) cost
of the message passing in (Elhamifar & De-Paolis-Kaluza,
2017b). Moreover, given a budget k, the greedy algorithm
returns at most k representatives, as opposed to the message-
passing framework that needs to be run for many \’s in (1)
and select the solution that satisfies the budget.

3.3. Theoretical Analysis

Our proposed formulation in (9), involves maximization
over a set function f (S), defined as

ZsTt,t+5 q71 +qu’ 1,Tt

It is important to note that the sequentlal facility location
in (14) is not necessarily submodular, unlike the standard
facility location. To see this, consider the following example.

A
= max
reST

(14)

Example 1 Consider a source set X = {x1, 22} and a se-
quential target Y = (yy,Ys), with the following similarities
and dynamic transition model, for v < 0.5,

1 0 v 1—v
S[O 1],7&;[0.5 0.5],%{1_V y }

Consider the shifted log-probabilities,

0.1 log(%) 4+ 0.1
. :

=01 01], 0= |y pp1=ry L 01 0.

Let A = @ and T' = {2}. We have

f(A) =
(AU{l})—811+512+/Bq1+Bq11_1+0257
(F)_821+822+5q2+5q22:1+OQB, (15)
)

FOU{1}) =s1,1 + 522 + Bg) + Bau.e

_2—|—ﬂlog(1 )—&-025
When 0.2 < log(1=%), we have 67 ({1}|A) =1+ 0.28 <
Sr({1HT) =1+ Blog(1 =), Thus, f(-) does not satisfy

the diminishing return property and is not submodular.

We investigate conditions on the transition model, 7, under
which our utility function is (-approximately) submodular,
hence, the greedy algorithm has approximation guarantees.

Theorem 1 Consider the optimization in (9). Assume there
exists ¢ € [0,1) such that each q,, ., can be written
as qry_q,ry = QTtwrt,l,rtr for some qr, where '(/)rt,l,m €
[1 —e,1+ €. Then, for every 8 > 0, the proposed utility
Sfunction in (14) is e-approximately submodular. Moreover,
the greedy algorithm has (1 — 1/e — O(0)) approximation
guarantees, where § = ek.

Proof. To prove the result, we show that there exists a
submodular function g(S), such that f(S) satisfies the defi-
nition of e-approximate submodularity via g(S), as in (3).
Using the assumption of the theorem, we rewrite (14) as

T

f(S) :1{2%);(87‘1,1 + ﬂqgl =+ Z(sﬁ,t + ﬂ(jﬁd)ﬁ—lﬂ”t))'

t=2 6)
Since from the assumption ¢, , », € [l —&,1+¢], we can
bound f(S) from above by

T
F(8) < mag (om, 1+ 508, +3 " (s0,H5(1+ )ai,))

t=2
- a7)

<(1+¢) mgx(sr1 1+ﬁqr1 +Z (8r,,t+Bar,)),
t—2

where we used the fact that similarities, log initial and transi-
tion probabilities are non-negative. Similarly, we can bound
f(S) from below as

T
f(S) > ma'X(STl 1+5Qr1 +Z STt,t+5(1 - E)q’ft))
t=2 18)
- (
(1 - E) m%X(Sh 1+ﬂqn +Z Sm,t""ﬂ(ht))
t=2
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Thus, putting the results in (17) and (18) together, we have
(1—2)g(S) < f(S) < (1 +¢2)g(S5), (19)

where ¢(S) is defined by
T
9(8) & max (sr1 + B4y, + D _(sree +54.,)). 20)
t=2

Notice, however, that g(S) corresponds to the facility loca-
tion function with modified non-negative similarities defined
as 5r,1 = 5,1+ B¢, and 5,4 £ 5,4 + Gy, fort > 2.
Hence, ¢(S) is submodular (Nemhauser et al., 1978; Krause
& Golovin, 2014). As a result, from Definition 3, f(S) is
e-approximately submodular. [

The level of approximate submodularity, €, depends on the
structure of the transition matrix and the values of transition
probabilities. In particular, our utility function becomes
closer to submodularity, i.e., € decreases, when transitions
to each given state are more similar. Specifically, we show
the following result.

Corollary 1 Consider the optimization in (9). Assume tran-
sition probabilities are such that w(i|1) = --- = w(i|M),
for every i. Then, for all B > 0, our utility function in (14)
is 0-approximately submodular, i.e., it is submodular.

Remark 3 When we have a uniform transition probability
from every state, (14) satisfies the condition of the Theo-
rem I, with ¢ = 0. In other words, the problem becomes
submodular. Notice that in this case, the dynamic potential
becomes a constant, hence, has no effect on the solution,
and the problem reduces to the standard facility location.
Thus, our framework and results, generalize facility location
to arbitrary transition probabilities between states.

The result in Theorem 1 gives a practical algorithm to deter-
mine the approximate submodularity level, €, of the sequen-
tial facility location function in (14), for a given transition
probability matrix.

Corollary 2 Consider the optimization in (9) for a given
transition model. For log transition probabilities or positive
shifted log transition probabilities, define
A . A

% =i g, wiS max, gy 21
The approximate submodularity level of f(S), defined in
(14), is given by
Ui — fz
u; +4;

e= . (22)

max
i=1,....,M

Proof. The proof follows by setting g, = 0.5(u,, + ¢,)
in Theorem 1, for which it is guaranteed that g,, , ,, =
TryWUry_yry» Where ¢, | o, €[1—¢,14¢]. =
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Figure 2: Logarithm of running time (seconds) of our greedy
sequential facility location and message passing as a function of
(left) the length of the sequence, T, for fixed M = 50, (right)
the number of states, M, for fixed T" = 200, for 5 = 0 (blue),
£ =0.01 (red) and 5 = 0.1 (purple).

4. Experiments

In this section, we evaluate the performance of our method,
which we refer to as Greedy Sequential Facility Location
(GreedySeqFL), on synthetic data and on the problem of
procedure learning from instructional videos.

4.1. Synthetic Experiments

We compare our method with the message passing (MP)
algorithm (Elhamifar & De-Paolis-Kaluza, 2017b). We
generate synthetic data where the source set X’ corresponds
to means of M Gaussian distributions with unit variance,
and the initial and transition probabilities are generated at
random and then normalized. We draw a sequence of length
T from the model to form the target set ) and run different
algorithms to select k representatives.

Running Time. We evaluate the running time of both opti-
mization methods as a function of the length of sequences, T’
and the number of states, M for selecting k = 10 representa-
tives. Given that the MP has cubic and quadratic complexity
in M and T, respectively, we had to limit M < 80 and
T < 200. Also, since MP cannot enforce the exact number
of representatives, we run MP for a large number of \’s and
use the run that achieves k representatives. Figure 2 shows
the running times on the logarithmic scale for three values of
B € {0,0.01,0.1}. Notice that, for a fixed M and varying
T, our greedy method is three orders of magnitude faster
than MP, while for a fixed T" and varying M, the greedy
is two orders of magnitude faster. This is because, while
each iteration of MP is two orders of magnitude more costly
than the entire run of the greedy, empirically, the number
of iterations of MP to converge increases significantly as T’
increases. Also, the running time of our greedy method does
not change with 3, whereas MP becomes slower, requiring
more iterations to converge, as /3 increases.

Objective Value. We compare the achieved value of the
objective function in (9) for both our method and MP, over
100 random trials, as a function of the number of represen-
tatives. Figure 3 illustrates the results for 8 € {0,0.5,1}
on sequences with M = 50 and 7" = 200. While for 5 = 0
both methods perform similarly, as 3 increases, the greedy
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Figure 3: Average objective function value over 100 random trials
as a function of the number of representatives selected by our
greedy sequential facility location and message passing for (left)
B = 0.0, (middle) g = 0.5, (right) 8 = 1.0.

method achieves higher objective values than MP. Thus, our
method performs better than MP in maximizing the utility
function, while being several orders of magnitude faster.

Effect of . Finally, we investigate the effect of the ap-
proximate submodularity level of our utility function on
the performance of the greedy method. To do so, we
generate transition matrices for which our formulation in
(9) is e-approximately submodular, hence, the condition
in (22) is satisfied. From (22), we have min; w(i|j) >
(max; 7 (i]§)) 1)/ (=) for every i. We assume that each
row of the transition matrix contains ¢ probabilities corre-
sponding to o, £ max; 7(i|j) and the remaining M — ¢
probabilities correspond to ay £ min; 7 (i[5). Our goal is
to find «,, and oy of the largest difference o, — «y that
satisfy (22) and give a valid transition probability matrix.
Thus, we solve

1+e

max oy — ar, s.t. ap > (au)i, tay + (M —t)ay = 1.

us g 23)
Once we obtain the solution?, we randomly select ¢ entries
of each row of the transition matrix and set the their values
to oy, and set the remaining entries to g Thus, each column
consists of a,, and ay values, satisfying the condition for -
approximate submodularity. To investigate the effectiveness
of our method, we also perform exhaustive search to com-
pute the global maximum of (9), which we refer to as Oracle.
Figure 4 shows the average objective value, over 10 trials, as
a function of ¢ and for M = 30,7 = 1000 and k € {3,4}
representatives (we could not run Oracle for larger values
of M or k, due to prohibitive computational cost). Notice
that when the problem is exactly submodular, i.e., ¢ = 0,
the gap between the two methods is smaller and it grows as
soon as the problem becomes approximately submodular,
i.e., € > 0. However, the gap in achieved objective values
remains relatively the same for all values of ¢ € [0.1,0.9].
This shows that the performance of the greedy is in practice
much better that the theoretical guarantee, which is only for
the worst-case scenario.

4.2. Real Experiments on Procedure Learning

We evaluate the performance of our proposed method for
procedure learning from instructional videos (Alayrac et al.,

2We use CVX to solve (23) and check the solution feasibility.
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Figure 4: Average objective function value, over 10 trails, for
£ = 0.1 (top) and 8 = 1 (bottom) as a function of the approximate
submodularity level € for £ = 3 (left) and k& = 4 (right).

2016; Sener & Yao, 2018). Assume we have a collection of
L instructional videos, V1, ..., YV, of the same task, from
which we want to learn a procedure, i.e., key steps and their
ordering to achieve the task. Despite variations in videos,
such as visual appearance, view points and length of videos,
one can identify key segments, where the action in each
segment is seen in many videos, as well as an ordering in
the sequence of key segments, common across most videos.

We use our proposed method to recover the common se-
quence of key steps as the procedure description and localize
them in all videos. To do so, we segment each video using
(Gygli et al., 2014) and, following (Alayrac et al., 2016), ex-
tract a 3000-dimensional feature vector from each segment,
capturing appearance and motion, reduce the dimension of
the data to d via PCA, hence, obtaining a time-series repre-
sentation )y for each video £. We then learn, from all input
videos, an HMM, whose states gathered in A" correspond
to different sub-activities across videos. In addition, the
transitions between states in 7 capture the ordering of the
steps across videos. Given that key-steps are common across
many videos and their ordering must follow the dynamic
model (7, 7), we apply our proposed method to select a
representative subset of states from X'. Once we recover
the sequence of representatives for each video, we align
them using multiple sequence alignment techniques (Wang
& Jiang, 1994; Alayrac et al., 2016) to produce a compact
procedure description of length K. Finally, to localize key-
steps, we find all segments in all videos that are assigned to
a key-state in the output of our optimization.

We perform experiments on the Inria instructional video
dataset (Alayrac et al., 2016) that consists of five tasks of
‘change tire’, ‘make coffee’, ‘perform cpr’, ‘jump-start car’
and ‘repot plant’, with 30 videos per task. We compare
our framework with Alayrac et al. (Alayrac et al., 2016),
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Uniform | Alayracetal. | Seneretal. | Facility Loc. | GreedySeqFL
K=7 152 20.3 223 26.3 34.1
K =10 18.0 21.0 253 27.6 34.9
K =12 14.8 21.0 24.6 29.5 34.9
K =15 15.4 20.5 235 29.5 35.9

Table 1: Average F1 scores (%) of different algorithms on the Inria Instructional dataset for different values of procedure length, K.
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Figure 5: F1 scores (%) of different algorithms on the Inria Instructional dataset for different values of procedure length, K.

Sener et al. (Sener & Yao, 2018) and a baseline, referred
to as Uniform, where we distribute key-step assignments
uniformly over all segments in each video. In addition, we
consider the Facility Location method in which no dynamic
model is used. Specifically, instead of fitting an HMM, we
perform Kmeans on feature vectors of segments of all videos
from the same task, followed by running Facility Location,
i.e., our optimization in (5) with 5 = 0. This allows us to
investigate the effectiveness of using the dynamics of data
for subset selection and procedure learning.

For the experiments, we set d = 300, M = 50, k = 15
and 8 = 0.01 in our method. To evaluate the results, we
compute the F1-score, which is the harmonic mean of the
precision and recall and takes a value between O and 1.
The precision is the ratio of the total number of correctly
localized key-steps to the total number of discovered key-
steps across videos. Similarly, the recall would be the ratio
of the total number of correctly localized key-steps to the
total number of ground truth key-steps across videos.

Results. Table 1 shows the average F1 scores of different
algorithms on the Inria dataset as a function of the final pro-
cedure length K € {7,10,12,15}. Notice that our method
performs significantly better than other methods for all val-
ues of K. In particular, we achieve the F1 score of 34.1%
for K = 7 compared to 22.3% via Sener et al. and achieve
the score of 35.9% for K = 15 compared to 23.5% via
Sener et al. On the other hand, both Facility Location and
our method outperform other algorithms, demonstrating the
effectiveness of subset selection for addressing procedure
learning. However, our method improves over Facility Lo-
cation by at least 5.4%, which shows the importance and
effectiveness of incorporating the dynamic model of data
into subset selection.

Figure 5 show the results of different algorithms for each of
the 5 tasks. Notice that, except for the task of ‘change tire’,
our method outperforms other methods across all values of

K. Alayrac et al. perform better for ‘change tire’ as it takes
advantage of both speech and visual data, where speech
seems to be helpful for this task. Our method obtains its
best performance on the task of ‘perform cpr’, achieving F1
scores of 58.7% for K = 7 compared to 31.3% and 36.5%
by Alayrac et al. and Facility Location, respectively. This is
due to the fact that in this task, one has to alternate between
the two steps of ‘give compression’ and ‘give breath’ multi-
ple times, hence, taking advantage of the dynamic model of
data becomes important.

Figure 6 shows the effect
of 3 on the performance
of our method on three
tasks. Here, we show the
improvement with respect
to 5 = 0. Notice that
the performance improves
as 3 increases from zero,
with ‘perform cpr’ enjoy-
ing the largest improve-
ment in the F1 score. On
the other hand, when 3 be-
comes sufficiently large, the performance of ‘make coffee’
decreases with respect to 8 = 0, as we overemphasize on
the dynamic potential and ignore the encoding.

-8 Perform cpr
@ Jump car
¥ Make coffee

=)

I

F1 Improvement (%)
wn

0 0.005 0.01 0.05 0.01

B
Figure 6: F1 score improve-
ment with respect to 5 = 0.

5. Conclusions

We proposed a utility function and a fast greedy algorithm
for subset selection in sequential datasets, taking advantage
of the dynamic model of data. We proved that under appro-
priate conditions on transition dynamics, our utility function
is e-approximately submodular, hence, enjoys approximate
guarantees via the greedy method. By experiments on syn-
thetic and real data, we showed the effectiveness of our
method in terms of running time and attained objective val-
ues as well as addressing the procedure learning task.
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