
Unsupervised Procedure Learning via Joint Dynamic Summarization

Ehsan Elhamifar
Khoury College of Computer Sciences

Northeastern University
eelhami@ccs.neu.edu

Zwe Naing
Khoury College of Computer Sciences

Northeastern University
naing.z@husky.neu.edu

Abstract

We address the problem of unsupervised procedure
learning from unconstrained instructional videos. Our goal
is to produce a summary of the procedure key-steps and
their ordering needed to perform a given task, as well as
localization of the key-steps in videos. We develop a col-
laborative sequential subset selection framework, where we
build a dynamic model on videos by learning states and
transitions between them, where states correspond to dif-
ferent subactivities, including background and procedure
steps. To extract procedure key-steps, we develop an opti-
mization framework that finds a sequence of a small number
of states that well represents all videos and is compatible
with the state transition model. Given that our proposed
optimization is non-convex and NP-hard, we develop a fast
greedy algorithm whose complexity is linear in the length of
the videos and the number of states of the dynamic model,
hence, scales to large datasets. Under appropriate condi-
tions on the transition model, our proposed formulation is
approximately submodular, hence, comes with performance
guarantees. We also present ProceL, a new multimodal
dataset of 47.3 hours of videos and their transcripts from
diverse tasks, for procedure learning evaluation. By exten-
sive experiments, we show that our framework significantly
improves the state of the art performance.

1. Introduction
There exists a large amount of instructional data on the

web in different forms. YouTube has over 500 million
video search results for the phrase ‘how to’, with more than
400,000 results for tasks such as ‘how to assemble a bike’
or ‘how to setup chromecast’. Such instructional data pro-
vide rich information for procedure1 learning, which is to
automatically learn the sequence of key-steps to perform
a certain task. Procedure learning can be used to design

1According to Webster’s Encyclopedic Unabridged Dictionary of the
English Language, ‘Procedure’ is defined as “the sequence of actions or
instructions to be followed in solving a problem or completing a task.”

Replace iPhone Battery

Video 1

Video 2

Video 3

Video 1

Video 2

Video 3

Ground
Truth

Ours

time

Open iPhone screen Disconnect iPhone screen Put iPhone battery Screw screen

Ground
Truth

Ours

Open airway Check breath Give compression Give breath

Video 1

Video 2
Video 3

Video 1

Video 2

Video 3

Perform CPR

time

Figure 1: The goal of unsupervised procedure learning is to learn and
localize in data the sequence of key-steps to achieve a task. Ground-truth
annotations and automatic discovery and localization of key steps via our
method for the two tasks of ‘perform CPR’ (top) and ‘replace iPhone bat-
tery’ (bottom) for three videos in our new ProceL dataset are shown. We
also show a few frames from each localized key-step found by our method.

autonomous agents that can perform complex tasks [1], to
build knowledge bases of instructions, or to generate suc-
cinct procedures when human cannot spend time synthe-
sizing the information from multiple sources [2]. Under-
standing instructional data at the scale necessary to build
knowledge bases of thousands of tasks or to build assistive
robots that respond to a large number of instructions, re-
quires unsupervised procedure learning that does not rely
on annotated data, which is complex and costly to gather.

Unsupervised procedure learning is an extremely chal-
lenging problem that needs to not only discover and localize
the key-steps of a task, but also discover the logical ordering
of the key-steps. This requires reconciling variations among
instructions of a task, such as additional or missing steps
and substantial amount of background actions, which are
not related to the task. Over the past several years, we have
seen interesting advances on the problem [3, 4, 5, 6, 7, 8].

1

The majority of existing work have focused on understand-
ing procedures from narration [3, 4, 7, 9]. However, reliably
obtaining text from spoken natural language using videos
on the Internet is still a challenging problem, often requiring
manual cleaning the results of automatic speech recognition
systems. Moreover, to learn visual models of key-steps, ex-
isting methods assume that the text and visual information
are aligned [4, 7, 9], which could be violated in real videos,
e.g., human narrators first speak about one or multiple key-
steps and then perform the subactions. Thus, to learn good
visual models of key-steps, it is necessary to directly use
visual data. Existing methods can handle and localize only
one occurrence of a key-step in a video [5, 4, 9]. However, a
procedure may contain repetitive key-steps, e.g., to perform
‘CPR’, one needs to alternate multiple times between ‘give
breath’ and ‘give compression’ key-steps.

Paper Contributions. We address the problem of unsu-
pervised procedure learning using visual data from uncon-
strained videos. We develop a joint dynamic summarization
framework that produces a summary of the key-steps and
their ordering and localizes the key-steps in videos. More
specifically, given videos of the same task, we learn an
Hidden Markov Model (HMM) whose latent states corre-
spond to different subactivities, including background and
key-steps. We develop an optimization that finds a subset
of states that well represents all input videos jointly, while
the sequence of states representing each video is compat-
ible with the state transition model, hence, capturing the
key-steps and their ordering.

Given that our proposed optimization is non-convex and
NP-hard, we develop a fast greedy algorithm that incremen-
tally grows the set of representatives by using dynamic pro-
gramming at each iteration. The complexity of our algo-
rithm is linear in the length of the videos and the number of
states of the dynamic model, hence, scales to large number
of long videos. Under appropriate conditions on the state
transition model, our formulation is approximately submod-
ular, hence it has performance guarantees. Our framework
allows for repetitive key-steps in procedures and handles
background subactivities in videos. By experiments, we
show that our method significantly improves the state of
the art, demonstrating the effectiveness of clustering-based
summarization for procedure learning and localization.

Finally, we present a new multimodal dataset for proce-
dure learning evaluation, consisting of 47.3 hours of videos
from 12 diverse tasks with around 60 videos per task along
with annotation of key-steps and manually cleaned captions
in all videos. The tasks represent multiple domains, some
with fine-grained detailed key-steps, e.g., ‘replace iPhone
battery’ or ‘assemble clarinet’, and some containing inter-
action with virtual environments as in ‘set up Chromecast’.

2. Related Work
Procedure Learning. The most related work to ours are
[3, 4, 5]. Unlike our work, the goal of [3] is to segment
individual videos rather than to produce a procedure sum-
mary for a task. [4] recovers a set of key-steps for each
task, but it requires both visual and transcribed narration,
where key-steps are discovered using information from the
transcripts of videos and then are localized in videos. In
contrast, our method uses only visual data, while it can be
run on text as well. [5] develops an unsupervised itera-
tive discriminative-generative method for segmentation of
visual data into multiple sub-activities. However, it han-
dles only one occurrence of a key-step in each video. Our
method handles repeated key-steps and allows for missing
or additional key-steps in videos.

Several recent work have addressed tasks related to pro-
cedure learning. Given an ordered or unordered list of sub-
actions in videos, [10, 11, 12, 13] have studied the problem
of assigning an action label to each frame in a video. How-
ever, this requires knowing the grammar or the dictionary
of the task. In [14, 15], structured recipe texts are used to
learn an action graph that represents the interaction between
ingredients and actions being performed on them. How-
ever, the steps and ingredients are assumed to be given and
known and they produce a relationship graph rather than
a summary of the task. [7] focuses on aligning procedure
steps in a video with written recipes, where steps are known
in advance. This is different than our setting, where we want
to discover key-steps. The work in [16] focuses on segmen-
tation of procedure steps, but relies on supervised learning
and does not produce a sequence of key-steps.

Subset Selection and Summarization. As we select repre-
sentative states jointly among all videos, our work is related
to collaborative summarization [17, 18]. Both these work
aim to summarize one video using information from a col-
lection of videos of the same theme. In contrast, our frame-
work generates a common summary for all videos of a task
and, more importantly, incorporates the sequential structure
of data, necessary for discovering the ordering of key-steps.

The majority of existing subset selection methods [19,
20, 21, 22, 23, 24, 25, 26] address single video summa-
rization and many cannot extract a common sequence of
key-steps across videos of the same task. Moreover, they
do not incorporate the dynamic model of key-steps across
videos, often promoting sequential diversity that leads to se-
lecting background subactions. While [27, 28] incorporate
dynamic model, they works for single video summarization,
where [27] relies on a computationally complex message
passing algorithm, having quadratic and cubic complexity,
respectively, in the video length and the number of states.
Moreover, it is semi-supervised, using ground-truth annota-
tions of a subset of videos to produce the final summary.

Figure 2: We develop an unsupervised procedure learning framework.
Given videos of the same task, we segment videos, extract features from
each segment and learn an HMM for the videos. We then find a joint
sequential summarization of the input videos using the HMM, via a fast
greedy method. Finally, we align sequences of representatives across
videos to produce the procedure key-steps.

3. Unsupervised Procedure Learning
Assume we have a collection of L instructional videos,

Y1, . . . ,YL, of the same task, from which we want to learn
a concise procedure, i.e., key-steps and their ordering to
achieve the task. Despite variations in videos, such as vi-
sual appearance, view points and length of videos as well
as unrelated background subactions in every video, one can
identify key-segments, where the underlying action in each
segment is seen in many videos, as well as an ordering in the
sequence of key-segments, common across most videos, see
Figure 1. Our goal is to recover the common sequence of
key-steps as the procedure description and localize the key-
steps in all videos. To achieve this, we propose a framework
that consists of the following components (see Figure 2).

• We segment each video and extract a feature vector
from each segment, obtaining a time-series representation
Y` = (y

(`)
1 , . . . ,y

(`)
T`

) for each video `. We then learn,
from all input videos, an HMM, (X , π0, π, p), where
X = {x1, . . . ,xM} corresponds to the set of distinct
hidden states, π0 is the initial probability, π is the tran-
sition probability between hidden states, i.e., π(xi′ |xi)
for all i and i′, and p denotes the observation emission
probability from each state, i.e., p(y|xi) for all i. The set
of hidden states X correspond to different subactivities
across videos, including background and key-steps (see
Figure 3), while π captures the ordering of the subactiv-
ities across videos and p denotes the likelihood of each
segment belonging to a particular subactivity.

• Given that key-steps are common across many videos and
their ordering must follow the transition probabilities, π,
we develop a joint sequential subset selection optimiza-
tion and a fast greedy maximization algorithm that selects
a subset of hidden states from X that well encodes the in-
put videos Y1, . . . ,YL, where the sequence of representa-
tive hidden states for each video are compatible with the
initial and transition probabilities.

• Our optimization recovers the same set of representative
states for all videos, however, the sequences of assign-

Figure 3: Visualization of segments and recovered hidden states of the
HMM learned from videos of the task ‘make coffee with moka pot’ (for
clarity, transition arrows are not shown). While some states correspond to
key-steps, some correspond to unrelated background subactivities. We re-
cover the key-states using our joint sequential subset selection framework.

ments of segments to representatives could be different
across videos. To create a single sequence of key-steps as
the procedure description, we perform multiple sequence
alignment [29, 4] on the sequences of representatives of
videos. The solution of our optimization localizes key-
steps as it finds the assignment of each video segment to
each representative hidden state (i.e., each key-step).

In Section 5, we discuss the details of the first part on
segmentation and feature extraction. Next, we describe the
details of our optimization and the alignment approach.

3.1. Joint Sequential Subset Selection

Recall that, given L videos from the same task, Y` =

(y
(`)
1 , . . . ,y

(`)
T`

) denotes the time-series representation of

the video ` with T` segments, where y
(`)
t is the feature vec-

tor of segment t of the video `. As discussed above, we
learn an HMM from the video time-series data to find the set
of distinct hidden states, X = {x1, . . . ,xM}, state initial
probability, π0, and state transition probabilities, π. To find
the sequence of key-steps of the procedure and to localize
each key-step in the videos, we propose a joint sequential
subset selection framework that finds a representative sub-
set of the hidden states, S ⊆ X , of size at most k, satisfying
desired conditions described below, as well as the assign-
ment of each video segment to each representative state.

Let S denote the unknown set of representatives from X .
With abuse of notation, we use S to refer to both the set of
representative states and the set of indices of representative
states. Let r(`)

t ∈ S denote the index of the representative of
y

(`)
t , in other words, y(`)

t is assigned to x
r
(`)
t

. We denote the

assignment sequence for Y` by r` , (r
(`)
1 , r

(`)
2 , . . . , r

(`)
T`

) ∈
ST` , where ST` is the cartesian product over S .

Global Potential Function. The ideal summary must sat-
isfy three properties: i) the size of the representative set, |S|,
must be small, ii) each assignment sequence r` must well

encode Y`, iii) each sequence r` must be compatible with
the initial, π0, and transition probabilities, π. To achieve
these goals, we define a potential function Ψ(r1, . . . , rL)
and propose to solve

max
S: |S|≤k

max
{r`∈ST`}L`=1

log Ψ(r1, . . . , rL), (1)

over all sets S of size at most k and over all possible as-
signments r` ∈ ST` . Given that the outer maximization in
(1) restricts the size of the representative set, achieving the
first goal, we define Ψ to reflect the two remaining goals of
obtaining high encoding and dynamic compatibility for the
assignment sequences. More specifically, we define

Ψ(r1, . . . , rL) , Φenc(r1, . . . , rL)× Φβdyn(r1, . . . , rL),
(2)

where Φenc(r1, . . . , rL) is an encoding potential that favors
selecting a sequence of representative assignments r` from
ST` that well encodes Y` for every ` and Φdyn(r1, . . . , rL)
is a dynamic potential that favors sequences r1, . . . , rL that
are compatible with the state initial and transition probabil-
ities. The regularization parameter β ≥ 0 sets a trade-off
between the two terms, where a small β results in discount-
ing the dynamic compatibility of assignment sequences.

Encoding and Dynamic Potential Functions. Since the
encoding of each segment of Y` depends on its own repre-
sentative, we consider a factorization of the encoding po-
tential function as

Φenc(r1, . . . , rL) =
L∏
`=1

(T∏̀
t=1

p
(
y

(`)
t |xr(`)t

))1/T`

, (3)

where p(y(`)
t |xr(`)t

) is the likelihood that y
(`)
t is emitted

from the hidden state x
r
(`)
t

. The exponent 1/T` in (3) nor-
malizes sequences of different lengths, so that each video
contributes equally to the summarization, independent of its
length. For notation simplicity, in the rest of the paper, we
use s

r
(`)
t ,t

to denote the logarithm of emission probability,

s
r
(`)
t ,t

, log p
(
y

(`)
t |xr(`)t

)
. (4)

On the other hand, we define the dynamic potential function
to capture the compatibility of the sequences of the repre-
sentatives, according to the learned state initial and transi-
tion probabilities, as

Φdyn(r1, . . . , rL) =
L∏
`=1

(
π0

(
r

(`)
1

) T∏̀
t=2

π
(
r

(`)
t |r

(`)
t−1

))1/T`

,

(5)
where, for a video `, π0(i) denotes the probability of se-
lecting xi as the representative of y(`)

1 and π(i′|i) denotes
the probability of selecting xi′ as the representative of y(`)

t

given that xi is the representative of y(`)
t−1.

To simplify the notation, we define

q0
i , log π0(i), qi,i′ , log π(i′|i). (6)

Using the definitions of the encoding and dynamic poten-
tials in (3) and (5), we can write the logarithm of Ψ, which
we want to maximize, as

log Ψ=
L∑
`=1

1

T`

(T∑̀
t=1

s
r
(`)
t ,t

+ β
(
q0

r
(`)
1

+

T∑̀
t=2

q
r
(`)
t−1,r

(`)
t

))
. (7)

Notice that when β = 0 and L = 1, the objective func-
tion above reduces to the well-known Facility Location (FL)
function for summarization [30]. Next, we develop a fast
algorithm, which runs linearly in the lengths of videos and
number of states, to maximize (7).

3.2. Greedy Joint Sequential Subset Selection

In this section, we develop a fast greedy method to solve
our optimization in (1) with the objective function given in
(7). Notice that (1) consists of two maximizations: the outer
maximization searches for the best subset of the states S of
size at most k and the inner maximization searches for the
best assignment sequences {r`}L`=1 using a fixed S. Thus,
we can rewrite the problem in (1) in the equivalent form

max
S:|S|≤k

f(S), (8)

where the set function f(S) (a set function is a function that
assigns real values to sets) is defined as

f(S) , max
{r`∈ST`}L`=1

log Ψ(r1, . . . , rL)

= max
{r`∈ST`}L`=1

L∑
`=1

1

T`

T∑̀
t=2

w
(`)
t−1,t.

(9)

Here, log Ψ is given by (7). However, for simplicity of no-
tation and subsequent derivations, we have introduced the
notation w(`)

t−1,t for the terms inside the first summation in
(7). More specifically, for every ` in {1, . . . , L}, we have

w
(`)
t−1,t,

s
r
(`)
t−1,t−1

+ β(q0

r
(`)
t−1

+ q
r
(`)
t−1,r

(`)
t

), if t = 2,

s
r
(`)
t−1,t−1

+ βq
r
(`)
t−1,r

(`)
t
, if 2 < t < T`,

s
r
(`)
t−1,t−1

+ s
r
(`)
t ,t

+ βq
r
(`)
t−1,r

(`)
t
, if t = T`.

(10)
The greedy algorithm [31, 30] for maximizing a set func-

tion f(·), starts with initializing an active set to the empty
set, Λ = ∅, and incrementally grows the active set over
k iterations. At each iteration, the greedy method adds to
the current active set Λ the element i in {1, . . . ,M}\Λ that
achieves the highest value for f(Λ ∪ {i}).

Computing f(Λ) in (9), in principle, requires a combi-
natorial search over an exponentially large parameter space,

{r` ∈ ST`}L`=1. However, we can use the sequential struc-
ture of videos to overcome this challenge and to efficiently
perform evaluations of f . First, notice that we can write

f(Λ) = max
{r`⊆ΛT`}L`=1

L∑
`=1

1

T`

T∑̀
t=2

w
(`)
t−1,t

=
L∑
`=1

1

T`
× max

r`⊆ΛT`

(T∑̀
t=2

w
(`)
t−1,t

)
,

(11)

i.e., for a fixed set Λ, finding the optimal assignment se-
quence r` ∈ ΛT` for each video can be done independently,
hence, we perform L separate maximizations. We then use
the fact that maxr`⊆ΛT`

∑T`

t=2w
(`)
t−1,t is a maximization over

the sum of chains of variables, r(`)
1 , r

(`)
2 , . . . , r

(`)
T`

. Thus, we
distribute the maximization over summation and compute

f (`)(Λ) , max
r`⊆ΛT`

T∑̀
t=2

w
(`)
t−1,t

= max
r
(`)
T ∈Λ

(
w

(`)
T−1,T +· · ·+ max

r
(`)
2 ∈Λ

(
w

(`)
2,3 + max

r
(`)
1 ∈Λ

w
(`)
1,2

))
.

(12)

As a result, we can exactly compute f(Λ) (and similarly
f(Λ∪{i})) in each iteration of the greedy algorithm by us-
ing dynamic programming [32] in (12). Algorithm 1 shows
the steps of our greedy algorithm.

Computational Complexity. As discussed in the supple-
mentary materials, the running time of our greedy algorithm
is O(k2M

∑L
`=1 T`). In other words, our algorithm runs

linearly in the number of states and the lengths of videos,
hence, scales to large datasets. This is a significant im-
provement over message passing [27], whose complexity is
O(M2

∑L
`=1 T

2
` +M3

∑L
`=1 T`). This could be better seen

by recalling that in our case k <M �T`, i.e., the number
of states is often much smaller than the length of videos.

3.3. Summary Alignment
Once we solve the proposed optimization in (1), we ob-

tain the optimal subset of states S of size k as well as
the sequence of assignments of segments of each video to
the representative states, i.e., r` = (r

(`)
1 , r

(`)
2 , . . . , r

(`)
T`

) for
` = 1, . . . , L. Notice that in our method, each video can use
a subset of S with the sequence of key-step assignments be-
ing slightly different across videos, hence, we can handle
additional or missing key-steps and slightly different order-
ing of key-steps in videos. To create a single sequence of
key-steps as the procedure description for all the videos, we
perform alignment on the assignment sequences.

Given that each optimal assignment sequence r` often
contains many repetitions, we first remove the repetitions
from each sequence, and denote the resulting sequence of
distinct consecutive states by u`. For example, for r` =
(3, 3, 3, 12, 12, 9, 9, 9, 9, 3, 3), we obtain u` = (3, 12, 9, 3),

Algorithm 1 : Greedy Joint Sequential Subset Selection
Input: f defined in (9); Budget k.
1: Initialize: Λ = ∅;
2: for j = 1, . . . , k do
3: for i ∈ {1, . . . ,M}\Λ do
4: for ` = 1, . . . , L do
5: Find f (`)(Λ ∪ {i}) and r` via dynamic programing;
6: end for
7: Compute f(Λ ∪ {i}) =

∑L
`=1

1
T`
f (`)(Λ ∪ {i});

8: end for
9: Compute i∗ = argmaxi∈{1,...,M}\Λ f(Λ ∪ {i});

10: if f(Λ ∪ {i∗}) > f(Λ) then
11: Update Λ← Λ ∪ {i∗};
12: else
13: Break;
14: end if
15: end for
16: Set S∗ = Λ and r∗` = r` for ` = 1, . . . , L;

Output: Representative set S∗ of size k, assignment sequences {r∗`}
L
`=1.

which shows that the sequence of the representative states
for the `-th video are x3 → x12 → x9 → x3. This helps
to perform multiple sequence alignment faster and, more
importantly, keeps the information about the states that are
used and their ordering, while removing the information
about the duration of each state, which is irrelevant.

We then perform multiple sequence alignment on the se-
quences u1, . . . ,uL by maximizing the sum-of-pairs score
[29] using the Frank-Wolfe algorithm proposed in [4]. The
output is a remapping, δ(u`), of each sequence u` to a
global common template with P slots (in the experiments,
we let P be twice the length of the longest sequence). We
then generate the final sequence of key-states by voting on
each slot in the aligned results. More specifically, for each
slot p in aligned sequences, δp(u1), . . . , δp(uL), if the total
number of occurrences of the state with the majority vote is
bigger than a threshold, we keep the state in the final pro-
cedure summary. Otherwise, the result would be empty and
will be removed in the final procedure. To generate pro-
cedures of different lengths, corresponding to different lev-
els of granularity, we select the voting threshold in order to
achieve the desired length.

Once we obtain the final sequence of key-states (each
key-state now corresponds to a key-step), we use the assign-
ments found by our optimization to localize each key-step
by finding segments assigned to it. The unassigned seg-
ments would correspond to background activities.

3.4. Theoretical Guarantees
The greedy algorithm has been shown theoretically to

obtain near optimal solutions, when the set function is sub-
modular or approximately submodular [31, 34]. Specifi-
cally, f(·) is ε-approximately submodular if there exists a
submodular function g(·) so that (1 − ε)g(S) ≤ f(S) ≤
(1 + ε)g(S) for all S . We show that, under certain con-
ditions on transition probabilities, our proposed objective

Dataset domain # frames # videos
per task # tasks

key-steps
per task

foreground
ratio

avg video
length (sec)

total
duration (hr)

[3] mostly cooking 138,780 5 25 7.7 0.59 221.9 7.7
Breakfast [33] cooking 1,086,560 50 10 5.1 0.87 137.5 20.0

Inria [4] various 769,443 30 5 7.1 0.44 178.8 7.4
ProceL various 4,899,259 60 12 8.3 0.63 251.5 47.3

Table 1: Comparison of video datasets for procedure learning.

function, which is monotone, is approximately submodular,
hence, Algorithm 1 has performance guarantees. The proof
of the following is similar to our analysis in [28], with the
addition that the sum of approximately submodular func-
tions is approximately submodular.
Theorem 1 Consider the optimization in (8) with f(S) de-
fined in (9). Assume there exists ε ∈ [0, 1) such that each log
transition probability qi,i′ can be written as qi,i′ = q̄i′ψi,i′ ,
for some q̄i′ and ψi,i′ ∈ [1 − ε, 1 + ε]. Then, for all values
of β ≥ 0, our proposed f(S) is ε-approximately submodu-
lar. Moreover, the value of f for the solution of the greedy
algorithm with budget k is at most 1 − 1/e − O(kε) away
from the global optimum of (8).

4. ProceL Dataset
We present the new multimodal Procedure Learning

(ProceL) dataset for research on instructional video under-
standing. We have collected and annotated 47.3 hours of
videos from 720 video clips across 12 diverse tasks, with
about 60 videos per task. Out of the twelve tasks, five are
the same as the ones presented in the Inria instructional
video dataset [4], i.e., change tire, perform CPR, make cof-
fee, jump car and repot plant. We have expanded these data
by including additional 30 videos per task and expanded
the set of key-steps to include necessary subactivities to
achieve a task. To have a dataset that captures variations
of real-world tasks, we have included 7 new tasks: set up
Chromecast, assemble clarinet, replace iPhone battery, tie
a tie (Windsor knot), replace toilet, make peanut butter jelly
sandwich and make smoked salmon sandwich. Our dataset
includes detail-oriented tasks, such as ‘tie a tie’ or ‘assem-
ble clarinet’, where different key-steps are visually similar,
as well as tasks that do not involve interacting with physical
objects, such as ‘set up Chromecast’ in which some steps
involve interacting with a virtual environment.

We obtained the videos using YouTube, preferring the
ones that clearly show the key-steps required to complete
the task and those that include spoken instructions. We
trimmed the beginning and end of each video if it included
content unrelated to the task, such as product reviews. For
each task, we first built a dictionary, which is the set of
key-steps necessary to perform the task, e.g., the dictio-
nary of ‘install Chromecast’ includes {‘unpack package’,
‘download Chromecast app’, ‘plugin Chromecast power’,
. . . , ‘check ready to cast’}. We then annotated each video
by localizing all segments during which each key-step in
the dictionary has been performed. Figure 1 shows the an-

notations of six videos from ‘perform CPR’ and ‘replace
iPhone battery’. Table 1 shows the comparison2 of ProceL
with other datasets. For the purpose of future research, we
also collected spoken instructions generated by Automatic
Speech Recognition (ASR) on YouTube. Since the tran-
scripts are noisy, e.g., containing misspelling of words or
missing periods, we have corrected the ASR errors.

In addition to various procedure learning tasks, ProceL
would be suitable for video-language research as well as
weakly-supervised action and object recognition in video.

5. Experiments
In this section, we evaluate the performance of our pro-

cedure learning framework. We perform experiments on the
Inria instructional dataset [4] and our new ProceL dataset.
Algorithms and Baselines. We compare our method, Joint
Sequential Facility Location (JointSeqFL), with Alayrac et
al. [4] and Sener et al. [5] as two state-of-the-art methods
for unsupervised procedure learning. To demonstrate the ef-
fectiveness of using the dynamic model of data and the joint
summarization setting for procedure learning, we compare
with the standard Facility Location (FL), which is a single
video summarization and does not use dynamic model, and
the Sequential Facility Location (SeqFL) [28], which is a
single video summarization and uses the dynamic model.
We run these two methods on each video individually and
align sequences of representatives using multiple sequence
alignment [29, 4] Moreover, we use the Uniform baseline,
where we distribute key-step assignments uniformly over
all segments in each video.

For the experiments, for our method across all tasks, we
set M = 50, k = 15, β = 0.01 for Inria and M = 30,
k = 15, β = 0.005 for ProceL. We use pmtk3 toolbox to fit
an HMM to videos of each task, where emission probability
for each state is a Gaussian. In the supplementary materials,
we report the statistics of the ProceL dataset for each task
and show qualitative plots of annotations in ProceL.
Feature Extraction. We use [35] to segment each video
into superframes, which will be the units of summarization.
To have a fair comparison with the state of the art, we ex-
tract and use the same features as in Alayrac et. al. [4],
which are 3000-dimensional vectors composed of concate-
nation of 1000-dimensional bag of words appearance fea-
tures obtained via VGG16 network and 2000-dimensional

2We report the statistics of the Breakfast dataset [33] without consid-
ering different camera views. We do not compare with YouCookII dataset
[16] as it does not have a common dictionary of key-steps for each task.

K=7 K=10 K=12 K=15
0

20

40

60

F
1

 s
c
o

re
 (

%
)

(a) perform cpr

K=7 K=10 K=12 K=15
0

10

20

30

40

F
1

 s
c
o

re
 (

%
)

(b) make coffee

K=7 K=10 K=12 K=15
0

5

10

15

20

25

30

F
1

 s
c
o

re
 (

%
)

(c) jump-start car

K=7 K=10 K=12 K=15
0

10

20

30

40

F
1

 s
c
o

re
 (

%
)

(d) repot plant

K=7 K=10 K=12 K=15
0

10

20

30

40

F
1

 s
c
o

re
 (

%
)

(e) change tire
Figure 4: F1 scores of different algorithms on the Inria Instructional dataset for different values of procedure length, K.

Procedure length K = 7 K = 10 K = 12 K = 15

Inria
Uniform 15.3 17.9 14.8 15.4
Alayrac et al. 20.3 21.0 21.0 20.5
Sener et al. 22.3 25.2 24.6 23.5
FL 26.3 27.6 29.5 29.5
SeqFL 32.6 34.3 34.0 35.8
JointSeqFL 38.3 37.3 38.2 38.3

ProceL
Uniform 11.0 13.4 13.3 12.8
Alayrac et al. 11.5 12.4 12.8 12.4
JointSeqFL 27.2 28.3 28.9 29.8

Table 2: Average F1 scores (%) of different algorithms on the Inria and
ProceL datasets for different values of procedure length, K.

bag of words motion features obtained using histogram of
optical flows (HOF). For HOF features of each superframe,
we use [36], where we set the maximum trajectory length
to the length of the superframe. To fit HMM, we reduce
the dimension of features via PCA to 300 and 200 on Inria
and ProceL, respectively. Supplementary materials contains
more details about the feature extraction.

Evaluation Metrics. We use the same evaluation metric
as in Alayrac et al. [4] and Sener et al. [5]. More specifi-
cally, we first find a one-to-one global matching between the
discovered and the ground-truth key-steps across all videos
of the same task using the Hungarian algorithm. We then
compute the precision, recall and the F1-score, where the
precision is the ratio of the total number of correctly local-
ized key-steps to the total number of discovered key-steps
across videos. The recall is the ratio of the total number of
correctly localized key-steps to the total number of ground
truth key-steps across videos. The F1-score is the harmonic
mean of the precision and recall and is between 0 and 1. We
also compute the Jaccard index, which is intersection over
union between discovered and ground-truth key-steps.

Results. Table 2 shows the average F1 scores of different
algorithms on the Inria and ProceL datasets as a function of
the procedure length K ∈ {7, 10, 12, 15}. Notice that on
both datasets, our method obtains the best result for all val-
ues of K, e.g., achieving the F1 score of 38.3% and 27.2%
on Inria and ProceL, respectively, for K = 7.
– As the results on Inria show, the three summarization
methods perform significantly better than the two state-of-
the-art unsupervised procedure learning algorithms, which
demonstrates the importance of summarization and subset

Inria ProceL
JointSeqFL (β = 0) 34.7 27.0

JointSeqFL 37.3 28.3

Table 3: Effect of using state transitions in summarization on F1 score.

selection as effective tools for procedure learning.
– Notice that SeqFL and JointSeqFL, which both use the
dynamic model, perform better than FL, which treats data
points independently, showing the effectiveness of using the
transition dynamics in summarization.
– On the other hand, JointSeqFL, which jointly summa-
rizes videos, outperforms SeqFL, which summarizes each
video independently, demonstrating the importance of us-
ing the common structure of key-steps across instructions
of the same task. Another possible limitation of individ-
ually summarizing videos and then aligning the results is
that since representatives for different videos could be dif-
ferent, alignment leads to putting all representatives across
all sequences in the common template with a only one or
very few votes, leading to less meaningful aligned result.
– Notice that the performances of all methods on ProceL
decrease, since the new 7 tasks such as ‘set up Chromecast’
or ‘replace iPhone battery’ are more challenging with more
steps than the five common tasks with Inria such as ‘perform
CPR’ or ‘change tire’.

Figures 4 and 5 show the F1 score of different algorithms
for each task on Inria and ProceL, respectively.
– On all tasks, except ‘change tire’ in Inria, summarization-
based algorithms perform significantly better than the state
of the art, with ‘perform CPR’ having the most improve-
ment, increasing the F1 score of from 31.3% and 17.2%
(via Alayrac et al.) to 62.9% and 42.1% (via JointSeqFL),
respectively, on Inria and ProceL. This is due to the fact that
‘perform CPR’ in both datasets has the largest number of
repeated steps, in particular, alternating between ‘give com-
pression’ and ‘give breath’ key-steps multiple times. Given
the clear dynamic of the task, our joint sequential subset
selection method discovers the key-steps more effectively.
– For ‘change tire’, Alayrac et al. performs better than
other algorithms on Inria for K = 10 and K = 12. In
‘change tire’, some of the key-steps are more distinguish-
able by speech than visual data, e.g., ‘unscrew lug nuts’
and ‘screw lug nuts’ are visually similar, yet distinct via
language. Thus, Alayrac et al. that first takes advantage
of speech data to form the sequence of key-steps and then

K=7 K=10 K=12 K=15
0

10

20

30

40

50

F
1

 s
c
o

re
 (

%
)

(a) cpr

K=7 K=10 K=12 K=15
0

10

20

30

F
1

 s
c
o

re
 (

%
)

(b) coffee

K=7 K=10 K=12 K=15
0

5

10

15

20

25

F
1

 s
c
o

re
 (

%
)

(c) jump car

K=7 K=10 K=12 K=15
0

10

20

30

40

F
1

 s
c
o

re
 (

%
)

(d) repot

K=7 K=10 K=12 K=15
0

5

10

15

20

25

30

F
1

 s
c
o

re
 (

%
)

(e) tire

K=7 K=10 K=12 K=15
0

5

10

15

20

25

F
1

 s
c
o

re
 (

%
)

(f) tie

K=7 K=10 K=12 K=15
0

10

20

30

40

F
1

 s
c
o

re
 (

%
)

(g) chromecast

K=7 K=10 K=12 K=15
0

5

10

15

20

25

30

F
1

 s
c
o

re
 (

%
)

(h) iPhone

K=7 K=10 K=12 K=15
0

5

10

15

20

25

30

35

F
1

 s
c
o

re
 (

%
)

(i) pbj

K=7 K=10 K=12 K=15
0

10

20

30

40

F
1

 s
c
o

re
 (

%
)

(j) salmon

K=7 K=10 K=12 K=15
0

5

10

15

20

25

F
1

 s
c
o

re
 (

%
)

(k) toilet

K=7 K=10 K=12 K=15
0

5

10

15

20

F
1

 s
c
o

re
 (

%
)

(l) clarinet
Figure 5: F1 scores of different algorithms on the ProceL dataset for different values of the procedure length, K.

0 0.005 0.01 0.05 0.1
-10

0

10

20

F
1

 I
m

p
ro

v
em

en
t

(%
) Perform cpr

Change tire
Make coffee

0 0.005 0.01 0.05 0.1
-15

-10

-5

0

5

10

F
1

 I
m

p
ro

v
em

en
t

(%
)

Replace toilet
Setup chromecast
Make smoked salmon

15 20 25

representatives

30

40

50

#
 s

ta
te

s

23.28

21.34

23.06

24.35

23.06

25.22 25.22

24.57

25.65 22

23

24

25

Figure 6: F1 score improvement as a function of β on three tasks from
Inria for K = 7 (left) and ProceL for K = 10 (middle). Effect of the
number of states, M , and representatives, k, on the Jaccard index for the
task ’perform CPR’ in ProceL (right).

localizes the key-steps in videos, is expected to perform
better. However, the performance of this method signif-
icantly decreases on ProceL, which contains more videos
with many videos having more noisy language descriptions.
Effect of Hyperparameters. Table 3 compares the perfor-
mance of our method on Inria and ProceL for K = 10, with
when β = 0, showing the effectiveness of using the dy-
namic model. On ProceL the performance gap is smaller,
since we have more videos which allows the joint summa-
rization to compensate for the lack of the dynamic model.
Figure 6 shows the improvement with respect to β = 0
on three tasks from Inria and ProceL. Notice that the per-
formance improves as β increases from zero, with ‘per-
form CPR’ in Inria and ‘replace toilet’ in ProceL having
the largest F1 score improvement. On the other hand, when
β becomes sufficiently large, the performance of ‘coffee’,
‘Chromecast’ and ‘smoked salmon’ decreases with respect
to β = 0, as we overemphasize on the dynamic potential
and ignore the encoding. The right plot in Figure 6 shows
the stability of the Jaccard index obtained by our algorithm
on ProceL as a function of the number of hidden states of
HMM, M , and the number of representative states, k.
Qualitative Results. Figure 1 shows the qualitative results
of our method for discovery and localization of key-steps
from videos of ‘perform CPR’ (top) and ‘replace iPhone
battery’ (bottom) on ProceL. Notice that for ‘CPR’, our
method discovers and localizes all ground-truth key-steps,
except one in the beginning (‘call 911’ step). For ‘replace
iPhone battery’, while we capture most of the key-steps, we
have more miss-localizations, as the task is more challeng-

Ground Truth

K=7

K=12

 Get equipment
out

Find jack
point

Unscrew lug
nuts

Loosen
lug nuts

Jack up Screw lug
nuts

Tighten lug
nuts

Jack down

Figure 7: Ground-truth annotation and recovered key-steps by our
method for a video of the task ‘change tire’ with two different procedure
lengths, K = 7 and K = 12. More key-steps are discovered by our
method as K increases.

ing than ‘CPR’, having more key-steps that are also visually
similar. Finally, Figure 7 shows the annotations and recov-
ered key-steps by our method for two values of K = 7 and
K = 12 for one video from the task ‘change tire’. Notice
that increasingK, we effectively recover more ground-truth
key-steps (here ‘jack down’ and ‘tighten lug nuts’) com-
pared to smaller K. Also, for a given desired procedure
length K, we may recover a smaller number of key-steps
(as shown in the figure). This is because once we run align-
ment on the sequences of representatives, to obtain the fi-
nal procedure, we apply a voting on the aligned results and
choose the voting count threshold so that the length of the
obtained procedure is at most the desired procedure length,
however, no threshold may exactly achieve the length K.

6. Conclusion
We developed a joint dynamic summarization method

and a fast greedy algorithm for unsupervised procedure
learning. Our method handles repeated key-steps, back-
ground and missing or additional key-steps in videos. We
presented ProceL, a new multimodal dataset for procedure
learning. We showed our method significantly improves the
state of the art performance and showed the effectiveness of
summarization tools, in general, for procedure learning.

Acknowledgements
This work is partially supported by DARPA Young

Faculty Award (D18AP00050), NSF (IIS-1657197), ONR
(N000141812132) and ARO (W911NF1810300). E. El-
hamifar would like to thank Guandong Liu, Yuan Yu and
Maria C. De Paolis Kaluza for their help in collection and
annotation of the ProceL dataset.

References
[1] Yezhou Yang, Yi Li, Cornelia Fermüller, and Yiannis Aloi-

monos, “Robot learning manipulation action plans by”
watching unconstrained videos from the world wide web.,”
AAAI, 2015. 1

[2] Nina Mishra, Ryen W. White, Samuel Ieong, and
Eric Horvitz, “Time-critical search,” International ACM SI-
GIR conference on Research & development in information
retrieval, 2014. 1

[3] Ozan Sener, Amir R Zamir, Silvio Savarese, and
Ashutosh Saxena, “Unsupervised semantic parsing of video
collections,” IEEE International Conference on Computer
Vision, 2015. 1, 2, 6

[4] Jean-Baptiste Alayrac, Piotr Bojanowski, Nis-
hant A. Agrawal, Josef Sivic, Ivan Laptev, and Si-
mon Lacoste-Julien, “Unsupervised learning from narrated
instruction videos,” IEEE Conference on Computer Vision
and Pattern Recognition, 2016. 1, 2, 3, 5, 6, 7

[5] Fadime Sener and Angela Yao, “Unsupervised learning and
segmentation of complex activities from video,” IEEE Con-
ference on Computer Vision and Pattern Recognition, 2018.
1, 2, 6, 7

[6] De-An Huang, Shyamal Buch, Lucio Dery, Animesh Garg,
Li Fei-Fei, and Juan Carlos Niebles, “Finding it?: Weakly-
supervised reference-aware visual grounding in instructional
videos,” IEEE Conference on Computer Vision and Pattern
Recognition, 2018. 1

[7] Jonathan Malmaud, Jonathan Huang, Vivek Rathod,
Nick Johnston, Andrew Rabinovich, and Kevin Murphy,
“What’s cookin’? interpreting cooking videos using text,
speech and vision,” NAACL, 2015. 1, 2

[8] Xavier Puig, Kevin Ra, Marko Boben, Jiaman Li, ,
Tingwu Wang, Sanja Fidler, and Antonio Torralba, “Vir-
tualhome: Simulating household activities via programs,”
IEEE Conference on computer Vision and Pattern Recogni-
tion, 2018. 1

[9] Shoou-I. Yu, Lu Jiang, and Alexander Hauptmann, “Instruc-
tional videos for unsupervised harvesting and learning of ac-
tion examples,” ACM International Conference on Multime-
dia, 2014. 2

[10] De-An Huang, Li Fei-Fei, and Juan Carlos Niebles, “Con-
nectionist temporal modeling for weakly supervised action
labeling,” European Conference on Computer Vision, 2016.
2

[11] Alexander Richard, Hilde Kuehne, and Juergen Gall,
“Weakly supervised action learning with RNN based fine-
to-coarse modeling,” IEEE Conference on Computer Vision
and Pattern Recognition, 2017. 2

[12] Hilde Kuehne, Alexander Richard, and Juergen Gall,
“Weakly supervised learning of actions from transcripts,”
Computer Vision and Image Understanding Journal, 2017.
2

[13] Alexander Richard, Hilde Kuehne, and Juergen Gall, “Action
sets: Weakly supervised action segmentation without order-
ing constraints,” IEEE Conference on Computer Vision and
Pattern Recognition, 2018. 2

[14] Chloe Kiddon, Ganesa T. Ponnuraj, Luke Zettlemoyer, and
Yejin Choi, “Mise en place: Unsupervised interpretation of
instructional recipes,” Conference on Empirical Methods in
Natural Language Processing, 2015. 2

[15] De-An Huang, Joseph J. Lim, Li Fei-Fei, and Juan Car-
los Niebles, “Unsupervised visual-linguistic reference res-
olution in instructional videos,” IEEE Conference on Com-
puter Vision and Pattern Recognition, 2017. 2

[16] Luowei Zhou, Chenliang Xu, and Jason J. Corso, “Towards
automatic learning of procedures from web instructional
videos,” AAAI, 2018. 2, 6

[17] Rameswar Panda and Amit K. Roy-Chowdhury, “Collabo-
rative summarization of topic-related videos,” IEEE Confer-
ence on Computer Vision and Pattern Recognition, 2017. 2

[18] Wen-Sheng Chu, Yale Song, and Alejandro Jaimes, “Video
co-summarization: Video summarization by visual co-
occurrence,” IEEE Conference on Computer Vision and Pat-
tern Recognition, 2015. 2

[19] Ehsan Elhamifar, Guillermo Sapiro, and Shankar S. Sastry,
“Dissimilarity-based sparse subset selection,” IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 2016.
2

[20] Ehsan Elhamifar and Maria C. De Paolis Kaluza, “Online
summarization via submodular and convex optimization,”
IEEE Conference on Computer Vision and Pattern Recog-
nition, 2017. 2

[21] Boqing Gong, Wei-Lun Chao, Kristen Grauman, and
Fei Sha, “Diverse sequential subset selection for supervised
video summarization,” Neural Information Processing Sys-
tems, 2014. 2

[22] Raja H. Affandi, Alex Kulesza, and Emily B. Fox, “Markov
determinantal point processes,” Conference on Uncertainty
in Artificial Intelligence, 2012. 2

[23] Ke Zhang, Wei-Lun Chao, Fei Sha, and Kristen Grauman,
“Video summarization with long short-term memory,” Euro-
pean Conference on Computer Vision, 2016. 2

[24] Behrooz Mahasseni, Michael Lam, and Sinisa Todorovic,
“Unsupervised video summarization with adversarial LSTM
networks,” IEEE Conference on Computer Vision and Pat-
tern Recognition, 2017. 2

[25] Ehsan Elhamifar, Guillermo Sapiro, and Rene Vidal, “Find-
ing exemplars from pairwise dissimilarities via simultaneous
sparse recovery,” Neural Information Processing Systems,
2012. 2

[26] Ehsan Elhamifar, Guillermo Sapiro, and Rene Vidal, “See
all by looking at a few: Sparse modeling for finding repre-
sentative objects,” IEEE Conference on Computer Vision and
Pattern Recognition, 2012. 2

[27] Ehsan Elhamifar and Maria C. De Paolis Kaluza, “Subset
selection and summarization in sequential data,” Neural In-
formation Processing Systems, 2017. 2, 5

[28] Ehsan Elhamifar, “Sequential facility location: Approximate
submodularity and greedy algorithm,” International Confer-
ence on Machine Learning, 2019. 2, 6

[29] Lusheng Wang and Tao Jiang, “On the complexity of multi-
ple sequence alignment,” Journal of Computational Biology,
vol. 1, no. 4, 1994. 3, 5, 6

[30] George L. Nemhauser, Laurence A. Wolsey, and Marshall L.
Fisher, “An analysis of approximations for maximizing sub-
modular set functions,” Mathematical Programming, vol. 14,
1978. 4

[31] Andreas Krause and Daniel Golovin, “Submodular function
maximization,” Cambridge University Press, 2014. 4, 5

[32] Richard Bellman, Dynamic Programming. Princeton, NJ:
Princeton University Press, 2003. 5

[33] Hilde Kuehne, Ali Arslan, and Thomas Serre, “The language
of actions: Recovering the syntax and semantics of goal-
directed human,” IEEE Conference on Computer Vision and
Pattern Recognition, 2014. 6

[34] Thibaut Horel and Yaron Singer, “Maximizing approxi-
mately submodular functions,” Neural Information Process-
ing Systems, 2016. 5

[35] Michale Gygli, Helmut Grabner, Hayko Riemenschneider,
and Luc Van Gool, “Creating summaries from user videos,”
European Conference on Computer Vision, 2014. 6

[36] Heng Wang and Cordelia Schmid, “Action recognition with
improved trajectories,” International Conference on Com-
puter Vision, 2013. 7

