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ABSTRACT: The usefulness of current intensity measures (IMs) and fragilities are assessed in a setting in
which the probability law of the seismic ground acceleration process is known. It is shown that typical demand
parameters and IMs are weakly dependent so that fragilities defined as functions of these measures provide
limited information for seismic design.

1 INTRODUCTION

Intensity measures (IMs) are intended to provide suf-
ficient information on seismic ground accelerations to
predict the seismic performance of arbitrary structural
systems. These measures are used to construct cur-
rent fragilities, i.e., probabilities that structural sys-
tems enter specified damage states conditional on
IM values, and develop computational tools for per-
formance based earthquake engineering. To be use-
ful, IMs have to be efficient, i.e., structural demand
parameters D conditional on IMs have small vari-
ances, and sufficient, i.e., the distributions of the con-
ditional random variables D|IM are completely de-
fined for given IMs (1, 3). If IMs are efficient, the dis-
tributions of the conditional random variables D|IM
can be estimated satisfactorily from relatively small
sets of structural responses. If IMs are sufficient, the
conditional random variables D|(seismic hazard) and
D|IM will have similar properties so that fragilities
will characterized accurately seismic performance of
structural systems.

Efficiency and sufficiency of IMs have been studied
extensively. Yet, these properties cannot be quantified
precisely since the distributions of IMs and demand
parameters are not known due to the limited informa-
tion on the seismic acceleration process A(t). Con-
cepts of the information theory (1) and benchmark
studies (3) have been used to rate IMs. These studies
recognize that sufficient IMs may not exist and that
resulting ratings of IMs depend on the particular in-
formation metrics and benchmark studies used in the
analysis.

To overcome these difficulties, we represent the
seismic acceleration processes A(t) by the seismo-
logical model in (4) so that the probability law of
A(t) is known. Following current practice, the IM is

the pseudo-acceleration response spectrum Sa(T ) of
A(t).

It is shown that the IM Sa(T ) and the demand pa-
rameter D are weakly dependent. Qualitative argu-
ments and quantitative metrics based on the multivari-
ate extreme value theory (MEVT) are used to assess
the relationship between Sa(T ) andD. It is concluded
that current fragilities provide limited information on
the seismic performance of structural systems. We be-
lieve that fragilities need to be defined as functions
of the parameters of the probability law of A(t), e.g.,
current fragilities can be replaced with fragility sur-
faces of the type introduced in (2).

2 AN ILLUSTRATION

Denote by Xsdof(t) and X(t) responses to a seismic
ground acceleration process A(t) of a single degree
of freedom (SDOF) linear oscillator with damping
ratio ζ and period T and of an arbitrary structural
system. Generally, X(t) is a vector-valued process.
For simplicity we consider real-valued demand pa-
rameters, e.g., an interstory displacement, a floor ac-
celeration, or any other functional of X(t). In this
study, the demand parameter is defined by D =
max0≤t≤τ

∣∣h(X(t)
)∣∣, where τ denotes the duration of

the seismic event and h maps X(t) into a real-valued
response. As stated, the IM is the pseudo-spectral ac-
celeration Sa(T ) = (2π/T )2 max0≤t≤τ |Xsdof(t)|.

The random variables Sa(T ) and D are depen-
dent as functionals of the same input, the seismic
ground acceleration process A(t). Yet, the depen-
dence between these random variables is likely to
be weak since the stochastic processes Xsdof(t) and
X(t) are likely to have very different properties as so-
lutions of simple linear and complex nonlinear ran-
dom vibration problems to A(t). For example, if



A(t) is Gaussian, Xsdof(t) and X(t) are Gaussian
and non-Gaussian processes with very different fre-
quency bands. This qualitative observation suggests
that the demand D and the conditional random vari-
able D|Sa(T ) have similar properties and, as a result,
current fragilities are of limited practical use. This in-
tuition is confirmed by quantitative metrics presented
in the following examples and later in the study.

Let X(t), 0≤ t≤ τ , be the displacement of a Duff-
ing oscillator with parameters (ν0, ζ, β) which is at
rest at the initial time and is subjected to a ground ac-
celeration process A(t). Then, X(t) satisfies the dif-
ferential equation

Ẍ(t) + 2 ζ ν0 Ẋ(t) + ν20
(
X(t) + βX(t)3

)
= −A(t),

(1)

with initial conditions X(0) = 0 and Ẋ(0) = 0. If
β = 0 and ν0 = 2π/T , then X(t) = Xsdof(t) is the
displacement of a linear oscillator with damping ratio
ζ and period T . Otherwise, X(t) is the response of
a simple oscillator with cubic nonlinearity. The ran-
dom variables Sa(T ) = (2π/T )2 max0≤t≤τ |Xsdof(t)|
and D = max0≤t≤τ |X(t)| are dependent as function-
als of the seismic ground acceleration process A(t).
The degree of dependence between these two random
variables depends on the intensity of the ground mo-
tion.

For small seismic excitation, the contribution of
the cubic nonlinearity ν20 βX(t)3 to the displacement
X(t) of the Duffing oscillator is insignificant so that
X(t) will be similar to the displacement Xsdof(t) of
the associate linear oscillator (β = 0). The random
variables Sa(T ) and D are strongly dependent so that
Sa(T ) is a very good IM. For large seismic excita-
tions, the cubic nonlinearity ν20 βX(t)3 contributes to
X(t) so that X(t) and Xsdof(t) have different proper-
ties. For example, if A(t) is a Gaussian process, then
Xsdof(t) and X(t) are Gaussian and non-Gaussian
processes. The dependence between Sa(T ) and D is
likely to be weak so that Sa(T ) can be an unsatisfac-
tory IM.

These qualitative arguments are consistent with the
scatter plots of

(
Sa(T )/(2π/T )2,D

)
in Fig. 1 which

have been obtained from n = 500 independent sam-
ples of this random vector for ν0 = 2π, ζ = 0.05,
β = 3, τ = 20, and a stationary Gaussian band-limited
white noise (BLWN) A(t) with mean 0, variance 1,
and frequency band [0,10]. The top, middle, and bot-
tom panels are for ground accelerations A(t) scaled
by 1, 5, and 10. For small ground excitations corre-
sponding to a scale factor of 1 (left panel), the depen-
dence between Sa(T )/(2π/T )2 and D is nearly per-
fect. The differences between the responses X(t) and
Xsdof(t) are negligible. For large ground excitations
corresponding to a scale factor of 10 (right panel),
the dependence between Sa(T )/(2π/T )2 and D is
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Figure 1: Scatter plots of n = 500 samples of(
Sa(T )/(2π/T )

2,D
)

for β = 3 and a stationary Gaus-
sian BLWN A(t) with mean 0, variance 1, and frequency band
[0,10] scaled by 1, 5, and 10 (top, middle, and bottom panels)

weaker. The middle panel corresponds to moderate
earthquakes, the scale factor is 5. It represents a tran-
sition between the extreme cases in the left and right
panels.

We note that even in this favorable setting for IMs
(the Duffing oscillator is a conservative SDOF), the
predictive capability of Sa(T ) deteriorates with the
magnitude of the structural responses. For example,
the correlation coefficients between the top m sam-
ples of the demand parameter D and the correspond-
ing samples of Sa(T ) are 0.8107, 0.7684, 0.6418,
0.4381, and 0.3408 for m = 10,000, 9,000, 1,200,
600, and 150. The estimates are based on 10,000 sam-
ples of

(
Sa(T )/(2π/T )2,D

)
corresponding to a scale

factor of 10.

3 DEPENDENCE METRICS

We use two statistical tools, correlation coefficients
and concepts of the multivariate extreme value theory
(MEVT), to examine the relationship between the ran-
dom variables D and Sa(T ) and assess the capability
of current fragilities to predict accurately the seismic
performance of structural systems.

The correlation coefficients are attractively sim-
ple but rather crude metrics for the dependence be-
tween random variables. For example, suppose X1 ∼
N(0,1) is a standard Gaussian variable with mean 0
and variance 1. The non-Gaussian random variable



X2 = X2
1 − 1 has mean 0, variance 2, and is uncor-

related to X1 since E[X1X2] = E[X3
1 ]−E[X1] = 0

(the Pearson correlation coefficient). Yet, Var[X2 |
X]1 = 0 since, given X1, X2 is known. Other corre-
lation models also view X1 and X2 as nearly uncor-
related, e.g., estimates of the Spearman and Blomqvis
correlation coefficients based on 100,000 independent
samples of X are 0.0062 and 0.0014.

This simple example indicates that correlation co-
efficients are inadequate metrics for the dependence
between the components of the two dimensional ran-
dom vector X =

(
X1 = Sa(T ),X2 = D

)
. Moreover,

we are particularly interested in the likelihood thatX1

and X2 are simultaneously large, rather than the over-
all relationship between these random variables which
is provided by correlation coefficients. This interest is
justified by the fact that large demand parameters D
are likely to cause extensive damages or even struc-
tural failure.

The multivariate extreme value theory (MEVT) is
employed to quantify the dependence between simul-
taneously large values of X1 = Sa(T ) and X2 = D.
We present a heuristic description of concepts of the
MEVT and computational tools relevant to our dis-
cussion. A rigorous discussion on MEVT concepts
can be found in (5). Let {x(k)}, k = 1, . . . , n, be n
independent samples of X = (X1,X2). We use these
samples to quantify the dependence between simulta-
neously large values of X1 and X2.

Suppose X1,X2 > 0 almost surely (a.s.), i.e.,
P (Xi > 0) = 1 for i = 1,2, and the marginal dis-
tributions of X = (X1,X2) coincide, i.e., F1 =
F2, so that the components of X have similar
scales. In polar representation X = (X1,X2) =(
V cos(Θ), V sin(Θ)

)
, where V = ‖X‖ is a norm in

R2 and Θ = tan−1(X2/X1). The polar representation
of the samples {x(k)} of X is x(k) = (x

(k)
1 , x

(k)
2 ) =(

v(k) cos(θ(k)), v(k) sin(θ(k))
)
, k = 1, . . . , n, with the

previous notations. Set v0 > 0 and relatively large.
Samples of X with distance to origin v(k) > v0 are
of interest as they correspond to simultaneously large
values of X1 and X2. The selection of v0 is critical to
assure that the right tails of the components of X are
accurately represented (5).

The histogram s(θ) of the subset of {x(1), . . . , x(n)}
with v(k) > v0 has the support [0, π/2] and is referred
to as angular measure. If most of the mass of s(θ) is
concentrated at θ = 0 and π/2, extremes ofX1 andX2

are nearly independent. If most of the mass of s(θ)
is concentrated at θ away from {0, π/2}, large val-
ues of X1 and X2 are strongly dependent. Histograms
s(θ) between these two limit cases describe various
degrees of dependence between large components of
X .

For illustration, suppose Xi = λG2
0 + (1− λ)G2

i ,
i = 1,2, where G0, G1, and G2 are independent stan-
dard Gaussian variables. The components X1 and X2

of X follow the same distribution. They are perfectly

dependent for λ = 1 and independent for λ = 0. The
left and right panels of Fig. 2 show scatter plots for
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Figure 2: Scatter plots for samples of X with distance to the
origin of the coordinate system larger than v0 (left panels) and
histograms of the angular measure s(θ) (right panels) for λ =
0.9, 0.5, and 0.1 (top, middle, and bottom panels)

samples of X with distance to the origin of the co-
ordinate system larger than v0, and histograms of the
angular measure s(θ). The top, middle, and bottom
panels correspond to λ = 0.9, 0.5, and 0.1 and thresh-
olds v0 = 16, 10, and 12. The resulting sample sizes
of the vectors X used to construct s(θ) are 435, 448,
and 585, respectively, and have been extracted from
n = 100,000 independent samples of X . Large val-
ues of the components of X are strongly and weakly
dependent for λ = 0.9 and 0.1. The angular measures
s(θ) in the right panels quantifies the degree of depen-
dence between the components ofX . For λ= 0.9, the
samples of X are aligned along the 45o line and the
angular measure is concentrated about π/4 ' 0.7854.
The support of s(θ) is approximately [0.74,0.83]. This
shows that simultaneously large values of X1 and X2

are strongly dependent. For λ= 0.5, the samples ofX
are less concentrated along the 45o line and h(θ) takes
non-zero values in [0, π/2]. For λ = 0.1, the samples
of Y cluster on the axis of the system of coordinates
and most of the mass of s(θ) is concentrated is small
vicinities of θ = 0 and π/2. This means that large val-
ues ofX1 are likely to be associated with small values
of X2 and viceversa.



4 DEPENDENCE OF SA(T ) AND D FOR
BOUC-WEN MODELS

Suppose X(t) is the displacement of a Bouc-Wen
SDOF system defined by

Ẍ(t) + 2 ζ ν0 Ẋ(t) + ν20
(
ρX(t)

+ (1− ρ)W (t)
)

= −A(t), where

Ẇ (t) = γ Ẋ(t)− α |Ẋ(t)| |W (t)|χ−1W (t)

− β Ẋ(t) |W (t)|χ, (2)

ν0 are ζ as in Eq. 1, α, β, γ, ρ, and χ are positive
constants, and A(t) denotes the seismic acceleration
process. The parameters α, β, γ, ρ, and χ control the
model behavior, e.g., the system is linear for ρ = 1
and, for ρ 6= 1, its nonlinear/hyteretic behavior de-
pends strongly on β and γ. The following numerical
results are for ν0 = 2π, ζ = 0.05, α = 0.5, β = 5,
γ = 3, ρ = 0.1, and χ = 1. The ground acceleration
A(t) is given by the specific barrier model (SBM) for
a seismic event with magnitude m = 5.0, source-to-
site distance r = 185km, and a rock site. It is a zero-
mean stationary Gaussian process with spectral den-
sity in the top panel of Fig. 3. The middle panel shows
n= 500 independent samples of

(
X1 := Sa(T ),X2 =

D
)

for τ = 20 seconds. The samples marked with cir-
cles denote the top 20 samples of

(
Sa(T ),D

)
which

have been used to estimate the angular measure s(θ)
shown in the bottom panel of the figure. The visual
inspection of this scatter plot suggests that Sa(T ) and
D are weakly dependent so that Sa(T ) is not likely
to be a satisfactory IM for this Bouk-Wen oscillator.
This observation is consistent with the angular mea-
sure s(θ) in the right panel of the figure. Since most
of the mass of s(θ) is concentrated in small vicinities
of θ = 0 and θ = π/2, simultaneously large values
of Sa(T ) and D are unlikely. Hence, large values of
D are not likely to be associated with large values of
Sa(T ) which means that Sa(T ) is an unsatisfactory
IM.

In summary, the dependence between simultane-
ously large values of Sa(T ) and D is weak so that the
conditional random variableD|Sa(T ) and the random
variable D have similar distributions which implies
that the fragility of the Bouc-Wen system under con-
sideration is nearly independent of Sa(T ). This is of
significant concern since the Bouc-Wen SDOF system
is a simplistic model of realistic structures, large val-
ues of the demand parameterD and the intensity mea-
sure Sa(T ) are nearly independent, and large values
of D are associated with excessive damage or even
structural collapse.
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Figure 3: Spectral density of A(t), n = 500 independent sam-
ples of Sa(T ) and D, and angular measure of

(
Sa(T ),D

)
(top,

middle, and bottom panels)

5 CONCLUSIONS

It was shown that a demand parameter D of an SDOF
Bouc-Wen system subjected to a seismic ground ac-
celeration process A(t) with known probability law is
weakly dependent to ordinates of the intensity mea-
sure Sa(T ) particularly for large seismic events. This
finding is at variance with the assumption that Sa(T )
captures sufficient information on the seismic ground
acceleration process A(t) such that demand param-
eters D of nonlinear, complex, multi-degree of free-
dom structures to A(t) correlates satisfactorily with
ordinates of Sa(T ). It strongly suggests to explore al-
ternative methods to characterize the intensity of seis-
mic events and construct fragilities, e.g., the parame-
ters of the probability law of the seismic ground ac-
celeration process, and develop alternative fragilities,
e.g., fragility surfaces of the type proposed in (2).
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