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Abstract

Recent years have witnessed an increasing

interest in image-based question-answering

(QA) tasks. However, due to data limitations,

there has been much less work on video-based

QA. In this paper, we present TVQA, a large-

scale video QA dataset based on 6 popular

TV shows. TVQA consists of 152,545 QA

pairs from 21,793 clips, spanning over 460

hours of video. Questions are designed to be

compositional in nature, requiring systems to

jointly localize relevant moments within a clip,

comprehend subtitle-based dialogue, and rec-

ognize relevant visual concepts. We provide

analyses of this new dataset as well as sev-

eral baselines and a multi-stream end-to-end

trainable neural network framework for the

TVQA task. The dataset is publicly available

at http://tvqa.cs.unc.edu.

1 Introduction

Now that algorithms have started to produce rel-

evant and realistic natural language that can de-

scribe images and videos, we would like to under-

stand what these models truly comprehend. The

Visual Question Answering (VQA) task provides

a nice tool for fine-grained evaluation of such mul-

timodal algorithms. VQA systems take as input

an image (or video) along with relevant natural

language questions, and produce answers to those

questions. By asking algorithms to answer differ-

ent types of questions, ranging from object iden-

tification, counting, or appearance, to more com-

plex questions about interactions, social relation-

ships, or inferences about why or how something

is occurring, we can evaluate different aspects of a

model’s multimodal semantic understanding.

As a result, several popular image-based

VQA datasets have been introduced, includ-

ing DAQUAR (Malinowski and Fritz, 2014),

COCO-QA (Ren et al., 2015a), FM-IQA (Gao

et al., 2015), Visual Madlibs (Yu et al., 2015),

VQA (Antol et al., 2015), Visual7W (Zhu et al.,

2016), etc. In addition, multiple video-based QA

datasets have also been collected recently, e.g.,

MovieQA (Tapaswi et al., 2016), MovieFIB (Ma-

haraj et al., 2017a), PororoQA (Kim et al., 2017),

TGIF-QA (Jang et al., 2017), etc. However, there

exist various shortcomings for each such video

QA dataset. For example, MovieFIB’s video clips

are typically short (∼4 secs), and focused on

purely visual concepts (since they were collected

from audio descriptions for the visually impaired);

MovieQA collected QAs based on text summaries

only, making them very plot-focused and less rele-

vant for visual information; PororoQA’s video do-

main is cartoon-based; and TGIF-QA used pre-

defined templates for generation on short GIFs.

With video-QA in particular, as opposed to

image-QA, the video itself often comes with as-

sociated natural language in the form of (subtitle)

dialogue. We argue that this is an important area

to study because it reflects the real world, where

people interact through language, and where many

computational systems like robots or other intel-

ligent agents will ultimately have to operate. As

such, systems will need to combine information

from what they see with what they hear, to pose

and answer questions about what is happening.

We aim to provide a dataset that merges the best

qualities from all of the previous datasets as well

as focus on multimodal compositionality. In par-

ticular, we collect a new large-scale dataset that is

built on natural video content with rich dynamics

and realistic social interactions, where question-

answer pairs are written by people observing both

videos and their accompanying dialogues, encour-

aging the questions to require both vision and lan-

guage understanding to answer. To further en-

courage this multimodal-QA quality, we ask peo-

ple to write compositional questions consisting
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With the same goal in mind, Rajpurkar et al.

(2016) introduced the SQuAD dataset, but their

answers are specific spans from long passages.

Weston et al. (2015) designed a set of tasks with

automatically generated QAs to evaluate the tex-

tual reasoning ability of artificial agents and Her-

mann et al. (2015); Hill et al. (2015) constructed

the cloze dataset on top of an existing corpus.

While questions in these text QA datasets are

specifically designed for language understanding,

TVQA questions require both vision understand-

ing and language understanding. Although meth-

ods developed for text QA are not directly appli-

cable to TVQA tasks, they can provide inspiration

for designing suitable models.

Natural Language Object Retrieval: Language

grounding addresses the task of object or mo-

ment localization in an image or video from a

natural language description. For image-based

object grounding, there has been much work on

phrase grounding (Plummer et al., 2015; Wang

et al., 2016b; Rohrbach et al., 2016) and referring

expression comprehension (Hu et al., 2016; Yu

et al., 2016; Nagaraja et al., 2016; Yu et al., 2017,

2018b). Recent work (Vasudevan et al., 2018)

extends the grounding task to the video domain.

Most recently, moment localization was proposed

in (Hendricks et al., 2017; Gao et al., 2017), where

the goal is to localize a short moment from a long

video sequence given a query description. Accu-

rate temporal grounding is a necessary step to an-

swering our compositional questions.

3 TVQA Dataset

3.1 Dataset Collection

We collected our dataset on 6 long-running TV

shows from 3 genres: 1) sitcoms: The Big

Bang Theory, How I Met Your Mother, Friends,

2) medical dramas: Grey’s Anatomy, House, 3)

crime drama: Castle. There are in total 925

episodes spanning 461 hours. Each episode was

then segmented into short clips. We first created

clips every 60/90 seconds, then shifted temporal

boudaries to avoid splitting subtitle sentences be-

tween clips. Shows that are mainly conversational

based, e.g., The Big Bang Theory, were segmented

into 60 seconds clips, while shows that are less

cerebral, e.g. Castle, were segmented into 90 sec-

onds clips. In the end, 21,793 clips were prepared

for QA collection, accompanied with subtitles and

aligned with transcripts to add character names. A

sample clip is shown in Fig. 1.

Amazon Mechanical Turk was used for VQA

collection on video clips, where workers were

presented with both videos and aligned named

subtitles, to encourage multimodal questions re-

quiring both vision and language understand-

ing to answer. Workers were asked to cre-

ate questions using a compositional-question

format: [What/How/Where/Why/...]

[when/before/after] . The second part of

each question serves to localize the relevant video

moment within a clip, while the first part poses a

question about that moment. This compositional

format also serves to encourage questions that re-

quire both visual and language understanding to

answer, since people often naturally use visual sig-

nals to ground questions in time, e.g. What was

House saying before he leaned over the bed? Dur-

ing data collection, we only used prompt words

(when/before/after) to encourage workers to pro-

pose the desired, complex compositional ques-

tions. There were no additional template con-

straints. Therefore, most of the language in the

questions is relatively free-form and complex.

Ultimately, workers pose 7 different questions

for each video clip. For each question, we asked

workers to annotate the exact video portion re-

quired to answer the question by marking the

START and END timestamps as in Krishna et al.

(2017). In addition, they provide 1 correct and

4 wrong answers for each question. Workers get

paid $1.3 for a single video clip annotation. The

whole collection process took around 3 months.

To ensure the quality of the questions and an-

swers, we set up an online checker in our collec-

tion interface to verify the question format, allow-

ing only questions that reflect our two-step for-

mat to be submitted. The collection was done in

batches of 500 videos. For each harvested batch,

we sampled 3 pairs of submitted QAs from each

worker and checked the semantic correctness of

the questions, answers, and timestamps.

3.2 Dataset Analysis

Multiple Choice QAs: Our QAs are multiple

choice questions with 5 candidate answers for

each question, for which only one is correct. Ta-

ble 1 provides statistics of the QAs based on the

first question word. On average, our questions

contain 13.5 words, which is fairly long compared

to other datasets. In general, correct answers tend





Dataset V. Src. QType #Clips / #QAs
Avg. Total Q. Src. Timestamp
Len.(s) Len.(h) text video annotation

MovieFIB (Maharaj et al., 2017a) Movie OE 118.5k / 349k 4.1 135 X - -
Movie-QA (Tapaswi et al., 2016) Movie MC 6.8k / 6.5k 202.7 381 X - X

TGIF-QA (Jang et al., 2017) Tumblr OE&MC 71.7k / 165.2k 3.1 61.8 X X -
Pororo-QA (Kim et al., 2017) Cartoon MC 16.1k / 8.9k 1.4 6.3 X X -
TVQA (our) TV show MC 21.8k / 152.5k 76.2 461.2 X X X

Table 5: Comparison of TVQA to various existing video QA datasets. OE = open-ended, MC = multiple-choices.

Q. Src. = Question Sources, it indicates where the questions are raised from. TVQA dataset is unique since its

questions are based on both text and video, with additional timestamp annotation for each of them. It is also

significantly larger than previous datasets in terms of total length of videos.

Character Top unique nouns

Sheldon
Arthur, train, Kripke, flag, flash, Wil,

logo, Barry, superhero, Spock, trek, sword

Leonard
Leslie, helium, robe, Dr, team, Kurt

university, key, chess, Stephen

Howard
NASA, trick, van, language, summer,

letter, Mike, station, peanut, Missy

Raj
Lucy, Claire, parent, music, nothing,

Isabella, bowl, sign, back, India, number

Penny
basket, order, mail, mouth, cheesecake, factory

shower, pizza, cream, Alicia, waitress, ice

Amy
Dave, meemaw, tablet, birthday, monkey, coat,

brain, ticket, laboratory, theory, lip, candle

Bernadette
song, sweater, wedding, child, husband,

everyone, necklace, stripper, weekend, airport

Table 4: Top unique nouns for characters in BBT.

VQA source Test-Public accuracy.
Question 32.61
Video and Question 61.96
Subtitle and Question 73.03
Video, Subtitle, and Question 89.41

Table 5: Human accuracy on test-public set based on

different sources. As expected, humans get the best

performance when given both videos and subtitles.

tains “game” and “laptop” while HIMYM contains

“bar” and “beer”, indicating the different major

activities and topics in each show. Additionally,

questions about different characters also mention

different words, as shown in Table 4.

Comparison with Other Datasets: Table 5

presents a comparison of our dataset to some

recently proposed video question answering

datasets. In terms of total length of videos, TVQA

is the largest, with a total of 461.2 hours of videos.

MovieQA (Tapaswi et al., 2016) is most similar

to our dataset, with both multiple choice questions

and timestamp annotation. However, their ques-

tions and answers are constructed by people pos-

ing questions from a provided plot summary, then

later aligned to the video clips, which makes most

of their questions text oriented.

Human Evaluation on Usefulness of Video and

Subtitle in Dataset: To gain a better understand-

ing of the roles of videos and subtitles in the our

dataset, we perform a human study, asking differ-

ent groups of workers to complete the QA task

in settings while observing different sources (sub-

sets) of information:

• Question only.

• Video and Question.

• Subtitle and Question.

• Video, Subtitle, and Question.

We made sure the workers that have written the

questions did not participate in this study and that

workers see only one of the above settings for an-

swering each question. Human accuracy on our

test-public set under these 4 settings are reported

in Table 5. As expected, compared to human ac-

curacy based only on question-answer pairs (Q),

adding videos (V+Q), or subtitles (S+Q) signifi-

cantly improves human performance. Adding both

videos and subtitles (V+S+Q) brings the accuracy

to 89.41%. This indicates that in order to answer

the questions correctly, both visual and textual un-

derstanding are essential. We also observe that

workers obtain 32.61% accuracy given question-

answer pairs only, which is higher than random

guessing (20%). We ascribe this to people’s prior

knowledge about the shows. Note, timestamp an-

notations are not provided in these experiments.

4 Methods

We introduce a multi-stream end-to-end trainable

neural network for Multi-Modal Video Question

Answering. Fig. 4 gives an overview of our model.

Formally, we define the inputs to the model as: a

60-90 second video clip V , a subtitle S, a question

q, and five candidate answers {ai}
4

i=0
.

4.1 Video Features

Frames are extracted at 3 fps. We run Faster R-

CNN (Ren et al., 2015b) trained on the Visual





cepts Hcpt ∈ R
ncpt×2d. nq and nai are the num-

ber of words in question and answer ai, respec-

tively. Regional features V reg and ImageNet fea-

tures V img are first projected into word vector

space using a non-linear layer with tanh activation,

then encoded using the same BiLSTM to obtain

the regional representations Hreg ∈ R
nreg×2d and

H img ∈ R
nimg×2d, respectively.

4.3 Joint Modeling of Context and Query

We use a context matching module and BiLSTM

to jointly model the contextual inputs (subtitle,

video) and query (question-answer pair). The con-

text matching module is adopted from the context-

query attention layer from previous works (Seo

et al., 2017; Yu et al., 2018a). It takes context vec-

tors and query vectors as inputs and produces a set

of context-aware query vectors based on the simi-

larity between each context-query pair.

Taking the regional visual feature stream as

an example (Fig. 4 upper stream), where Hreg

is used as context input2. The question em-

bedding, Hq, and answer embedding, Hai , are

used as queries. After feeding context-query

pairs into the context matching module, we obtain

a video-aware-question representation, Greg,q ∈
R
nreg×2d, and video-aware-answer representation,

Greg,ai ∈ R
nreg×2d, which are then fused with

video context:

M reg,ai = [Hreg;Greg,q;Greg,ai ;

Hreg ⊙Greg,q;Hreg ⊙Greg,ai ],

where ⊙ is element-wise product. The fused fea-

ture, M reg,ai ∈ R
nreg×10d, is fed into another

BiLSTM. Its hidden states, U reg,ai ∈ R
nreg×10d,

are max-pooled temporally to get the final vec-

tor, ureg,ai ∈ R
10d, for answer ai. We use a lin-

ear layer with softmax to convert {ureg,ai}4i=0
into

answer probabilities. Similarly, we can compute

the answer probabilities given subtitle as context

(Fig. 4 bottom stream). When multiple streams

are used, we simply sum up the scores from each

stream as the final score (Wang et al., 2016a).

5 Experiments

For evaluation, we introduce several baselines and

compare them to our proposed model.

In all experiments, setup is as follows. We split

the TVQA dataset into 80% train, 10% val, and

2For visual concept features and ImageNet features, we
simply replace H

reg with H
cpt or Himg as the context.

10% test splits such that videos and their corre-

sponding QA pairs appear in only one split. This

results in 122,039 QA pairs for training, 15,253

QA pairs for validation, and 15,253 QA pairs for

testing. We further split the test set into two sub-

sets, test-public (7623 QA pairs) and test-reserved

(7630 QA pairs), where test-public is used in our

leaderboard3, test-reserved is reserved for future

use. We evaluate each model using multiple-

choice question answering accuracy.

5.1 Baselines

Longest Answer: Table 1 indicates that the aver-

age length of the correct answers is longer than the

wrong ones; thus, our first baseline simply selects

the longest answer for each question.

Nearest Neighbor Search: In this baseline, we

use Nearest Neighbor Search (NNS) to compute

the closest answer to our question or subtitle.

We embed sentences into vectors using TFIDF,

SkipThought (Kiros et al., 2015), or averaged

GloVe (Pennington et al., 2014) word vectors, then

compute the cosine similarity for each question-

answer pair or subtitle-answer pair. For TFIDF,

we use bag-of-words to represent the sentences,

assigning a TFIDF value for each word.

Retrieval: Due to the size of TVQA, there may

exist similar questions and answers in the dataset.

Thus, we also implement a baseline two-step re-

trieval approach: given a question and a set of can-

didate answers, we first retrieve the most relevant

question in the training set, then pick the candidate

answer that is closest to the retrieved question’s

correct answer. Similar approaches have also been

used in dialogue systems (Jafarpour et al., 2010;

Leuski and Traum, 2011), picking the appropriate

responses to an utterance from a predefined hu-

man conversational corpus. Similar to NNS, we

use TFIDF, SkipThought, and GloVe vectors with

cosine similarity.

5.2 Results

Table 6 shows results from baseline methods and

our proposed neural model. Our main results

are obtained by using full-length video clips and

subtitles, without using timestamps (w/o ts). We

also run the same experiments using the localized

video and subtitle segment specified by the ground

truth timestamps (w/ ts). If not indicated explicitly,

3http://tvqa.cs.unc.edu/leaderboard.

html



Video Test-Public Accuracy

Method Feature w/o ts w/ ts

0 Random - 20.00 20.00

1 Longest Answer - 30.22 30.22

2 Retrieval-Glove - 22.77 22.77

3 Retrieval-SkipThought - 24.27 24.27

4 Retrieval-TFIDF - 20.78 20.78

5 NNS-Glove Q - 22.63 22.63

6 NNS-SkipThought Q - 23.39 23.39

7 NNS-TFIDF Q - 19.47 19.47

8 NNS-Glove S - 23.74 29.95

9 NNS-SkipThought S - 26.93 38.29

10 NNS-TFIDF S - 49.59 50.79

11 Our Q - 43.50 43.50

12 Our V+Q img 42.87 43.91

13 Our V+Q reg 43.01 45.23

14 Our V+Q cpt 43.84 45.44

15 Our S+Q - 62.69 66.36

16 Our S+V+Q img 63.44 66.94

17 Our S+V+Q reg 63.06 68.19

18 Our S+V+Q cpt 66.46 68.48

Table 6: Accuracy for different methods on TVQA

test-public set. Q = Question, S = Subtitle, V = Video,

img = ImageNet features, reg = regional visual features,

cpt = visual concept features, ts = timestamp annota-

tion. Human performance without timestamp annota-

tion is reported in Table 5.

the numbers described below are from the experi-

ments on full-length video clips and subtitles.

Baseline Comparison: Row 1 shows results of

the longest answer baseline, achieving 30.22%

(compared to random chance at 20%). As ex-

pected, the retrieval-based methods (row 2-4)

and the answer-question similarity based methods

(row 5-7) perform rather poorly, since no con-

texts (video or subtitle) are considered. When

using subtitle-answer similarity to choose correct

answers, Glove, SkipThought, and TFIDF based

approaches (row 8-10) all achieve significant im-

provement over question-answer similarity. No-

tably, TFIDF (row 10) answers 49.59% of the

questions correctly. Since our questions are raised

by people watching the videos, it is natural for

them to ask questions about specific and unique

objects/locations/etc., mentioned in the subtitle.

Thus, it is not surprising that TFIDF based similar-

ity between answer and subtitle performs so well.

Variants of Our Model: Rows 11-18 show re-

sults of our model with different contextual inputs

and features. The model that only uses question-

answer pairs (row 11) achieves 43.50% accuracy.

Compared to the subtitle model (row 15), adding

video as additional sources (row 16-18) improves

Q S+Q
V+Q S+V+Q

img reg cpt img reg cpt

what (55.62%) 44.11 62.29 44.96 45.93 47.44 63.88 65.28 66.05

who (11.55%) 36.55 68.33 35.75 34.85 34.68 67.76 67.20 67.99

where (11.67%) 42.58 56.97 47.13 48.43 48.20 61.97 63.71 61.46

how (8.98%) 41.17 71.97 41.17 42.41 40.95 71.17 70.80 71.53

why (10.38%) 45.23 78.65 46.05 45.36 45.48 78.33 77.13 78.77

other (1.80%) 36.50 74.45 37.23 36.50 33.58 73.72 72.63 74.09

all (100%) 42.77 65.15 43.78 44.40 45.03 66.44 67.17 67.70

Table 7: Accuracy of each question type using differ-

ent models (w/ ts) on TVQA Validation set. Q = Ques-

tion, S = Subtitle, V = Video, img = ImageNet features,

reg = regional visual features, cpt = visual concept fea-

tures. The percentage of each question type is shown

in brackets.

performance. Interestingly, adding video to the

question only model (row 11) do not work as well

(row 12-14). Our hypothesis is that the video fea-

ture streams may be struggling to learn models

for answering textual questions, which degrades

their ability to answer visual questions. Overall,

the best performance is achieved by using all the

contextual sources, including subtitles and videos

(using concept features, row 18).

Comparison with Human Performance: Hu-

man performance without timestamp annotation

is shown in Table 5. When using only questions

(Table 6 row 11), our model outperforms humans

(43.50% vs 32.61%) as it has access to all statistics

of the questions and answers. When using videos

or subtitles or both, humans perform significantly

better than the models.

Models with Timestamp Annotation: Columns

under w/o ts and w/ ts show a comparison between

the same model using full-length videos/subtitles

and using timestamp localized videos/subtitles.

With timestamp annotation, the models perform

consistently better than their counterpart without

this information, indicating that localization is

helpful for question answering.

Accuracy for Different Question Types: To gain

further insight, we examined the accuracy of our

models on different question types on the vali-

dation set (results in Table 7), all models using

timestamp annotation. Compared to S+Q model,

S+V+Q models get the most improvements on

“what” and “where” questions, indicating these

questions require additional visual information.

On the other hand, adding video features did not

improve S+Q performance on questions relying

more on textual reasoning, e.g., “how” questions.

Human-Written Negatives vs. Randomly-

Sampled Negatives For comparison, we create a
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