










EQA-v1 [8], except we use larger turning angles – as our

navigation paths are much longer due to the multi-target set-

ting. We find that this change reduces the number of actions

required for navigation, leading to easier training.

4.3. Controller

The controller is the central module in our model, as it

connects all of the other modules by: 1) creating a plan from

the program generator, 2) collecting the necessary observa-

tions from the navigator, and 3) invoking the VQA module.

Fig. 6 (b) shows the controller, whose key component

is another LSTM. Consider the question “Does the bathtub

have same color as the sink in the bathroom?” with part

of its program as example – nav room(bathroom) →
nav object(bathtub). The controller starts by call-

ing the room navigator to look for “bathroom”. During nav-

igation, the controller keeps track of the first-person views,

looking for the target. Particularly, it extracts the features

via CNN which are then fused with the target embedding as

input to the LSTM. The controller predicts SELECT if the

target is found, stopping the current navigator, in our exam-

ple nav room(bathroom), and starting execution of the

next program, nav object(bathtub).

Finally, after the object target “bathtub” has been found,

the next program – query color(), is executed. The

controller extracts attribute features from the first-person

view containing the target. In all, there are three attribute

types in MT-EQA - object’s color, object’s size, and room’s

size. Again, we treat object and room differently in our

model. For object-specific attributes, we use the hidden

state of the controller at the location where SELECT was

predicted. This state should contain semantic information

for the target, as it is where the controller is confident the

target is located. For room-specific attributes, the controller

collects a panorama by asking the navigator to rotate 360

degrees (by performing 12 turning-right actions) at the lo-

cation where SELECT is predicted. The CNN features from

this panorama view are concatenated as the representation.

During program execution by the controller, the ex-

tracted cues for all the targets are stored, and in the end they

are used by the VQA module to predict the final answer.

4.4. VQA Module

The final task requires comparative reasoning, e.g.,

object size compare(bigger), equal color(), etc.

When the controller has gathered all of the targets for com-

parison, it invokes the VQA module. As shown in top-right

of Fig. 5, the VQA module embeds the stored features of

multiple targets into the question-attribute space, using a

FC layer followed by ReLU. The transformed features are

then concatenated and fed into another FC+ReLU which

is conditioned on the comparison operator (equal, bigger

than, smaller than, etc.). The output is a binary prediction

(yes/no) for that attribute comparison. We call it composi-

tional VQA (cVQA). The cVQA module in Fig. 5 depicts a

two-input comparison as an example, but our cVQA module

also extends to three inputs, for questions like “Is the refrig-

erator closer to the coffee machine than the microwave?”.

4.5. Training

Training follows a two-stage approach: First, the full

model is trained using Imitation Learning (IL); Second, the

navigator is further fine-tuned with Reinforcement Learning

(RL) using policy gradients.

First, we jointly train our full model using imitation

learning. For imitation learning, we treat the shortest paths

and the key positions containing the targets as our ground-

truth labels for navigation and for the controller’s SELECT

classifier, respectively. The objective function consists of a

navigation objective and a controller objective at every time

step t, and a VQA objective at the final step. For the i-th

question, let Pnav
i,t,a be action a’s probability at time t, P sel

i,t

be the controller’s SELECT probability at time t, and P vqa
i

be the answer probability from VQA, then we minimize the

combined loss:

L = Lnav + αLctrl + βLvqa

= −
∑

i

∑

t

∑

a

yni,t,a logP
nav
i,t,a

︸ ︷︷ ︸

Cross-entropy on navigator action

−α
∑

i

∑

t

(yci,t logP
sel
i,t + (1− yci,t) log(1− P sel

i,t ))

︸ ︷︷ ︸

Binary cross-entropy on controller’s SELECT

−β
∑

i

(yvi logP
vqa
i + (1− yvi ) log(1− P vqa

i ))

︸ ︷︷ ︸

Binary cross-entropy on VQA’s answer

.

Subsequently, we use RL to fine-tune the room and ob-

ject navigators.

We provide two types of reward signals to the navigators.

The first is a dense reward, corresponding to the agent’s

progress toward the goal (positive if moving closer to the

target and negative if moving away). This reward is mea-

sured by the distance change in the 2D bird-view distance

space, clipped to lie within [−1.0, 1.0]. The second is a

sparse reward that quantifies whether the agent is looking at

the target object when the episode is terminated. For object

targets, we compute IOUT between the target’s mask and

the centered rectangle mask at termination. We use the best

IOU score of the target IOUbest as reference and compute

the ratio IOUT

IOUbest

. If the ratio is greater than 0.5, we set the

reward to 1.0 otherwise -1.0. For room targets, we assign

reward 0.2 to the agent if it is inside the target room at ter-

mination, otherwise -0.2.
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Object Navigation Room Navigation EQA

dT d∆ hT IOUr
T

%stopo %rT %stopr ep len %easy %medium %hard %overall

1 Nav+cVQA 5.41 -0.64 0.19 0.15 36 34 60 153.13 58.42 53.29 51.46 53.24

2 Nav(RL)+cVQA 3.80 0.10 0.33 0.30 46 40 62 144.80 67.57 55.91 53.28 57.40

3 Nav+Ctrl+cVQA 5.25 -0.56 0.20 0.18 36 37 70 145.20 59.73 53.48 49.04 54.44

4 Nav(RL)+Ctrl+cVQA 3.60 0.16 0.33 0.29 48 43 72 127.71 72.22 59.97 54.92 61.45

Table 5: Quantitative evaluation of object/room navigation and EQA accuracy for different approaches.

object color compare object size compare object dist compare room size compare
%overall

inroom xroom inroom xroom inroom xroom

1 Nav+cVQA 64.15 52.47 57.85 55.68 49.38 48.37 53.24

2 Nav(RL)+cVQA 71.24 53.92 74.38 60.81 51.23 46.66 57.40

3 Nav+Ctrl+cVQA 66.41 52.65 57.85 53.48 49.38 48.37 54.44

4 Nav(RL)+Ctrl+cVQA 72.68 58.19 76.86 63.37 54.94 55.57 61.45

Table 6: EQA accuracy on each question type for different approaches.

object color compare object size compare object dist compare room size compare
%overall

inroom xroom inroom xroom inroom xroom

1 [BestView] + attn-VQA (cnn) 71.16 59.56 65.29 65.93 58.64 49.74 60.50

2 [BestView] + cVQA (cnn) 82.92 72.70 80.99 83.88 69.75 64.32 74.14

3 [ShortestPath+BestView] + Ctrl + cVQA 90.70 85.49 82.64 88.64 68.52 71.87 82.88

4 [ShortestPath] + seq-VQA 53.32 54.44 51.24 50.55 47.53 49.74 52.36

5 [ShortestPath] + Ctrl + cVQA 76.09 69.11 75.21 79.49 64.20 61.23 69.77

Table 7: EQA accuracy of different approaches on each question type in oracle setting (given shortest path or best-view images).

5. Experiments

In this section we describe our experimental results.

Since MT-EQA is a complex task and our model is mod-

ular, we will show both the final results (QA accuracy) and

the intermediate performance (for navigation). Specifically,

we first describe our evaluation setup and metrics for MT-

EQA. Then, we report the comparison of our model against

several strong baselines. And finally, we analyze variants of

our model and provide ablation results.

5.1. Evaluation Setup and Metrics

Spawn Location. MT-EQA questions involve multiple tar-

gets (rooms/objects) to be found. To prevent the agent from

learning biases due to spawn location, we randomly select

one of the mentioned targets as reference and spawn our

agent 10 actions (typically 1.9 meters) away.

EQA Accuracy. We compute overall accuracy as well as

accuracy for each of the 6 types of questions in our dataset.

In addition, we also categorize question difficulty level into

easy, medium, and hard by binning the ground-truth action

length. Easy questions are those with fewer than 25 action

steps along the shortest path, medium are those with 25-

70 actions, and hard are those with more than 70 actions.

We report accuracy for each difficulty, %easy , %medium,

%hard, as well as overall, %overall, in Table 5.

Navigation Accuracy. We also measure the navigation ac-

curacy for both objects and rooms in MT-EQA. As each

question involves several targets, the order of them being

navigated matters. We consider the ‘ground truth’ ordering

of targets for navigation as the order in which they are men-

tioned in the question, e.g., given “Does the bathtub have

same color as the sink?”, the agent is trained and evaluated

for visiting the “bathtub” first and then the “sink”.

For each mentioned target object, we evaluate the agent’s

navigation performance by computing the distance to the

target object at navigation termination, dT , and change in

distance to the target from initial spawned position to ter-

minal position, d∆. We also compute the stop ratio %stopo
as in EQA-v1 [8]. Additionally, we propose two new met-

rics based on the IOU of the target object at its termina-

tion. When the navigation is done, we compute the IOU

of the target w.r.t a centered rectangular box (see Fig. 3

as example). The first metric is mean IOU ratio IOUr
T =

1
N

∑

i
IOUT (oi)

IOUbest(oi)
) where IOUbest(oi) is the highest IOU

score for object oi. The second is hit accuracy hT – we

compute the percentage of the ratio IOUT (oi)/IOUbest(oi)

greater than 0.5, i.e., hT = 1
N

∑

i ||
IOUT (oi)

IOUbest(oi)
> 0.5||.

Both metrics measure to what extent the agent is looking

at the target at termination.

For each mentioned target room, we evaluate the agent’s

navigation by recording the percentage of agents terminat-

ing inside the target room %rT and the stop ratio %stopr.

For all the above metrics except for dT , larger is better.

Additionally, we report the overall number of action steps

(episode length) executed for each question, i.e., ep len.

5.2. EQA Results

Nav+Ctrl+cVQA is our full model, which is com-

posed of a program generator, a navigator, a controller

and a comparative VQA module. Another variant of our

7



model, the REINFORCE fine-tuned model is denoted as

Nav(RL)+Ctrl+cVQA. We also train a simplified version

of our full model, Nav+cVQA. which does not use a con-

troller. For this model, we let the navigator predict termi-

nation whenever a target is detected, then feed its hidden

states to the VQA model. The training details are similar to

our full model for both IL and RL. We show comparisons

of both navigation and EQA accuracy in Table. 5.

RL helps both navigation and EQA accuracies. Both ob-

ject and room navigation performance are improved after

RL finetuning. We notice without finetuning d∆ for both

models (Row 1 &3 ) are negative, which means the agent

has moved farther away from the target during navigation.

After RL finetuning, d∆ jumps from −0.56 to 0.16 (Row

3 & 4). The hit accuracy also improves from 20% to 33%,

indicating that the RL-finetuned agent is more likely to find

the target mentioned in the question. Episode lengths from

the stronger navigators are shorter, indicating that better

navigators find their target more quickly. And, higher EQA

accuracy is also achieved with the help of RL finetuning

(from 54.44% to 61.45%). After breaking down the EQA

into different types, we observe the same trend in Table. 6 –

our full model with RL far outperforms the others.

Controller is important. Comparing our full model (Row

4) to the one without a controller (Row 2), we notice that

the former outperforms the latter across almost all the met-

rics. One possible reason is that the VQA task and navi-

gation task are quite different, such that the features (hid-

den state) from the navigator cannot help improve the VQA

module. On the contrary, our controller decouples the two

tasks, letting the navigator and VQA module focus on their

own roles.

Questions with shorter ground-truth path are easier. We

observe that our agent is far better at dealing with easy ques-

tions than hard ones (72.22% over 54.92% in Table. 5 Row

4). One reason is that the targets mentioned in the easy

questions, e.g., sink and toilet in “Does the sink have same

color as the toilet in the bathroom?”, are typically closer to

each other, thus are relatively easier to be explored, whereas

questions like “Is the kitchen bigger than the garage?” re-

quires a very long trajectory and the risk of missing one

(kitchen or garage) is increased. The same observation is

found in Table. 6, where we get higher accuracy for “in-

room” questions than “cross-room” ones.

5.3. Oracle Comparisons

To better understand each module of our model, we run

ablation studies. Table. 7 shows EQA accuracy of different

approaches given the shortest paths or best-view frames.

Our VQA module helps. We first compare the per-

formance of our VQA module against an attention-based

VQA. Given the best view of each target, we can directly

feed the features from those images to the VQA module,

using the CNN features instead of hidden states from con-

troller side. The attention-based VQA architecture is sim-

ilar to [8], which uses an LSTM to encode questions and

then uses its representation to pool image features with at-

tention. Comparing the two methods in Table. 7, Row 1 &

2, our VQA module achieves 13.64% higher accuracy. The

benefit mainly comes from the decomposition of attribute

representation and comparison in our VQA module.

Controller’s features help. We compare the controller’s

features to raw CNN features for VQA. When given both

shortest path and best-view position, we run our full model

with these annotations and feed the hidden states from the

controller’s LSTM to our VQA model. As shown in Ta-

ble. 7, Row 2 & 3, the controller’s features are far better

than raw CNN features, especially for object color compare

and object size compare question types.

Controller’s SELECT matters. Our controller predicts

SELECT and extracts the features at that moment. One pos-

sible question is how important is this moment selection. To

demonstrate its advantage, we trained another VQA module

which uses a LSTM to encode the whole sequence of frames

along the shortest path and uses its final hidden state to pre-

dict the answer, denoted as seq-VQA. The hypothesis is that

the final hidden state might be able to encode all relevant

information, as the LSTM has gone through the whole se-

quence of frames. Table. 7, Row 4, shows its results, which

is nearly random. On the contrary, when controller is used

to SELECT frames in Row 5, the results are far better. How-

ever, there is still much space for improvement. Comparing

Table. 7, Row 3 & 5, the overall accuracy drops 13% when

using features from the predicted SELECT instead of oracle

moments, and 20% when using additional navigators (com-

paring Table. 7, Row 3, & Table. 6, Row 4), indicating the

necessity of both accurate SELECT and navigation.

6. Conclusion

We proposed MT-EQA, extending the original EQA

questions from a limited single-target setting to a more chal-

lenging multi-target setting, which requires the agent to

perform comparative reasoning before answering questions.

We collected a MT-EQA dataset as a test benchmark for the

task, and validated its usefulness with simple baselines from

just text or prior. We also proposed a new EQA model con-

sisting of four modular components: a program generator, a

navigator, a controller, and VQA module for MT-EQA. We

experimentally demonstrated that our model significantly

outperforms baselines on both question answering and nav-

igation, and conducted detailed ablative analysis for each

component in both the embodied and oracle settings.
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