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Abstract

Embodied Question Answering (EQA) is a relatively new
task where an agent is asked to answer questions about
its environment from egocentric perception. EQA as intro-
duced in [5] makes the fundamental assumption that every
question, e.g. “what color is the car?”, has exactly one tar-
get (“car”) being inquired about. This assumption puts a
direct limitation on the abilities of the agent.

We present a generalization of EQA — Multi-Target EQA
(MT-EQA). Specifically, we study questions that have mul-
tiple targets in them, such as “Is the dresser in the bed-
room bigger than the oven in the kitchen?”, where the
agent has to navigate to multiple locations ( “dresser in bed-
room”, “oven in kitchen”) and perform comparative rea-
soning (“dresser” bigger than “oven”) before it can an-
swer a question. Such questions require the development of
entirely new modules or components in the agent. To ad-
dress this, we propose a modular architecture composed of
a program generator, a controller, a navigator, and a VQA
module. The program generator converts the given ques-
tion into sequential executable sub-programs; the naviga-
tor guides the agent to multiple locations pertinent to the
navigation-related sub-programs; and the controller learns
to select relevant observations along its path. These ob-
servations are then fed to the VOA module to predict the
answer. We perform detailed analysis for each of the model
components and show that our joint model can outperform
previous methods and strong baselines by a significant mar-
gin. Project page: https://embodiedga.org.

1. Introduction

One of the grand challenges of Al is to build intelligent
agents that visually perceive their surroundings, communi-
cate with humans via natural language, and act in their envi-
ronments to accomplish tasks. In the vision, language, and
Al communities, we are witnessing a shift in focus from
internet vision to embodied Al — with the creation of new
tasks and benchmarks [7, 2, 14, 35], instantiated on new
simulation platforms [21, 28, 32, 33, 20, 6].

The focus of this paper is one such embodied Al task,
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EQA -v1: What color is the car?

Answer: Orange
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MT-EQA: Does the dressin
have same color as the sink

Figure 1: Difference between EQA-v1 and MT-EQA. While EQA-
v1’s question asks about a single target “car”, MT-EQA’s question
involves multiple targets (e.g., bedroom, dressing table, bathroom,
sink) to be navigated, and attribute comparison between multiple
targets (e.g., dressing table and sink).

Embodied Question Answering (EQA) [8], which tests an
agent’s overall ability to jointly perceive its surrounding,
communicate with humans, and act in a physical environ-
ment. Specifically, in EQA, an agent is spawned in a ran-
dom location within an environment and is asked a question
about something in that environment, for example “What
color is the lamp?”. In order to answer the question cor-
rectly, the agent needs to parse and understand the question,
navigate to a good location (looking at the “lamp”) based
on its first-person perception of the environment and pre-
dict the right answer (e.g. “blue”).

However, there is still much left to be done in EQA. In
its original version, the EQA-v1 dataset only consists of
single-target question-answer pairs, such as “What color is
the car?”. The agent just needs to find the car then check
its color based on its last observed frames. However, the
single target constraint places a direct limitation on the pos-
sible set of tasks that the Al agent can tackle. For example,
consider the question “Is the kitchen larger than the bed-
room?” in EQA-v1; the agent would not be able to answer
this question because it involves navigating to multiple tar-
gets —“kitchen” and “bedroom” — and the answer requires
comparative reasoning between the two rooms, where all of
these skills are not part of the original EQA task.

In this work, we present a generalization of EQA —
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multi-target EQA (MT-EQA). Specifically, we study ques-
tions that have multiple implicit targets in them, such as
“Is the dresser in the bedroom bigger than the oven in the
kitchen?”. At a high-level, our work is inspired by the vi-
sual reasoning work of Neural Modular Networks [4] and
CLEVR [18]. These works study compositional and modu-
lar reasoning in a fully-observable environment (an image).
Our work may be viewed as embodied visual reasoning,
where an agent is asked a question involving multiple mod-
ules and needs to gather information before it can execute
them. In MT-EQA, we propose 6 types of compositional
questions which compare attribute properties (color, size,
distance) between multiple targets (objects/rooms). Fig. 1
shows an example from the MT-EQA dataset and contrasts
it to the original EQA-v1 dataset.

The assumption in EQA-vl of decoupling navigation
from question-answering not only makes the task simpler
but is also reflected in the model used — the EQA-v1 model
simply consists of an LSTM navigator which after stopping,
hands over frames to a VQA module. In contrast, MT-EQA
introduces new modeling challenges that we address in this
work. Consider the MT-EQA question in Fig. | — “Does
the table in the bedroom have same color as the sink in the
bathroom?”. From this example, it is clear that not only is
it necessary to have a tighter integration between navigator
and VQA, but we also need to develop fundamentally new
modules. An EQA-v1 [8] agent would navigate to the final
target location and run the VQA module based on its last
sequence of frames along the path. In this case, only the
“sink” would be observed from the final frames but dress-
ing table would be lost. Instead, we propose a new model
that consists of 4 components: (a) a program generator, (b) a
navigator, (c) a controller and (d) a VQA module. The pro-
gram generator converts the given question into sequential
executable sub-programs, as shown in Fig. 2. The controller
executes these sub-programs sequentially and gives control
to the navigator when the navigation sub-programs are in-
voked (e.g. nav_room (bedroom) ). During navigation,
the controller processes the first-person views observed by
the agent and predicts whether the target of the sub-program
(e.g. bedroom) has been reached. In addition, the controller
extracts cues pertinent to the questioned property of the
sub-target, e.g. query (color). Finally, these cues are
fed into the VQA module which deals with the comparison
of different attributes, e.g. executing equal_color () by
comparing the color of dressing table and sink (Fig. 1 ).

Empirically, we show results for our joint model and an-
alyze the performance of each of our components. Our full
model outperforms the baselines under almost every navi-
gation and QA metric by a large margin. We also report
performance for the navigator, the controller, and the VQA
module, when executed separately in an effort to isolate and
better understand the effectiveness of these components.
Our ablation studies show that our full model is better at
all sub-tasks, including room navigation, object navigation
and final EQA accuracy. Additionally, we find quantita-
tive evidence that MT-EQA questions on closer targets are
relatively easier to solve as they require shorter navigation,
while questions for farther targets are harder.

2. Related Work

Our work relates to research in embodied perception and
modular predictive models for program execution.

Embodied Perception. Visual recognition from images has
witnessed tremendous success in recent years with the ad-
vent of deep convolutional neural networks (CNNs) [22,

, 15] and large-scale datasets, such as ImageNet [26] and
COCO [24]. More recently, we are beginning to witness a
resurgence of active vision. For example, end-to-end learn-
ing methods successfully predict robotic actions from raw
pixel data [23]. Gupta et al. [14] learn to navigate via map-
ping and planning. Sadeghi & Levine [27] teach an agent
to fly in simulation and show its performance in the real
world. Gandbhi et al. [11] train self-supervised agents to fly
from examples of drones crashing.

At the intersection of active perception and language
understanding, several tasks have been proposed, includ-
ing instruction-based navigation [7, 2], target-driven navi-
gation [30, 14], embodied question answering [8], interac-
tive question answering [ 3], and task planning [35]. While
these tasks are driven by different goals, they all require
training agents that can perceive their surroundings, under-
stand the goal — either presented visually or in language in-
structions — and act in a virtual environment. Furthermore,
the agents need to show strong generalization ability when
deployed in novel unseen environments [ 14, 32].

Environments. There is an overbearing cost to developing
real-world interactive benchmarks. Undoubtedly, this cost
has hindered progress in studying embodied tasks. On the
contrary, virtual environments that offer rich, efficient simu-
lations of real-world dynamics, have emerged as promising
alternatives to potentially overcome many of the challenges
faced in real-world settings.

Recently there has been an explosion of simulated 3D
environments in the Al community, all tailored towards
different skill sets. Examples include ViZDoom [20],
TorchCraft [30] and DeepMind Lab [5]. Just in the
last year, simulated environments of semantically com-
plex, realistic 3D scenes have been introduced, such as



HoME [6], House3D [32], MINOS [28], Gibson [33] and
AI2THOR [21]. In this work, we use House3D, following
the original EQA task [8]. House3D is a rich, interactive
3D environment based on human-designed indoor scenes
sourced from SUNCG [29].

Modular Models. Neural module networks were originally
introduced for visual question answering [4]. These net-
works decompose a question into several components and
dynamically assemble a network to compute the answer,
dealing with variable compositional linguistic structures.
Since their introduction, modular networks have been ap-
plied to several other tasks: visual reasoning [16, 19], rela-
tionship modeling [17], embodied question answering [9],
multitask reinforcement learning [3], language grounding
on images [34] and video understanding [12]. Inspired
by [10, 19], we cast EQA as a partially observable version
of CLEVR and extend the modular idea to this task, which
we believe requires an increasingly modular model design
to address visual reasoning within a 3D environment.

3. Multi-Target EQA Dataset

We now describe our proposed Multi-Target Embod-
ied Question Answering (MT-EQA) task and associated
dataset, contrasting it against EQA-v1. In v1 [8], the au-
thors select 750 (out of about 45,000) environments for the
EQA task. Four types of questions are proposed, each ques-
tioning a property (color, location, preposition) of a single
target (room, object), as shown at the top of Table. 1. Our
proposed MT-EQA task generalizes EQA-v1 and involves
comparisons of various attributes (color, size, distance) be-
tween multiple targets, shown at the bottom of Table. 1.
Next, we describe in detail the generation process, as well
as useful statistics of MT-EQA.

3.1. Multi-Target EQA Generation

We generate question-answer pairs using the annotations
available on SUNCG. We use the same number of rooms
and objects as EQA-v1 (see Figure 2 in [8]). Each ques-
tion in MT-EQA is represented as a series of functional pro-
grams, which can be executed on the environment to yield
a ground-truth answer. The functional programs consist
of some elementary operations, e.g., select(), unique(), ob-
ject_color_pair(), query(), etc., that operate on the room and
object annotations.

Each question type is associated with a question tem-
plate and a sequence of operations. For example, consider
the question type in MT-EQA object_color_.compare, whose
template is “Does <OBJI1> share same color as <OBJ2>
in <ROOM>?". Its sequence of elementary operations is:
select(rooms) — unique(rooms) — select(objects) —
unique(objects) — pair(objects) — query(color compare).

The first function, select(rooms), returns all rooms in the
environment. The second function, unique(rooms), selects
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Figure 3: IOU between the target’s mask and the centered rect-
angle mask. Higher IOU is achieved when the target has larger

portion in the center of the view.

a single unique room from the list to avoid ambiguity. Simi-
larly, the third function, select(objects), and fourth function,
unique(objects), return unique objects in the selected room.
The fifth function, pair(objects), pairs the objects. The final
function, query(color_compare), compares their colors.

We design 6 types of questions comparing different at-
tributes between objects (inside same room/across different
rooms), distance comparison, and room size comparison.
All question types and templates are shown in Table 2.

In some cases, a question instantiation returned from
the corresponding program, as shown above, might not be
executable, as rooms might be disconnected or not reach-
able. To check if a question is feasible, we execute the cor-
responding nav_room () and nav_object () programs
and compute shortest paths connecting the targets in the
question. If there is no path', it means the agent would not
be able to look at all targets starting from its given spawn
location. We filter out such impossible questions.

For computing the shortest path connecting the targets,
we need to find the position (x,y, z, yaw) that best views
each target. In order to do so, we first sample 100 positions
near the target. For each position, we pick the yaw angle
that looks at the target with the highest Intersection-Over-
Union (IOU), computed using the target’s mask” and a cen-
tered rectangular mask. Fig. 3 shows 4 IOU scores of coffee
machine and refrigerator from different positions. We sort
the 100 positions and pick the one with highest IOU as the
best-view position of the target, which is used to connect
the shortest-path. For each object, its highest IOU value
10Uy, is recorded for evaluation purposes (as a reference
of the target’s best-view).

To minimize the bias in MT-EQA, we perform entropy-
filtering, similar to [8]. Specifically for each unique ques-
tion, we compute its answer distribution across the whole
dataset. We exclude questions whose normalized answer
distribution entropy is below 0.9°. This prevents the agent
from memorizing easy question-answer pairs without look-
ing at the environment. For example, the answer to “is the

IThis is a result of noisy annotations in SUNCG and inaccurate occu-
pancy maps due to the axis-aligned assumption returned by House3D.

2House3D returns the the ground-truth semantic segmentation for each
first-person view.

3Rather than 0.5 in [8], we set the normalized entropy threshold as 0.9
(maximum is 1) since all of our questions have binary answers.



Question Type Template

location “What room is the <OBJ> located in?”

j: color “What color is the <OBJ>?"

8 color room “What color is the <OBJ> in the <ROOM>?"
preposition “What is <on/above/below/next-to> the <OBJ> in the <ZROOM>?"
object_color_.compare_inroom “Does <OBJ1> share same color as <OBJ2> in <ROOM>?"

< object_color_.compare_xroom “Does <OBJI> in <ROOM1> share same color as <OBJ2> in <ROOM2>?"

8 object_size_compare_inroom “Is <OBJ1> bigger/smaller than <OBJ2> in <ROOM>?"

E‘ object_size_compare_xroom “Is <OBJ1> in <ROOM 1> bigger/smaller than <OBJ2> in <ROOM2>?"
object_dist_.compare “Is <OBJ1> closer than/farther from <OBJ2> than <OBJ3> in <ROOM>?"
room_size_compare “Is <ROOM1> bigger/smaller than <ROOM?2> in the house?”

Table 1: Question types and the associated templates used in EQA-v1 and MT-EQA.
Question Type Functional Form

object_color compare
object _size_compare

select(rooms) — unique(rooms) — select(objects) — unique(objects) — pair(objects) — query(color.compare)
select(rooms) — unique(rooms) — select(objects) — unique(objects) — pair(objects) —query(size_compare)
( ) )

( )
object dist compare select(rooms) — unique(rooms) — select(objects) — unique(objects) — triplet(objects) —query(dist. compare)
( )

room_size_compare

select(rooms) — unique(rooms) — pair(rooms) — query(size_compare)

Table 2: Functional forms of all question types in the MT-EQA dataset. Note that for each object color/size comparison question type,
there exists two modes: inroom and xroom, depending on whether the two objects are in the same room or not. For example, ob-
ject_color_.compare_xroom compares the color of two objects in two different rooms.

random q-LSTM ¢g-NN g-BoW “no”
Test Acc. (%)  49.44 48.24 5374 49.22 5328

Table 3: EQA (test) accuracy using questions and priors.
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Figure 4: Overview of MT-EQA dataset including split statistics
and question type distribution.

bed in the living room bigger than the cup in the kitchen?” is
always Yes. Such questions are excluded from our dataset.
After the two filtering stages, the MT-EQA questions are
both balanced and feasible.

In addition, we check if MT-EQA is easily addressed by
question-only or prior-only baselines. For this, we evaluate
four question-based models: (a) an LSTM-based question-
to-answer model, (b) a nearest neighbor (NN) baseline that
finds the NN question from the training set and uses its
most frequent answer as the prediction, (c) a bag-of-words
(BoW) model that encodes a question followed by a learned
linear classifier to predict the answer and (d) a naive “no”
only answer model, since “no” is the most frequent answer
by a slight margin. Table. 3 shows the results. There ex-
ists very little bias on the “yes/no” distribution (53.28%),

and all question-based models make close to random pre-
dictions. In comparison, and as we empirically show in
Sec. 5, our results are far better than these baselines, in-
dicating the necessity to explore the environment in order
to answer the question. Besides, the results also address the
concern in [|] where language-only models (BoW and NN)
already form competitive baselines for EQA-vl. In MT-
EQA, these baselines perform close to chance as a result of
the balanced binary question-answer pairs in MT-EQA.

Overall, our MT-EQA dataset consists of 19,287 ques-
tions across 588 environments®, referring to a total of 61
unique object types in 8 unique room types. Fig. 4 shows
the question type distribution. Approximately 32 questions
are asked for each house on average, 209 at most and 1 at
fewest. There are relatively fewer object_size_compare and
room_size_compare questions as many frequently occurring
comparisons are too easy to guess without exploring the en-
vironment and thus fail the entropy filtering. We will release
the MT-EQA dataset and the generation pipeline.

4. Model

Our model is composed of 4 modules: the question-to-
program generator, the navigator, the controller, and the
VQA module. We describe these modules in detail.

4.1. Program Generator

The program generator takes the question as input and
generates sequential programs for execution. We define

4The 588 environments are subset of EQA-v1’s. Some environments
are discarded due to entropy filtering and unavailable paths.
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Figure 5: Model architecture: our model is composed of a program generator, a navigator, a controller, and a VQA module.

1) nav_object (phrase) 2) nav_room (phrase)
3) query (color / size / room.size)

4) equal_color ()

5) object_size_compare (bigger / smaller)
6) object_dist_compare (farther / closer)
7) room_size_compare (bigger / smaller)

Table 4: MT-EQA executable programs.

7 types of executable programs for the MT-EQA task in
Table. 4. For example, “Is the bathtub the same color as
the sink in the bathroom?” is decomposed into a series
of sequential sub-programs: nav_room (bathroom)
— nav.object (bathtub) — query.color()
— nav_object (sink) — query._color() —
equal_color (). Similar to CLEVR [18], the question
programs are automatically generated in a templated
manner (Table. 2), making sub-component decomposition
(converting questions back to programs) simple (Table. 4).
We use template-based rules by selecting and filling in the
arguments in Table. 4 to generate the programs (which
is always accurate). While a neural model could also be
applied, a learned program generator is not the focus of our
work.

4.2. Navigator

The navigator executes the nav_room() and
nav_object () programs. As shown in Fig. 6(a),
we use an LSTM as our core component. At each time
step, the LSTM takes as inputs the current egocentric (first-
person view) image, an encoding of the target phrase (e.g.
“bathtub” if the program is nav_object (bathtub)),
and the previous action, in order to predict the next action.

The navigator uses a CNN feature extractor that takes a
224x224 RGB image returned from the House3D renderer,
and transforms it into a visual feature, which is then fed into

action: “turn left” “Select”

vqa feature

LST™M ||

program

target: bathtub Prev. action

P

(b) Controller
Figure 6: Navigator and Controller.

(a) Navigator

the LSTM. Similar to [8], the CNN is pre-trained under a
multi-task framework consisting of three tasks: RGB-value
reconstruction, semantic segmentation, and depth estima-
tion. Thus, the extracted feature contains rich information
about the scene’s appearance, content, and geometry (ob-
jects, color, texture, shape, and depth). In addition to the
visual feature, the LSTM is presented with two additional
inputs. The first is the target embedding, where we use the
average embedding of GloVE vectors [25] over words de-
scribing the target. The second is previous action, which is
in the form of a look-up from an action embedding matrix.

We want to note the different perceptual skills required
for room and object navigation: Room navigation re-
lies on understanding the overall scene and finding cross-
room paths (entry/exit), while object navigation requires
localizing the target object within a room and finding a
path to reach it. To capture the difference, we imple-
ment two separate navigation modules, nav_room () and
nav_object () respectively. These two modules share
same architecture but are trained separately for different tar-
gets.

In MT-EQA, the action space for navigation consists of
3 action types: turning left (30 degrees), turning right (30
degrees), and moving forward. This is almost the same as



EQA-v1 [8], except we use larger turning angles — as our
navigation paths are much longer due to the multi-target set-
ting. We find that this change reduces the number of actions
required for navigation, leading to easier training.

4.3. Controller

The controller is the central module in our model, as it
connects all of the other modules by: 1) creating a plan from
the program generator, 2) collecting the necessary observa-
tions from the navigator, and 3) invoking the VQA module.

Fig. 6 (b) shows the controller, whose key component
is another LSTM. Consider the question “Does the bathtub
have same color as the sink in the bathroom?” with part
of its program as example — nav_room (bathroom) —
nav_object (bathtub). The controller starts by call-
ing the room navigator to look for “bathroom”. During nav-
igation, the controller keeps track of the first-person views,
looking for the target. Particularly, it extracts the features
via CNN which are then fused with the target embedding as
input to the LSTM. The controller predicts SELECT if the
target is found, stopping the current navigator, in our exam-
ple nav_room (bathroom), and starting execution of the
next program, nav_object (bathtub).

Finally, after the object target “bathtub” has been found,
the next program — query_color (), is executed. The
controller extracts attribute features from the first-person
view containing the target. In all, there are three attribute
types in MT-EQA - object’s color, object’s size, and room’s
size. Again, we treat object and room differently in our
model. For object-specific attributes, we use the hidden
state of the controller at the location where SELECT was
predicted. This state should contain semantic information
for the target, as it is where the controller is confident the
target is located. For room-specific attributes, the controller
collects a panorama by asking the navigator to rotate 360
degrees (by performing 12 turning-right actions) at the lo-
cation where SELECT is predicted. The CNN features from
this panorama view are concatenated as the representation.

During program execution by the controller, the ex-
tracted cues for all the targets are stored, and in the end they
are used by the VQA module to predict the final answer.

4.4. VQA Module
The final task requires comparative reasoning, e.g.,
object_size_compare (bigger), equal_color (), efc.

When the controller has gathered all of the targets for com-
parison, it invokes the VQA module. As shown in top-right
of Fig. 5, the VQA module embeds the stored features of
multiple targets into the question-attribute space, using a
FC layer followed by ReLU. The transformed features are
then concatenated and fed into another FC+ReLU which
is conditioned on the comparison operator (equal, bigger
than, smaller than, efc.). The output is a binary prediction
(yes/no) for that attribute comparison. We call it composi-

tional VQA (cVQA). The cVQA module in Fig. 5 depicts a
two-input comparison as an example, but our cVQA module
also extends to three inputs, for questions like “Is the refrig-
erator closer to the coffee machine than the microwave?”.

4.5. Training

Training follows a two-stage approach: First, the full
model is trained using Imitation Learning (IL); Second, the
navigator is further fine-tuned with Reinforcement Learning
(RL) using policy gradients.

First, we jointly train our full model using imitation
learning. For imitation learning, we treat the shortest paths
and the key positions containing the targets as our ground-
truth labels for navigation and for the controller’s SELECT
classifier, respectively. The objective function consists of a
navigation objective and a controller objective at every time
step ¢, and a VQA objective at the final step. For the i-th
question, let P’y be action a’s probability at time ¢, Piffl
be the controller’s SELECT probability at time ¢, and P, "
be the answer probability from VQA, then we minimize the
combined loss:

L = Lypgy + oLetri + BLyga
= = 3>yt log Pl
7 t a

Cross-entropy on navigator action

—a ) > (Y, log Pt + (1 —y5,) log(1 — P51
[ t

Binary cross-entropy on controller’s SELECT

—B Z(yf log P + (1 — y;') log(1 — P)).
i

Binary cross-entropy on VQA’s answer

Subsequently, we use RL to fine-tune the room and ob-
ject navigators.

We provide two types of reward signals to the navigators.
The first is a dense reward, corresponding to the agent’s
progress toward the goal (positive if moving closer to the
target and negative if moving away). This reward is mea-
sured by the distance change in the 2D bird-view distance
space, clipped to lie within [—1.0,1.0]. The second is a
sparse reward that quantifies whether the agent is looking at
the target object when the episode is terminated. For object
targets, we compute IOUr between the target’s mask and
the centered rectangle mask at termination. We use the best
IOU score of the target IOUy,,; as reference and compute
the ratio I(I)%[bjit . If the ratio is greater than 0.5, we set the
reward to 1.0 otherwise -1.0. For room targets, we assign
reward 0.2 to the agent if it is inside the target room at ter-
mination, otherwise -0.2.
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dr da hr  IOU}  %stopo  %rr  %stopr  eplen  %easy  Yomedium  Phard  Yooverall
1 Nav+cVQA 541 -0.64  0.19 0.15 36 34 60 153.13 58.42 53.29 51.46 53.24
2 Nav(RL)+cVQA 3.80 0.10 0.33 0.30 46 40 62 144.80 67.57 55.91 53.28 57.40
3 Nav+Ctrl+cVQA 525 -0.56  0.20 0.18 36 37 70 145.20 59.73 53.48 49.04 54.44
4 Nav(RL)+Ctrl+cVQA  3.60 0.16 0.33 0.29 48 43 72 127.71 72.22 59.97 54.92 61.45
Table 5: Quantitative evaluation of object/room navigation and EQA accuracy for different approaches.
object_color_.compare  object_size_compare  object_dist. compare room_size_compare %
Ooverall
inroom Xroom inroom Xroom inroom Xroom
1 Nav+cVQA 64.15 52.47 57.85 55.68 49.38 48.37 53.24
2 Nav(RL)+cVQA 71.24 53.92 74.38 60.81 51.23 46.66 57.40
3 Nav+Ctrl+¢cVQA 66.41 52.65 57.85 53.48 49.38 48.37 54.44
4 Nav(RL)+Ctrl+cVQA 72.68 58.19 76.86 63.37 54.94 55.57 61.45
Table 6: EQA accuracy on each question type for different approaches.
object_color_compare  object_size_.compare  object_dist. compare  room_size_compare o i
overa
inroom Xroom inroom Xroom inroom Xroom
1 [BestView] + attn-VQA (cnn) 71.16 59.56 65.29 65.93 58.64 49.74 60.50
2 [BestView] + cVQA (cnn) 82.92 72.70 80.99 83.88 69.75 64.32 74.14
3 [ShortestPath+BestView] + Ctrl + cVQA 90.70 85.49 82.64 88.64 68.52 71.87 82.88
4 [ShortestPath] + seq-VQA 53.32 54.44 51.24 50.55 47.53 49.74 52.36
5  [ShortestPath] + Ctrl + cVQA 76.09 69.11 75.21 79.49 64.20 61.23 69.77

Table 7: EQA accuracy of different approaches on each question type in oracle setting (given shortest path or best-view images).

5. Experiments

In this section we describe our experimental results.
Since MT-EQA is a complex task and our model is mod-
ular, we will show both the final results (QA accuracy) and
the intermediate performance (for navigation). Specifically,
we first describe our evaluation setup and metrics for MT-
EQA. Then, we report the comparison of our model against
several strong baselines. And finally, we analyze variants of
our model and provide ablation results.

5.1. Evaluation Setup and Metrics

Spawn Location. MT-EQA questions involve multiple tar-
gets (rooms/objects) to be found. To prevent the agent from
learning biases due to spawn location, we randomly select
one of the mentioned targets as reference and spawn our
agent 10 actions (typically 1.9 meters) away.

EQA Accuracy. We compute overall accuracy as well as
accuracy for each of the 6 types of questions in our dataset.
In addition, we also categorize question difficulty level into
easy, medium, and hard by binning the ground-truth action
length. Easy questions are those with fewer than 25 action
steps along the shortest path, medium are those with 25-
70 actions, and hard are those with more than 70 actions.
We report accuracy for each difficulty, %easy, Pomedium
Dohard, as well as overall, Woperais, in Table 5

Navigation Accuracy. We also measure the navigation ac-
curacy for both objects and rooms in MT-EQA. As each
question involves several targets, the order of them being
navigated matters. We consider the ‘ground truth’ ordering
of targets for navigation as the order in which they are men-

tioned in the question, e.g., given “Does the bathtub have
same color as the sink?”, the agent is trained and evaluated
for visiting the “bathtub” first and then the “sink”.

For each mentioned target object, we evaluate the agent’s
navigation performance by computing the distance to the
target object at navigation termination, dr, and change in
distance to the target from initial spawned position to ter-
minal position, da. We also compute the stop ratio %stop,
as in EQA-v1 [8]. Additionally, we propose two new met-
rics based on the IOU of the target object at its termina-
tion. When the navigation is done, we compute the IOU
of the target w.r.t a centered rectangular box (see Fig. 3

as example). The first metric is mean IOU ratio IOU7, =
Ly, Ié%[jiffé ;) where 10Uy (0;) is the highest 10U
score for object o;. The second is hit accuracy hr — we
compute the percentage of the ratio I0U7(0;)/I0OUpest(0;)
greater than 0.5, ie., by = %>, H% > 0.5]].
Both metrics measure to what extent the agent is looking
at the target at termination.

For each mentioned target room, we evaluate the agent’s
navigation by recording the percentage of agents terminat-
ing inside the target room % and the stop ratio %stop,..

For all the above metrics except for d, larger is better.
Additionally, we report the overall number of action steps

(episode length) executed for each question, i.e., ep_len.
5.2. EQA Results

Nav+Ctrl+cVQA is our full model, which is com-
posed of a program generator, a navigator, a controller
and a comparative VQA module. Another variant of our



model, the REINFORCE fine-tuned model is denoted as
Nav(RL)+Ctrl+cVQA. We also train a simplified version
of our full model, Nav+cVQA. which does not use a con-
troller. For this model, we let the navigator predict termi-
nation whenever a target is detected, then feed its hidden
states to the VQA model. The training details are similar to
our full model for both IL. and RL. We show comparisons
of both navigation and EQA accuracy in Table. 5.

RL helps both navigation and EQA accuracies. Both ob-
ject and room navigation performance are improved after
RL finetuning. We notice without finetuning da for both
models (Row 1 &3 ) are negative, which means the agent
has moved farther away from the target during navigation.
After RL finetuning, da jumps from —0.56 to 0.16 (Row
3 & 4). The hit accuracy also improves from 20% to 33%,
indicating that the RL-finetuned agent is more likely to find
the target mentioned in the question. Episode lengths from
the stronger navigators are shorter, indicating that better
navigators find their target more quickly. And, higher EQA
accuracy is also achieved with the help of RL finetuning
(from 54.44% to 61.45%). After breaking down the EQA
into different types, we observe the same trend in Table. 6 —
our full model with RL far outperforms the others.
Controller is important. Comparing our full model (Row
4) to the one without a controller (Row 2), we notice that
the former outperforms the latter across almost all the met-
rics. One possible reason is that the VQA task and navi-
gation task are quite different, such that the features (hid-
den state) from the navigator cannot help improve the VQA
module. On the contrary, our controller decouples the two
tasks, letting the navigator and VQA module focus on their
own roles.

Questions with shorter ground-truth path are easier. We
observe that our agent is far better at dealing with easy ques-
tions than hard ones (72.22% over 54.92% in Table. 5 Row
4). One reason is that the targets mentioned in the easy
questions, e.g., sink and toilet in “Does the sink have same
color as the toilet in the bathroom?”, are typically closer to
each other, thus are relatively easier to be explored, whereas
questions like “Is the kitchen bigger than the garage?” re-
quires a very long trajectory and the risk of missing one
(kitchen or garage) is increased. The same observation is
found in Table. 6, where we get higher accuracy for “in-
room” questions than “cross-room” ones.

5.3. Oracle Comparisons

To better understand each module of our model, we run
ablation studies. Table. 7 shows EQA accuracy of different
approaches given the shortest paths or best-view frames.
Our VQA module helps. We first compare the per-
formance of our VQA module against an attention-based
VQA. Given the best view of each target, we can directly
feed the features from those images to the VQA module,
using the CNN features instead of hidden states from con-

troller side. The attention-based VQA architecture is sim-
ilar to [8], which uses an LSTM to encode questions and
then uses its representation to pool image features with at-
tention. Comparing the two methods in Table. 7, Row 1 &
2, our VQA module achieves 13.64% higher accuracy. The
benefit mainly comes from the decomposition of attribute
representation and comparison in our VQA module.
Controller’s features help. We compare the controller’s
features to raw CNN features for VQA. When given both
shortest path and best-view position, we run our full model
with these annotations and feed the hidden states from the
controller’s LSTM to our VQA model. As shown in Ta-
ble. 7, Row 2 & 3, the controller’s features are far better
than raw CNN features, especially for object_color_compare
and object_size_.compare question types.

Controller’s SELECT matters. Our controller predicts
SELECT and extracts the features at that moment. One pos-
sible question is how important is this moment selection. To
demonstrate its advantage, we trained another VQA module
which uses a LSTM to encode the whole sequence of frames
along the shortest path and uses its final hidden state to pre-
dict the answer, denoted as seq-VQA. The hypothesis is that
the final hidden state might be able to encode all relevant
information, as the LSTM has gone through the whole se-
quence of frames. Table. 7, Row 4, shows its results, which
is nearly random. On the contrary, when controller is used
to SELECT frames in Row 5, the results are far better. How-
ever, there is still much space for improvement. Comparing
Table. 7, Row 3 & 5, the overall accuracy drops 13% when
using features from the predicted SELECT instead of oracle
moments, and 20% when using additional navigators (com-
paring Table. 7, Row 3, & Table. 6, Row 4), indicating the
necessity of both accurate SELECT and navigation.

6. Conclusion

We proposed MT-EQA, extending the original EQA
questions from a limited single-target setting to a more chal-
lenging multi-target setting, which requires the agent to
perform comparative reasoning before answering questions.
We collected a MT-EQA dataset as a test benchmark for the
task, and validated its usefulness with simple baselines from
just text or prior. We also proposed a new EQA model con-
sisting of four modular components: a program generator, a
navigator, a controller, and VQA module for MT-EQA. We
experimentally demonstrated that our model significantly
outperforms baselines on both question answering and nav-
igation, and conducted detailed ablative analysis for each
component in both the embodied and oracle settings.
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