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Abstract
A framework for data assimilation in climate dy-
namics is presented, combining aspects of quan-
tum mechanics, Koopman operator theory, and
kernel methods for machine learning. This ap-
proach adapts the formalism of quantum dynam-
ics and measurement to perform data assimilation
(filtering), using the Koopman operator governing
the evolution of observables as an analog of the
Heisenberg operator in quantum mechanics, and
a quantum mechanical density operator to repre-
sent the data assimilation state. The framework
is implemented in a fully empirical, data-driven
manner by representing the evolution and mea-
surement operators via matrices in a basis learned
from time-ordered observations. Applications to
data assimilation of the Niño 3.4 index for the El
Niño Southern Oscillation (ENSO) in a compre-
hensive climate model show promising results.

1. Introduction
Data assimilation is a framework for state estimation and
prediction for partially observed dynamical systems (Majda
& Harlim, 2012; Law et al., 2015). Adopting a predictor-
corrector approach, it employs a forward model to evolve
the probability distribution for the system state until a new
observation is acquired, at which time that probability dis-
tribution is updated in an analysis step to a posterior dis-
tribution correcting for model error and/or uncertainty in
the prior distribution. Since the seminal work of Kalman
(1960) on filtering (which utilizes Bayes’ theorem for the
analysis step, under the assumption that all distributions are
Gaussian), data assimilation has evolved to an indispensable
tool in modeling and forecasting of the climate system.
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Major challenges in data assimilation of the climate system
are caused by the extremely large number of active degrees
of freedom in the dynamics, evolving under nonlinear, and
oftentimes partially known, equations of motion. These
issues affect both the forward models (which invariably
employ approximations such as subgrid-scale parameteriza-
tion) and analysis procedures (where direct application of
Bayes’ theorem is generally not feasible). The past decades
have seen vigorous research, leading to the creation of a
vast array of operational data assimilation techniques for the
weather and climate aiming to address these issues, includ-
ing variational (Bannister, 2016), ensemble (Karspeck et al.,
2018), and particle (van Leuuwen et al., 2019) methods.

In this work, we present a new method for data assimilation
of climate dynamics combining aspects of quantum mechan-
ics, operator-theoretic ergodic theory (Eisner et al., 2015),
and kernel methods for machine learning. This approach re-
sults in a fully data-driven scheme, formulated entirely, and
without approximation of the underlying dynamics, through
linear evolution operators on spaces of observables. We
demonstrate the utility of the method in a data assimilation
experiment targeting the Niño 3.4 index for the El Niño
Southern Oscillation (ENSO) in the Community Climate
System Model Version 4 (CCSM4) (Gent et al., 2011).

2. Quantum mechanical data assimilation
The quantum mechanical data assimilation (QMDA) scheme
employed in this work (Giannakis, 2019) is based on the ob-
servation that the predictor-corrector structure of data assim-
ilation resembles the dynamics and measurement formalism
of quantum mechanics, whereby the system state evolves
under unitary dynamics between measurements (analogous
to the forward modeling step in data assimilation) and under
projective dynamics during measurements (the so-called
“wavefunction collapse”, analogous to the analysis step in
data assimilation). Since quantum mechanics is inherently
a statistical theory, formulated entirely through linear op-
erators, it is natural to explore whether its formalism can
be adapted to the context of data assimilation of classical
dynamical systems. Importantly, such a scheme would be
amenable to rigorous analysis and approximation through
well-developed techniques in linear operator theory, har-
monic analysis, and related fields.
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In order to construct a concrete data assimilation scheme
from the abstract quantum mechanical axioms, we employ
ideas from Koopman operator theory (Eisner et al., 2015).
This framework characterizes a given measure-preserving
dynamical system through intrinsically linear operators on a
Hilbert space, called Koopman operators (Koopman, 1931;
Kooopman & von Neumann, 1931), governing the evolution
of observables (functions of the state) under the dynam-
ics. Mathematically, such Koopman operators have closely
related properties to the Heisenberg evolution operators in
quantum mechanics. Here, our starting point is a continuous,
measure-preserving, dynamical flow Φt : M → M , t ∈ R,
on a metric space M , with an ergodic, invariant, compactly
supported Borel probability measure µ. In this setting, M
plays the role of the state space of the climate system (as-
sumed inaccessible to direct observation), and µ the role
of a climatological (equilibrium) distribution. The time-t
Koopman operator associated with this system is the unitary
operator U t : L2(µ) → L2(µ) on the L2 Hilbert space
associated with the invariant measure, acting on vectors by
composition with the dynamical flow, viz. U tf = f◦Φt. We
consider that the system is observed through a real-valued,
bounded measurement function h ∈ L∞(µ).

With these definitions, we consider that the system evolves
on some unknown dynamical trajectory t ↦→ Φt(x0), start-
ing from an arbitrary point a0 ∈ M . The task of data
assimilation is then to infer a probability distribution for
the value of h at time t > 0, given the sequence of values
h0, h1, . . . , hJ−1 ∈ R, with hn = h(an), an = Φn∆t(a0),
taken at times tn = n∆t. Here, ∆t > 0 is a fixed sam-
pling interval. Following quantum mechanical ideas, we
represent our knowledge about the system state by a time-
dependent density operator ρt : L2(µ) → L2(µ), which
can be loosely thought as a quantum mechanical analog of
a probability measure in classical probability theory, and
employ the quantum mechanical axioms in conjunction with
the Koopman operator to evolve ρt in time. Moreover, we
represent the assimilated observable h by a self-adjoint op-
erator Th on L2(µ), such that Thf = hf . This operator has
an associated spectral measure Eh, which can be thought of
as an operator-theoretic generalization of spectral measures
encountered in signal processing and time series analysis.

Between measurements, i.e., for tn ≤ t < tn+1, the state
evolves under the action of the unitary Koopman operators
U t induced by the dynamical flow. In particular, the state
reached at time t ∈ [tn, tn+1) starting from a state ρtn at
time tn is given by ρt = Uτ∗ρtU

τ , where τ = t − tn. At
every such time, a probability measure Pt is derived from
ρt and Eh, such that Pt(Ω) corresponds to the probability
that h lies in a Borel set Ω ⊆ R (e.g., an interval). This
probability is analogous to the prior distribution in Bayesian
data assimilation. Then, when a measurement of h is made
at time tn+1, the state immediately prior to tn+1, denoted

tn tn+1

prediction

correctionρtn

ρ−tn+1

noisy observation

ρtn+1

true signal h(t)

Figure 1. Schematic representation of a QMDA cycle.

ρ−tn+1
, is updated via a projective step (analogous to the

Bayesian posterior update) to a state ρtn+1
, in a manner that

depends on Eh and the measured value of h. The QMDA
cycle just described is then repeated. Figure 1 displays a
schematic of the procedure. A full description, transcrib-
ing the Dirac-von Neumann axioms of quantum mechanics
(Takhtajan, 2008), can be found in Giannakis (2019).

3. Data-driven formulation
In a data-driven modeling scenario, we consider that avail-
able to us as training data is a time series yn = F (xn) of the
values of a continuous observation map F : M → Rd, sam-
pled on a dynamical trajectory xn = Φn∆t(x0), x0 ∈ M ,
with 0 ≤ n ≤ N − 1. For instance, in the ENSO appli-
cation in Section 4 below, the yn will be snapshots of sea
surface temperature (SST) sampled at d gridpoints on an
Indo-Pacific domain. We also assume that the corresponding
values hn = h(xn) of the assimilated observable (in Sec-
tion 4, the Niño 3.4 index) are available. With these inputs,
the data-driven formulation of QMDA scheme described in
Section 2 proceeds as follows.

First, following state-space reconstruction approaches
(Sauer et al., 1991), we embed the snapshots yn into
a higher-dimensional space using the method of de-
lays. Specifically, for a parameter Q ∈ N, we con-
struct the map FQ : M → RQd, where FQ(x) =(︁
F (x), F (Φ∆t(x)), . . . , F (Φ(Q−1)∆t(x))

)︁
. Note that the

values of FQ can be empirically evaluated using the time-
ordered training snapshots with out explicit knowledge
of the underlying dynamical states on M , viz. zn :=
FQ(xn) = (yn, yn+1, . . . , yn−Q+1). This procedure is rig-
orously known to recover information lost about the under-
lying dynamical state if F is non-injective (which is the case
in real-world applications). Therefore, all kernel calcula-
tions below will be performed on this extended data space
(Giannakis & Majda, 2012; Berry et al., 2013).

Next, let µN =
∑︁N−1

n=0 δxn
/N be the sampling measure on

the training trajectory. Following Berry et al. (2015), we
approximate the Koopman operator Uq∆t, q ∈ Z, by the
q-step shift operator U

(q)
N on the N -dimensional Hilbert
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space L2(µN ) associated with µN . The shift operator
is represented by an L × L matrix U = [Uij ], Uij =

⟨ϕi, U
(q)
N ϕj⟩µN

=
∑︁N−q−1

n=0 ϕi(xn)ϕj(xn+q)/N , where
the ϕi are orthonormal basis functions of L2(µN ) learned
from the data zn using kernel algorithms (Belkin & Niyogi,
2003; Coifman & Lafon, 2006; Berry & Harlim, 2016; Coif-
man & Hirn, 2013). Specifically, the ϕi are obtained as the
leading eigenfunctions of a kernel integral operator K on
L2(µN ), such that Kf(xm) =

∑︁N−1
n=0 k(zm, zn)f(xn)/N .

Here, k : RQd × RQd → R+ is a continuous, symmetric
positive-definite, Markov-normalized kernel function with
exponential decay. Similarly, we approximate the density
operator ρt and spectral projectors Eh(Ω) by finite-rank
operators on L2(µN ), represented by L× L matrices in the
{ϕi} basis; see Giannakis (2019) for further details.

4. Filtering the Niño 3.4 index in CCSM4
We now apply the framework described in Sections 2 and 3
to perform data assimilation of the Niño 3.4 index in a 1300
yr control integration of CCSM4. Our experimental setup
follows closely Slawinska & Giannakis (2017) and Gian-
nakis & Slawinska (2018). As training data, we employ the
first 1200 yr of monthly averaged SST fields on an Indo-
Pacific domain, sampled at d ≈ 3× 104 spatial points. We
use time series of the Niño 3.4 index over the remaining 100
yr as the true signal h(t) := h(Φt(a0)) for data assimilation,
where h : M → R is the function returning the Niño 3.4 in-
dices (in units of Kelvin) corresponding to the climate states
in M . That signal is observed every 8 months in the data
assimilation phase. Note that far more frequent observations
would typically be available in an operational environment;
here we work with a long observation interval to illustrate
the skill of QMDA in predicting ENSO. We build the kernel
k using Q = 96 delays (i.e., a physical embedding window
of 8 yr), and use L = 300 corresponding eigenfunctions
for operator approximation. We compute the measurement
probabilities for Pt(Ωi) for S = 11 equal-mass bins Ωi in a
histogram of h constructed from the training data.

Figure 2 shows the evolution of Pt(Ωi) obtained via this
approach over the first 30 yr of the data assimilation period,
in comparison to the true signal h(t). In these experiments,
we start from a purely uninformative density operator ρ0, in
the sense that the corresponding measurement probabilities
P0(Ωi) are all equal to 1/S. As soon as the first measure-
ment is made at t1 = 8 months, the forecast distribution
collapses to a significantly more informative (peaked) dis-
tribution at t = 1 month. This distribution initially fails
to track the true signal, but progressively improves over
time as additional measurements are made. This is a man-
ifestation of the fact that QMDA successfully assimilates
the full history of measurements hn to refine predictions of
future ENSO states. Indeed, during the second half of the

Figure 2. QMDA applied to the Niño 3.4 index in CCSM4. Con-
tours indicate the logarithm of the time dependent measurement
probabilities Pt(Ωi) for the Niño 3.4 index to take values in bins
Ωi of equal probability mass 1/S = 1/11 with respect to the
invariant measure. The green line and red asterisks indicate the
true signal h(t) and observations hn = h(tn), respectively.

time interval depicted in Figure 2, Pt(Ωi) tracks h(t) with
markedly higher precision and accuracy than during the first
15 years.

It should be noted that this skill is achieved without QMDA
being given any prior knowledge of the operating dynamics
in the form of first-principles equations of motion or a statis-
tical forecast model. Moreover, unlike many classical data
assimilation techniques, which only evolve the mean and
covariance, QMDA dynamically evolves full probability dis-
tributions, which can be post-processed to derive the desired
output by the forecaster (e.g., moments or quantiles). An-
other advantageous aspect of the approach is that following
the kernel eigenfunction calculation in the training phase,
the cost of operator representation (governed by matrix–
matrix products of L× L matrices) is decoupled from the
ambient data space dimension (d) and number of training
samples (N ), allowing for efficient, real-time filtering.

In conclusion, in this work we have demonstrated the po-
tential of a new data assimilation framework for climate
dynamics combining aspects of quantum mechanics, Koop-
man operator theory, and machine learning. Advantages of
this framework include its fully nonparametric, “model-free”
nature, and the fact that it is built entirely using finite-rank
approximations of linear operators on Hilbert space, exhibit-
ing rigorous convergence guarantees in the large data limit
without relying on ad hoc approximations of the underlying
dynamics and/or observation map. In addition, the frame-
work naturally provides probabilistic output (as opposed
to point forecasts), which is useful for uncertainty quantifi-
cation, as well as risk assessment and decision making in
operational scenarios. Besides ENSO, we expect QMDA to
be useful in filtering a broad range of climate phenomena
(Slawinska et al., 2017; Wang et al., 2019).
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van Leuuwen, P. J., Künsch, H. R., Nerger, L., Potthast, R.,
and Reich, S. Particle filters for high-dimensional geo-
science applications: A review. Quart. J. Roy. Meteorol.
Soc., 2019. doi: 10.1002/qj.3551.

Wang, X., Giannakis, D., and Slawinska, J. The Antarctic
circumpolar wave and its seasonality: Intrinsic travelling
modes and El Niño-Southern Oscillation teleconnections.
Int. J. Climatol., 39(2):1026–1040, 2019. doi: 10.1002/
joc.5860.

https://arxiv.org/1903.00612
https://arxiv.org/abs/1711.02526
https://arxiv.org/abs/1711.02526

