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Abstract

Language usage can change across periods of
time, but document classifiers models are usu-
ally trained and tested on corpora spanning
multiple years without considering temporal
variations. This paper describes two com-
plementary ways to adapt classifiers to shifts
across time. First, we show that diachronic
word embeddings, which were originally de-
veloped to study language change, can also
improve document classification, and we show
a simple method for constructing this type of
embedding. Second, we propose a time-driven
neural classification model inspired by meth-
ods for domain adaptation. Experiments on
six corpora show how these methods can make
classifiers more robust over time.

1 Introduction

Language changes and varies over time, which can
cause a degradation of performance in natural lan-
guage processing models over time. For exam-
ple, document classifiers are typically trained on
historical data and tested on future data, where
the performance tends to be worse. Recent re-
search has shown that document classifiers can
become more stable over time when trained in
ways that specifically account for temporal varia-
tions (Huang and Paul, 2018; He et al., 2018). We
refer to this task of accounting for such variations
during training as temporality adaptation.

This paper investigates temporality adaptation
in two ways. First, we explore how diachronic
word embeddings, which encode time-varying
representations of words, can be used in this set-
ting. Recent research has used diachronic word
embeddings to study how language changes over
time (Kulkarni et al., 2015; Hamilton et al., 2016;
Kutuzov et al., 2018). These studies have shown
that shifts in the corpora across time cause changes

in word contexts and consequently, changes in the
learned representations.

In our study, we further examine these shifts
as they relate to important features for document
classification. While other research has applied
diachronic word embeddings to semantic change
detection and validation (Mihalcea and Nastase,
2012; Kim et al., 2014; Kulkarni et al., 2015;
Hamilton et al., 2016; Dubossarsky et al., 2017;
Yao et al., 2018; Rudolph and Blei, 2018; Rosen-
feld and Erk, 2018) and semantic relation anal-
ysis (Liao and Cheng, 2016; Szymanski, 2017;
Rosin et al., 2017), these types of embeddings
have not been studied particularly for the docu-
ment classification task. We show that neural clas-
sifiers which use these embeddings can perform
better on future data. As part of this work, we
propose a new method for constructing diachronic
words embeddings, which we show to be compet-
itive with prior approaches.

Second, we propose a neural classification
model that adapts to changes in time using ideas
from domain adaptation. We previously showed
that out-of-the-box domain adaptation techniques
can make n-gram classifiers more robust to tem-
poral shifts (Huang and Paul, 2018). We expand
this line of work by additionally considering neu-
ral adaptation models, which can also take advan-
tage of diachronic word embeddings.

The next section describes our data. We exper-
iment with six English and Chinese datasets from
both social media and newspaper sources, span-
ning varying lengths in time (from several decades
to only a few years). We split each dataset into
a small set of time intervals, and we define each
time interval as a domain. Before presenting our
methods for building diachronic word embeddings
(Section 3) and our neural model (Section 4), we
present empirical analyses of how word usage and
word contexts vary over time in our data, to mo-
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tivate the methods (Section 2). Our main experi-
ments are presented in Section 5, where we exper-
iment with both neural and non-neural classifiers.

2 Time-Varying Corpora

The way people use words to express opinions
has been constantly changing over time (Mihalcea
and Nastase, 2012; Kulkarni et al., 2015; Hamil-
ton et al., 2016). In this section, we introduce our
corpora for this paper and conduct initial analyses
on how word usage shifts over time in news ar-
ticles and social media data in both English and
Chinese with respect to the task of classification.
We explore the language usage issue from two per-
spectives: word usage and context shift.

2.1 Data

We retrieved available data sources from previous
publications (Zhang et al., 2014; He and McAuley,
2016; Huang and Paul, 2018). Specifically, we
use four different sources in in English—Amazon
(music reviews), Yelp (restaurant and hotel re-
views), Twitter, and economic newspaper arti-
cles (Figure Eight Inc., 2015)— and one source
in Chinese, Dianping (Meituan-Dianping, 2019).

The Twitter data is annotated with binary labels
indicating whether the user received a flu vaccine.
The Economy data is annotated with binary labels
indicating if each article relates to the US econ-
omy. For the review data (Amazon, Dianping and
Yelp), we encode review scores into three discrete
categories: score >3 as positive, =3 as neutral,
and <3 as negative.

Following Huang and Paul (2018), we group
the corpora into several bins of temporal intervals;
specifically, non-repeating time intervals spanning
one or more years (Table 1). We encode each
temporal domain into the discrete time labels,
1,2,...T. One corpus then can be represented as
C = [C4,Cs,...C7], where each Cy for t € T is
one temporal slice of the document collection.

2.2 Analysis 1: Word Usage Shift

Document classification models often use fea-
ture representations that are derived from words.
Therefore, variations in word usage across time
will change the distribution of features over time,
which can impact the stability of document clas-
sifiers (Huang and Paul, 2018). Our goal in this
section is to test whether there are temporal vari-
ations in our datasets, how strong the effects are,

Dataset Time intervals

Amazon 1997-99, 2000-02, 2003-05
2006-08, 2009-11, 2012-14
Dianping 2009, 2010, 2011, 2012
Economy 1950-70, 1971-85,
1986-2000, 2001-14
Twitter 2013, 2014, 2015, 2016
Yelp-hotel 2005-08, 2009-11,
2012-14, 2015-17
Yelp-rest 2005-08, 2009-11,
2012-14, 2015-17

Table 1: Corpora spanning multiple time intervals.
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Figure 1: Word usage overlaps between every two time
domains. A value of 1 means no variations of top fea-
tures between two temporal domains, while values less
than 1 indicate more temporal variations.

and what patterns exist of word usage shifts. This
will help us understand how word usage variations
can affect document classifiers.

We consider the word usage as it relates to doc-
ument classification by measuring the overlap of
top word features across time intervals. We rank
and select the top 1,000 features for each interval
by mutual information. We then calculate the in-
tersection percentage between every two domains;
specifically, if Sy is the set of top features for one
temporal domain and S is the set of top features
for another attribute, the percent overlap is calcu-
lated as |.Sp N S1|/1000.

We present the overlaps of word usages across
time in Figure 1. The overlap of word usage
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Figure 2: Context overlaps between every two tempo-
ral domains. A value of O indicates the contexts of top
features between two temporal domains have nothing
in common, while values away from 0 mean the con-
texts share more similarities.

between temporal domains varies greatly across
different corpora (ranging from 0.322 to 0.911).
We observe that closer temporal domains usually
have higher overlap while further temporal do-
mains share less overlap. These results thus sug-
gest that the word usage varies over time across
many settings.

2.3 Analysis 2: Context Shift

Popular word representations for classification
train word embeddings using the context of
each word (a window around the word, e.g.,
in skip-gram or continuous bag of words meth-
ods) (Mikolov et al., 2013; Bojanowski et al.,
2016). Therefore, we seek to understand how se-
mantic contexts of words shift across time, in ad-
dition to the words themselves. If we observe a
significant context shift, this could lead to incon-
sistent semantic representations across time.

In the case of context shift, we extract the same
unigram features as in the previous section and
define word contexts by simulating the word em-
bedding training process via contextual windows.
We set a window size of five words and record the
words that occur within the context windows. Fol-
lowing the previous section but using the set of
words that appear in the context windows, we then
calculate the intersection overlap between each

pair of time domains.

We show the overlap in the Figure 2. The
overlap percentages range from 0.070 to 0.378.
We also observe that temporally closer domains
share higher percentages of contextual words. The
pattern aligns with our observations in the Sec-
tion 2.2. Since word embeddings rely heavily
on contextual information (Mikolov et al., 2013),
our observations that contexts have little overlap
across different time intervals therefore suggest
it will be important to account for temporality in
word embeddings.

3 Diachronic Word Embeddings

Standard word embeddings ignore temporal lan-
guage variations in the data. Diachronic word em-
beddings (Kulkarni et al., 2015) encode temporal-
ity into word embeddings to obtain dynamic rep-
resentations of words. These types of embeddings
have been effective in capturing and learning the
language usage and semantic shift over time (Kim
et al., 2014; Kulkarni et al., 2015; Hamilton et al.,
2016; Bamler and Mandt, 2017; Szymanski, 2017;
Rudolph and Blei, 2018; Rosenfeld and Erk, 2018;
Yao et al., 2018).

To the best of our knowledge, diachronic word
embeddings have not been studied in the context
of document classification. Since our preliminary
analyses in the previous section showed that the
top features for document classification vary over
time, and the contexts used to train those word em-
beddings also vary over time, it would make sense
to use word representations that can vary over
time. In this section, we present a new, simple-
to-implement method for constructing diachronic
embeddings, and then further analyze temporal
shifts in corpora using these embeddings.

3.1 Concatenative Training Approach

Methods to obtain diachronic word embeddings
fall into three main directions: incremental train-
ing (Kim et al., 2014), alignment transformation
(Kulkarni et al., 2015; Hamilton et al., 2016;
Yao et al., 2018) and continuous time representa-
tions (Rosenfeld and Erk, 2018; Rudolph and Blei,
2018).

In this work, we propose an alternative ap-
proach to encoding time into word embeddings.
The idea is inspired by the “easy” domain adapta-
tion method (Daume III, 2007), which was shown
to be successful at modeling different temporal do-
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mains (Huang and Paul, 2018), and can be imple-
mented by simply modifying the input data with-
out modifying the training process. In our ap-
proach, words in the training data are concatenated
with the name of the time interval, and embed-
dings are trained using a sub-word sharing frame-
work (Bojanowski et al., 2016). The concatena-
tion step allows for the learning of word represen-
tations that are specific to each time interval, while
the sub-word framework allows for the learning of
general, time-independent representations of each
word.

Concretely, we first build domain-specific cor-
pora by adding each document’s domain label as a
suffix to each word, as shown in Figure 3. In addi-
tion to the domain-specific corpora, we retain the
original corpus as a domain-independent version.
We then train fastText (Bojanowski et al., 2016), a
sub-word embedding model, on all of the corpora,
We use 3- to 6-grams characters in this study, to
provide diverse perspectives to encode time and
word representations. This approach learns di-
achronic word representations by encoding tem-
porality as part of sub-words into the word em-
bedding.

Text: No sickness for

me I got flu shot Time domain label: 1

="

Nol sickness1 forl mel 11 gotl flul shotl

Figure 3: The illustration of building domain corpora.
We append the document domain label as a suffix to
each word in the document.

FastText learns word embeddings from charac-
ter n-grams, intended to capture morphological
information. As an example example, the word
“wherel” from time domain 1 using character 3-
grams would be encoded in fastText as the follow-
ing seven parts:

< wh,whe, her,ere,rel,el >, < wherel >

In this way, words with time domain labels can
incorporate temporal identities, while the same
words with different domain labels will still share
close representations because of similar morpho-
logical forms. In this way, we encode temporal
identity into word representations while still main-
taining the connections of the same words across
different time domains.

In contrast to prior approaches on diachronic
embeddings, this concatenative sub-word ap-
proach does not explicitly model the ordering of
time information, and it cannot encode, for ex-
ample, that domains that are close in time should
have more similarities than domains that are far-
ther away in time. Despite this limitation, we find
experimentally that this approach works competi-
tively, while being simpler to implement and faster
to train.

3.2 Analysis 3: Semantic Distribution Shift

Using this approach to constructing diachronic
word embeddings, we now consider how these
embeddings can be used to further analyze lan-
guage shift.

The Law of Conformity states a negative cor-
relation between word frequency and meaning
change (Hamilton et al., 2016); however, Du-
bossarsky et al. (2017) show that the word fre-
quency does play an important role in the se-
mantic change, even though a small one. Di-
achronic embeddings have been used to measure
the semantic shift using linear interpolation (re-
gression) (Hamilton et al., 2016). Here, we re-
examine this issue from another view, the distance
of semantic distributions, which views the word
embeddings as semantic distributions and mea-
sures how the word embeddings vary across time.

As in Section 2.3, we choose the top 1,000 im-
portant words ranked by mutual information, as
well as a control group of the 1,000 most frequent
words in each corpus. We find that overlap be-
tween the 1,000 most important and most frequent
words are 0% across every dataset. This suggests
that the most frequent words are not predictive
for classification. We use our proposed method
to train 200-dimensional diachronic word embed-
dings and extract diachronic word representations
for both important and most frequent words, and
leave Os to the words that do not appear within
a temporal interval. Finally, we use the Wasser-
stein distance (Shen et al., 2018) to measure the
differences across temporal domains. Wasser-
stein distance or Earth Mover’s distance (Vallen-
der, 1974) measures the distribution differences
between source and target domains (Shen et al.,
2018), and thus here it measures semantic distri-
bution shifts across time.

We show temporal distribution shifts in Fig-
ure 4, and we observe two interesting findings.
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First, closer time intervals show less semantic dis-
tribution shift, which aligns with our analysis in
Sections 2.2 and 2.3. Second, we observe that the
frequent words have much smaller semantic distri-
bution shifts than the top features selected by mu-
tual information.

Yelp-hotel Yelp-hotel

200608 0.000 200608

S200011

« 0.000 0.000 0.183

201517 0.000 0.000 0.000 201517 0.174

200608 200911 201214 201517 200608 200911 201216 201517
Temporal Domain Temporal Domain

Figure 4: Semantic distribution shifts comparison be-
tween the top and most frequent words via Wasserstein
distance. We present Yelp-hotel data for the illustration
purposes and omit the other data due to space limits.
The left is the semantic distribution shift for frequent
words, the right is for top words ranked by mutual in-
formation. The higher score indicates higher shift.

To verify this second observation statistically,
we conduct two-tailed t-test on the Yelp-hotel case
to test our null hypothesis that the semantic dis-
tribution change is not significant. We separately
compare the distribution distances of both frequent
and top feature words with 0, which indicates no
shift. Finally, the test results show p-value=0.076
for the frequent words and p-value=0.0038 for top
feature words. Therefore, we reject the null hy-
pothesis of top feature words at 95% confidence
level while we cannot reject the null hypothesis of
frequent words.

3.2.1 Comparing Different Ways to Measure
Temporal Shifts

We have presented language shifts across time do-
mains based on word usage overlap (Section 2.2),
context overlap (Section 2.3), and distribution dis-
tance (this section). However, it is not clear if
these different metrics are measuring the same in-
formation. To understand this further, we calcu-
late the Pearson correlation coefficient to measure
the relationships between each pair of metrics. We
show the correlations in Table 2. We observe neg-
ative correlations between the two overlap mea-
sures (higher means more less shift) and distribu-
tion distance (lower means less shift), and a pos-
itive correlation between word usage and context
overlaps. These results show that the three metrics
are related, though there are some datasets where
the correlations are low.

4 Model for Temporality Adaptation

We construct a document classification model that
assumes the language used to describe document
categories will evolve over time; for example
newer documents may use emoji to express opin-
ions, while older documents would not contain
these features. Our goal is to build document clas-
sifiers with time-invariant features and are thus ro-
bust to language shift.

Our previous work (Huang and Paul, 2018) on
temporality adaptation for n-gram classifiers used
a domain adaptation approach (Daume III, 2007)
where each time interval is treated as a domain.
This approach created 7'+1 versions of the fea-
ture set, one for each of the 7' time domains,
and one domain-independent feature set. This al-
lows the model to learn which features are asso-
ciated with specific domains, while the domain-
independent parameters can be used for future
data. We analogously apply this idea to the neural
setting, where we construct 7'+1 different repre-
sentations, at both the word level (using diachronic
word embeddings) and the document level. More-
over, we use a time-driven learning process that
models the shift of word representations as a grad-
ual process of adapting representations to new data
while starting with old information.

We thus present the Neural Temporality
Adaptation Model (NTAM) (Figure 5) based
on three strategies: diachronic word embeddings
(Section 3), T' + 1 views of inputs, and a time-
driven learning process. This model can learn lan-
guage shifts and time invariant representations of
documents for classification.

T+1 views of inputs. Analogous to the approach
of Daume III (2007) for non-neural classifiers, we
create 7'+ 1 word representations, where 1" refers
to the number of diachronic domain embeddings
and 1 refers to a general embedding, which trains
word embeddings on the whole corpus without
time labels. Our intuition is to use time-specific
embeddings to provide documents from different
time intervals with different views of semantic
meaning. We train diachronic word embeddings
using our proposed method via fastText, though
we also experiment with other approaches. We ini-
tialize the model with the domain-specific embed-
dings and the general word embedding. The model
will encode input documents into 7" + 1 views of
word representations. The 7"+ 1 embeddings pro-
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Correlation H Amazon Dianping Economy Twitter Yelp-hotel Yelp-rest

Usage-DD -.901* .160
Context-DD -.989% -.987%
Usage-Context 926%* -.009

-.106 .028 -.943% -.923%
-.108 023 -.949%* -.960*
.600* 979* 950* 955%

Table 2: The correlations between word usages overlaps (Usage) and distribution distance (DD) as well as context
overlaps (Context) and distribution distance (DD). The star sign (*) indicates p-value is less than .05.

No sickness for me I got flu shot
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Figure 5: Architecture of the Neural Temporality Adaptation Model (NTAM). NTAM is initialized with 7' di-
achronic word embeddings (Emb’*,t € T) plus one general word embedding (Emb?9). The hidden state
(ht,t € T) and memory cell (¢;) will excite and initialize the following Bi-LSTM. We feed the final hidden
state (hq, g refers to general domain) to the following learning phase.

vide diverse views of input words, which are fed
to the rest of the neural architecture, leaving the
model to optimize representations automatically.

Time-driven learning process. To learn tempo-
ral variations for document representations, we
propose a series of T° + 1 continuously tem-
poral Bidirectional Long Short Term Memory
(Bi-LSTM) models (Hochreiter and Schmidhuber,
1997). The first T' Bi-LSTMs correspond to the T'
time domains and the last Bi-LSTM corresponds
to the general view of input documents and out-
puts the final document representation. Similar to
how the diachronic word embeddings encode in-
put words into multiple views of time domains, we
use 1"+ 1 Bi-LSTMs to learn diachronic views of
document representations.

To capture the semantic shifts across time do-
mains, our intuition is to model the dynamic pro-
cess. The memory mechanism of LSTM fits our
need, which optimizes the balance across different
time patterns via non-linear computations. While
each Bi-LSTM reads through tokens in its own in-
put document, we feed the previous Bi-LSTM’s
hidden state and memory cell to excite the learn-
ing process of the subsequent Bi-LSTM. The final
Bi-LSTM learns jointly the previous shift patterns
of document representations with the general em-
bedding view of documents and outputs its final

document representation /.

The final document representation is fed into a
dense layer with a non-linear activation function.
We use outputs of the dense layer for document
class prediction, where we use one-hot encoding
to represent document labels and use the softmax
function for class predictions. Finally, we use cat-
egorical cross-entropy as the loss function.

5 Experiments

We conduct experiments on the task of document
classification. We split the data chronologically
to simulate the realistic scenario where a classi-
fier is trained on older data and tested on newer
data. Thus, the first 7" — 1 time domains are used
for training; the last time domain is split into two
equal-sized sets for development and testing.

5.1 Preprocessing

We use NLTK (Loper and Bird, 2002) to tokenize
the English corpora and the Jieba Python mod-
ule (Sun, 2012) to segment the Chinese data. We
discard reviews that had fewer than 10 tokens. For
the Twitter data, we anonymize the data and re-
place usernames, hyperlinks, and hashtags with
“USER”, “URL”, “HASHTAG” respectively. All
other text is lowercased. The final data details are
described in Table 3.
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Datasets Train Dev. Test
Amazon 59,399 11,880 11,880
Dianping | 503,330 83,889 83,889
Economy 4,774 596 596

Twitter 1,632 272 272
Yelp-hotel | 20,975 6,993 6,993
Yelp-rest | 106,943 35,648 35,648

Table 3: Data statistics of the six corpora. We show the
number of documents in each split.

5.2 Implementation and Training

We implement classification models using
Keras (Chollet et al., 2015) and scikit-learn (Pe-
dregosa et al., 2011). We select the top 15K
words by frequency and set the other words as
“unk”. The models are trained for 15 epochs
with the batch size of 64. Each document is
padded to 60 tokens. We set the Bi-LSTM output
to 200 dimensions. We choose ReLU (Hahn-
loser et al., 2000) as the activation function of
the dense layer and 0.2 as our default dropout
rate (Srivastava et al., 2014). The dense layer
outputs 200 dimensions for final document class
prediction. We select cross-entropy as our default
loss function, and we optimize model parameters
via RMSprop (Tieleman and Hinton, 2012) with
the learning rate as 0.0001. Unless otherwise
stated, we leave the other parameters as defaults.

5.3 Baselines

To ensure fair comparisons, we use the same set-
tings across all models. We compare our proposed
model to seven baselines, where three standard
classifiers do not perform temporality adaptation.

5.3.1 No Adaptation

LR. We extract 1- and 2-gram features on the
corpora with the most frequent 15K features. We
then build a logistic regression classifier using
LogisticRegression from scikit-learn (Pe-
dregosa et al., 2011) with default parameters.

CNN. We implement the Convolutional Neu-
ral Network (CNN) classifier described in (Kim,
2014). To keep consistent, we initialize the model
with pre-trained word embeddings (Bojanowski
et al., 2016) that were trained on the same datasets
as the diachronic embeddings. We only keep the
15K most frequent words and replace the rest
with an “unk” token. We set model optimizer as

Adam (Kingma and Ba, 2014). We keep all other
parameter settings as described in the paper.

Bi-LSTM. We build a bi-directional Long
Short Term Memory (bi-LSTM) (Hochreiter and
Schmidhuber, 1997) classifier to examine the ef-
fectiveness of temporal learning process in our
proposed model. The classifier is initialized with
the pre-trained word embeddings.

5.3.2 Domain Adaptation Models

FEDA. Following Huang and Paul (2018)
we adapt for time domains using the “frus-
tratingly easy” domain adaptation (FEDA)
method (Daume III, 2007). The feature set is
augmented such that each feature has a domain-
specific version of the feature for each time
domain, as well as a general domain-independent
version of the feature. The values of features
are set to the original feature value for the
domain-independent feature and the domain-
specific features that apply to the document, while
domain-specific features for documents that do
not belong to that domain are set to 0. At test time,
we only use the general, domain-independent
features. We use the same feature extraction
procedures and the same logistic regression
classifier as the LR baseline.

DANN. We consider the domain adversarial
training network (Ganin et al., 2016) (DANN) on
the time adaptation task. We re-implement the
same network and set domain prediction as pre-
dicting the time domain label while keeping the
document label prediction as the default. We
use the model from the epoch when the model
achieves the best result on the development set for
the final model.

RCNN & HAN. He et al. (2018) propose an
evolving framework to train document classi-
fiers. We re-implement two classifiers, RCNN and
HAN with diachronic propagation learning strat-
egy, which achieved the best performances in their
paper. The RCNN (Lai et al., 2015) classifier inte-
grates both LSTM and CNN, and the HAN (Yang
et al., 2016) classifiers uses hierarchical attention
neural architectures. We keep the two models with
the same parameters as their open sourced code
and initialize the two models with pre-trained 200
dimensional word embeddings (Bojanowski et al.,
2016). We apply Adam and RMsprop for RCNN
and HAN respectively, because the two optimiz-
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ers perform much better on validation sets than the
stochastic gradient descent optimizer used in the
original paper. The work is close to our work but
there are three major differences:

e Time invariance. We train one unified model
with diachronic adaptation by using a time-
independent representation (the 1 of the 7"+ 1
representations) to learn a time-invariant classi-
fier that can be used for future data. In contrast,
these baselines learn 7" — 1 models, where they
train one model for each time domain.

e Diachronic word embeddings. Our method uses
diachronic word embeddings to encode inputs
in T" + 1 different views. The baseline en-
coding is based on only the current embedding
space and therefore might not capture embed-
ding shifts over time.

e Learning process. The baseline learns a
weighted sum between the intermediate layer’s
outputs between the previous model and the
current model. In contrast, we deploy the 7"+ 1
Bi-LSTMs to jointly learn time dependencies
across all time intervals.

5.4 Results

The results of our experiments are show in Ta-
ble 4. Our proposed approach leads to perfor-
mance improvements over the comparable base-
lines on most datasets. NTAM has the highest
performance on 4 out of 6 datasets, while FEDA
has the highest performance on the other 2 (while
NTAM is the next best for those 2).

The baselines with domain adaptation generally
obtain a small performance boost over the base-
lines without adaptation on temporality. Among
the non-neural models, the adaptation baseline
FEDA outperforms the non-adaptation baseline
LR on 4 out of 6 datasets. Among the neural mod-
els, the best adaptation baseline outperforms the
best non-adaptation baseline on 3 out of 6 datasets,
with the RCNN generally outperforming the other
baselines. This indicates that the temporal factor
can potentially improve the performance of docu-
ment classification, and that domain adaptation is
a possible approach to temporality adaptation.

Significance analysis. To verify the improve-
ments of our proposed method NTAM compared
to baselines, we conduct a significance analysis
to compare our proposed model with the RCNN,

which is the closest model to ours. We follow
Berg-Kirkpatrick et al. (2012) and bootstrap sam-
ple 50 pairs of test datasets with replacement. We
keep the same data size as the previous experi-
ments in the Table 4. We then use the same pre-
vious parameters and re-conduct the classification
experiments. We format the experimental results
as two lists of scores. We conduct a paired t-test
to test the null hypothesis that our proposed model
does not differ significantly from the RCNN. The
test presents a significant result with t(95) = 3.258
and p = 0.00119. The result suggests rejecting the
null hypothesis at a 95% confidence level.

5.5 Effectiveness of Diachronic Embeddings

Lastly we investigate how diachronic word em-
beddings affect classifiers. While NTAM used di-
achronic word embeddings and other baselines did
not, we also compare to a version of NTAM ini-
tialized with regular word embeddings (to under-
stand whether diachronic embeddings are impor-
tant to the model’s performance), and we also ex-
periment with combining diachronic embeddings
with a baseline model (to understand if diachronic
embeddings can be used in other classifiers).

We also compare different methods of con-
structing diachronic word embeddings. In addi-
tion to our proposed method in Section 3, which
uses subword embeddings via fastText, we con-
sider three other approaches. We use incremen-
tal training (Kim et al., 2014) (abbreviated In-
cre, using fastText), linear regression (Kulkarni
etal., 2015), implemented in scikit-learn, and Pro-
crustes (Hamilton et al., 2016), implemented in
SciPy. We keep the same fastText parameters as
in previous experiments and train a word embed-
ding model separately for each time domain, then
align the pre-trained embeddings to get final di-
achronic word embeddings. We then re-run the
classification task with the new diachronic word
embeddings.

Table 5 shows the absolute percentage improve-
ment in classification performance when using
each diachronic embedding compared to a classi-
fier without diachronic embeddings. Overall, di-
achronic embeddings improve classification mod-
els. The diachronic embedding appears to be par-
ticularly important for NTAM, improving perfor-
mance on all 6 datasets with an average increase
in performance up to 2.53 points. The RCNN
also benefits from diachronic embeddings, but to
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Baselines (No adaptation) Baselines (Adaptation) Our Model
Data LR CNN Bi-LSTM | FEDA DANN HAN RCNN NTAM

Twitter 874 873 .879 .890 .851 .847 .869 .898
Economy || .699 .707 .692 .686 .687 .690 .697 711
Yelp-rest || .818 .756 787 831 736 794 782 .828
Yelp-hotel || .773 .753 758 811 733 740 762 .790
Amazon || .778 .762 771 782 .686 748 782 .808
Dianping | .710 .715 706 .687 .686 .699 .692 738

Table 4: Performance of different models evaluated with weighted F1 scores. For each dataset, the best score is
bolded. LR and FEDA are non-neural n-gram models, while the others are neural models.

RCNN NTAM
Data Incre Linear Procrustes Subword || Incre Linear Procrustes Subword
Twitter -0.7 +1.4 -0.2 -0.8 +14  -03 +1.7 +3.5
Economy || +0.5 0.0 -0.7 +0.4 -0.3 -1.0 -0.5 +0.3
Yelp-rest || +1.4  +0.1 -1.9 +2.3 +19 +1.6 +1.4 +4.3
Yelp-hotel || -1.5 -1.2 -0.5 -0.2 -0.7 -2.0 -1.8 +0.8
Amazon +0.2  +0.2 2.0 +0.5 -0.8 -0.7 -0.8 +2.1
Dianping || +04  +1.6 +0.7 +1.0 +0.8  +1.8 +3.4 +4.2
Average 0.05 0.35 -0.47 0.53 0.38 -0.10 0.57 2.53
Median 0.30 0.15 -0.60 0.45 0.25 -0.50 0.45 2.80

Table 5: Performance gains of two neural temporality adaptation models when they are initialized by diachronic
word embeddings as compared to initialization with standard non-diachronic word embeddings. Subword refers
to our proposed diachronic word embedding in this paper (Section 3). We report absolute percentage increases in
weighted F1 score after applying diachronic word embeddings.

a lesser extent, with an improvement on 4 of the
6 datasets. Comparing the different methods for
constructing diachronic embeddings, we find that
our proposed subword method works the best on
average for both classifiers. The incremental train-
ing method also provides improved performance
for both classifiers, while the linear regression and
Procrustes approaches have mixed results.

6 Conclusion

Our experiments on six corpora covering two lan-
guages show that there are shifts in word usage and
context over time, and that it is useful to explicitly
account for these shifts in representations of words
and documents. We have presented a new method
for constructing diachronic word embeddings as
well as a new model for document classification,
which are both shown to be effective for temporal-
ity adaptation. We open source our code.!

'https://github.com/xiaoleihuang/
Neural_ Temporality_Adaptation
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