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Abstract

Language usage can change across periods of

time, but document classifiers models are usu-

ally trained and tested on corpora spanning

multiple years without considering temporal

variations. This paper describes two com-

plementary ways to adapt classifiers to shifts

across time. First, we show that diachronic

word embeddings, which were originally de-

veloped to study language change, can also

improve document classification, and we show

a simple method for constructing this type of

embedding. Second, we propose a time-driven

neural classification model inspired by meth-

ods for domain adaptation. Experiments on

six corpora show how these methods can make

classifiers more robust over time.

1 Introduction

Language changes and varies over time, which can

cause a degradation of performance in natural lan-

guage processing models over time. For exam-

ple, document classifiers are typically trained on

historical data and tested on future data, where

the performance tends to be worse. Recent re-

search has shown that document classifiers can

become more stable over time when trained in

ways that specifically account for temporal varia-

tions (Huang and Paul, 2018; He et al., 2018). We

refer to this task of accounting for such variations

during training as temporality adaptation.

This paper investigates temporality adaptation

in two ways. First, we explore how diachronic

word embeddings, which encode time-varying

representations of words, can be used in this set-

ting. Recent research has used diachronic word

embeddings to study how language changes over

time (Kulkarni et al., 2015; Hamilton et al., 2016;

Kutuzov et al., 2018). These studies have shown

that shifts in the corpora across time cause changes

in word contexts and consequently, changes in the

learned representations.

In our study, we further examine these shifts

as they relate to important features for document

classification. While other research has applied

diachronic word embeddings to semantic change

detection and validation (Mihalcea and Nastase,

2012; Kim et al., 2014; Kulkarni et al., 2015;

Hamilton et al., 2016; Dubossarsky et al., 2017;

Yao et al., 2018; Rudolph and Blei, 2018; Rosen-

feld and Erk, 2018) and semantic relation anal-

ysis (Liao and Cheng, 2016; Szymanski, 2017;

Rosin et al., 2017), these types of embeddings

have not been studied particularly for the docu-

ment classification task. We show that neural clas-

sifiers which use these embeddings can perform

better on future data. As part of this work, we

propose a new method for constructing diachronic

words embeddings, which we show to be compet-

itive with prior approaches.

Second, we propose a neural classification

model that adapts to changes in time using ideas

from domain adaptation. We previously showed

that out-of-the-box domain adaptation techniques

can make n-gram classifiers more robust to tem-

poral shifts (Huang and Paul, 2018). We expand

this line of work by additionally considering neu-

ral adaptation models, which can also take advan-

tage of diachronic word embeddings.

The next section describes our data. We exper-

iment with six English and Chinese datasets from

both social media and newspaper sources, span-

ning varying lengths in time (from several decades

to only a few years). We split each dataset into

a small set of time intervals, and we define each

time interval as a domain. Before presenting our

methods for building diachronic word embeddings

(Section 3) and our neural model (Section 4), we

present empirical analyses of how word usage and

word contexts vary over time in our data, to mo-
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mains (Huang and Paul, 2018), and can be imple-

mented by simply modifying the input data with-

out modifying the training process. In our ap-

proach, words in the training data are concatenated

with the name of the time interval, and embed-

dings are trained using a sub-word sharing frame-

work (Bojanowski et al., 2016). The concatena-

tion step allows for the learning of word represen-

tations that are specific to each time interval, while

the sub-word framework allows for the learning of

general, time-independent representations of each

word.

Concretely, we first build domain-specific cor-

pora by adding each document’s domain label as a

suffix to each word, as shown in Figure 3. In addi-

tion to the domain-specific corpora, we retain the

original corpus as a domain-independent version.

We then train fastText (Bojanowski et al., 2016), a

sub-word embedding model, on all of the corpora,

We use 3- to 6-grams characters in this study, to

provide diverse perspectives to encode time and

word representations. This approach learns di-

achronic word representations by encoding tem-

porality as part of sub-words into the word em-

bedding.

Text: No sickness for 

me I got flu shot

No1 sickness1 for1 me1 I1 got1 flu1 shot1 

Time domain label: 1

Figure 3: The illustration of building domain corpora.

We append the document domain label as a suffix to

each word in the document.

FastText learns word embeddings from charac-

ter n-grams, intended to capture morphological

information. As an example example, the word

“where1” from time domain 1 using character 3-

grams would be encoded in fastText as the follow-

ing seven parts:

< wh,whe, her, ere, re1, e1 >,< where1 >

In this way, words with time domain labels can

incorporate temporal identities, while the same

words with different domain labels will still share

close representations because of similar morpho-

logical forms. In this way, we encode temporal

identity into word representations while still main-

taining the connections of the same words across

different time domains.

In contrast to prior approaches on diachronic

embeddings, this concatenative sub-word ap-

proach does not explicitly model the ordering of

time information, and it cannot encode, for ex-

ample, that domains that are close in time should

have more similarities than domains that are far-

ther away in time. Despite this limitation, we find

experimentally that this approach works competi-

tively, while being simpler to implement and faster

to train.

3.2 Analysis 3: Semantic Distribution Shift

Using this approach to constructing diachronic

word embeddings, we now consider how these

embeddings can be used to further analyze lan-

guage shift.

The Law of Conformity states a negative cor-

relation between word frequency and meaning

change (Hamilton et al., 2016); however, Du-

bossarsky et al. (2017) show that the word fre-

quency does play an important role in the se-

mantic change, even though a small one. Di-

achronic embeddings have been used to measure

the semantic shift using linear interpolation (re-

gression) (Hamilton et al., 2016). Here, we re-

examine this issue from another view, the distance

of semantic distributions, which views the word

embeddings as semantic distributions and mea-

sures how the word embeddings vary across time.

As in Section 2.3, we choose the top 1,000 im-

portant words ranked by mutual information, as

well as a control group of the 1,000 most frequent

words in each corpus. We find that overlap be-

tween the 1,000 most important and most frequent

words are 0% across every dataset. This suggests

that the most frequent words are not predictive

for classification. We use our proposed method

to train 200-dimensional diachronic word embed-

dings and extract diachronic word representations

for both important and most frequent words, and

leave 0s to the words that do not appear within

a temporal interval. Finally, we use the Wasser-

stein distance (Shen et al., 2018) to measure the

differences across temporal domains. Wasser-

stein distance or Earth Mover’s distance (Vallen-

der, 1974) measures the distribution differences

between source and target domains (Shen et al.,

2018), and thus here it measures semantic distri-

bution shifts across time.

We show temporal distribution shifts in Fig-

ure 4, and we observe two interesting findings.
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Correlation Amazon Dianping Economy Twitter Yelp-hotel Yelp-rest

Usage-DD -.901* .160 -.106 .028 -.943* -.923*

Context-DD -.989* -.987* -.108 .023 -.949* -.960*

Usage-Context .926* -.009 .600* .979* .950* .955*

Table 2: The correlations between word usages overlaps (Usage) and distribution distance (DD) as well as context

overlaps (Context) and distribution distance (DD). The star sign (*) indicates p-value is less than .05.
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Figure 5: Architecture of the Neural Temporality Adaptation Model (NTAM). NTAM is initialized with T di-

achronic word embeddings (EmbTt, t ∈ T ) plus one general word embedding (EmbTg). The hidden state

(ht, t ∈ T ) and memory cell (ct) will excite and initialize the following Bi-LSTM. We feed the final hidden

state (hg , g refers to general domain) to the following learning phase.

vide diverse views of input words, which are fed

to the rest of the neural architecture, leaving the

model to optimize representations automatically.

Time-driven learning process. To learn tempo-

ral variations for document representations, we

propose a series of T + 1 continuously tem-

poral Bidirectional Long Short Term Memory

(Bi-LSTM) models (Hochreiter and Schmidhuber,

1997). The first T Bi-LSTMs correspond to the T

time domains and the last Bi-LSTM corresponds

to the general view of input documents and out-

puts the final document representation. Similar to

how the diachronic word embeddings encode in-

put words into multiple views of time domains, we

use T + 1 Bi-LSTMs to learn diachronic views of

document representations.

To capture the semantic shifts across time do-

mains, our intuition is to model the dynamic pro-

cess. The memory mechanism of LSTM fits our

need, which optimizes the balance across different

time patterns via non-linear computations. While

each Bi-LSTM reads through tokens in its own in-

put document, we feed the previous Bi-LSTM’s

hidden state and memory cell to excite the learn-

ing process of the subsequent Bi-LSTM. The final

Bi-LSTM learns jointly the previous shift patterns

of document representations with the general em-

bedding view of documents and outputs its final

document representation hg.

The final document representation is fed into a

dense layer with a non-linear activation function.

We use outputs of the dense layer for document

class prediction, where we use one-hot encoding

to represent document labels and use the softmax

function for class predictions. Finally, we use cat-

egorical cross-entropy as the loss function.

5 Experiments

We conduct experiments on the task of document

classification. We split the data chronologically

to simulate the realistic scenario where a classi-

fier is trained on older data and tested on newer

data. Thus, the first T − 1 time domains are used

for training; the last time domain is split into two

equal-sized sets for development and testing.

5.1 Preprocessing

We use NLTK (Loper and Bird, 2002) to tokenize

the English corpora and the Jieba Python mod-

ule (Sun, 2012) to segment the Chinese data. We

discard reviews that had fewer than 10 tokens. For

the Twitter data, we anonymize the data and re-

place usernames, hyperlinks, and hashtags with

“USER”, “URL”, “HASHTAG” respectively. All

other text is lowercased. The final data details are

described in Table 3.
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Datasets Train Dev. Test

Amazon 59,399 11,880 11,880

Dianping 503,330 83,889 83,889

Economy 4,774 596 596

Twitter 1,632 272 272

Yelp-hotel 20,975 6,993 6,993

Yelp-rest 106,943 35,648 35,648

Table 3: Data statistics of the six corpora. We show the

number of documents in each split.

5.2 Implementation and Training

We implement classification models using

Keras (Chollet et al., 2015) and scikit-learn (Pe-

dregosa et al., 2011). We select the top 15K

words by frequency and set the other words as

“unk”. The models are trained for 15 epochs

with the batch size of 64. Each document is

padded to 60 tokens. We set the Bi-LSTM output

to 200 dimensions. We choose ReLU (Hahn-

loser et al., 2000) as the activation function of

the dense layer and 0.2 as our default dropout

rate (Srivastava et al., 2014). The dense layer

outputs 200 dimensions for final document class

prediction. We select cross-entropy as our default

loss function, and we optimize model parameters

via RMSprop (Tieleman and Hinton, 2012) with

the learning rate as 0.0001. Unless otherwise

stated, we leave the other parameters as defaults.

5.3 Baselines

To ensure fair comparisons, we use the same set-

tings across all models. We compare our proposed

model to seven baselines, where three standard

classifiers do not perform temporality adaptation.

5.3.1 No Adaptation

LR. We extract 1- and 2-gram features on the

corpora with the most frequent 15K features. We

then build a logistic regression classifier using

LogisticRegression from scikit-learn (Pe-

dregosa et al., 2011) with default parameters.

CNN. We implement the Convolutional Neu-

ral Network (CNN) classifier described in (Kim,

2014). To keep consistent, we initialize the model

with pre-trained word embeddings (Bojanowski

et al., 2016) that were trained on the same datasets

as the diachronic embeddings. We only keep the

15K most frequent words and replace the rest

with an “unk” token. We set model optimizer as

Adam (Kingma and Ba, 2014). We keep all other

parameter settings as described in the paper.

Bi-LSTM. We build a bi-directional Long

Short Term Memory (bi-LSTM) (Hochreiter and

Schmidhuber, 1997) classifier to examine the ef-

fectiveness of temporal learning process in our

proposed model. The classifier is initialized with

the pre-trained word embeddings.

5.3.2 Domain Adaptation Models

FEDA. Following Huang and Paul (2018)

we adapt for time domains using the “frus-

tratingly easy” domain adaptation (FEDA)

method (Daume III, 2007). The feature set is

augmented such that each feature has a domain-

specific version of the feature for each time

domain, as well as a general domain-independent

version of the feature. The values of features

are set to the original feature value for the

domain-independent feature and the domain-

specific features that apply to the document, while

domain-specific features for documents that do

not belong to that domain are set to 0. At test time,

we only use the general, domain-independent

features. We use the same feature extraction

procedures and the same logistic regression

classifier as the LR baseline.

DANN. We consider the domain adversarial

training network (Ganin et al., 2016) (DANN) on

the time adaptation task. We re-implement the

same network and set domain prediction as pre-

dicting the time domain label while keeping the

document label prediction as the default. We

use the model from the epoch when the model

achieves the best result on the development set for

the final model.

RCNN & HAN. He et al. (2018) propose an

evolving framework to train document classi-

fiers. We re-implement two classifiers, RCNN and

HAN with diachronic propagation learning strat-

egy, which achieved the best performances in their

paper. The RCNN (Lai et al., 2015) classifier inte-

grates both LSTM and CNN, and the HAN (Yang

et al., 2016) classifiers uses hierarchical attention

neural architectures. We keep the two models with

the same parameters as their open sourced code

and initialize the two models with pre-trained 200

dimensional word embeddings (Bojanowski et al.,

2016). We apply Adam and RMsprop for RCNN

and HAN respectively, because the two optimiz-



4120

ers perform much better on validation sets than the

stochastic gradient descent optimizer used in the

original paper. The work is close to our work but

there are three major differences:

• Time invariance. We train one unified model

with diachronic adaptation by using a time-

independent representation (the 1 of the T + 1

representations) to learn a time-invariant classi-

fier that can be used for future data. In contrast,

these baselines learn T − 1 models, where they

train one model for each time domain.

• Diachronic word embeddings. Our method uses

diachronic word embeddings to encode inputs

in T + 1 different views. The baseline en-

coding is based on only the current embedding

space and therefore might not capture embed-

ding shifts over time.

• Learning process. The baseline learns a

weighted sum between the intermediate layer’s

outputs between the previous model and the

current model. In contrast, we deploy the T +1

Bi-LSTMs to jointly learn time dependencies

across all time intervals.

5.4 Results

The results of our experiments are show in Ta-

ble 4. Our proposed approach leads to perfor-

mance improvements over the comparable base-

lines on most datasets. NTAM has the highest

performance on 4 out of 6 datasets, while FEDA

has the highest performance on the other 2 (while

NTAM is the next best for those 2).

The baselines with domain adaptation generally

obtain a small performance boost over the base-

lines without adaptation on temporality. Among

the non-neural models, the adaptation baseline

FEDA outperforms the non-adaptation baseline

LR on 4 out of 6 datasets. Among the neural mod-

els, the best adaptation baseline outperforms the

best non-adaptation baseline on 3 out of 6 datasets,

with the RCNN generally outperforming the other

baselines. This indicates that the temporal factor

can potentially improve the performance of docu-

ment classification, and that domain adaptation is

a possible approach to temporality adaptation.

Significance analysis. To verify the improve-

ments of our proposed method NTAM compared

to baselines, we conduct a significance analysis

to compare our proposed model with the RCNN,

which is the closest model to ours. We follow

Berg-Kirkpatrick et al. (2012) and bootstrap sam-

ple 50 pairs of test datasets with replacement. We

keep the same data size as the previous experi-

ments in the Table 4. We then use the same pre-

vious parameters and re-conduct the classification

experiments. We format the experimental results

as two lists of scores. We conduct a paired t-test

to test the null hypothesis that our proposed model

does not differ significantly from the RCNN. The

test presents a significant result with t(95) = 3.258

and p = 0.00119. The result suggests rejecting the

null hypothesis at a 95% confidence level.

5.5 Effectiveness of Diachronic Embeddings

Lastly we investigate how diachronic word em-

beddings affect classifiers. While NTAM used di-

achronic word embeddings and other baselines did

not, we also compare to a version of NTAM ini-

tialized with regular word embeddings (to under-

stand whether diachronic embeddings are impor-

tant to the model’s performance), and we also ex-

periment with combining diachronic embeddings

with a baseline model (to understand if diachronic

embeddings can be used in other classifiers).

We also compare different methods of con-

structing diachronic word embeddings. In addi-

tion to our proposed method in Section 3, which

uses subword embeddings via fastText, we con-

sider three other approaches. We use incremen-

tal training (Kim et al., 2014) (abbreviated In-

cre, using fastText), linear regression (Kulkarni

et al., 2015), implemented in scikit-learn, and Pro-

crustes (Hamilton et al., 2016), implemented in

SciPy. We keep the same fastText parameters as

in previous experiments and train a word embed-

ding model separately for each time domain, then

align the pre-trained embeddings to get final di-

achronic word embeddings. We then re-run the

classification task with the new diachronic word

embeddings.

Table 5 shows the absolute percentage improve-

ment in classification performance when using

each diachronic embedding compared to a classi-

fier without diachronic embeddings. Overall, di-

achronic embeddings improve classification mod-

els. The diachronic embedding appears to be par-

ticularly important for NTAM, improving perfor-

mance on all 6 datasets with an average increase

in performance up to 2.53 points. The RCNN

also benefits from diachronic embeddings, but to
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Baselines (No adaptation) Baselines (Adaptation) Our Model

Data LR CNN Bi-LSTM FEDA DANN HAN RCNN NTAM

Twitter .874 .873 .879 .890 .851 .847 .869 .898

Economy .699 .707 .692 .686 .687 .690 .697 .711

Yelp-rest .818 .756 .787 .831 .736 .794 .782 .828

Yelp-hotel .773 .753 .758 .811 .733 .740 .762 .790

Amazon .778 .762 .771 .782 .686 .748 .782 .808

Dianping .710 .715 .706 .687 .686 .699 .692 .738

Table 4: Performance of different models evaluated with weighted F1 scores. For each dataset, the best score is

bolded. LR and FEDA are non-neural n-gram models, while the others are neural models.

RCNN NTAM

Data Incre Linear Procrustes Subword Incre Linear Procrustes Subword

Twitter -0.7 +1.4 -0.2 -0.8 +1.4 -0.3 +1.7 +3.5

Economy +0.5 0.0 -0.7 +0.4 -0.3 -1.0 -0.5 +0.3

Yelp-rest +1.4 +0.1 -1.9 +2.3 +1.9 +1.6 +1.4 +4.3

Yelp-hotel -1.5 -1.2 -0.5 -0.2 -0.7 -2.0 -1.8 +0.8

Amazon +0.2 +0.2 -2.0 +0.5 -0.8 -0.7 -0.8 +2.1

Dianping +0.4 +1.6 +0.7 +1.0 +0.8 +1.8 +3.4 +4.2

Average 0.05 0.35 -0.47 0.53 0.38 -0.10 0.57 2.53

Median 0.30 0.15 -0.60 0.45 0.25 -0.50 0.45 2.80

Table 5: Performance gains of two neural temporality adaptation models when they are initialized by diachronic

word embeddings as compared to initialization with standard non-diachronic word embeddings. Subword refers

to our proposed diachronic word embedding in this paper (Section 3). We report absolute percentage increases in

weighted F1 score after applying diachronic word embeddings.

a lesser extent, with an improvement on 4 of the

6 datasets. Comparing the different methods for

constructing diachronic embeddings, we find that

our proposed subword method works the best on

average for both classifiers. The incremental train-

ing method also provides improved performance

for both classifiers, while the linear regression and

Procrustes approaches have mixed results.

6 Conclusion

Our experiments on six corpora covering two lan-

guages show that there are shifts in word usage and

context over time, and that it is useful to explicitly

account for these shifts in representations of words

and documents. We have presented a new method

for constructing diachronic word embeddings as

well as a new model for document classification,

which are both shown to be effective for temporal-

ity adaptation. We open source our code.1

1https://github.com/xiaoleihuang/

Neural_Temporality_Adaptation
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