
Exploring Connections Between Active Learning
and Model Extraction

Varun Chandrasekaran
University of Wisconsin-Madison

chandrasekaran@cs.wisc.edu
Kamalika Chaudhuri

University of California San Diego
kamalika@cs.ucsd.edu

Irene Giacomelli∗
ISI Foundation

irene.giacomelli@isi.it
Somesh Jha

University of Wisconsin-Madison
jha@cs.wisc.edu

Songbai Yan
University of California San Diego

yansongbai@eng.ucsd.edu

August 30, 2019

Abstract
Machine learning is being increasingly used by individuals, research

institutions, and corporations. This has resulted in the surge of Machine
Learning-as-a-Service (MLaaS) - cloud services that provide (a) tools and
resources to learn the model, and (b) a user-friendly query interface to
access the model. However, such MLaaS systems raise privacy concerns
such as model extraction. In model extraction attacks, adversaries mali-
ciously exploit the query interface to steal the model. More precisely, in
a model extraction attack, a good approximation of a sensitive or propri-
etary model held by the server is extracted (i.e. learned) by a dishonest
user who interacts with the server only via the query interface. This
attack was introduced by Tramèr et al. at the 2016 USENIX Security
Symposium, where practical attacks for various models were shown. We
believe that better understanding the efficacy of model extraction attacks
is paramount to designing secure MLaaS systems. To that end, we take
the first step by (a) formalizing model extraction and discussing possible
defense strategies, and (b) drawing parallels between model extraction

∗Part of this work was done while the author was a research assistant at the University of
Wisconsin-Madison.

1

and established area of active learning. In particular, we show that re-
cent advancements in the active learning domain can be used to imple-
ment powerful model extraction attacks, and investigate possible defense
strategies.

1 Introduction
Advancements in various facets of machine learning has made it an integral
part of our daily life. However, most real-world machine learning tasks are re-
source intensive. To that end, several cloud providers, such as Amazon, Google,
Microsoft, and BigML offset the storage and computational requirements by
providing Machine Learning-as-a-Service (MLaaS). A MLaaS server offers sup-
port for both the training phase, and a query interface for accessing the trained
model. The trained model is then queried by other users on chosen instances
(refer Fig. 1). Often, this is implemented in a pay-per-query regime i.e. the
server, or the model owner via the server, charges the the users for the queries
to the model. Pricing for popular MLaaS APIs is given in Appendix A.1.

Current research is focused at improving the performance of training algo-
rithms and of the query interface, while little emphasis is placed on the related
security aspects. For example, in many real-world applications, the trained
models are privacy-sensitive - a model can (a) leak sensitive information about
training data [6] during/after training, and (b) can itself have commercial value
or can be used in security applications that assume its secrecy (e.g., spam filters,
fraud detection etc. [35, 46, 62]). To keep the models private, there has been a
surge in the practice of oracle access, or black-box access. Here, the trained
model is made available for prediction but is kept secret. MLaaS systems use
oracle access to balance the trade-off between privacy and usability.

Despite providing oracle access, a broad suite of attacks continue to target
existing MLaaS systems [1, 13]. For example, membership inference attacks
attempt to determine if a given data-point is included in the model’s training
dataset only by interacting with the MLaaS interface (e.g. [61]). In this work, we
focus on model extraction attacks, where an adversary makes use of the MLaaS
query interface in order to steal the proprietary model (i.e. learn the model or a
good approximation of it). In an interesting paper, Tramèr et al. [65], show that
many commonly used MLaaS interfaces can be exploited using only few queries
to recover a model’s secret parameters. Even though model extraction attacks
are empirically proven to be feasible, their work consider interfaces that reveal
auxiliary information, such as confidence values together with the prediction
output. Additionally, their work does not formalize model extraction. We
believe that such formalization is paramount for designing secure MLaaS that
are resilient to aforementioned threats. In this paper, we take the first step
in this direction. The main contributions of the paper appear in boldfaced
captions.
Model Extraction ≈ Active Learning. The key observation guiding our
formalization is that the process of model extraction is very similar to active
learning [59], a special case of semi-supervised machine learning. An active
learner learns an approximation of a labeling function f∗ through repetitive

2

interaction with an oracle, who is assumed to know f∗. These interactions typ-
ically involve the learner sending an instance x to the oracle, and the oracle
returning the label y = f∗(x) to the learner. Since the learner can choose the
instances to be labeled, the number of data-points needed to learn the labeling
function is often much lower than in the normal supervised case. Similarly, in
model extraction, the adversary uses a strategy to query a MLaaS server with
the following goals: (a) to successfully steal (i.e. learn) the model (i.e. labeling
function) known by the server (i.e. oracle), in such a way as to (b) minimize the
number of queries made to the MLaaS server, as each query costs the adversary
a fixed dollar value. While the overall process of active learning mirrors the
general description of model extraction, the entire spectrum of active learning
can not be used to study model extraction. Indeed, some scenarios (e.g., PAC
active learning) assume that the query instances are sampled from the actual
input distribution. However, an attacker is not restricted to such condition and
can query any instance. For this reason, we believe that the query synthesis
framework of active learning, where the learner has the power to generate ar-
bitrary query instances best replicates the capabilities of the adversary in the
model extraction framework. Additionally, the query synthesis scenario ensures
that we make no assumptions about the adversary’s prior knowledge.
Powerful attacks with no auxiliary information. By casting model extrac-
tion as query synthesis active learning, we are able to draw concrete similarities
between the two. Consequently, we are able to use algorithms and techniques
from the active learning community to perform powerful model extraction at-
tacks, and investigate possible defense strategies. In particular, we show that:
query synthesis active learning algorithms can be used to perform model extrac-
tion on linear classifiers with no auxiliary information. Moreover, our evaluation
shows that our attacks are better than the classic attacks, such as by Lowd and
Meek [46], which have been widely used in the security community (see Sec-
tion 4).
No “free lunch” for defense. Simple defense strategies such as changing
the prediction output with constant and small probability are not effective.
However, defense strategies that change the prediction output depending on the
instances that are being queried, such as the work of Alabdulmohsin et al. [3], are
more robust to extraction attacks implemented using existing query synthesis
active learning algorithms. However, in Algorithm 1 of Section 4, we show that
this defense is not secure against traditional passive learning algorithms. This
suggests that there is “no free lunch” – accuracy might have to be sacrificed
to prevent model extraction. An in-depth investigation of such a result will be
interesting avenue for future work.
Paper structure. We begin with a brief comparison between passive machine
learning and active learning in Section 2. This allows us to introduce the nota-
tion used in this paper, and review the state-of-the-art for active learning. Sec-
tion 3 focuses on the formalization of model extraction attacks, casting it into
the query synthesis active learning framework, and finally discusses possible de-
fenses strategies. Section 4 reports our experimental findings and demonstrates
that query synthesis active learning can be used to successfully perform model

3

MLaaS Server
(oracle)

Data owner
x1, . . . , xq

y1, . . . , yq

training

Figure 1: Model extraction can be envisioned as active learning. A data owner, with the
help of a MLaaS server, trains a model f∗ on its data. The proprietary model is stored by
the server, which also answers to queries from users (i.e., yi = f∗(xi)). In a model extraction
attack, a dishonest user tries to exploit this interface to “steal” f∗ in the same way as a learner
uses answer from a machine-learning oracle in order to learn f∗.

extraction, and evaluates different defense strategies. Specifically, we observe
that $0.09 worth Amazon queries are needed to extract most halfspaces when
the MLaaS server does not deploy any defense, and $3.65 worth of queries are
required to learn a halfspace when it uses data-independent randomization. Fi-
nally, we discuss some open issues in Section 5, which provides avenue for future
work. Related work is discussed in Section 6, and we end the paper with some
concluding remarks.

2 Machine Learning
In this section, we give a brief overview of machine learning, and terminology
we use throughout the paper. In particular, we summarize the passive learning
framework in subsection 2.1, and focus on active learning algorithms in sub-
section 2.2. A review of the state-of-the-art of active learning algorithms is
needed to explicitly link model extraction to active learning and is presented in
Section 3.
2.1 Passive learning
In the standard, passive machine learning setting, the learner has access to a
large labeled dataset and uses it in its entirety to learn a predictive model from
a given class. Let X be an instance space, and Y be a set of labels. For example,
in object recognition, X can be the space of all images, and Y can be a set of
objects that we wish to detect in these images. We refer to a pair (x, y) ∈ X×Y
as a data-point or labeled instance (x is the instance, y is the label). Finally,
there is a class of functions F from X to Y called the hypothesis space that is
known in advance. The learner’s goal is to find a function f̂ ∈ F that is a good
predictor for the label y given the instance x, with (x, y) ∈ X×Y. To measure
how well f̂ predicts the labels, a loss function ℓ is used. Given a data-point
z = (x, y) ∈ X×Y, ℓ(f̂ , z) measures the “difference” between f̂(x) and the true
label y. When the label domain Y is finite (classification problem), the 0-1 loss

4

function is frequently used:

ℓ(f̂ , z) =
{

0, if f̂(x) = y

1, otherwise

If the label domain Y is continuous, one can use the square loss: ℓ(f̂ , z) =
(f̂(x)− y)2.

In the passive setting, the PAC (probably approximately correct) learning [66]
framework is predominantly used. Here, we assume that there is an underlying
distribution D on X × Y that describes the data; the learner has no direct
knowledge of D but has access to a set of training data D drawn from it. The
main goal in passive PAC learning is to use the labeled instances from D to
produce a hypothesis f̂ such that its expected loss with respect to the probability
distribution D is low. This is often measured through the generalization error
of the hypothesis f̂ , defined by

ErrD(f̂) = Ez∼D[ℓ(f̂ , z)] (1)

More precisely, we have the following definition.

Definition 1 (PAC passive learning [66]). An algorithm A is a PAC passive
learning algorithm for the hypothesis class F if the following holds for any D on
X ×Y and any ε, δ ∈ (0, 1): If A is given sA(ε, δ) i.i.d. data-points generated
by D, then A outputs f̂ ∈ F such that ErrD(f̂) ≤ minf∈F ErrD(f) + ε with
probability at least 1 − δ. We refer to sA(ε, δ) as the sample complexity of
algorithm A.

Remark 1 (Realizability assumption). In the general case, the labels are given
together with the instances, and the factor minf∈F ErrD(f) depends on the hy-
pothesis class. Machine learning literature refers to this as agnostic learning
or the non-separable case of PAC learning. However, in some applications, the
labels themselves can be described using a labeling function f∗ ∈ F . In this
case (known as realizable learning), minf∈F ErrD(f) = 0 and the distribution D
can be described by its marginal over X. A PAC passive learning algorithm A
in the realizable case takes sA(ε, δ) i.i.d. instances generated by D and the cor-
responding labels generated using f∗, and outputs f̂ ∈ F such that ErrD(f̂) ≤ ε
with probability at least 1− δ.

2.2 Active learning
In the passive setting, learning an accurate model (i.e. learning f̂ with low gen-
eralization error) requires a large number of data-points. Thus, the labeling
effort required to produce an accurate predictive model may be prohibitive. In
other words, the sample complexity of many learning algorithms grows rapidly
as ε → 0 (refer Example 1). This has spurred interest in learning algorithms
that can operate on a smaller set of labeled instances, leading to the emergence
of active learning. In active learning, the learning algorithm is allowed to select

5

a subset of unlabeled instances, query their corresponding labels from an anno-
tator (a.k.a oracle) and then use it to construct or update a model. How the
algorithm chooses the instances varies widely. However, the common underlying
idea is that by actively choosing the data-points used for training, the learning
algorithm can drastically reduce sample complexity.

Formally, an active learning algorithm is an interactive process between two
parties - the oracle O and the learner L. The only interaction allowed is through
queries - L chooses x ∈ X and sends it to O, who responds with y ∈ Y (i.e., the
oracle returns the label for the chosen unlabeled instance). This value of (x, y)
is then used by L to infer some information about the labeling procedure, and
to choose the next instance to query. Over many such interactions, L outputs
f̂ as a predictor for labels. We can use the generalization error (1) to evaluate
the accuracy of the output f̂ . However, depending on the query strategy chosen
by L, other types of error can be used.

There are two distinct scenarios for active learning: PAC active learning
and Query Synthesis (QS) active learning. In literature, QS active learning
is also known as Membership Query Learning, and we will use the two terms
synonymously.
2.2.1 PAC active learning
This scenario was introduced by Dasgupta in 2005 [21] in the realizable context
and then subsequently developed in following works (e.g., [5, 20, 32]). In this
scenario, the instances are sampled according to the marginal of D over X, and
the learner, after seeing them, decides whether to query for their labels or not.
Since the data-points seen by L come from the actual underlying distribution
D, the accuracy of the output hypothesis f̂ is measured using the generalization
error (1), as in the classic (i.e., passive) PAC learning.

There are two options to consider for sampling data-points. In stream-based
sampling (also called selective sampling) , the instances are sampled one at
a time, and the learner decides whether to query for the label or not on a
per-instance basis. Pool-based sampling assumes that all of the instances are
collected in a static pool S ⊆ X and then the learner chooses specific instances
in S and queries for their labels. Typically, instances are chosen by L in a
greedy fashion using a metric to evaluate all instances in the pool. This is not
possible in stream-based sampling, where L goes through the data sequentially,
and has to therefore make decisions to query individually. Pool-based sampling
is extensively studied since it has applications in many real-world problems, such
as text classification, information extraction, image classification and retrieval,
etc. [47]. Stream-based sampling represents scenarios where obtaining unlabeled
data-points is easy and cheap, but obtaining their labels is expensive (e.g.,
stream of data is collected by a sensor, but the labeling needs to be performed
by an expert).

Before describing query synthesis active learning, we wish to highlight the
advantage of PAC active learning over passive PAC learning (i.e. the reduced
sample complexity) for some hypothesis class through Example 1. Recall that
this advantage comes from the fact that an active learner is allowed to adaptively

6

fw(x) =
{
−1 if ⟨w, x⟩ < −1
+1 otherwise

R
−1 −1 −1 +1 +1 +1 +1 +1

w∗

Figure 2: Halfspace classification in dimension 1.

choose the data from which it learns, while a passive learning algorithm learns
from a static set of data-points.
Example 1 (PAC learning for halfspaces). Let Fd,HS be the hypothesis class of
d-dimensional halfspaces, used for binary classification. A function in fw ∈
Fd,HS is described by a normal vector w ∈ Rd (i.e., ||w||2 = 1) and is defined
by

fw(x) = sign(⟨w, x⟩) for any x ∈ Rd

where given two vectors a, b ∈ Rd, then their product is defined as ⟨a, b⟩ =∑d
i=1 aibi. Moreover, if x ∈ R, then sign(x) = 1 if x ≥ 0 and sign(x) = −1

otherwise. A classic result in passive PAC learning states that O(d
ε log(1

ε) +
1
ε log(1

δ)) data-points are needed to learn fw [66]. On the other hand, several
works propose active learning algorithms for Fd,HS with sample complexity1

Õ(d log(1
ε)) (under certain distributional assumptions). For example, if the

underlying distribution is log-concave, there exists an active learning algorithm
with sample complexity Õ(d log(1

ε)) [10, 11, 74]. This general reduction in the
sample complexity for Fd,HS is easy to infer when d = 1. In this case, the data-
points lie on the real line and their labels are a sequence of −1’s followed by a
sequence of +1’s. The goal is to discover a point w where the change from −1 to
+1 happens. PAC learning theory states that this can be achieved with Õ(1

ε)2

points i.i.d. sampled from D. On the other hand, an active learning algorithm
that uses a simple binary search can achieve the same task with O(log(1

ε))
queries [21] (refer Figure 2).

2.2.2 Query Synthesis (QS) active learning
In this scenario, the learner can request labels for any instance in the input
space X, including points that the learner generates de novo, independent of the
distribution D (e.g., L can ask for labels for those x that have zero-probability
of being sampled according to D). Query synthesis is reasonable for many
problems, but labeling such arbitrary instances can be awkward if the oracle is
a human annotator. Thus, this scenario better represents real-world applications
where the oracle is automated (e.g., results from synthetic experiments [38]).
Since the data-points are independent of the distribution, generalization error is

1The Õ notation ignores logarithmic factors and terms dependent on δ.
2More generally, Õ(d

ε
) points.

7

not an appropriate measure of accuracy of the hypothesis f̂ , and other types of
error are typically used. These new error formulations depend on the concrete
hypothesis class F considered. For example, if F is the class of boolean functions
from {0, 1}n to {0, 1}, then the uniform error is used. Assume that the oracle
O knows f∗ ∈ F and uses it as labeling function (realizable case), then the
uniform error of the hypothesis f̂ is defined as

Erru(f̂) = Pr
x∼{0,1}n

[f̂(x) ̸= f∗(x)]

where x is sampled uniformly at random from the instance space {0, 1}n. Recent
work [4,16], for the class of halfspaces Fd,HS (refer to Example 1) use geometric
error. Assume that the true labeling function used by the oracle is fw∗ , then
the geometric error of the hypothesis fw ∈ Fd,HS is defined as

Err2(fw) = ||w∗ − w||2

where || · ||2 is the 2-norm.

In both active learning scenarios (PAC and QS), the learner needs to evaluate
the “usefulness” of an unlabeled instance x, which can either be generated de
novo or sampled from the given distribution, in order to decide whether to
query the oracle for the corresponding label. In the state of the art, we can
find many ways of formulating such query strategies. Most of existing literature
presents strategies where efficient search through the hypothesis space is the
goal (refer the survey by Settles [59]). Another point of consideration for an
active learner L is to decide when to stop. This is essential as active learning is
geared at improving accuracy while being sensitive to new data acquisition cost
(i.e., reducing the query complexity). While one school of thought relies on the
stopping criteria based on the intrinsic measure of stability or self-confidence
within the learner, another believes that it is based on economic or other external
factors (refer [59, Section 6.7]).

Given this large variety within active learning, we enhance the standard
definition of a learning algorithm and propose the definition of an active learning
system, which is geared towards model extraction. Our definition is informed
by the MLaaS APIs that we investigated (more details are present in Appendix
A.1).

Definition 2 (Active learning system). Let F be a hypothesis class with in-
stance space X and label space Y. An active learning system for F is given
by two entities, the learner L and the oracle O, interacting via membership
queries: L sends to O an instance x ∈ X; O answers with a label y ∈ Y. We
indicate via the notation Of∗ the realizable case where O uses a specific labeling
function f∗ ∈ F , i.e. y = f∗(x). The behavior of L is described by the following
parameters:

1. Scenario: this is the rule that describes the generation of the input for
the querying process (i.e. which instances x ∈ X can be queried). In the

8

PAC scenario, the instances are sampled from the underlying distribution
D. In the query synthesis (QS) scenario, the instances are generated by
the learner L;

2. Query strategy: given a specific scenario, the query strategy is the algo-
rithm that adaptively decides if the label for a given instance xi is queried
for, given that the queries x1, . . . , xi−1 have been answered already. In the
query synthesis scenario, the query strategy also describes the procedure
for instance generation.

3. Stopping criteria: this is a set of considerations used by L to decide when
it must stop asking queries.

Any system (L,O) described as above is an active learning system for F if one
of the following holds:

- (PAC scenario) For any D on X×Y and any ε, δ ∈ (0, 1), if L is allowed
to interact with O using qL(ε, δ) queries, then L outputs f̂ ∈ F such that
ErrD(f̂) ≤ minf∈F ErrD(f) + ε with probability at least 1− δ.

- (QS scenario) Fix an error measure Err for the functions in F . For any
f∗ ∈ F , if L is allowed to interact with Of∗ using qL(ε, δ) queries, then L
outputs f̂ ∈ F such that Err(f̂) ≤ ε with probability at least 1− δ.

We refer to qL(ε, δ) as the query complexity of L.

As we will show in the following section (in particular, refer subsection 3.2),
the query synthesis scenario is more appropriate in casting model extraction
attack as active learning. Note that, other types queries have been studied in
literature. This includes the equivalence query [5]. Here the learner can verify
if a hypothesis is correct or not. We do not consider equivalence queries in our
definition because we did not see any of the MLaaS APIs support them.

3 Model Extraction
In subsection 3.1, we begin by formalizing the process of model extraction. We
then draw parallels between model extraction and active learning in subsec-
tion 3.2. We finally discuss possible defense strategies based on noisy answers
in subsection 3.3.
3.1 Model Extraction Definition
We begin by describing the operational ecosystem of model extraction attacks in
the context of MLaaS systems. An entity learns a private model f∗ from a public
class F , and provides it to the MLaaS server. The server provides a client-facing
query interface for accessing the model for prediction. For example, in the case of
logistic regression, the MLaaS server knows a model represented by parameters
a0, a1, · · · , ad. The client issues queries of the form x = (x[1], · · · , x[d]) ∈ Rd,
and the MLaaS server responds with 0 if (1 + e−a(x))−1 ≤ 0.5 and 1 otherwise,
with a(x) = a0 +

∑d
i=1 aix[i].

9

Model extraction is the process where an adversary exploits this interface to
learn more about the proprietary model f∗. The adversary can be interested in
defrauding the description of the model f∗ itself (i.e., stealing the parameters
ai as in a reverse engineering attack), or in obtaining an approximation of the
model, say f̂ ∈ F , that he can then use for free for the same task as the original
f∗ was intended for. To capture the different goals of an adversary, we say that
the attack is successful if the extracted model is “close enough” to f∗ according
to an error function on F that is context dependent. Since many existing
MLaaS providers operate in a pay-per-query regime, we use query complexity
as a measure of efficiency of such model extraction attacks.

Formally, consider the following experiment: an adversary A, who knows
the hypothesis class F , has oracle access to a proprietary model f∗ from F .
This can be thought of as A interacting with a server S that safely stores f∗.
The interaction has several rounds. In each round, A chooses an instance x
and sends it to S. The latter responds with f∗(x). After a few rounds, A
outputs a function f̂ that is the adversary’s candidate approximation of f∗; the
experiment considers f̂ a good approximation if its error with respect to the
true function f∗ held by the server is less then a fixed threshold ε. The error
function Err is defined a priori and fixed for the extraction experiment on the
hypothesis class F .

Experiment 1 (Extraction experiment). Given a hypothesis class F = {f :
X→ Y}, fix an error function Err : F → R. Let S be a MLaaS server with the
knowledge of a specific f∗ ∈ F , denoted by S(f∗). Let A be an adversary inter-
acting with S with a maximum budget of q queries. The extraction experiment
Expε

F (S(f∗),A, q) proceeds as follows

1. A is given a description of F and oracle access to f∗ through the query
interface of S. That is, if A sends x ∈ X to S, it gets back y = f∗(x).
After at most q queries, A eventually outputs f̂ ;

2. The output of the experiment is 1 if Err(f̂) ≤ ε. Otherwise the output is
0.

Informally, an adversary A is successful if with high probability the output of
the extraction experiment is 1 for a small value of ε and a fixed query budget
q. This means that A likely learns a good approximation of f∗ by only asking
q queries to the server. More precisely, we have the following definition.

Definition 3 (Extraction attack). Let F be a public hypothesis class and S an
MLaaS server as explained before. We say that an adversary A, which interacts
with S, implements an ε-extraction attack of complexity q and confidence γ
against the class F if

Pr[Expε
F (S(f∗),A, q) = 1] ≥ γ

for any f∗ ∈ F . The probability is over the randomness of A.

10

In other words, in Definition 3 the success probability of an adversary con-
strained by a fixed budget for queries is explicitly lower bounded by the quantity
γ.

Before discussing the connection between model extraction and active learn-
ing, we provide an example of a hypothesis class that is easy to extract.
Example 2 (Equation-solving attack for linear regression). Let Fd,R be the hy-
pothesis class of regression models from Rd to R. A function fa in this class
is described by d + 1 parameters a0, a1, . . . , ad from R and defined by: for any
x ∈ Rd,

fa(x) = a0 +
d∑

i=1
aixi .

Consider the adversary AES that queries x1, . . . , xd+1 (d+1 instances from Rd)
chosen in such a way that the set of vectors {(1, xi)}i=1,...,d+1 is linearly inde-
pendent in Rd+1. AES receives the corresponding d+1 labels, y1, . . . , yd+1, and
can therefore solve the linear system given by the equations fa(xi) = yi. Assume
that fa∗ is the function known by the MLaaS server (i.e., yi = fa∗(xi)). It is easy
to see that if we fix Err(fa) = ||a∗−a||1, then Pr[Exp0

Fd,R
(S(fa∗),AES , d + 1) =

1] = 1. That is, AES implements 0-extraction of complexity d + 1 and confi-
dence 1.

While our model operates in the black-box setting, we discuss other attack
models in more detail in Remark 2

3.2 Active Learning and Extraction
From the description presented in the Section 2, it is clear that model extraction
in the MLaaS system context closely resembles active learning. The survey of
active learning in subsection 2.2 contains a variety of algorithms and scenarios
which can be used to implement model extraction attacks (or to study its impos-
sibility). However, not all possible scenarios of active learning are interesting for
model extraction. We notice that in the case of model extraction, an adversary
A has no knowledge of the data distribution D. Additionally, such an adversary
is not restricted to only considering instances x ∼ D to query. For this rea-
son, we believe that query synthesis (QS) is the right active learning scenario
to investigate in order to draw a meaningful parallelism with model extraction.
Recall that the query synthesis is the only framework where the query inputs
can be generated de novo (i.e., they do not conform to a distribution).
Observation 1: Given a hypothesis class F and an error function Err, let
(L,O) be an active learning system for F in the QS scenario (Definition 2). If
the query complexity of L is qL(ε, δ), then there exists and adversary A that
implements ε-extraction with complexity qL(ε, δ) and confidence 1 − δ against
the class F .

The reasoning for this observation is as follows: Consider the adversary A
that is the learner L (i.e., A deploys the query strategy procedure and the
stopping criteria that describe L). This is possible because (L,O) is in the QS
scenario and L is independent of any underlying (unknown) distribution. Let

11

q = qL(ε, δ) and observe that

Pr[Expε
F (S(f∗),A, q) = 1] =

Pr[A outputs f̂ and Err(f̂) ≤ ε] =
Pr[L outputs f̂ and Err(f̂) ≤ ε] ≥ 1− δ

Our observation states that any active learning algorithm in the QS scenario
can be used to implement a model extraction attack. Therefore, in order to
study the security of a given hypothesis class in the MLaaS framework, we
can use known techniques and results from the active learning literature. Two
examples of this follow.
Example 3 (Decision tree extraction via QS active learning). Let Fn,BF denote
the set of boolean functions with domain {0, 1}n and range {−1, 1}. The reader
can think of −1 as 0 and +1 as 1. Using the range of {−1, +1} is very common
in the literature on learning boolean functions. An interesting subset of Fn,BF

is given by the functions that can be represented as a boolean decision tree. A
boolean decision tree T is a labeled binary tree, where each node v of the tree is
labeled by Lv ⊆ {1, · · · , n} and has two outgoing edges. Every leaf in this tree
is labeled either +1 or −1. Given an n-bit string x = (b1, · · · , bn), bi ∈ {0, 1}
as input, the decision tree defines the following computation: the computation
starts at the root of the tree T . When the computation arrives at an internal
node v we calculate the parity of

∑
i∈Lv

bi and go left if the parity is 0 and go
right otherwise. The value of the leaf that the computation ends up in is the
value of the function. We denote by Fm

n,BT the class of boolean decision trees
with n-bit input and m nodes. Kushilevitz and Mansour [43] present an active
learning algorithm for the class Fn,BF that works in the QS scenario. This
algorithm utilizes the uniform error to determine the stopping condition (refer
subsection 2.2). The authors claim that this algorithm has practical efficiency
when restricted to the classes Fm

n,BT ⊂ Fn,BF for any m. In particular, if the
active learner L of [43] interacts with the oracle OT ∗ where T ∗ ∈ Fm

n,BT , then
L learns g ∈ Fn,BF such that Prx∼{0,1}n [g(x) ̸= T ∗(x)] ≤ ε with probability at
least 1− δ using a number of queries polynomial in n, m, 1

ε and log(1
δ). Based

on Observation 1, this directly translates to the existence of an adversary that
implements ε-extraction with complexity polynomial in n, m, 1

ε and confidence
1− δ against the class Fm

n,BT .
Moreover, the algorithm of [43] can be extended to (a) boolean functions

of the form f : {0, 1, . . . , k − 1}n → {−1, +1} that can be computed by a
polynomial-size k-ary decision tree3, and (b) regression trees (i.e., the output is
a real value from [0, M]). In the second case, the running time of the learning
algorithm is polynomial in M (refer Section 6 of [43]). Note that the attack
model considered here is a stronger model than that considered by [65] because
the attacker/learner does not get any information about the internal path of
the decision tree (refer Remark 2).

3A k-ary decision tree is a tree in which each inner node v has k outgoing edges.

12

Example 4 (Halfspace extraction via QS active learning). Let Fd,HS be the hy-
potheses class of d-dimensional halfspaces defined in Example 1. Alabdulmohsin
et al. [4] present a spectral algorithm to learn a halfspace in the QS scenario
that, in practice, outperformed earlier active learning strategies in the PAC
scenario. They demonstrate, through several experiments that their algorithm
learns fw ∈ Fd,HS such that ∥w−w∗∥2 ≤ ε with approximately 2d log(1

ε) queries,
where fw∗ ∈ Fd,HS is the labeling function used by O. It follows from Observa-
tion 1 that an adversary utilizing this algorithm implements ε-extraction against
the class Fd,HS with complexity O(d log(1

ε)) and confidence 1. We validate the
practical efficacy of this attack in Section 4.
Remark 2 (Extraction with auxiliary information). Observe that we define model
extraction for only those MLaaS servers that return only the label value y for
a well-formed query x (i.e. in the oracle access setting). A weaker model (i.e.,
one where attacks are easier) considers the case of MLaaS servers responding to
a user’s query x even when x is incomplete (i.e. with missing features), and re-
turning the label y along with some auxiliary information. The work of Tramèr
et al. [65] proves that model extraction attacks in the presence of such “leaky
servers” are feasible and efficient (i.e. low query complexity) for many hypoth-
esis classes (e.g., logistic regression, multilayer perceptron, and decision trees).
In particular, they propose an equation solving attack [65, Section 4.1] that uses
the confidence values returned by the MLaaS server together with the labels
to steal the model parameters. For example, in the case of logistic regression,
the MLaaS server knows the parameters a0, a1, . . . , ad and responds to a query
x with the label y (y = 0 if (1 + e−a(x)) ≤ 0.5 and y = 1 otherwise) and the
value a(x) as confidence value for y. Clearly, the knowledge of the confidence
values allows an adversary to implement the same attack we describe in Exam-
ple 2 for linear regression models. In [65, Section 4.2], the authors describes a
path-finding attack that use the leaf/node identifier returned by the server, even
for incomplete queries, to steal a decision tree. These attacks are very efficient
(i.e., d+1 queries are needed to steal a d-dimensional logistic regression model);
however, their efficiency heavily relies on the presence of the various forms of
auxiliary information provided by the MLaaS server. While the work in [65]
performs preliminary exploration of attacks in the black-box setting [17, 46], it
does not consider more recent, and efficient algorithms in the QS scenario. Our
work explores this direction through a formalization of the model extraction
framework that enables understanding the possibility of extending/improving
the active learning attacks presented in [65]. Furthermore, having a better
understanding of model extraction attack and its unavoidable connection with
active learning is paramount for designing MLaaS systems that are resilient to
model extraction.

3.3 Defense Strategies
Our main observation is that model extraction in the context of MLaaS systems
described at the beginning of Section 3 (i.e., oracle access) is equivalent to QS
active learning. Therefore, any advancement in the area of QS active learning
directly translates to a new threat for MLaaS systems. In this section, we

13

discuss strategies that could be used to make the process of extraction more
difficult.We investigate the link between machine-learning in the noisy setting
and model extraction. The design of a good defense strategy is an open problem;
we believe this is an interesting direction for future work where the machine
learning and the security communities can fruitfully collaborate.

In this section, we assume that the MLaaS server S with the knowledge of
f∗, S(f∗), has the freedom to modify the prediction before forwarding it to
the client. More precisely, we assume that there exists a (possibly) randomized
procedure D that the server uses to compute the answer ỹ to a query x, and
returns that instead of f∗(x). We use the notation SD(f∗) to indicate that the
server S implements D to protect f∗. Clearly, the learner that interacts with
SD(f∗) can still try to learn a function f from the noisy answers from the server.
However, the added noise requires the process to make more queries, or could
produce a less accurate model than f .
3.3.1 Classification case
We focus on the binary classification problem where F is an hypothesis class
of functions of the form f : X → Y and Y is binary, but our argument can be
easily generalized to the multi-class setting.

First, in the following two remarks we recall two known results from the lit-
erature [33] that establish information theoretic bounds (i.e., the computational
cost is ignored) for the number of queries required to extract the model when
any defense is implemented. Let ν be the generalization error of the model f∗

known by the server SD and µ be the generalization error of the model f learned
by an adversary interacting with SD(f∗). Assume that the hypothesis class F
has VC dimension equal to d. Recall that The VC dimension of a hypothesis
class F is the largest number d such that there exists a subset X ⊂ X of size
d which can be shattered by F . A set X = {x1, . . . , xd} ⊂ X is said to be
shattered by F if |{(f(x1), f(x2), . . . , f(xd)) : f ∈ F}| = 2d.
Remark 3 (Passive learning). Assume that the adversary uses a passive learn-
ing algorithm to compute f , such as the Empirical Risk Minimization (ERM)
algorithm, where given a labeled training set {(X1, Y1), . . . (Xn, Yn)}, the ERM
algorithm outputs f̂ = arg minf∈F

1
n

∑n
i=1 1[f(Xi) ̸= Yi]. Then, the adversary

can learn f̂ with excess error ε (i.e., µ ≤ ν + ε) with Õ(ν+ε
ε2 d) examples. For

any algorithm, there is a distribution such that the algorithm needs at least
Ω̃(ν+ε

ε2 d) samples to achieve an excess error of ε.
Remark 4 (Active learning). Assume that the adversary uses an active learning
algorithm to compute f , such as the disagreement-based active learning algo-
rithm [33]. Then, the adversary achieves excess error ε with Õ(ν2

ε2 dθ) queries
(where θ is the disagreement coefficient [33]). For any active learning algorithm,
there is a distribution such that it takes at least Ω̃(ν2

ε2 d) queries to achieve an
excess error of ε.

Observe that any defense strategy D used by a server S to prevent the
extraction of a model f∗ can be seen as a randomized procedure that outputs
ỹ instead of f∗(x) with a given probability over the random coins of D. In the

14

discrete case, we represent this with the notation

ρD(f∗, x) = Pr[Yx ̸= f∗(x)], (2)

where Yx is the random variable that represents the answer of the server SD(f∗)
to the query x (e.g., ỹ ← Yx). When the function f∗ is fixed, we can consider
the supremum of the function ρD(f∗, x), which represents the upper bound for
the probability that an answer from SD(f∗) is wrong:

ρD(f∗) = sup
x∈X

ρD(f∗, x).

Before discussing potential defense approaches, we first present a general neg-
ative result. The following proposition states that that any candidate defense
D that correctly responds to a query with probability greater than or equal to
1
2 + c for some constant c > 0 for all instances can be easily broken. Indeed,
an adversary that repetitively queries the same instance x can figure out the
correct label f∗(x) by simply looking at the most frequent label that is returned
from SD(f∗). We prove that with this extraction strategy, the number of queries
required increases by only a logarithmic multiplicative factor.

Proposition 1. Let F be an hypothesis class used for classification and (L,O)
be an active learning system for F in the QS scenario with query complexity
q(ε, δ). For any D, randomized procedure for returning labels, such that there
exists f∗ ∈ F with ρD(f∗) < 1

2 , there exists an adversary that, interacting
with SD(f∗), can implement an ε-extraction attack with confidence 1 − 2δ and
complexity q = 8

(1−2ρD(f∗))2 q(ε, δ) ln q(ε,δ)
δ .

The proof of Proposition 1 can be found in Appendix A.2.1.
Proposition 1 can be used to discuss the following two different defense strate-
gies:

1. Data-independent randomization. Let F denote a hypothesis class that is
subject to an extraction attack using QS active learning. An intuitive defense for
F involves adding noise to the query output f∗(x) independent of the labeling
function f∗ and the input query x. In other words, ρD(f, x) = ρ for any x ∈ X,
f ∈ F , and ρ is a constant value in the interval (0, 1). It is easy to see that this
simple strategy cannot work. It follows from Proposition 1 that if ρ < 1

2 , then
D is not secure. On the other hand, if ρ ≥ 1

2 , then the server is useless since it
outputs an incorrect label with probability at least 1

2 .
Example 5 (Halfspace extraction under noise). For example, we know that ε-
extraction with any level of confidence can be implemented with complexity
q = O(d log(1

ε)) using QS active learning for the class Fd,HS i.e. for binary clas-
sification via halfspaces (refer Example 4). It follows from the earlier discussion
that any defense that flips labels with a constant flipping probability ρ does not
work. This defense approach is similar to the case of “noisy oracles” studied
extensively in the active learning literature [36, 37, 52]. For example, from the
machine-learning literature we know that if the flipping probability is exactly

15

ρ (ρ ≤ 1
2), the AVERAGE algorithm (similar to our Algorithm 1, defined in

Section 4) ε-extracts f∗ with Õ(d2

(1−2ρ)2 log 1
ε) labels [39]. Under bounded noise

where each label is flipped with probability at most ρ (ρ < 1
2), the AVERAGE

algorithm does not work anymore, but a modified Perceptron algorithm can
learn with Õ(d

(1−2ρ)2 log 1
ε) labels [72] in a stream-based active learning setting,

and a QS active learning algorithm proposed by Chen et al. [16] can also learn
with the same number of labels. An adversary implementing the Chen et al.
algorithm [16] is even more efficient than the adversary Ã defined in the proof
of Proposition 1 (i.e., the total number of queries only increases by a constant
multiplicative factor instead of ln q(ϵ, δ)). We validate the practical efficiency of
this attack in Section 4.

2. Data-dependent randomization. Based on the outcome of the earlier dis-
cussion, we believe that a defense that aims to protect a hypothesis class against
model extraction via QS active learning should implement data-dependent per-
turbation of the returned labels. That is, we are interested in a defense D
such that the probability ρD(f∗, x) depends on the query input x and the la-
beling function f∗. For example, given a class F that can be extracted using
an active learner L (in the QS scenario), if we consider a defense D such that
ρD(f∗, x) ≥ 1

2 for some instances, then the proof of Proposition 1 does not work
(the argument only works if there is a constant c > 0 such that ρD(f∗, x) ≤ 1

2−c

for all x) and the effectiveness of the adversary Ã is not guaranteed anymore4.
Example 6 (Halfspace extraction under noise). For the case of binary classifica-
tion via halfspaces, Alabdulmohsin et al. [3] design a system that follows this
strategy. They consider the class Fd,HS and design a learning rule that uses
training data to infer a distribution of models, as opposed to learning a single
model. To elaborate, the algorithm learns the mean µ and the covariance Σ
for a multivariate Gaussian distribution N (µ, Σ) on Fd,HS such that any model
drawn from N (µ, Σ) provides an accurate prediction. The problem of learning
such a distribution of classifiers is formulated as a convex-optimization problem,
which can be solved quite efficiently using existing solvers. During prediction,
when the label for a instance x is queried, a new w is drawn at random from
the learned distribution N (µ, Σ) and the label is computed as y = sign(⟨w, x⟩).
The authors show that this randomization method can mitigate the risk of re-
verse engineering without incurring any notable loss in predictive accuracy. In
particular, they use PAC active learning algorithms [10,17] (assuming that the
underlying distribution D is Gaussian) to learn an approximation ŵ from queries
answered in three different ways: (a) with their strategy, i.e. using a new model
for each query, (b) using a fixed model to compute all labels, and (c) using a
fixed model and adding independent noise to each label, i.e. y = sign(⟨w, x⟩+η)

4Intuitively, in the binary case if ρD(f∗, xi) ≥ 1
2 then the definition of yi performed by Ã

in step 2 (majority vote) is likely to be wrong. However, notice that this is not always the
case in the multiclass setting: For example, consider the case when the answer to query xi is
defined to be wrong with probability ≥ 1

2 and, when wrong, is sampled uniformly at random
among the k − 1 classes that are different to the true class f∗(x), then if k is large enough, yi

defined via the majority vote is likely to be still correct.

16

and η ← [−1, +1]. They show that the geometric error of ŵ with respect to
the true model is higher in the former setting (i.e. in (a)) than in the others.
On 15 different datasets from the UC Irvine repository [2], their strategy gives
typically an order of magnitude larger error. We empirically evaluate this de-
fense in the context of model extraction using QS active learning algorithms in
Section 4.
Continuous case: Generalizing Proposition 1 to the continuous case does not
seem straightforward, i.e. when the target model held by the MLaaS server is
a real-valued function f∗ : X→ R; A detailed discussion about the continuous
case appears in Appendix A.3.

4 Implementation and Evaluation
We carried out experiments to validate our claims that query synthesis active
learning can be used to successfully perform model extraction. Our experiments
are designed to answer the following three questions: (1) Is active learning prac-
tically useful in settings without any auxiliary information, such as confidence
values i.e. in an oracle access setting?, (2) Is active learning useful in scenar-
ios where the oracle is able to perturb the output i.e. in a data-independent
randomization setting?, and (3) Is active learning useful in scenarios where the
oracle is able to perform more subtle perturbations i.e. in a data-dependent
randomization setting?

To answer these questions, we focused on learning the hypothesis class of d-
dimensional half spaces. To perform model extraction, we implemented two QS
algorithms [4, 16] to learn an approximation w, and terminate execution when
||w∗ − w||2 ≤ ε. The metric we use to capture efficiency is query complexity.
To provide a monetary estimate of an attack, we borrow pricing information
from the online pricing scheme of Amazon i.e. $0.0001 per query (more details
are present in Table 2 in Appendix A.1). We considered alternative stopping
criteria, such as measuring the learned model’s stability over the N last it-
erations. Such a method resulted in comparable error and query complexity
(refer Appendix A.4.1 for detailed results). For our experiments, the halfspace
held by the server/oracle (i.e., the optimal hypothesis w∗) was learned using
Python’s scikit-learn library. All experiments were executed on a Ubuntu
16.04 server with 32 GB RAM, and an Intel i5-6600 CPU clocking 3.30GHz.
Our experiments suggest that:

1. QS active learning algorithms are efficient for model extraction, with low
query complexity and run-time. For the digits dataset (d = 64), the
dataset with the largest value of d which we evaluated on, the active
learning algorithm implemented required 900 queries to extract the half-
space with geometric error ε ≤ 10−4. This amounts to $0.09 worth of
queries.

2. QS active learning algorithms are also efficient when the oracle flips the
labels independently with constant probability ρ. This only moderately in-
creases the query complexity (for low values of ρ). For the digits dataset of

17

10 4 10 3 10 2

Geometric Error

100

200

300

400

500

600

700

800

900

Nu
m

be
r o

f q
ue

rie
s

$0.047

$0.07

$0.09
adult_income (d=14)
breast_cancer (d=30)

wine (d=13)
digits (d=64)

Figure 3: Number of queries needed for halfspace extraction using the version space approxi-
mation algorithm. Note that the asymptotic query complexity for this algorithm is O(d log 1

ε
).

This explains the increase in query complexity as a function of d.

input dimensionality d = 64, and a noise threshold ρ = 0.4, our algorithm
required 36546 queries (or $3.65) to extract the halfspace with geometric
error ε ≤ 10−4.

3. State-of-the-art QS algorithms fail to recover the model when the oracle
responds to queries using tailored model randomization techniques (refer
subsection 3.3, specifically the algorithm by Alabdulmohsin et al. [3]).
However, passive learning algorithms (refer Algorithm 1) are effective in
this setting.

4.1 Detailed Results
We begin by describing evaluation results for the aforementioned three ques-
tions. In each figure, we plot the price (i.e. $0.0001 per query) for the most
expensive attack we launch to serve as a baseline. We conclude by comparing
our approach with the algorithm proposed by Lowd and Meek [46].

Q1. Usefulness in an oracle access setting: We implemented Version
Space Approximation proposed by Alabdulmohsin et al. [4] in approximately 50
lines of MATLAB. This algorithm operates iteratively, based on the principles
of version space learning. A version space [49] is a hierarchical representation
of knowledge. It can also be thought of as the subset of hypotheses consistent
with the training examples. In each iteration, the algorithm first approximates a
version space, and then synthesizes an instance that reduces this approximated
version space quickly. The final query complexity for this algorithm is O(d log 1

ε).
Figure 3 plots the number of queries needed to extract a halfspace as a

function of termination criterion i.e. geometric error ε. As discussed earlier,
the query complexity is dependent on the dimensionality of the halfspace to be
extracted. Across all values of dimensionality d, observe that with the exponen-
tial decrease in error ε, the increase in query complexity is linear - often by a
small factor (1.3×−1.5×). The implemented query synthesis algorithm involves

18

solving a convex optimization problem to approximate the version space, an op-
eration that is potentially time consuming. However, based on several runs of
our experiment, we noticed that the algorithm always converges in < 2 minutes.

While the equation solving attack proposed by Tramèr et al. [65] requires
fewer queries, it also requires the actual value of the prediction output i.e.
⟨w∗, x⟩ as auxiliary information. On the other hand, extraction using query
synthesis does not rely on any auxiliary information returned by the MLaaS
server to increase its efficiency i.e. the only input needed for query synthesis-
based extraction attacks is sign(⟨w∗, x⟩).

Q2. Resilience to data-independent noise: An intuitive defense against
model extraction might be to flip the sign of the prediction output with indepen-
dent probability ρ i.e. if the output y ∈ {1,−1}, then Pr[y ̸= sign⟨w∗, x⟩] = ρ <
1
2 (refer subsection 3.3). This setting (i.e., noisy oracles) is extensively studied in
the machine learning community. Trivial solutions including repeated sampling
to obtain a batch where majority voting (determines the right label) can be em-
ployed; if the probability that the outcome of the vote is correct is represented
as 1−α, then the batch size needed for the voting procedure is k = O(log 1

α

|ρ−0.5|2)
i.e. there is an increase in query complexity by a (multiplicative) factor k, an
expensive proposition. While other solutions exist [51,71], we implemented the
dimension coupling framework proposed by Chen et al. [16] in approximately 150
lines of MATLAB. The dimension coupling framework reduces a d−dimensional
learning problem to d − 1 lower-dimensional sub-problems. It then appropri-
ately aggregates the results to produce a halfspace. This approach is resilient
to noise i.e. the oracle can flip the label with constant probability (known a
priori) ρ < 1

2 , and the algorithm will converge with probability 1−δ. The query
complexity for this algorithm is Õ(d (log 1

ε + log 1
δ)).

The results of our experiment are presented in Figure 4. The algorithm is
successful in extracting the halfspace for a variety of ρ values. The exact bound
is C(ρ)(d (log 1

ε + log 1
δ), where C(ρ) is a function of ρ that is approximately

O(ρ log3(1/ρ)
log2 2(1−ρ)). Thus, there is a multiplicative increase in the number of queries

with increase in ρ. This introduces a modest increase in complexity in compari-
son to the noise-free setting. While the increase in pricing is ≈ 40×, this results
in a worst case expenditure of ≈ $3.6 (see Figure 4(c)). The time (and num-
ber of queries) taken for convergence is proportional to ρ, ranging from 1 − 20
minutes for successful completion.

Q3. Resilience to data-dependent noise: As alluded to in subsection 3.3,
another defense against extraction involves learning a family of functions very
similar to w∗ such that they all provide accurate predictions with high prob-
ability. Proposed by Alabdulmohsin et al. [3], data-dependent randomization
enables the MLaaS server to sample a random function for each query i.e. for
each instance xi, the MLaaS server obtains a new wi ∼ N (µ, σ) and responds
with yi = sign(⟨wi, xi⟩). Thus, this approach can be thought of as flipping the
sign of the prediction output with probability ρD(w∗, xi) (see subsection 3.3).

In this algorithm, a separation parameter C determines how close the sam-

19

10 4 10 3 10 2

Geometric Error
0

1000

2000

3000

4000

5000

6000

Nu
m

be
r o

f q
ue

rie
s

$0.3166
$0.3793

$0.5968
=0
=0.1

=0.25
=0.4

(a) Adult Income

10 4 10 3 10 2

Geometric Error
0

2500

5000

7500

10000

12500

15000

Nu
m

be
r o

f q
ue

rie
s

$0.9123

$1.282

$1.596

=0
=0.1

=0.25
=0.4

(b) Breast Cancer

10 4 10 3 10 2

Geometric Error
0

5000

10000

15000

20000

25000

30000

35000

Nu
m

be
r o

f q
ue

rie
s

$2.2236

$2.9652

$3.6546

=0
=0.1

=0.25
=0.4

(c) Digits

10 4 10 3 10 2

Geometric Error
0

1000

2000

3000

4000

5000

Nu
m

be
r o

f q
ue

rie
s

$0.2768

$0.3799

$0.5112

=0
=0.1

=0.25
=0.4

(d) Wine

Figure 4: Number of queries needed for halfspace extraction using the dimension coupling
algorithm. Note that the asymptotic query complexity for this algorithm is Õ(d(log 1

ε
+log 1

δ
)).

This explains the increase in query complexity as a function of d.

ples from N (µ, σ) are; larger the value of C, closer each sample is (refer Section
4 in [3] for more details). We measure the value of ρD(w∗, xi) as a function of C
for those xi values generated by the dimension coupling algorithm. ρD(w∗, xi)
is estimated by (a) obtaining w1, · · · , wn ∼ N (µ, σ), for n = 1000, and using
them to classify xi to obtain y1 = sign(⟨w1, xi⟩), · · · , yn, and (b) obtaining the
percentage of the prediction outputs that is not equal to sign(⟨w∗, xi⟩). Our
hope was that if the value of max∀xi ρD(w∗, xi) < 1

2 , then an adversary similar
to Ã defined in Proposition 1 could be used to perform extraction.

Figure 5 suggests otherwise; the average value of ρD(w∗, xi) ≈ 1
2±γ for some

small γ > 0. Since any adversary will be unable to determine a priori the inputs
for which this value is greater than half, neither majority voting, nor the vanilla
dimension coupling framework will help extract the halfspace. We believe this is
the case for current state-of-the-art algorithms as the instances they synthesize
are "close" to the optimal halfspace. To validate this claim, we measured this
distance for both the algorithms [4, 16]. We observed that a majority of the
points are very close to the halfspace in both cases (see Figure 7 in Appendix
A.4.2 for more details).

Such forms of data-dependent randomization, however, are not secure against
traditional passive learning algorithms. Such an algorithm takes as input an es-
timated upper bound σ̂ for σ. The algorithm first draws Õ(d

ε2 max(1, dσ̂2))
instances from the d−dimensional unit sphere Sd−1 uniformly at random, and

20

10 2 100 102 104 106 108 1010

Separation Parameter C
0.480

0.485

0.490

0.495

0.500

0.505

0.510

0.515

0.520
Pr

ob
ab

ilit
y

adult_income
breast_cancer
mushroom

Figure 5: averageρD(w∗, xi) ≈ 1
2 ± γ; xi synthesized by the dimension coupling algorithm.

Algorithm 1 Passive Learning Algorithm that breaks [3]

1: Input: variance upper bound σ̂ ≥ 1√
d
, target error ε

2: m← (15π)2

ε2 d max(1, dσ̂2) log 2d
δ , l← 1

12dσ̂
3: Draw x1, x2, . . . , xm ∈ Sd−1 uniformly at random, and query their labels

y1, y2, . . . , ym

4: v ←
∑m

i=1 yixi

5: if ∥v∥ ≥ l then
6: Return w = v

∥v∥
7: else
8: Return fail
9: end if

21

3.5 3.0 2.5 2.0 1.5 1.0
log(Geometric Error)

3

4

5

6

7

8

lo
g(

Nu
m

be
r o

f q
ue

rie
s)

$25144.4656

$2514.4466

$251.4447

$25.1445

$251.4447

$25.1445

$2.5144

$0.2514

adult_income (d=14)
breast_cancer (d=30)
mushrooms (d=22)

Figure 6: log(Number of queries) needed for halfspace extraction (protected by the defense
strategy proposed in [3]) using Algorithm 1. Note that the asymptotic query complexity for
this algorithm is O(1

ε2 d max(1, dσ̂2) log 2d
δ

). This explains the increase in query complexity as
a function of d and ε. The large value of Cd

ε2 dominates the query complexity in this algorithm.
The price is plotted for the attack on the breast cancer dataset.

proceeds to have them labeled - by the oracle defined in [3] in this case. It then
computes the average v =

∑m
i=1 yixi. w = v

∥v∥ , the direction of v, is the algo-
rithm’s estimate of the classifier w∗, and the length of v is used as an indicator
of whether the algorithm succeeds: if this estimated upper bound is correct (i.e.
σ ≤ σ̂), then with high probability, ∥w − w∗∥ ≤ ε; otherwise it outputs fail,
indicating the variance bound σ̂ is incorrect. In such situations, we can reduce
σ̂ and try again. A detailed proof of the algorithm’s guarantees is available in
Appendix A.2.2.

While the asymptotic bounds for Algorithm 1 are larger than the active
learning algorithms discussed thus far, the constant C = (15π)2 can be reduced
by a multiplicative factor to reduce the total number of queries used i.e. C

100
or C

1000 etc. In Figure 6, we observe that extracting halfspaces with geometric
error ε ≈ 10−1 requires ≤ 104 queries. While achieving ε ≈ 10−3 requires ≈ 107

queries, the algorithm can be executed in parallel enabling faster run-times.

Lowd and Meek Baseline: The algorithm proposed by Lowd and Meek [46]
can also be used to extract a halfspace. However, note that this algorithm can
only operate in a noise-free setting. This is a severe limitation if a setting where
the MLaaS employs defense strategies. From Table 4.1, one can observe that
the number of queries required to extract the halfspace is more than the query
synthesis algorithms we implemented. For example, consider the breast cancer
dataset. The version space algorithm is able to extract a halfspace at a distance
of ε ≤ 10−4 with 400 queries (or $0.04). However, the algorithm proposed by
Lowd and Meek takes 970 queries for extraction. Additionally, the geometric
error of the extracted halfspaces are also higher than those extracted in the
query synthesis case. The query complexity of the Lowd and Meek algorithm

22

Dataset Queries ε Slowdown
Wine 189 0.071 1.67×
Breast Cancer 940 0.162 3.19×
Digits 1879 0.665 2.62×

Table 1: Number of queries and geometric error observed after extracting halfspaces using
the line search procedure proposed by Lowd and Meek. Observe that the geometric error in
some cases is large. Slowdown indicates the ratio between number of queries taken for the
Lowd and Meek procedure and those taken by the DC2 algorithm for ε = 0.01, and ρ = 0.

is O(d log(1
aε)), where a = mini=1,··· ,d

|w∗
i |

∥w∗∥ (w∗
i is the i-th coordinate of the

groundtruth classifier w∗). This is worse than the O(d log(1
ε)) query complexity

of classical active learning algorithms. While this algorithm is not tailored to
minimize the geometric error, we believe that these results further validate our
claim that query synthesis active learning is a promising direction to explore.

5 Discussion
We begin our discussion by highlighting algorithms an adversary could use if
the assumptions made about the operational ecosystem are relaxed. Then, we
discuss strategies that can potentially be used to make the process of extraction
more difficult, and shortcomings in our approach.
5.1 Varying The Adversary’s Capabilities
The operational ecosystem in this work is one where the adversary is able to
synthesize data-points de novo to extract a model through oracle access. In
this section, we discuss other algorithms an adversary could use if this assump-
tion is relaxed. We begin by discussing other models an adversary can learn
in the query synthesis regime, and move on to discussing algorithms in other
approaches.
Equivalence queries. In her seminal work, Angluin [5] proposes a learning algo-
rithm, L∗, to correctly learn a regular set from any minimally adequate teacher,
in polynomial time. For this to work, however, equivalence queries are also
needed along with membership queries. Should MLaaS servers provide responses
to such equivalence queries, different extraction attacks could be devised. To
learn linear decision boundaries, Wang et al. [69] first synthesize an instance
close to the decision boundary using labeled data, and then select the real in-
stance closest to the synthesized one as a query. Similarly, Awasthi et al. [8]
study learning algorithms that make queries that are close to examples gener-
ated from the data distribution. These attacks require the adversary to have
access to some subset of the original training data. In other domains, program
synthesis using input-output example pairs [24, 31, 56, 68] also follows a similar
principle.

If the adversary had access to a subset of the training data, or had prior
knowledge of the distribution from which this data was drawn from, it could
launch a different set of attacks based on the algorithms discussed below.
Stream-based selective sampling. Atlas et al. [7] propose selective sampling as

23

a form of directed search (similar to Mitchell [48]) that can greatly increase
the ability of a connectionist network (i.e. power system security analysis in
their paper) to generalize accurately. Dagan et al. [19] propose a method for
training probabilistic classifiers by choosing those examples from a stream that
are more informative. Lindenbaum et al. [44] present a lookahead algorithm for
selective sampling of examples for nearest neighbor classifiers. The algorithm
looks for the example with the highest utility, taking its effect on the resulting
classifier into account. Another important application of selective learning was
for feature selection [45], an important preprocessing step. Other applications of
stream-based selective sampling include sensor scheduling [40], learning ranking
functions for information retrieval [73], and in word sense disambiguation [30].
Pool-based sampling. Dasgupta [22] surveys active learning in the non-separable
case, with a special focus on statistical learning theory. He claims that in this
setting, AL algorithms usually follow one of the following two strategies - (i)
Efficient search in the hypothesis spaces (as in the algorithm proposed by Chen
et al. [16], or by Cohn et al. [17]), or (ii) Exploiting clusters in the data (as
in the algorithm proposed by Dasgupta et al. [23]). The latter option can be
used to learn more complex models, such as decision trees. As the ideal halving
algorithm is difficult to implement in practice, pool-based approximations are
used instead such as uncertainty sampling and the query-by-committee (QBC)
algorithm [14, 29, 63]. Unfortunately, such approximation methods are only
guaranteed to work well if the number of unlabeled examples (i.e. pool size)
grows exponentially fast with each iteration. Otherwise, such heuristics become
crude approximations and they can perform quite poorly.
5.2 Complex Models
PAC active learning strategies have proven effective in learning DNNs. The
work of Sener et al. [58] selects the most representative points from a sample of
the training distribution to learn the DNN. Papernot et al. [53] employ substi-
tute model training - a procedure where a small training subset is strategically
augmented and used to train a shadow model that resembles the model being
attacked. Note that the prior approaches rely on some additional information,
such as a subset of the training data.

Active learning algorithms considered in this paper work in an iterative
fashion. Let H be the entire hypothesis class. At time time t ≥ 0 let the set
of possible hypothesis be Ht ⊆ H. Usually an active-learning algorithm issues
a query at time t and updates the possible set of hypothesis to Ht+1, which is
a subset of Ht. Once the size of Ht is “small” the algorithm stops. Analyzing
the effect of a query on possible set of hypothesis is very complicated in the
context of complex models, such as DNNs. We believe this is a very important
and interesting direction for future work.
5.3 Model Transferability
Most work in active learning has assumed that the correct hypothesis space
for the task is already known i.e. if the model being learned is for logistic
regression, or is a neural network and so on. In such situations, observe that the

24

labeled data being used is biased, in that it is implicitly tied to the underlying
hypothesis. Thus, it can become problematic if one wishes to re-use the labeled
data chosen to learn another, different hypothesis space. This leads us to model
transferability5, a less studied form of defense where the oracle responds to any
query with the prediction output from an entirely different hypothesis class. For
example, imagine if a learner tries to learn a halfspace, but the teacher performs
prediction using a boolean decision tree. Initial work in this space includes that
of Shi et al. [60], where an adversary can steal a linear separator by learning
input-output relations using a deep neural network. However, the performance
of query synthesis active learning in such ecosystems is unclear.
5.4 Limitations
We stress that these limitations are not a function of our specific approach, and
stem from the theory of active learning. Specifically: (1) As noted by Das-
gupta [21], the label complexity of PAC active learning depends heavily on the
specific target hypothesis, and can range from O(log 1

ε) to Ω(1
ε). Similar results

have been obtained by others [34, 50]. This suggests that for some hypotheses
classes, the query complexity of active learning algorithms is as high as that in
the passive setting. (2) Some query synthesis algorithms assume that there is
some labeled data to bootstrap the system. However, this may not always be
true, and randomly generating these labeled points may adversely impact the
performance of the algorithm. (3) For our particular implementation, the algo-
rithms proposed rely on the geometric error between the optimal and learned
halfspaces. Oftentimes, however, there is no direct correlation between this geo-
metric error and the generalization error used to measure the model’s goodness.

6 Related Work
Machine learning algorithms and systems are optimized for performance. Lit-
tle attention is paid to the security and privacy risks of these systems and
algorithms. Our work is motivated by the following attacks against machine
learning.
1. Causative Attacks: These attacks are primarily geared at poisoning the train-
ing data used for learning, such that the classifier produced performs erroneously
during test time. These include: (a) mislabeling the training data, (b) changing
rewards in the case of reinforcement learning, or (c) modifying the sampling
mechanism (to add some bias) such that it does not reflect the true underlying
distribution in the case of unsupervised learning [55]. The work of Papernot
et al. [54] modify input features resulting in misclassification by Deep Neural
Networks.
2. Evasion Attacks: Once the algorithm has trained successfully, these forms
of attacks provide tailored inputs such that the output is erroneous. These
noisy inputs often preserves the semantics of the original inputs, are human
imperceptible, or are physically realizable. The well studied area of adversarial
examples is an instantiation of such an attack. Moreover, evasion attacks can

5A special case of agnostic active learning [9].

25

also be even black-box i.e. the attacker needn’t know the model. This is because
an adversarial example optimized for one model is highly likely to be effective for
other models. This concept, known as transferability, was introduced by Carlini
et al. [15]. Notable works in this space include [12,25,27,41,42,53,64,70]
3. Exploratory Attacks: These forms of attacks are the primary focus of this
work, and are geared at learning intrinsics about the algorithm used for training.
These intrinsics can include learning model parameters, hyperparameters, or
training data. Typically, these forms of attacks fall in two categories - model
inversion, or model extraction. In the first class, Fredrikson et al. [28] show
that an attacker can learn sensitive information about the dataset used to train
a model, given access to side-channel information about the dataset. In the
second class, the work of Tramer et al. [65] provides attacks to learn parameters
of a model hosted on the cloud, through a query interface. Termed membership
inference, Shokri et al. [61] learn the training data used for machine learning by
training their own inference models. Wang et al. [67] propose attacks to learn
a model’s hyperparameters.

7 Conclusions
In this paper, we formalize model extraction in the context of Machine-Learning-
as-a-Service (MLaaS) servers that return only prediction values (i.e., oracle
access setting), and we study its relation with query synthesis active learning
(Observation 1). Thus, we are able to implement efficient attacks to the class
of halfspace models used for binary classification (Section 4). While our ex-
periments focus on the class of halfspace models, we believe that extraction via
active learning can be extended to multiclass and non-linear models such as deep
neural networks, random forests etc. We also begin exploring possible defense
approaches (subsection 3.3). To the best of our knowledge, this is the first work
to formalize security in the context of MLaaS systems. We believe this is a fun-
damental first step in designing more secure MLaaS systems. Finally, we suggest
that data-dependent randomization (e.g., model randomization as in [3]) is the
most promising direction to follow in order to design effective defenses.

References
[1] https://www.theregister.co.uk/2017/12/18/black_box_ai_attack/,

2017.

[2] https://archive.ics.uci.edu/ml/datasets.html, 2018.

[3] Ibrahim M. Alabdulmohsin, Xin Gao, and Xiangliang Zhang. Adding ro-
bustness to support vector machines against adversarial reverse engineer-
ing. In Proceedings of the 23rd ACM International Conference on Confer-
ence on Information and Knowledge Management, CIKM 2014, Shanghai,
China, November 3-7, 2014, pages 231–240, 2014.

[4] Ibrahim M Alabdulmohsin, Xin Gao, and Xiangliang Zhang. Efficient ac-
tive learning of halfspaces via query synthesis. In AAAI, pages 2483–2489,
2015.

26

https://www.theregister.co.uk/2017/12/18/black_box_ai_attack/
https://archive.ics.uci.edu/ml/datasets.html

[5] Dana Angluin. Learning regular sets from queries and counterexamples.
Information and computation, 75(2):87–106, 1987.

[6] Giuseppe Ateniese, Luigi V. Mancini, Angelo Spognardi, Antonio Vil-
lani, Domenico Vitali, and Giovanni Felici. Hacking smart machines with
smarter ones: How to extract meaningful data from machine learning clas-
sifiers. IJSN, 10(3):137–150, 2015.

[7] Les E Atlas, David A Cohn, and Richard E Ladner. Training connection-
ist networks with queries and selective sampling. In Advances in neural
information processing systems, pages 566–573, 1990.

[8] Pranjal Awasthi, Vitaly Feldman, and Varun Kanade. Learning using local
membership queries. In Conference on Learning Theory, pages 398–431,
2013.

[9] Maria-Florina Balcan, Alina Beygelzimer, and John Langford. Agnostic
active learning. Journal of Computer and System Sciences, 75(1):78–89,
2009.

[10] Maria-Florina Balcan, Andrei Z. Broder, and Tong Zhang. Margin based
active learning. In Learning Theory, 20th Annual Conference on Learning
Theory, COLT 2007, San Diego, CA, USA, June 13-15, 2007, Proceedings,
pages 35–50, 2007.

[11] Maria-Florina Balcan and Philip M. Long. Active and passive learning of
linear separators under log-concave distributions. In COLT 2013 - The
26th Annual Conference on Learning Theory, June 12-14, 2013, Princeton
University, NJ, USA, pages 288–316, 2013.

[12] Arjun Nitin Bhagoji, Warren He, Bo Li, and Dawn Song. Black-box attacks
on deep neural networks via gradient estimation. 2018.

[13] Wieland Brendel, Jonas Rauber, and Matthias Bethge. Decision-based
adversarial attacks: Reliable attacks against black-box machine learning
models. arXiv preprint arXiv:1712.04248, 2017.

[14] Klaus Brinker. Incorporating diversity in active learning with support vec-
tor machines. In Proceedings of the 20th International Conference on Ma-
chine Learning (ICML-03), pages 59–66, 2003.

[15] Nicholas Carlini and David Wagner. Towards evaluating the robustness of
neural networks. In Security and Privacy (SP), 2017 IEEE Symposium on,
pages 39–57. IEEE, 2017.

[16] Lin Chen, Seyed Hamed Hassani, and Amin Karbasi. Near-optimal active
learning of halfspaces via query synthesis in the noisy setting. In AAAI,
pages 1798–1804, 2017.

27

[17] David Cohn, Les Atlas, and Richard Ladner. Improving generalization with
active learning. Machine learning, 15(2):201–221, 1994.

[18] Hsu D. and Sabato S. Heavy-tailed regression with a generalized median-
of-means. In International Conference on Machine Learning (ICML), 2014.

[19] Ido Dagan and Sean P Engelson. Committee-based sampling for training
probabilistic classifiers. In Proceedings of the Twelfth International Confer-
ence on Machine Learning, pages 150–157. The Morgan Kaufmann series
in machine learning,(San Francisco, CA, USA), 1995.

[20] S. Dasgupta, D. Hsu, and C. Monteleoni. A general agnostic active learning
algorithm. In NIPS, 2007.

[21] Sanjoy Dasgupta. Coarse sample complexity bounds for active learning.
In Advances in Neural Information Processing Systems 18 [Neural Infor-
mation Processing Systems, NIPS 2005, December 5-8, 2005, Vancouver,
British Columbia, Canada], pages 235–242, 2005.

[22] Sanjoy Dasgupta. Two faces of active learning. Theoretical computer sci-
ence, 412(19):1767–1781, 2011.

[23] Sanjoy Dasgupta, Daniel J Hsu, and Claire Monteleoni. A general agnostic
active learning algorithm. In Advances in neural information processing
systems, pages 353–360, 2008.

[24] Dana Drachsler-Cohen, Sharon Shoham, and Eran Yahav. Synthesis with
abstract examples. In International Conference on Computer Aided Veri-
fication, pages 254–278. Springer, 2017.

[25] Gamaleldin F Elsayed, Shreya Shankar, Brian Cheung, Nicolas Paper-
not, Alex Kurakin, Ian Goodfellow, and Jascha Sohl-Dickstein. Adver-
sarial examples that fool both human and computer vision. arXiv preprint
arXiv:1802.08195, 2018.

[26] Chaudhuri K. et al. Convergence rates of active learning for maximum like-
lihood estimation. In Advances in Neural Information Processing Systems,
2015.

[27] Ivan Evtimov, Kevin Eykholt, Earlence Fernandes, Tadayoshi Kohno,
Bo Li, Atul Prakash, Amir Rahmati, and Dawn Song. Robust physical-
world attacks on deep learning models. arXiv preprint arXiv:1707.08945,
1, 2017.

[28] Matthew Fredrikson, Eric Lantz, Somesh Jha, Simon Lin, David Page,
and Thomas Ristenpart. Privacy in pharmacogenetics: An end-to-end case
study of personalized warfarin dosing. In USENIX Security Symposium,
pages 17–32, 2014.

28

[29] Yoav Freund, H Sebastian Seung, Eli Shamir, and Naftali Tishby. Selec-
tive sampling using the query by committee algorithm. Machine learning,
28(2):133–168, 1997.

[30] Atsushi Fujii, Takenobu Tokunaga, Kentaro Inui, and Hozumi Tanaka.
Selective sampling for example-based word sense disambiguation. Compu-
tational Linguistics, 24(4):573–597, 1998.

[31] Sumit Gulwani. Synthesis from examples: Interaction models and algo-
rithms. In Symbolic and Numeric Algorithms for Scientific Computing
(SYNASC), 2012 14th International Symposium on, pages 8–14. IEEE,
2012.

[32] S. Hanneke. A bound on the label complexity of agnostic active learning.
In ICML, 2007.

[33] Steve Hanneke. Theory of disagreement-based active learning. Foundations
and Trends in Machine Learning, 7(2-3):131–309, 2014.

[34] Tibor Hegedűs. Generalized teaching dimensions and the query complexity
of learning. In Proceedings of the eighth annual conference on Computa-
tional learning theory, pages 108–117. ACM, 1995.

[35] Ling Huang, Anthony D. Joseph, Blaine Nelson, Benjamin I. P. Rubinstein,
and J. D. Tygar. Adversarial machine learning. In Proceedings of the
4th ACM Workshop on Security and Artificial Intelligence, AISec 2011,
Chicago, IL, USA, October 21, 2011, pages 43–58, 2011.

[36] Matti Kääriäinen. Active learning in the non-realizable case. In Algorithmic
Learning Theory, 17th International Conference, ALT 2006, Barcelona,
Spain, October 7-10, 2006, Proceedings, pages 63–77, 2006.

[37] Richard M. Karp and Robert Kleinberg. Noisy binary search and its appli-
cations. In Proceedings of the Eighteenth Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA 2007, New Orleans, Louisiana, USA, Jan-
uary 7-9, 2007, pages 881–890, 2007.

[38] Ross D King, Jem Rowland, Stephen G Oliver, Michael Young, Wayne
Aubrey, Emma Byrne, Maria Liakata, Magdalena Markham, Pinar Pir,
Larisa N Soldatova, et al. The automation of science. Science,
324(5923):85–89, 2009.

[39] Adam R. Klivans and Pravesh Kothari. Embedding hard learning prob-
lems into gaussian space. In Approximation, Randomization, and Combi-
natorial Optimization. Algorithms and Techniques, APPROX/RANDOM
2014, September 4-6, 2014, Barcelona, Spain, pages 793–809, 2014.

[40] Vikram Krishnamurthy. Algorithms for optimal scheduling and manage-
ment of hidden markov model sensors. IEEE Transactions on Signal Pro-
cessing, 50(6):1382–1397, 2002.

29

[41] Alex Kurakin, Dan Boneh, Florian Tramèr, Ian Goodfellow, Nicolas Pa-
pernot, and Patrick McDaniel. Ensemble adversarial training: Attacks and
defenses. 2018.

[42] Alexey Kurakin, Ian Goodfellow, and Samy Bengio. Adversarial machine
learning at scale. arXiv preprint arXiv:1611.01236, 2016.

[43] Eyal Kushilevitz and Yishay Mansour. Learning decision trees using the
fourier spectrum. SIAM J. Comput., 22(6):1331–1348, 1993.

[44] Michael Lindenbaum, Shaul Markovitch, and Dmitry Rusakov. Selective
sampling for nearest neighbor classifiers. In AAAI/IAAI, pages 366–371.
Citeseer, 1999.

[45] Huan Liu, Hiroshi Motoda, and Lei Yu. A selective sampling approach to
active feature selection. Artificial Intelligence, 159(1-2):49–74, 2004.

[46] Daniel Lowd and Christopher Meek. Adversarial learning. In Proceedings of
the Eleventh ACM SIGKDD International Conference on Knowledge Dis-
covery and Data Mining, Chicago, Illinois, USA, August 21-24, 2005, pages
641–647, 2005.

[47] Andrew McCallum and Kamal Nigam. Employing EM and pool-based
active learning for text classification. In Proceedings of the Fifteenth In-
ternational Conference on Machine Learning, Madison, Wisconsin, USA,
July 24-27, 1998, pages 350–358, 1998.

[48] Tom M Mitchell. Generalization as search. Artificial intelligence, 18(2):203–
226, 1982.

[49] Tom Michael Mitchell. Version spaces: an approach to concept learning.
Technical report, STANFORD UNIV CALIF DEPT OF COMPUTER SCI-
ENCE, 1978.

[50] Mohammad Naghshvar, Tara Javidi, and Kamalika Chaudhuri. Noisy
bayesian active learning. In Communication, Control, and Computing
(Allerton), 2012 50th Annual Allerton Conference on, pages 1626–1633.
IEEE, 2012.

[51] Robert Nowak. Noisy generalized binary search. In Advances in neural
information processing systems, pages 1366–1374, 2009.

[52] Robert D. Nowak. The geometry of generalized binary search. IEEE Trans.
Information Theory, 57(12):7893–7906, 2011.

[53] Nicolas Papernot, Patrick McDaniel, Ian Goodfellow, Somesh Jha,
Z Berkay Celik, and Ananthram Swami. Practical black-box attacks against
machine learning. In Proceedings of the 2017 ACM on Asia Conference on
Computer and Communications Security, pages 506–519. ACM, 2017.

30

[54] Nicolas Papernot, Patrick McDaniel, Somesh Jha, Matt Fredrikson,
Z Berkay Celik, and Ananthram Swami. The limitations of deep learning
in adversarial settings. In Security and Privacy (EuroS&P), 2016 IEEE
European Symposium on, pages 372–387. IEEE, 2016.

[55] Nicolas Papernot, Patrick McDaniel, Arunesh Sinha, and Michael Wellman.
Towards the science of security and privacy in machine learning. arXiv
preprint arXiv:1611.03814, 2016.

[56] Hila Peleg, Shachar Itzhaky, and Sharon Shoham. Abstraction-based in-
teraction model for synthesis. In International Conference on Verifica-
tion, Model Checking, and Abstract Interpretation, pages 382–405. Springer,
2018.

[57] Sabato S. and Munos R. Active regression by stratification. In Advances
in Neural Information Processing Systems (NIPS), 2014.

[58] Ozan Sener and Silvio Savarese. Active learning for convolutional neural
networks: A core-set approach. 2018.

[59] B Settles. Active learning literature survey univ. wisconsin-madison, madi-
son, wi, 2009. Technical report, CS Tech. Rep. 1648.

[60] Yi Shi, Yalin Sagduyu, and Alexander Grushin. How to steal a machine
learning classifier with deep learning. In Technologies for Homeland Se-
curity (HST), 2017 IEEE International Symposium on, pages 1–5. IEEE,
2017.

[61] Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov.
Membership inference attacks against machine learning models. In Se-
curity and Privacy (SP), 2017 IEEE Symposium on, pages 3–18. IEEE,
2017.

[62] Nedim Srndic and Pavel Laskov. Practical evasion of a learning-based
classifier: A case study. In 2014 IEEE Symposium on Security and Privacy,
SP 2014, Berkeley, CA, USA, May 18-21, 2014, pages 197–211, 2014.

[63] Simon Tong and Daphne Koller. Support vector machine active learning
with applications to text classification. Journal of machine learning re-
search, 2(Nov):45–66, 2001.

[64] Florian Tramèr, Nicolas Papernot, Ian Goodfellow, Dan Boneh, and Patrick
McDaniel. The space of transferable adversarial examples. arXiv preprint
arXiv:1704.03453, 2017.

[65] Florian Tramèr, Fan Zhang, Ari Juels, Michael K. Reiter, and Thomas
Ristenpart. Stealing machine learning models via prediction apis. In 25th
USENIX Security Symposium, USENIX Security 16, Austin, TX, USA,
August 10-12, 2016., pages 601–618, 2016.

31

[66] Leslie G Valiant. A theory of the learnable. Communications of the ACM,
27(11):1134–1142, 1984.

[67] Binghui Wang and Neil Zhenqiang Gong. Stealing hyperparameters in
machine learning. arXiv preprint arXiv:1802.05351, 2018.

[68] Chenglong Wang, Alvin Cheung, and Rastislav Bodik. Interactive query
synthesis from input-output examples. In Proceedings of the 2017 ACM
International Conference on Management of Data, pages 1631–1634. ACM,
2017.

[69] Liantao Wang, Xuelei Hu, Bo Yuan, and Jianfeng Lu. Active learning via
query synthesis and nearest neighbour search. Neurocomputing, 147:426–
434, 2015.

[70] David Warde-Farley and Ian Goodfellow. 11 adversarial perturbations of
deep neural networks. Perturbations, Optimization, and Statistics, page
311, 2016.

[71] Songbai Yan, Kamalika Chaudhuri, and Tara Javidi. Active learning from
imperfect labelers. In Advances in Neural Information Processing Systems,
pages 2128–2136, 2016.

[72] Songbai Yan and Chicheng Zhang. Revisiting perceptron: Efficient and
label-optimal learning of halfspaces. In Advances in Neural Information
Processing Systems 30: Annual Conference on Neural Information Pro-
cessing Systems 2017, 4-9 December 2017, Long Beach, CA, USA, pages
1056–1066, 2017.

[73] Hwanjo Yu. Svm selective sampling for ranking with application to data
retrieval. In Proceedings of the eleventh ACM SIGKDD international con-
ference on Knowledge discovery in data mining, pages 354–363. ACM, 2005.

[74] Chicheng Zhang and Kamalika Chaudhuri. Beyond disagreement-based
agnostic active learning. In Advances in Neural Information Processing
Systems, pages 442–450, 2014.

A Appendix
A.1 Salient Features Of MLaaS Providers
We present salient featurs of popular MLaaS providers in Table 2. Note that
the pricing in the batch setting is for every 1000 queries predicted, while the
pricing in the online setting is per query. Observe that all these providers
accept queries in the form of membership queries, but there exists no notion of
equivalence queries.

32

Google Amazon Microsoft
PRICING
• Batch $0.093∗ $0.1 $0.5
• Online $0.056∗ $0.0001 $0.0005

MODELS
• DNNs ✓ ✗ ✓

• Regression ✓ ✓ ✓

• Decision trees ✓ ✗ ✓

• Random forests ✓ ✗ ✓

• Binary & n-ary ✓ ✓ ✓

classification
QUERY TYPES
• Equivalence ✗ ✗ ✗

• Membership ✓ ✓ ✓

Table 2: Salient features of popular MLaaS providers. ∗Google’s pricing model is per node
per hour.

In Table 3, we summarize the auxiliary information shared by MLaaS providers
in the status quo. Note that some of this auxiliary information may not be re-
quired for all use-cases.

Models Google Amazon Microsoft
• DNNs Confidence

Score
✗ Confidence

Score
• Regression Confidence

Score
Confidence
Score

Confidence
Score

• Decision trees Leaf Node ✗ Leaf Node
• Random forests Leaf Node ✗ Leaf Node
• Binary & n-ary Confidence

Score
Confidence
Score

Confidence
Score

classification

Table 3: Auxiliary information shared. Leaf node denotes the exact leaf (and not an inter-
mediary node) where the computation halts, and ✗indicates the absence of support for the
associated model.

A.2 Proofs
A.2.1 Proof of Proposition 1
Proof. Let Ã be the adversary that does the following:

for i = 1, . . . , q(ε, δ)

1. Ã uses the query strategy of L to generate the instance xi;

2. Ã queries xi to SD(f∗) for r times and defines yi the most frequent labels
among the r answers (we assume r is an even integer).

33

At the end, Ã (as the learner L) learns f̂ using the points {(xi, yi)}i=1,··· ,q(ε,δ).
Let q = r · q(ε, δ), then it holds by the union bound that

Pr[Expε
F (SD(f∗), Ã, q) = 1] ≥

1− δ − (1− Pr[∩q(ε,δ)
i=1 {yi = f∗(xi)}]) .

Define Xj
i as the binary random variable that is 1 if and only if the answer

to the j-th query of xi is correct and Xi =
∑r

j=1 Xj
i , then

Pr[∩q(ε,δ)
i=1 {yi = f∗(xi)}] ≥ Pr[∩q(ε,δ)

i=1 {Xi > r/2}]

≥ 1−
q(ε,δ)∑
i=1

Pr[{Xi ≤ r/2}]

where the last step follows from the union bound. Now, observe that E[Xi] =
r(1− ρD(f∗, xi)) > r/2 and the Chernoff bound can be applied on each term in

the right-hand side. In particular, we have that Pr[{Xi ≤ r/2}] ≤ e−r
(ρD(f∗)− 1

2)2

2

and it follows that

Pr[Expε
F (SD(f∗), Ã, q) = 1] ≥ 1− δ − q(ε, δ) e−r

(ρD(f∗)− 1
2)2

2 .

By setting r = 8
(1−2ρD(f∗))2 ln q(ε,δ)

δ we have Pr[Expε
F (SD(f∗), Ã, q) = 1] ≥

1 − 2δ. That is, the adversary Ã implements an ε-extraction with Confidence
Score 1− 2δ and complexity q = 8

(1−2ρD(f∗))2 q(ε, δ) ln q(ε,δ)
δ .

A.2.2 Proof of Algorithm 1
Here, we discuss the analysis and proofs associated with Algorithm 1.

Assume unit vector µ ∈ Rd is the ground truth. For each query x ∈ Rd, a
vector w is drawn from N(µ, σ2I), and the label y = sign(⟨w, x⟩) is returned.
The goal of the learner (attacker) is to return ŵ such that ∥µ− ŵ∥ is small.

We have following theoretical guarantees for Algorithm 1.

Proposition 1. If σ ≤ σ̂, then ∥ŵ − µ∥ ≤ ε with probability at least 1− δ.

Proposition 2. If σ ≤ σ̂ and σ̂ ≥ 1√
d
, then ∥v∥ ≥ 1

12dσ̂ with probability at least
1− δ.

Proposition 3. If σ ≥ 20σ̂ ≥ 1√
d
, then ∥v∥ ≤ 1√

148dσ̂
with probability at least

1− δ.

Propositions 1 and 2 guarantees that if the estimated upper bound is correct
(σ ≤ σ̂), then the algorithm outputs an accurate estimation of µ; Proposition 3
guarantees the algorithm declares failure if the estimated upper bound is too
small (σ̂ ≤ 1

20 σ).

34

Intuitively, the average of yixi (i = 1, . . . , m) points to a direction similar to
µ because of the symmetry of distributions of both x and noise: the projection
of yx onto all directions perpendicular to µ is distributed symmetrically around
0 and thus has mean 0. The projection of yx onto µ has non-negative mean
since the label y is correct (i.e., yv⊤x ≥ 0) with probability at least 1

2 , and the
projection is larger if the noise of y is smaller. Consequently, the scale of the
average can be used as an indicator of the noise level. The Propositions can be
formally proved by applying concentration inequalities on each direction.

Notation. Denote by Sd−1 the unit sphere {x ∈ Rd : x⊤x = 1}. For any
vector X ∈ Rd, denote by X(i) the i-th coordinate of X. Define Zi = YiXi for
i = 1, 2, . . . , m.

We need following facts.

Fact 1. Pr(w⊤x ≥ 0) = Prξ∼N(0,1)(ξ ≥ −w⋆⊤x
σ∥x∥). Moreover, for z ≥ 0, 1

2 −
z√
2πσ
≤ Prξ∼N(0,1)(ξ ≥ z

σ) ≤ max(1
6 , 1

2 −
z

3σ).

Fact 2. Let B(x, y) =
∫ 1

0 (1− t)x−1ty−1dt be the Beta function. Then 2√
d−1 ≤

B(1
2 , d

2) ≤ π√
d
.

Fact 3. If d ≥ 2, then (1− 1
d) d

2 ≥ 1
2 .

Fact 4. (Bernstein inequality) If i.i.d. random variables X1, . . . , Xm satisfy
|Xi| ≤ b, E[Xi] = µ, and E[X2

i] ≤ r2, then with probability at least 1 − δ,
| 1

m

∑m
i=1 Xi − µ| ≤

√
2r2

m log 2
δ + 2b

3m log 2
δ .

Fact 5. Suppose (x1, . . . , xd) is drawn from the uniform distribution over the

unit sphere, then x1 has a density function of p(z) = (1−z2)
d−3

2

B(d−1
2 , 1

2) .

Without loss of generality, assume µ = (1, 0, 0, . . . , 0).
Following three lemmas give concentration of v.

Lemma 1. For any k = 2, 3, . . . , d, with probability at least 1 − δ, |v(k)| ≤
2
√

2
md log 2

δ .

Proof. For k = 2, 3, . . . , d, Z
(k)
1 , Z

(k)
2 , . . . , Z

(k)
m are i.i.d. random variables bounded

by 1. By symmetry, E[Z(k)
1] = 0. E[(Z(k)

1)2] = E[(X(i))2] = 2
∫ 1

0 z2 (1−z2)
d−3

2

B(d−1
2 , 1

2) dz =
1

B(d−1
2 , 1

2)

∫ 1
0 t

1
2 (1 − t) d−3

2 dt = B(d−1
2 , 3

2)
B(d−1

2 , 1
2) = 1

d . By the Bernstein inequality, with

probability at least 1−δ, | 1
m

∑
Z

(k)
i | ≤

√
2

md log 2
δ + 2

3m log 2
δ ≤ 2

√
2

md log 2
δ .

Lemma 2. With probability at least 1−δ, v(1) ≥ 1
3π

√
d

min(1, 1
σ

√
d
)−

√
1

2m log 1
δ .

35

Proof. Z
(1)
1 , Z

(1)
2 , . . . , Z

(1)
m are i.i.d. random variables bounded by 1. Their mean

can be lower-bounded as follows.
For for any 0 ≤ a ≤ 1, due to the noise setting, E[Y | X(1) = a] ≥ 0 and

E[Y | X(1) = −a] ≤ 0, so E[Y X(1) | X(1) = a] + E[Y X(1) | X(1) = −a] ≥ 0.
Consequently we have

E[Y X(1)] ≥ E[Y X(1)1[|X(1)| ≥ 1√
d

]]

= E[E[Y | X(1)]X(1)1[|X(1)| ≥ 1√
d

]]

= E[(1− 2 Pr[Y = −1 | X(1)])X(1)1[X(1) ≥ 1√
d

]]

≥ (1− 2 Pr
ξ∼N(0,1)

(ξ ≥ 1
σ
√

d
))E[X(1)1[X(1) ≥ 1√

d
]]

Now, Prξ∼N(0,1)(ξ ≥ 1
σ

√
d
) ≤ max(1

6 , 1
2 −

1
3σ

√
d
). Besides, E[X(1)1[X(1) ≥

1√
d
]] =

∫ 1
1√
d

z(1−z2)
d−3

2

B(d−1
2 , 1

2) dz = (1− 1
d)

d−1
2

(d−1)B(d−1
2 , 1

2) ≥
1

2(d−1) π√
d−1
≥ 1

2π
√

d
where the first

inequality follows by Fact 2 and 3. Thus, E[Y X(1)] ≥ 1
3π

√
d

min(1, 1
σ

√
d
).

By the Chernoff bound, with probability at least 1 − δ, v(1) = 1
m

∑
Z

(1)
i ≥

1
3π

√
d

min(1, 1
σ

√
d
)−

√
1

2m log 1
δ .

Lemma 3. With probability at least 1− δ, v(1) ≤ 2√
2πdσ

+
√

1
2m log 1

δ .

Proof. We first give an upper bound of E[Y X(1)] = 2
∫ 1

0 z (1−z2)
d−3

2

B(d−1
2 , 1

2) (1−2 Prξ∼N(0,1)(ξ ≥
z
σ))dz. By Fact 1, 1− 2 Prξ∼N(0,1)(ξ ≥ z

σ) ≤ 2z√
2πσ

, so we have

E[Y X(1)] ≤ 2
∫ 1

0
z

(1− z2) d−3
2

B(d−1
2 , 1

2)
2z√
2πσ

dz

= 4√
2πσB(d−1

2 , 1
2)

∫ 1

0
z2(1− z2)

d−3
2 dz

=
2B(d−1

2 , 3
2)

√
2πσB(d−1

2 , 1
2)

= 2√
2πdσ

The conclusion follows by the Chernoff bound.

Now we present the proofs for the propositions.

36

Proof. (of Proposition 1) Since ∥ŵ − µ∥2 = ∥ŵ∥2+∥µ∥2−2µ⊤ŵ = 2(1−µ⊤ŵ) =
2(1 − v(1)

∥v∥), to prove ∥ŵ − µ∥ ≤ ε, it suffices to show v(1)

∥v∥ ≥ 1 − ε2

2 . Note that
1 − (v(1)

∥v∥)2 = 1
1+ (v(1))2∑d

k=2
(v(k))2

, and 1 − (1 − ε2

2)2 = ε2 − ε4

4 ≥
ε2

2 ≥
1

1+ 2
ε2

, so it

suffices to show (v(1))2∑d

k=2
(v(k))2

≥ 2
ε2 with probability at least 1− δ.

Now, by Lemma 1 and 2 and a union bound, with probability at least 1− δ,

(v(1))2∑d
k=2(v(k))2

≥
(1

3π
√

d
min(1, 1

σ
√

d
)−

√
1

2m log d
δ)2

4(d− 1) 2
md log 2d

δ

,

which is at least 2
ε2 for our setting of m = (15π)2

ε2 d max(1, dσ̂2) log 2d
δ .

Proof. (of Proposition 2) By Lemma 2, with probability at least 1 − δ, v(1) =
1
m

∑
Z

(1)
i ≥ 1

3π
√

d
min(1, 1

σ
√

d
) −

√
1

2m log 1
δ ≥

1
12

√
d

min(1, 1
σ̂

√
d
), which implies

∥v∥ ≥ v(1) ≥ 1
12

√
d

min(1, 1
σ̂

√
d
).

Proof. (of Proposition 3) By Lemma 1 and 3 and a union bound, with proba-
bility at least 1− δ,

∥v∥2 =
d∑

k=1
(v(k))2

≤ 4(d− 1) 2
md

log 2d

δ
+ (2√

2πdσ
+

√
1

2m
log 1

δ
)2

≤ 1
148d2σ̂2 .

A.3 Noisy Labels for the Continuous Case
In the continuous, the model extraction problem becomes a regression problem.
In [18] the authors consider passive linear regression with squared loss and pro-
vide an algorithm that achieves nearly optimal convergence rate E[X⊤ŵ−Y]−
E[X⊤w⋆−Y] = Õ

(
C
n

)
where the constant C depends on the covariance matrix

of X and the error of the optimal linear model w⋆. In [57] the authors point out
that unlike in the classification case, the O(1

n) cannot be improved by active
learning, but it provides an algorithm under a stream-based querying model
(in fact, they assume the algorithm can draw X from any distribution, which
can be implemented by rejection sampling with stream-based querying model)
that achieves a learning rate with a better constant factor C. Authors in [26]
consider active learning for maximum likelihood estimation (MLE) under the
assumption that the model is well-specified (P (Y |X) is given by a model in the
model class) and that the Fisher information matrix does not depend on label

37

y (this assumption holds for linear regression and generalized linear models). It
shows that a two-stage algorithm achieves a nearly optimal convergence rate.

The main difficulties of computationally efficient active learning for classifi-
cation arise because of two factors: (1) how to efficiently find a classifier with
the minimum classification error rate; (2) how to select examples for labeling.
For (1), it has been shown that optimizing the classification error rate (0-1 loss)
with noise is hard in general, and computational efficient solutions with theoret-
ical guarantees are only known under some assumptions of the hypothesis space
and noise conditions (for example [16, 39, 72]). For (2), most existing active
learning algorithms maintain a candidate set of classifiers either explicitly [32]
or implicitly [16,20,72], and the noise tolerance is achieved by repetitive query-
ing as in Proposition 1 or a carefully designed sampling schedule to guarantee
that the candidate set is “correctly shrunk” with high probability [20, 32, 72].
For regression, most loss functions (for example the squared error, negative
log likelihood) are convex, and thus can be optimized efficiently. The labeling
strategies in regression are also different: instead of maintaining candidate sets,
active regression algorithms [26,57] often first find a good sampling distribution
that optimize some statistics of the covariance matrix and then draw labeled
samples from this distribution. Such strategies tolerates noise naturally and
de-noising strategies like repetitive querying are not necessary.
A.4 Additional Results
A.4.1 Alternate Stopping Criterion
We investigated if measuring the model’s stability over N iterations results in
acceptable extraction attacks. Here, we define model stability as the oscillation
between the approximation learned at iteration i and at iteration i+1. Formally,
stability can be defined as Si = ||wi−wi+1||2. Our approach checks if Si ≤ τ for
i = 1, · · · , N and terminates execution if the condition is satisfied. We observe
that this approach fails for the algorithm proposed by Chen et al. [16], as the
approximation produced at each iteration differs greatly from the approximation
produced in the preceding iteration. The results for the algorithm proposed by
Alabdulmohsin et al. [4] can be found Table 4.

N=10 N=15 N=20 Baseline
Dataset Queries ε̂ Queries ε̂ Queries ε̂ ε = 0.001

Breast Cancer 241 0.0047 247 0.0034 252 0.0031 300
Adult Income 117 0.0019 122 0.0015 127 0.0012 135
Digits 493 0.0077 498 0.0075 503 0.0073 700
Wine 120 0.0016 125 0.0014 130 0.0012 135

Table 4: Model stability results in nominal savings at the expense of a small increase in
geometric error (ε̂). The trends are the same for other values of ε.

38

A.4.2 A Direction For Defense?

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
Distance from halfspace

0

20

40

60

80

100

120

140

Nu
m

be
r o

f p
oi

nt
s

Breast Cancer
Adult Income
Mushroom

(a) Version Space Approximation

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
Distance from halfspace

0

20

40

60

80

100

120

Nu
m

be
r o

f p
oi

nt
s

Breast Cancer
Adult Income
Mushroom

(b) DC2

Figure 7: Distance of the instances synthesized by (a) version space approximation algo-
rithm, and (b) dimension coupling algorithm from optimal halfspace.
Recall from earlier discussion that QS active learning algorithms are capable of
generating points de novo. It is conceivable that these points are not generated
from the distribution from which the training data is sampled from. To this
end, we verified if these distributions are indeed different using the Hotelling’s
T 2 test, specifically for the algorithms proposed by Alabdulmohsin et al. [4] and
Chen et al. [16] under the null hypothesis that the distributions are the same
(refer Table 5 and Table 6). We observe that this QS active learning algorithm
indeed produces points that are not from the underlying natural distribution.
While discarding points that can not be sampled from the training distribution
may seem as a tempting defense strategy, it is conceivable that certain real
world tasks may query MLaaS providers with outlier points. Further analysis
is required to determine how this strategy may effectively be used to defend
against model extraction.

Dataset t-value n-1 p-value Reject Null?
Breast Cancer 14.24 198 3.70 × 10 −32 ✓

Adult Income 9.71 92 9.22 × 10 −16 ✓

Mushroom 22.16 599 5.92 × 10 −80 ✓

Table 5: Results of the Hotelling T 2 test for multivariate distributions, for n samples. It
is observed that the data-points generated by the version space approximation algorithm
do not lie in the natural distribution underlined by samples from the training data.

39

Dataset t-value n-1 p-value Reject Null?
Breast Cancer 319.27 322 0 ✓

Adult Income 467.43 133 9.64 × 10 −216 ✓

Mushroom 65.74 222 1.58 × 10 −147 ✓

Table 6: Results of the Hotelling T 2 test for multivariate distributions, for n samples. It
is observed that the data-points generated by the DC2 algorithm do not lie in the natural
distribution underlined by samples from the training data.

40

	Introduction
	Machine Learning
	Passive learning
	Active learning
	PAC active learning
	Query Synthesis (QS) active learning

	Model Extraction
	Model Extraction Definition
	Active Learning and Extraction
	Defense Strategies
	Classification case

	Implementation and Evaluation
	Detailed Results

	Discussion
	Varying The Adversary's Capabilities
	Complex Models
	Model Transferability
	Limitations

	Related Work
	Conclusions
	Appendix
	Salient Features Of MLaaS Providers
	Proofs
	Proof of Proposition 1
	Proof of Algorithm 1

	Noisy Labels for the Continuous Case
	Additional Results
	Alternate Stopping Criterion
	A Direction For Defense?

