
Compact Representation of Uncertainty in Clustering

Craig S. Greenberg 1,2 Nicholas Monath1 Ari Kobren1 Patrick Flaherty3

Andrew McGregor1 Andrew McCallum1

1College of Information and Computer Sciences, University of Massachusetts Amherst
2National Institute of Standards and Technology

3Department of Mathematics and Statistics, University of Massachusetts Amherst
{csgreenberg,nmonath,akobren,mcgregor,mccallum}@cs.umass.edu

flaherty@math.umass.edu

Abstract

For many classic structured prediction problems, probability distributions over the
dependent variables can be efficiently computed using widely-known algorithms
and data structures (such as forward-backward, and its corresponding trellis for
exact probability distributions in Markov models). However, we know of no previ-
ous work studying efficient representations of exact distributions over clusterings.
This paper presents definitions and proofs for a dynamic-programming inference
procedure that computes the partition function, the marginal probability of a cluster,
and the MAP clustering—all exactly. Rather than the N th Bell number, these exact
solutions take time and space proportional to the substantially smaller powerset
of N . Indeed, we improve upon the time complexity of the algorithm introduced
by Kohonen and Corander [11] for this problem by a factor of N . While still
large, this previously unknown result is intellectually interesting in its own right,
makes feasible exact inference for important real-world small data applications
(such as medicine), and provides a natural stepping stone towards sparse-trellis
approximations that enable further scalability (which we also explore). In experi-
ments, we demonstrate the superiority of our approach over approximate methods
in analyzing real-world gene expression data used in cancer treatment.

1 Introduction

Probabilistic models provide a rich framework for expressing and analyzing uncertain data because
they provide a full joint probability distribution rather than an uncalibrated score or point estimate.
There are many well-established, simple probabilistic models, for example Hidden Markov Models
(HMMs) for modeling sequences. Inference in HMMs is performed using the forward-backward
algorithm, which relies on an auxiliary data structure called a trellis (a graph-based dynamic program-
ming table). This trellis structure serves as a compact representation of the distribution over state
sequences. Many model structures compactly represent distributions and allow for efficient exact or
approximate inference of joint and marginal distributions.

Clustering is a classic unsupervised learning task. Classic clustering algorithms and even modern
ones, however, only provide a point estimate of the “best” partitioning by some metric. In many
applications, there are other partitions of the data that are nearly as good as the best one. Therefore
representing uncertainty in clustering can allow one to chose the most interpretable clustering from
among a nearly equivalent set of options. We explore the benefits of representing uncertainty in
clustering in a real-world gene expression analysis application in the experiments section.

32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada.

Representing discrete distributions can be rather challenging, since the size of the support of the
distribution can grow extremely rapidly. In the case of HMMs, the number of sequences that need to
be represented is exponential in the sequence length. Despite this, the forward-backward algorithm
(i.e., belief-propagation in a non-loopy graph) performs exact inference in time linear in the size of the
sequence multiplied by the square of the size of the state space. In the case of clustering, the problem
is far more difficult. The number of clusterings of N elements, known as the N th Bell number [2],
grows super exponentially in the number of elements to be clustered. For example, there are more
than a billion ways to cluster 15 elements. An exhaustive approach would require enumerating and
scoring each clustering. We seek a more compact representation of distributions over clusterings.

In this paper, we present a dynamic programming inference procedure that exactly computes the
partition function, the marginal probability of a cluster, and the MAP clustering. Crucially, our
approach computes exact solutions in time and space proportional to the size of the powerset of
N , which is substantially less than the N th Bell number complexity of the exhaustive approach.
While the size of the powerset of N is still large, this is a previously unknown result that on its own
bears intellectual interest. It further acts as a stepping stone towards approximations enabling larger
scalability and provides insight on small data sets as shown in the experiments section.

The approach works by creating a directed acyclic graph (DAG), where each vertex represents
an element of the powerset and there are edges between pairs of vertices that represent maximal
subsets/minimal supersets of one another. We refer to this DAG as a cluster trellis. The dynamic
programs can operate in either a top-down or bottom up fashion on the cluster trellis, labeling vertices
with local partition functions and maximum values. It is also possible to read likely splits and joins
of clusters (see Appendix M), as well as marginals from this structure. These programs work in any
circumstance where the energy of a cluster can be computed. We prove that our programs return
exact values and provide an analysis of their time and space complexity.

This paper also describes an approach to approximating the partition function, marginal probabilities,
and MAP inference for clustering in reduced time and space. It works by performing exact compu-
tations on a sparsified version of the cluster trellis, where only a subset of the possible vertices are
represented. This is analogous to using beam search [17] in HMMs. We prove that our programs
return exact values for DAG-consistent partitions and that the time and space complexity are now
measured in the size of the sparse cluster trellis. When not in the text, proofs of all facts and theorems
can be found in the Appendix.

We develop our method in further detail in the context of correlation clustering [1]. In correlation
clustering, the goal is to construct a clustering that maximizes the sum of cluster energies (minus the
sum of the across cluster energies), where a cluster energy can be computed from pairwise affinities
among data points. We give a dynamic program that computes the energies of all possible clusters.
Our approach proceeds in a bottom up fashion with respect to the cluster trellis, annotating cluster
energies at each step. This all can be found in the Appendix.

Previous work has examined the related problem of computing MAP k-clusterings exactly, including
dynamic programming approaches [8, 9, 22], as well as using fast convolutions [11]. Our method
has a smaller runtime complexity than using these approaches for computing the MAP clustering
and partition function for all possible partitions (irrespective of k). Further, none of this related work
discusses how to reduce complexity using approximation (as we do in Section 4), and it is unclear
how their work might be extended for approximation. The most closely related work [10] models
distributions over clusterings using Perturb and MAP [16]. Unlike the Perturb and MAP approach,
our work focuses on exact inference in closed form.

Being able to compactly represent probability distributions over clusterings is a fundamental problem
in managing uncertainty. This paper presents a dynamic programming approach to exact inference in
clustering, reducing the time complexity of the problem from super exponential to sub-quadratic in
the size of the cluster trellis.

2 Uncertainty in Clustering

Clustering is the task of dividing a dataset into disjoint sets of elements. Formally,

Definition 1. (Clustering) Given a dataset of elements, D = {xi}
N
i=1, a clustering is a set of subsets,

C = {C1, C2, . . . , CK} such that Ci ✓ D,
SK

i=1 Ci = D, and Ci\Cj = ; for all Ci, Cj 2 C, i 6= j.
Each element of C is known as a cluster.

2

a b c d

ab ac ad bc bd cd

abc abd acd bcd

abcd

Figure 1: A cluster trellis, T , over a dataset D = {a, b, c, d}. Each node in the trellis represents
a specific cluster, i.e., subset, of D corresponding to its label. Solid lines indicate parent-child
relationships. Note that a parent may have multiple children and a child may have multiple parents.

Our goal is to design data structures and algorithms for efficiently computing the probability distri-
bution over all clusterings of D. We adopt an energy-based probability model for clustering, where
the probability of a clustering is proportional to the product of the energies of the individual clusters
making up the clustering. The primary assumption in energy based clustering is that clustering
energy is decomposable as the product of cluster energies. While it is intuitive that the probability of
elements being clustered together would be independent of the clustering of elements disjoint from
the cluster, one could conceive of distributions that violate that assumption. An additional assumption
is that exponentiating pairwise scores preserves item similarity. This is the Gibbs distribution, which
has been found useful in practice [6].

Definition 2. (Energy Based Clustering) Let D be a dataset, C be a clustering of D and ED(C) be the
energy of C. Then, the probability of C with respect to D, PD(C), is equal to the energy of C normalized

by the partition function, Z(D). This gives us PD(C) =
ED(C)
ZD

and Z(D) =
P

C2CD
ED(C). The

ED(C) energy of C is defined as the product of the energies of its clusters: ED(C) =
Q

C2C ED(C)

We use CD to refer to all clusterings of D. In general, we assume that D is fixed and so we omit
subscripts to simplify notation. Departing from convention [12], clusterings with higher energy
are preferred to those with lower energy. Note that computing the membership probability of any
element xi in any cluster Cj , as is done in mixture models, is ill-suited for our goal. In particular,
this computation assumes a fixed clustering whereas our work focuses on computations performed
with respect to the distribution over all possible clusterings.

3 The Cluster Trellis

Recall that our goal is compute a distribution over the valid clusterings of an instance of energy
based clustering as efficiently as possible. Given a dataset D, a naïve first step in computing such a
distribution is to iterate through its unique clusters and, for each, compute its energy and add it to a
running sum. If the number of elements is |D| = N , the number of unique clusters is the N th Bell
Number, which is super-exponential in N [14].

Note that a cluster C may appear in many clusterings of D. For example, consider the dataset
D0 = {a, b, c, d}. The cluster {a, b} appears in 2 of the clusterings of D0. More precisely, in a dataset

comprised of N elements, a cluster of M elements appears in the (N �M)th Bell Number of its
clusterings. This allows us to make use of memoization to compute the distribution over clusterings
more efficiently, in a procedure akin to variable elimination in graphical models [4, 25]. Unlike
variable elimination, our procedure is agnostic to the ordering of the elimination.

To support the exploitation of this memoization approach, we introduce an auxiliary data structure
we call a cluster trellis.

Definition 3. (Cluster Trellis) A cluster trellis, T , over a dataset D is a graph, (V (T), E(T)), whose
vertices represent all valid clusters of elements of D. The edges of the graph connect a pair vertices
if one (the “child” node) is a maximal strict subset of the other (the “parent” node).

3

In this paper, we refer to a cluster trellis simply as a trellis. In more detail, each trellis vertex,
v 2 V (T), represents a unique cluster of elements; the vertices in T map one-to-one with the non-
empty members of the powerset of the elements of D. We define D(v) to be the elements in the cluster
represented by v. There exists an edge from v0 to v, if D(v) ⇢ D(v0) and D(v0) = D(v) [{xi}
for some element xi 2 D (or vice versa). See Figure 1 for a visual representation of a trellis over
4 elements. Each vertex stores the energy of its associated cluster, E(D(v)), and can be queried in
constant time. We borrow terminology from trees and say vertex v0 is a parent of vertex v, if there is
an edge from v0 to v, and that vertex v00 is an ancestor of v if there is a directed path from v00 to v.

3.1 Computing the Partition Function

Computing a distribution over an event space requires computing a partition function, or normalizing
constant. We present an algorithm for computing the partition function, Z(D), with respect to all
possible clusterings of the elements of D. Our algorithm uses the trellis and a particular memoization
scheme to significantly reduce the computation required: from super-exponential to exponential.

The full partition function, Z(D), can be expressed in terms of cluster energies and the partition
functions of a specific set of subtrellises. A subtrellis rooted at v, denoted T [v] contains all nodes in
T that are descendants of v.

Formally, a subtrellis T [v] = (V (T [v]), E(T [v])) has vertices and edges satisfying the following
properties: (1) V (T [v]) = {u|u 2 V (T) ^ D(u) ✓ D(v)}, and (2) E(T [v]) = {(u, u0)|(u, u0) 2
E(T) ^ u, u0 2 V (T [v])}. Note that T [v] is always a valid trellis.

The following procedure not only computes Z(D), but also generalizes in a way that the partition
function with respect to clusterings for any subset D(v) ⇢ D can also be computed. We refer to
the partition function for a dataset D(v) memoized at the trellis/subtrellis T [D(v)] as the partition
function for the trellis/subtrellis, Z(T [D(v)]).

Algorithm 1 PartitionFunction(T ,D)

Pick xi 2 D
Z(D) = 0
for v in V (T)(i) do

Let v0 be such that D(v0) = D \ D(v)
if Z(D(v0)) has not been assigned then
Z(D(v0)) = PartitionFunction(T [v0],D(v0))

Z(D) Z(D) + E(D(v)) ⇤ Z(D(v0))
return Z(D)

Define V (T)(i) = {v|v 2 V (T) ^ xi 2 D(v)} and V (T)(i) = V (T)\V (T)(i). In other words,

V (T)(i) is the set of all vertices in the trellis containing the element xi and V (T)(i) is the set of all
vertices that do not contain xi.

Fact 1. Let v 2 V (T) and xi 2 D(v). The partition function with respect to D(v) can be written
recursively, with Z(D(v)) =

P
vi2V (T [v])(i) E(vi) · Z(D(v)\D(vi)) and Z(;) = 1.

Proof. The partition function Z(D(v)) is defined as:

Z(D(v)) =
X

C2CD(v)

Y

C2C

E(C)

For a given element xi in D(v), the set of all clusterings of D(v) can be re-written to factor out the
cluster containing xi in each clustering:

CD(v) = {{vi} [C|vi 2 V (i), C 2 CD(v)\D(vi)}

Note that CD(v)\D(vi) refers to all clusterings on the elements D(v)\D(vi). Using this expansion and

since E({vi} [Ci) = E({vi})E(Ci), we can rewrite the partition function as below. By performing

4

algebraic re-arrangements and applying our definitions:

Z(D(v)) =
X

vi2V (i)

X

C2CD(v)\D(vi)

E(vi)E(C)

=
X

vi2V (i)

X

C2CD(v)\D(vi)

E(vi)
Y

C2C

E(C)

=
X

vi2V (i)

E(vi)
X

C2CD(v)\D(vi)

Y

C2C

E(C)

=
X

vi2V (i)

E(vi)Z(D(v) \ D(vi))

As a result of Fact 1, we are able to construct a dynamic program for computing the partition function

of a trellis as follows: (1) select an arbitrary element xi from the dataset; (2) construct V (T)(i) as

defined above; (3) for each vertex vi 2 V (T)(i), compute and memoize the partition function of
D(v) \ D(vi) if it is not already cached; (4) sum the partition function values obtained in step (3).
The pseudocode for this dynamic program appears in Algorithm 1.

We use Algorithm 1 and Fact 1 to analyze the time and space complexity of computing the partition
function. Consider a trellis T over a dataset D = {xi}

N
i=1. Our goal is to compute the partition

function, Z(T). When the partition function of all subtrellises of T have already been computed,
Algorithm 1 is able to run without recursion.

Fact 2. Let T be a trellis such that the partition function corresponding to each of its subtrellises
T ’ is memoized and accessible in constant time. Then, Z(T) can be computed by summing exactly
2N�1 terms. Given that the partition function of every strict sub-trellis of T (i.e., any sub-trellis of
T that is not equivalent to T) has been memoized and is accessible in constant time, then Z(T) is
computed by taking the sum of exactly 2N�1 terms.

We now consider the more general case, where the partition function of all subtrellises of T have not
yet been computed:

Theorem 1. Let T be a trellis over D = {xi}
N
i=1. Then, Z(T) can be computed in O(3N�1) =

O(|V (T)|log(3)) time.

A proof of Theorem 1 can be found in the Appendix in Section E.

3.2 Finding the Maximal Energy Clustering

By making a minor alteration to Algorithm 1, we are also able to compute the value of and find
the clustering with maximal energy. Specifically, at each vertex in the trellis, v, store the clustering
of D(v) with maximal energy (and its associated energy). We begin by showing that there exists a
recursive form of the max-partition calculation analogous to the computation of the partition function
in Fact 1.

Definition 4. (Maximal Clustering) Let v 2 V (T) and xi 2 D(v). The maximal clustering over the
elements of D(v), C?(D(v)), is defined as: C?(D(v)) = argmaxC2CD(v)

E(C).

Fact 3. C?(D(v)) can be written recursively as C?(D(v)) = argmaxv02V (T [v])(i) E(v
0)·E(C?(D(v)\

D(v0))).
In other words, the clustering with maximal energy over the set of elements, D(v) can be written as
the energy of any cluster, C, in that clustering multiplied by a clustering with maximal energy over
the elements D(v)\C.

Using this recursive definition, we modify Algorithm 1 to compute the maximum clustering instead
of the partition function, resulting in Algorithm 2 (in Appendix). The correctness of this algorithm is
demonstrated by Fact 3. We can now analyze the time complexity of the algorithm. We use similar
memoized notation for the algorithm where C?(T [D(v)]) is the memoized value for C?(D(v)) stored
at v.

Fact 4. Let TD be a trellis over D = {xi}
N
i=1. Then, C?(TD) can be computed in O(3N�1) time.

5

3.3 Computing Marginals

The trellis facilitates the computation of two types of cluster marginals. First, the trellis can be used
to compute the probability of a specific cluster, D(v), with respect to the distribution over all possible
clusterings; and second, it can be used to compute the probability that any group of elements, X ,
are clustered together. We begin by analyzing the first style of marginal computation as it is used in
computing the second.

Let C(v) 2 C be the set of clusterings that contain the cluster D(v). Then the marginal probability

of D(v) is given by P (D(v)) =
P

C2C(v) E(C)

Z(D) , where Z(D) is the partition function with respect to

the full trellis described in section 2. This probability can be re-written in terms of the complement

of D(v), i.e., P (D(v)) =
P

C2C(v) E(C)

Z(D) =
P

C2C(v) E(D(v))E(C\D(v))

Z(D) =
E(D(v))

P
C02CD\D(v)

E(C0)

Z(D) =
E(D(v))Z(D\D(v))

Z(D) . Note that if Z(D\D(v)) were memoized during Algorithm 1, then computing the

marginal probability requires constant time and space equal to the size of the trellis. This is only true
for clusters whose complements do not contain element xi (selected to compute Z(D) in Algorithm
1), which is true for |V (T)|/(2|V (T)|� 1) of the vertices in the trellis. Otherwise, we may need to
repeat the calculation from Algorithm 1 to compute Z(D \ D(v)). We note that due to memoization,
the complexity of computing the partition function of the remaining verticies is no greater than the
complexity of Algorithm 1.

This machinery makes it possible to compute the second style of marginal. Given a set of ele-
ments, X , the marginal probability of the elements of X being clustered together is: P (X) =P

D(v)2T :X✓D(v) P (D(v)). The probability that the elements of X is distinct from the marginal

probability of a cluster in that P (X) sums the marginal probabilities of all clusters that include all
elements of X . Once the marginal probability of each cluster is computed, the marginal probability
of any sets of elements being clustered together can be computed in time and space linear in the size
of the trellis.

4 The Sparse Trellis

The time to compute the partition function scales sub-quadratically with the size of the trellis
(Theorem 1). Unfortunately, the size of the trellis scales exponentially with the size of the dataset,
which limits the use of the trellis in practice. In this section, we show how to approximate the
partition function and maximal partition of a sparse trellis, which is a trellis with some nodes omitted.
Increasing the sparsity of a trellis enables the computation of approximate clustering distributions for
larger datasets.

Definition 5. (Sparse Trellis) Given a trellis T = (V (T), E(T)), define a sparse trellis with

respect to T to be any bT = (bV , Ê) satisfying the following properties: bV 6= ;, bV ⇢ V (T), and

Ê = {(v, v0)| D(v0) ⇢ D(v) ^ @u : D(v0) ⇢ D(u) ⇢ D(v)}.

Note that there exist a number of sparse trellises that contain no valid clusterings. As an example,

consider bT = (bV = {v1, v2, v3}, bE = ;) where D(v1) = {a, b}, D(v2) = {b, c}, and D(v3) =
{a, c}.

For ease of analysis, we focus on a specific family of sparse trellises which are closed under recursive
complement 1. This property ensures that the trellises contain only valid partitions. For trellises in this
family we show that the partition function and the clustering with maximal energy can be computed
using algorithms similar to those described in Section 3. Since these algorithms have complexity
measured in the number of nodes in the trellis, their efficiency improves with trellis-sparsity. We
also present the family of tree structured sparse trellises with tree specific partition function and max
partition algorithms. The more general family of all sparse trellises is also discussed briefly.

The key challenge of analyzing a sparse trellis, bT , is how to treat any cluster C that is not represented

by a vertex v 2 bT , i.e., C = D(v) ^ v 62 bT . Although there are several feasible approaches to
reasoning about such clusters, in this paper we assume that any cluster that is not represented by a

1A set of sets, S, is closed under recursive complement iff ∀x, y ∈ S, x ⊂ y =⇒ ∃z ∈ S : x
S

z =

y ∧ x ∩ z = ∅.

6

vertex in bT has zero energy. Since the energy of a clustering, C, is the product of its clusters’ energies
(Definition 2), E(C) = 0 if it contains one or more clusters with zero energy.

4.1 Approximating The Partition Function and Max Partition

Given a sparse trellis, T̂ , we are able to compute the partition function by using Algorithm 1.

Fact 5. Let bT = (bV , bE) be a sparse trellis whose vertices are closed under recursive complement.

Then Algorithm 1 computes Z(bT) in O(|bT |log(3)).

If bT is not closed under recursive complement, we cannot simply run Algorithm 1 because not all
vertices for which the algorithm must compute energy (or the partition function) are guaranteed to
exist. How to compute the partition function using such a trellis is an area of future study.

Given a sparse trellis, T̂ , closed under recursive complement, we are able to compute the max

partition by using Algorithm 2. Doing so takes O(|T̂ |log(3)) time and O(|T̂ |) space. The correctness
and complexity analysis is the same as in Section 4.1.

The often-used hierarchical (tree structured) clustering encompasses one family of sparse trellises.
Algorithms for tree structured trellises can be found in the Appendix in Section J.

5 Experiments

In this section, we demonstrate the utility of the cluster trellis via experiments on real-world gene
expression data. To begin, we provide a high-level background on cancer subtypes to motivate the
use of our method in the experiment in Section 5.3.

5.1 Background

For an oncologist, determining a prognosis and constructing a treatment plan for a patient is dependent
on the subtype of that patient’s cancer [13]. This is because different subtypes react well to some
treatments, for example, to radiation and not chemotherapy, and for other subtypes the reverse is true
[20]. For example, basal and erbB2+ subtypes of breast cancer are more sensitive to paclitaxel- and
doxorubicin-containing preoperative chemotherapy (approx. 45% pathologic complete response) than
the luminal and normal-like cancers (approx. 6% pathologic complete response)[18]. Unfortunately,
identifying cancer subtypes is often non-trivial. One common method of learning about a patient’s
cancer subtype is to cluster their gene expression data along with other available expression data for
which previous treatments and treatment outcomes are known [21].

5.2 Data & Methods

We use breast cancer transcriptome profiling (FPKM-UQ) data from The Cancer Genome Atlas
(TCGA) because much is known about the gene expression patterns of this cancer type, yet there is
heterogeneity in the clinical response of patients who are classified into the same subtype by standard
approaches [23].

The data are subselected for African American women with Stage I breast cancer. We select
African American women because there is a higher prevalence of the basal-like subtype among
premenopausal African American women [15] and there is some evidence that there is heterogeneity
(multiple clusters) even within this subtype [23]. Stage I breast cancer patients were selected because
of the prognostic value in distinguishing aggressive subtypes from non-aggressive subtypes at an
early stage.

Despite the considerable size of TCGA, there are only 11 samples meeting this basic, necessary
inclusion/exclusion criteria. Each of the 11 samples is a 20,000 dimensional feature vector, where
each dimension is a measure of how strongly a given gene is expressed. We begin by sub-selecting
the 3000 features with greatest variance across the samples. We then add an infinitesimal value prior
to taking the log of the remaining features, since genome expression data is believed to be normally
distributed in log-space [19]. A similar data processing was shown to be effective in prior work [19].

We use correlation clustering as the energy model. Pairwise similarities are exponentiated negative
euclidean distances. We subtract from each the mean pairwise similarity so that similarities are both
positive and negative. We then compute the marginal probabilities for each pair (i.e., the probability

7

We also explore the extent to which an approximate method can accurately capture pairwise marginals.
We use an approach similar to Perturb-and-MAP [10]. We sample clusterings by adding Gumbel
distributed noise to the pairwise energies and using Algorithm 2 to find the maximal clustering with
the modified energies. We approximate the marginal probability of a given pair being clustered
together by measuring how many of these sampled clusters contain the pair in the same cluster. Figure
3 plots the approximate vs. exact pairwise marginal for each pair of points in the dataset. The figure
shows that the approximate method overestimates many of the pairwise marginals. Like the pairwise
scores (rather than exact marginals), using the approximate marginals in practice may lead to errors
in data analysis.

6 Related Work

While there is, to the best of our knowledge, no prior work on compact representations for exactly
computing distributions over clusterings, there is a small amount related work on computing the
MAP k-clustering exactly, as well as a wide array of related work in approximate methods, graphical
models, probabilistic models for clustering, and clustering methods.

The first dynamic programming approach to computing the MAP k-clustering was given in [9],
which focuses on minimizing the sum of square distances within clusters. It works by considering
distributional form of the clusterings, i.e., all possible sizes of the clusters that comprise the clustering,
and defines “arcs” between them. However, no full specification of the dynamic program is given
and, as the author notes, many redundant computations are required, since there are many clusterings
that share the same distributional form. In [8], the first implementation is given, with some of the
redundancies removed, and the implementation and amount of redundancy is further improved upon
in [22]. In each of these cases, the focus is on finding the best k-clustering, which can be done using
these methods in O(3n) time. These methods can also be used to find the MAP clustering for all K,
however doing so would result in an O(n ⇤ 3n) time, which is worse than our O(3n) result.

In [11], the authors use fast convolutions to compute the MAP k-clustering and k-partition function.
Fast convolutions use a Mobius transform and Mobius inversion on the subset lattice to compute the

convolution in eO(n22n) time. It would seem promising to use this directly in our work, however,
our algorithm divides the subset lattice in half,which prevents us from applying the fast transform
directly. The authors note that, similar to the above dynamic programming approaches, their method
can be used to compute the clustering partition function and MAP in O(n ⇤ 3n), which is larger than
our result of O(3n). Their use of convolutions to compute posteriors of k-clusterings also implies the

existence of an eO(n32n) algorithm to compute the pair-wise posterior matrix, i.e., the probability
that items i and j are clustered together, though the authors mention that, due to numerical instability
issues, using fast convolutions to computing the pair-wise posterior matrix is only faster in theory.

Recently proposed perturbation based methods [10] approximate distributions over clusterings as
well as marginal distributions over clusters. They use the Perturb and MAP approach [16], originally
proposed by Papandreou, which is based on adding Gumbel distributed noise to the clustering
energy function. Unfortunately, for Perturb and MAP to approach the exact distribution, independent
samples from the Gumbel distribution must be added to each clustering energy, which would require
a super-exponential number of draws. To overcome this, Kappes et al. [10] propose adding Gumbel
noise to the pairwise real-valued affinity scores, thus requiring fewer draws, but introducing some
dependence among samples. They must also perform an outer relaxation in order obtain a computable
bound for the log partition function. As a result, the method approaches a distribution with unknown
approximation bounds.

7 Conclusion

In this paper, we present a data structure and dynamic-programming algorithm to compactly represent
and compute probability distributions over clusterings. We believe this to be the first work on efficient
representations of exact distributions over clusterings. We reduce the computation cost of the naïve
exhaustive method from the N th Bell number to sub-quadratic in the substantially smaller powerset
of N . We demonstrate how this result is a first step towards practical approximations enabling larger
scalability and show a case study of the method applied to correlation clustering.

9

Acknowledgments

We thank the anonymous reviewers for their constructive feedback.

This work was supported in part by the Center for Intelligent Information Retrieval, in part by
DARPA under agreement number FA8750-13-2-0020, in part by the National Science Foundation
Graduate Research Fellowship under Grant No. NSF-1451512 and in part by the National Science
Foundation Grant 1637536. Any opinions, findings and conclusions or recommendations expressed
in this material are those of the authors and do not necessarily reflect those of the sponsor.

References

[1] Nikhil Bansal, Avrim Blum, and Shuchi Chawla. Correlation clustering. Machine Learning,
2004.

[2] E. T. Bell. Exponential polynomials. Annals of Mathematics, 1934.

[3] Charles Blundell, Yee Whye Teh, and Katherine A Heller. Bayesian rose trees. Conference on
Uncertainty in Artificial Intelligence, 2010.

[4] Rina Dechter. Bucket elimination: A unifying framework for probabilistic inference. 1999.

[5] Dua Dheeru and Efi Karra Taniskidou. UCI machine learning repository, 2017.

[6] Stuart Geman and Donald Geman. Stochastic relaxation, gibbs distributions, and the bayesian
restoration of images. IEEE Transactions on pattern analysis and machine intelligence, 1984.

[7] Katherine A Heller and Zoubin Ghahramani. Bayesian hierarchical clustering. International
Conference on Machine Learning, 2005.

[8] Lawrence Hubert, Phipps Arabie, and Jacqueline Meulman. Combinatorial data analysis:
Optimization by dynamic programming. Society for Industrial and Applied Mathematics, 2001.

[9] Robert E. Jensen. A dynamic programming algorithm for cluster analysis. Operations Research,
1969.

[10] Jörg Hendrik Kappes, Paul Swoboda, et al. Probabilistic correlation clustering and image
partitioning using perturbed multicuts. International Conference on Scale Space and Variational
Methods in Computer Vision, 2015.

[11] Jukka Kohonen and Jukka Corander. Computing exact clustering posteriors with subset convo-
lution. Communications in Statistics-Theory and Methods, 2016.

[12] Yann LeCun, Sumit Chopra, and Raia Hadsell. A tutorial on energy-based learning. 2006.

[13] Brian D Lehmann and Jennifer A Pietenpol. Identification and use of biomarkers in treatment
strategies for triple-negative breast cancer subtypes. The Journal of pathology, 2014.

[14] László Lovász. Combinatorial problems and exercises. 1993.

[15] Cancer Genome Atlas Network et al. Comprehensive molecular portraits of human breast
tumours. Nature, 2012.

[16] George Papandreou and Alan L Yuille. Perturb-and-map random fields: Using discrete op-
timization to learn and sample from energy models. International Conference on Computer
Vision, 2011.

[17] D Raj Reddy et al. Speech understanding systems: A summary of results of the five-year
research effort. department of computer science, 1977.

[18] Roman Rouzier, Charles M Perou, W Fraser Symmans, et al. Breast cancer molecular subtypes
respond differently to preoperative chemotherapy. Clinical cancer research, 2005.

[19] Hachem Saddiki, Jon McAuliffe, and Patrick Flaherty. Glad: a mixed-membership model for
heterogeneous tumor subtype classification. Bioinformatics, 2014.

10

[20] Therese Sørlie, Charles M Perou, Robert Tibshirani, et al. Gene expression patterns of breast
carcinomas distinguish tumor subclasses with clinical implications. Proceedings of the National
Academy of Sciences, 2001.

[21] Therese Sørlie, Robert Tibshirani, Joel Parker, et al. Repeated observation of breast tumor
subtypes in independent gene expression data sets. Proceedings of the National Academy of
Sciences, 2003.

[22] BJ Van Os and Jacqueline J Meulman. Improving dynamic programming strategies for parti-
tioning. Journal of Classification, 2004.

[23] Ozlem Yersal and Sabri Barutca. Biological subtypes of breast cancer: Prognostic and therapeu-
tic implications. World journal of clinical oncology, 2014.

[24] Giacomo Zanella, Brenda Betancourt, Hanna Wallach, Jeffrey Miller, Abbas Zaidi, and Re-
becca C Steorts. Flexible models for microclustering with application to entity resolution.
Advances in Neural Information Processing Systems, 2016.

[25] Nevin Lianwen Zhang and David Poole. Exploiting causal independence in bayesian network
inference. Journal of Artificial Intelligence Research, 1996.

11

