
Identifying Functionally Similar Code in Complex

Codebases

Fang-Hsiang Su, Jonathan Bell, Gail Kaiser, Simha Sethumadhavan

Columbia University

New York, NY USA

{mikefhsu, jbell, kaiser, simha}@cs.columbia.edu

Abstract—Identifying similar code in software systems can
assist many software engineering tasks such as program un-
derstanding and software refactoring. While most approaches
focus on identifying code that looks alike, some techniques aim
at detecting code that functions alike. Detecting these functional
clones — code that functions alike — in object oriented languages
remains an open question because of the difficulty in exposing
and comparing programs’ functionality effectively. We propose a
novel technique, In-Vivo Clone Detection, that detects functional
clones in arbitrary programs by identifying and mining their
inputs and outputs. The key insight is to use existing workloads
to execute programs and then measure functional similarities
between programs based on their inputs and outputs, which
mitigates the problems in object oriented languages reported
by prior work. We implement such technique in our system,
HitoshiIO, which is open source and freely available. Our
experimental results show that HitoshiIO detects more than 800
functional clones across a corpus of 118 projects. In a random
sample of the detected clones, HitoshiIO achieves 68+% true
positive rate with only 15% false positive rate.

Index Terms—I/O behavior; dynamic analysis; code clone
detection; data flow analysis; patterns

I. INTRODUCTION

When developing and maintaining code, software engineers

are often forced to examine code fragments to judge their func-

tionality. Many studies [1]–[3] have suggested large portions

of modern codebases can be clones, which can be code that

is copied-and-pasted from one part of a program to another.

One problem with these clones is that they can complicate

maintenance. For instance, a bug is copied-and-pasted in

multiple locations in a software system. While most techniques

to detect clones have focused on syntactic ones containing

code fragments that look alike, we are interested in functional

clones: code fragments that exhibit similar functions, but may

not look alike.

Identifying functional clones can bring many benefits. For

instance, functional clones can help developers understand

complex and/or new code fragments by matching them to

existing code they already understand. Further, once these

functional clones are identified, they can be extracted into a

common API.

Unfortunately, detecting true functional clones is very tricky.

Static approaches must be able to fully reason about code’s

functionality without executing it, and dynamic approaches

must be able to observe code executing with sufficient inputs to

expose diverse and meaningful functions. Currently, the most

promising approach to detect functional clones is to execute

code fragments with a randomly generated input, apply that

same input for different code fragments and observe when out-

puts are the same [4]–[7]. Thus, previous approaches towards

detecting functional clones have focused on code fragments

that are easily compiled and executed in isolation, allowing

for easy control and generation of inputs, and observation of

code outputs.

This approach does not scale to complex and object oriented

codebases. It is difficult to execute individual methods or code

fragments in isolation with randomly generated inputs, due to

the complexity of generating sufficient and meaningful inputs

for executing the code successfully. Previous work towards

detecting functional clones in Java programs [5], [8], [9] have

reported unsatisfactory or limited results: a recent study by

Deissenboeck et al. showed that across five Java projects

only 28% of the target methods could be executed with this

randomly input generation approach [8]. Deissenboeck et al.

also reported that across these projects, most of the inputs and

outputs referred to project-specific data types, meaning that

a direct comparison of the inputs and outputs between two

programs is hard to be declared equivalent [8].

We present In-Vivo Clone Detection, a technique that is

language-agnostic, and generally applicable to detect func-

tional clones without requiring the ability to execute candidate

clones in isolation, and hence allowing it to work on complex

and object oriented codebases. Our key insight is that most

large and complex codebases include test cases [10], which

can supply workloads to drive the application as a whole.

In-Vivo Clone Detection first identifies potential inputs and

outputs (I/Os) of each code fragment, and then executes them

with existing workloads to collect values from their I/Os.

The code fragments with similar values of inputs and outputs

during executions are identified as functional clones. Unlike

previous approaches that look for code fragments with iden-

tical output values, we use a relaxed similarity comparison,

enabling efficient detection of code that has very similar inputs

and outputs, even when the exact data structures of those

variables differ.

We created HitoshiIO, which implements this in-vivo ap-

proach for the JVM-based languages such as Java. HitoshiIO

considers every method in a project as a potential functional

clone of every other method, recording observed inputs that

can be method parameters or global state variables read by a

978-1-5090-1428-6/16/$31.00 ©2016 IEEE ICPC 2016, Austin, Texas 1

method, and observed outputs that are externally observable

writes including return values and heap variables. Our exper-

imental results show that HitoshiIO effectively detects func-

tional clones in complex codebases. We evaluated HitoshiIO

on 118 projects, finding 874 functional clones, using only

the applications’ existing workloads as inputs. HitoshiIO is

available under an MIT license on GitHub 1.

II. RELATED WORK

Identifying similar or duplicated code (code clones) can

enhance the maintainability of software systems. Searching for

these code clones also helps developers to find which pieces

of code are re-usable. At a high level, work in clone detection

can be split into two categories: static clone detection, and

dynamic clone detection.

Static techniques: Roy et al. [11] conducted a survey

regarding the four types of code clones and the corresponding

techniques to detect them ranging from those that are exact

copy-paste clones to those that are semantically similar with

syntactic differences. In general, these static approaches first

parse programs into a type of intermediate representation

and then develop corresponding algorithms to identify similar

patterns. As the complexity of the intermediate representation

grows, the computation cost to identify similar patterns is

higher. Based on the types of intermediate representations,

the existing approaches can be classified into token-based [1],

[3], [12], AST-based [13], [14] and graph-based [15]–[18].

Among these general approaches, the graph-based approaches

are the most computationally expensive, but they have better

capabilities to detect complex clones according to the report

of Roy et al. [11]. Compared with these approaches that find

look alike code, HitoshiIO searches for functionally alike code.

Several other techniques make use of general information

about code to detect clones rather than strictly relying on

syntactic features. Our motivation for detecting function clones

that may not be syntactically similar is close to past work

that searched for high level concept clones [19] with similar

semantics. However, our approach is completely different: we

use dynamic profiling, while they relies on static features of

programs. Another line of clone detection involves creating

fingerprints of code, for instance by tracking API usage [20],

[21], to identify clones.

Dynamic techniques: Our approach is most relevant to previ-

ous work in detecting code that is functionally similar, despite

syntactic differences by using dynamic profiling. For instance,

Elva and Leavens proposed detecting functional clones by

identifying methods that have the exact same outputs, inputs

and side effects [5]. The MeCC system summarizes the ab-

stract state of a program after each method is executed to relate

that state to the method’s inputs, allowing for exact matching

of outputs [6]. Our approach differs from both of these in

that we allow for matching functionally similar methods, even

when there are minor differences in the formats of inputs and

outputs.

1https://github.com/Programming-Systems-Lab/ioclones

Carzaniga et al. studied different ways to quantify and

measure functional redundancy between two code fragments

on both of the executed code statements and performed data

operations [22]. Our notion of functionally similar code is

similar to their notion of redundant code, although we put

significantly more weight on comparing input and output

values, rather than just the sequence of inputs and outputs.

We consider all data types, even complex variables, while

Carzaniga et al. only consider Java’s basic types.

Jiang and Su’s EQMiner [4] and the comparable system

developed by Deissenboeck et al. for Java [8] are two highly

relevant recent examples of dynamic detection of functional

clones. EQMiner first chops code into several chunks and

randomly generates input to drive them. By observing output

values from these code chunks, the EQMiner system is able to

cluster programs with the same output values. The EQMiner

system successfully identified clones that are functional equiv-

alent. Deissenboeck et al. follows the similar procedure to

re-implement the system in Java. However, they report low

detection rate of functional clones in their study subjects. We

list three of the technical challenges reported by Deissenboeck

et al. and our solutions:

• How to appropriately capture I/Os of programs: Com-

pared with the existing approaches that fix the definitions

of input and output variables in the program, In-Vivo

Clone Detection applies static data flow analysis to iden-

tify which input variables potentially contribute to output

variables at instruction level.

• How to generate meaningful inputs to drive programs:

Deissenboeck et al. reported that for 20% − 65% of

methods examined, they could not generate inputs. One

possible reason is that when the input parameter refers

to an interface or abstract class, it is hard to choose

the correct implementation to instantiate. Thus, instead

of generating random inputs, we invent In-Vivo Clone

Detection using real workloads to drive programs, which

is inspired by our prior work in runtime testing [23].

• How to compare project-specific types of objects between

different applications: We will elaborate the similar issue

further in §IV-E: different developers can design different

classes to represent similar data across different appli-

cations/projects. For comparing complex (non-primitive)

objects, In-Vivo Clone Detection computes and compares

a deep identity check between these objects.

III. DETECTING CLONES IN-VIVO

At a high level, our approach detects code which appears

functionally similar by observing that for similar inputs, two

different methods produce similar outputs (i.e., are functional

clones). Our key insight is that we can detect these functional

clones in-vivo to the context of a full system execution (e.g., as

might be exercised by unit or system tests), rather than relying

on targeted input generation techniques. Figure 1 shows a

high level overview of the various phases in our approach.

First, we identify the inputs and outputs of each method in

an application where we consider not just formal parameters,

2

1 public class Person {

2 public String name;

3 public int age;

4 public Person[] relatives;

5 }

6

7 public static int addRelative(Person me, //input

8 String rName, int rAge, int pos,

9 double useless) {

10

11 Person newRel = new Person();

12 newRel.name = rName;

13 newRel.age = rAge;

14

15 if (pos > 0) {

16 insert(me, newRel, pos);

17 }

18 int ret = sum(me.relatives);

19

20 double k = useless + 1;

21

22 System.out.println(pos); //output

23 return ret; //output

24 }

25

26 public static void insert(Person me, Person rel, int pos

) {

27 me.relatives[pos] = rel;

28 }

29

30 public static int sum(Person[] relatives) {

31 int sum = 0;

32 for (Person p: relatives) {

33 sum += p.age;

34 }

35 return sum;

36 }

Fig. 2: A code example with inputs and outputs identified.

Because the a object owns myInt, our approach will

know that the a object can be an input source, even

though this read does not access a’s value directly. The

ownership dependency helps identify which values can be

from inputs. This dependency is transitive, which means

that the value owned by an object/array is also owned by

the owner of this object/array, if it has any owners.

C. Example

To demonstrate our general approach, we use the method

addRelative in Figure 2. Note that while the code pre-

sented is written in Java, our technique is generic, and not tied

to any particular language. The addRelative method takes

a Person object, me, as the input, and create a new relative,

based on the other two input parameters, rName and rAge.

The insert method, which is a callee of addRelative,

inserts newRel into the array field owned by me. The sum

method, which is the other callee, computes and return the

total age of all relatives owned by me.

We use the list of outputs to identify the inputs, so we

first define the formal outputs of addRelative. ret is the

return value, which is a natural output. Because pos flows

to an OutputStream, it is recognized as an output. me is

written in the callee insert, so it is also an output.

Before we discuss the input sources, we summarize the data

dependencies in addRelative. We use the variable name

to represent the value they contain. And we use x
c.
−→ y

TABLE I: THE DATA DEPENDENCIES IN THE ADDRELATIVE METHOD.

Deps. Notes

relatives
c.

−→ret ret is the computational result of sum,
which depends on me.relatives.

me
o.

−→relatives relatvies is a field of me.

newRel
c.

−→me me is written in the callee insert, where
newRel is the input.

pos
c.

−→me The same reason as the above.

rName
c.

−→newRel newRel is written by rName.

rAge
c.

−→newRel newRel is written by rAge.

TABLE II: THE INPUT SOURCES IN THE ADDRELATIVE METHOD.

Var. Notes

me me has the computational dependency to the output
ret.

rName rName is written to newRel that contributes to me.
rAge rAge is written to newRel that contributes to me.
pos pos has the computational dependency to the output

me.

to represent that y is computational-dependent on x, and

x
o.
−→ y to depict that y is owned by x. The dependencies

in addRelative can be read in Table I. The Deps. column

records the dependency between two variables, and the Notes

column explains why these two variables have the dependency.

We only show the direct dependencies between variables.

Finally, we can define the input sources based on the outputs

and the dependencies between variables. An input source is

the one that have direct or transitive dependencies to any of

the outputs. We first define the candidate input sources in

addRelative as

ISrcc(addRelative)

= {me,rName,rAge,pos,useless}
(1)

Given 3 outputs and all dependencies in Table I, we can

infer the parents of these 3 outputs as

Parents({ret,me,pos}) = {me,rName,rAge,pos}
(2)

We then intersect these two sets and conclude the input

sources of addRelative in Table II. We can see that not all

input parameters are considered as input sources. The variable

useless contributes to no outputs, so we do not consider it

as an input source.

We consider the values that may change the outputs of the

method as the control variables. In Figure 2, pos serves as the

control variables, since they can decide if newRel is should

be inserted or not. In our approach, the values from all control

variables (p-use [26]) are recorded as inputs.

After a static analysis determines which variables are inputs

and which are outputs, collecting them is simple: during

program execution, we record the value of each input and

output variable when a method is called, creating an I/O record

for each method. Over the program execution, many unique

I/O records will likely be collected for each method.

4

1 long getSum(long[] n, int

L, int R) {

2 long sum = 0;

3 if (R >= 0) {

4 sum = n[R];

5 }

6 if (L > 0) {

7 sum -= n[L - 1];

8 }

9 return sum;

10 }

1 public static long sum(int

a, int b)

2 {

3 if(a > b)

4 {

5 return 0;

6 }

7

8 return array[b + 1] -

array[a];

9 }

Fig. 3: A functional clone detected by HitoshiIO.

D. Mining Functionally Equivalent Methods

After collecting all of these I/O records, the final phase in

our approach is to evaluate the pairwise similarity between

these methods based on their I/O sets. However, there are

likely to be many different invocations of each method, and

many methods to compare, requiring O(
(

m
2

)

(n)2) comparisons

between m methods and n invocation histories for each

method. To simplify this problem, we first create summaries

of each method that can be efficiently compared, and then use

these summaries to perform high-level similarity comparison.

The result may be that two methods have slightly different

input and output profiles, but nonetheless are flagged as func-

tional clones. This is a completely intentional result from our

approach, based on the insight that in some cases, developers

may use different structures to represent the same data.

Consider the two code listings shown in Figure 3 — real

Java code found to be functional clones by HitoshiIO. Note

that at first, the two methods accept different (formal) input

parameters: but in reality, both use an array as inputs (the

second example accesses an array that is a static field, while

the first accepts an array as a parameter). For the case of

L <= R, a <= b, the behavior will be very similar in both

examples: the result will be the difference between two array

elements, one at b+1 (or R), and the other at a (or L−1). We

want to consider these functions behaviorally similar, despite

these minor differences.

Before detailing our similarity model, we first discuss the

concept of DeepHash [27] used in our similarity model. The

general idea of DeepHash is to recursively compute the hash

code for each element and field, and sum them up to represent

non-primitive data types. For this purpose, for floating point

calculations, we round them to two decimal places, although

this functionality is configurable. With the DeepHash function,

HitoshiIO can parse a set containing different objects into a

representative set of deep hash values, which facilitate our

similarity computation.

The strategy of the DeepHash is as follows:

• If there is already a hashCode function for the value to

be checked, then call it directly to obtain a hash code.

• If there is no existing hashCode function for an object,

then recursively collect the values of the fields owned by

the object and call the DeepHash to compute the hash

code for this object.

• For arrays and collections, compute the hash code for

each element by DeepHash and sum them up as the hash

code.

• For maps, compute the hash code of each key and values

by the DeepHash and sum them up.

The notations we use in the similarity model are as follows.

• mi: The ith method in the codebase.

• invr|mi
: The rth invocation of mi.

• ISrc(invr|mi
): the input set of invr|mi

.

• OSink(invr|mi
): the output set of invr|mi

.

• ISrch(invr|mi
): the deep hash set of ISrc(invr|mi

).

• OSinkh(invr|mi
): the deep hash set of OSink(invr|mi

).

• MPij : A method pair contains two methods from the

codebase, where i 6= j.

• IPr|i,s|j : An invocation pair contains invr|mi
and

invs|mj
.

To compare an IPr|i,s|j from two methods, mi and mj , we

first computes the Jaccard coefficients for ISrcs and OSinks

as the basic components for the functional similarity. The

definition for the Jaccard similarity [28] is as follows:

J(Seti, Setj) =
Seti ∩ Setj
Seti ∪ Setj

(3)

If either set is empty, this will compute their coefficient as

0. To simplify the notations, we define the basic similarities

between ISrcs and OSinks as follows.

SimI(IPr|i,s|j) = J(ISrch(invr|mi
), ISrch(invs|mj

))
(4a)

SimO(IPr|i,s|j) = J(OSinkh(invr|mi
), OSinkh(invs|mj

))
(4b)

The basic similarity represents how similar two ISrcs or

OSinks are. To summarize the I/O functional similarity for a

pair of methods, we propose an exponential model

Sim(IPr|i,s|j) =
(1− β ∗ eSimI) ∗ (1− β ∗ eSimO)

(1− β ∗ e)2
(5)

, where β is a constant. This exponential model punishes

the invocation pairs that have either similar ISrc or OSink,

but not the other. By this similarity model, we can sharply

differentiate invocation pairs having similar I/Os from the ones

that solely have similar inputs or outputs. We can finally define

the similarity for a method pair MPij as the best similarity

of their invocation pairs IPr|i,s|j .

Sim(MPij) = maxSim(IPr|i,s|j) (6)

IV. HITOSHIIO

To demonstrate and evaluate in-vivo clone detection, we

create HitoshiIO, with a name inspired by the Japanese word

for “equivalent”: hitoshii. HitoshiIO records and compares

the inputs and outputs between Java methods, considering

every method as a possible clone of every other. In principle,

we could extend HitoshiIO to consider code fragments -

individual parts of methods, but we leave this implementation

5

to future work. HitoshiIO is implemented using the ASM

bytecode rewriting toolkit, operating directly on Java bytecode,

requiring no access to application or library source code.

HitoshiIO is available on GitHub and released under an MIT

license.

A. Java Background

Before describing the various implementation complexities

of HitoshiIO, we first provide a brief review of data organi-

zation in the JVM. According to the official specification of

Java [29], there are two categories of data types: primitive

and reference types. The primitive category includes eight

data types: boolean, byte, character, integer, short, long, float

and double. The reference category includes two data types:

objects and arrays. Objects are instances of classes, which can

have fields [29]. A field can be a primitive or a reference data

type. An array contains element(s), where an element is also

either a primitive or a reference data type.

Primitive types are passed by value, while reference types

are passed by reference value. HitoshiIO considers all types

of variables as inputs and outputs.

B. Identifying Method Inputs and Outputs

Our approach relies on first identifying the outputs of a

method, and then backtracking to the values that influence

those outputs, in order to detect inputs. The first step is

identifying the outputs of a given method. For a method m,

its output set consists of all variables written by m that are

observable outside of m. An output could be a variable passed

to another method, returned by the method, written to a global

variable (static field in the JVM), or written to a field of an

object or array passed to that method. By default, HitoshiIO

only considers the formal parameters of methods, ignoring the

owner object (if the method call is at instance level) in this

analysis, although this behavior is configurable.

This approach would, therefore, consider every variable

passed from method m1 to method m2 to be an output

of m1. As an optimization, we perform a simple intra-

procedural analysis to identify methods that do not propagate

any of their inputs outside of their own scope (i.e., they

do not effect any future computations). For these special

cases, HitoshiIO identifies that at call-sites of these special

methods, their arguments are not actually outputs, in that

they do not propagate through the program execution. To

further reduce the scope of potential output variables, we also

exclude variables passed as parameters to methods that do

not directly write to those variables as inputs. We found that

these heuristics work well towards ensuring that HitoshiIO can

execute within a reasonable amount of time, and discuss the

overall performance of HitoshiIO in §V.

Once outputs are identified, HitoshiIO performs a static data

and control flow analysis for each method, identifying for

each output variable, all variables which influence that output

through either control or data dependencies. Variable vo is

dependent on vi if the value of vo is derived from vi (data

dependent), or if the statement assigning vo is controlled by

vi. We recursively apply this analysis to determine the set of

variables that influence the output set OSink, creating the set

of variables Parents(OSink). Variable vi in method m is an

input if it is Parents(OSink) and its definition occurs outside

of the scope of m. HitoshiIO then identifies the instructions

that load inputs and return outputs, for use in the next step -

instrumentation.

C. Instrumentation

Given the set of instructions that may load an input variable

or store an output, HitoshiIO inserts instrumentation hints in

the application’s bytecode to record these values at runtime.

Table III describes the various relevant bytecode instructions,

their functionality, and the relevant categorization made by

HitoshiIO (Input instruction or Output instruction). HitoshiIO

treats the values consumed by the control instructions as

inputs. Just after an instruction that loads a value judged to

be an input, HitoshiIO inserts instructions to record that value;

just before an instruction that stores an output value, HitoshiIO

similarly inserts instructions to record that value.

TABLE III: THE POTENTIAL INSTRUCTIONS OBSERVED BY HITOSHIIO.

Opcode Type Description

xload In. Load a primitive from a local variable,
where x is a primitive.

aload In. Load a reference from a local variable.
xaload In. Load a primitive from a primitive array,

where x is a primitive.
aaload In. Load a reference from a reference array.
getstatic In. Load a value from a field owned by a

class.
getfield In. Load a value from a field owned by an

object.
arraylength In. Read the length of an array.
invokeXXX Out. Call a function
xreturn Out. Return a primitive value from the method,

where x is a primitive.
areturn Out. Return a reference from the method.
putstatic Out. Write a value to the field owned by a class.
putfield Out. Write a value to the field owned by an

object.
xastore Out. Write a primitive to a primitive array.
aastore Out. Write a reference to a reference array.
ifXXX Con. Represent all if instructions. Jump by

comparing value(s) on the stack.
tableswitch,

lookupswitch

Con. Jump to a branch based on the index on
the stack.

D. Recording Inputs and Outputs at Runtime

The next phase of HitoshiIO is to record the actual inputs

and outputs to each method as we observe the execution of the

program. Although the execution of the program is guided by

relatively high level inputs (e.g., unit tests, which each likely

calls more than one single method), the previous step (input

and output identification) allows us to carve out inputs and

outputs to individual methods - it is these individual inputs

and outputs that we record.

HitoshiIO’s runtime recorder serializes all previously iden-

tified inputs immediately as they are read by a method, and all

outputs immediately before they are written. For Java’s prim-

itive types (and Strings), the I/O recorder records the values

6

directly. For objects, including arrays, HitoshiIO follows [8]

to adopt the XStream library [30] to serialize these objects

in a generic fashion to XML. Once the method completes an

execution, this execution profile is stored as a single XML file

in a local repository for offline analysis in the next step.

E. Similarity Computation

Recall that our goal is to find similarly functioning methods,

not methods that present the exact same output for the exact

same input. Hence, our similarity computation mechanism

needs to be sufficiently sensitive to identify when two methods

function “significantly” differently for the same input, but at

the same time ignore trivial differences (e.g., the specific data

structure used, order of inputs, additional input parameters

that are used). To capture this similarity, we use a Jaccard

coefficient (as described in §III-D) - a relatively efficient

and effective measure of the similarity between two sets. A

high Jaccard coefficient indicates a good similarity, and a low

coefficient indicates a poor match.

While it is relatively straightforward to compare simple,

primitive values (including Strings) in Java directly, comparing

complex objects of different structures is non-trivial: one

of the key technical roadblocks reported in Deissenbock et

al.’s earlier work [8]. To solve this problem, we adopt the

DeepHash [27] approach, creating a hash of each object. The

details of DeepHash can refer to §III-D.

The similarity model of HitoshiIO follows §III-D. Optimiz-

ing the parameter setting for HitoshiIO’s similarity model is

extremely expensive. For each different setting, we need to

conduct a user study to determine if more or less functional

clones can be detected, which is inapplicable. We conduct

multiple small scale experiments (i.e., pick a small set of our

study subjects) with different βs. Then we manually verify the

results to determine the local optimized value for β, which is

3, for the exponential model of Eq. 5 in HitoshiIO. We plan to

leverage the power of machine learning to automatically learn

the best β for HitoshiIO in the future.

HitoshiIO has two other parameters that control its similar-

ity matching procedure: InvT and SimT . We recognize that

some hot methods may be invoked millions of times — while

others invoked only a handful. InvT provides an upper-bound

for the number of individual method input-output profiles that

are considered for each method. SimT provides a lower-bound

for how similar two methods must be to be reported as a

functional clone. We have evaluated various settings for these

parameters, and discuss them in greater detail in §V-A.

V. EXPERIMENTS

To evaluate the efficacy of HitoshiIO, we conduct a large

scale experiment in a codebase to examine functional clones

detected by HitoshiIO. We set out to answer the following

three research questions:

RQ1: Does HitoshiIO find functional clones, even

given limited inputs and invocations?

RQ2: Is the false-positive rate of HitoshiIO low

enough to be potentially usable by developers?

TABLE IV: A SUMMARY OF THE EXPERIMENTAL CODEBASE CONTAINING

PROJECTS FROM THE GOOGLE CODE JAM COMPETITIONS.

Total # of Avg per-method

Year Problem Set Projects Methods Invocations LOC

2011 Irregular Cake 30 201 24 11.2

2012 Perfect Game 34 241 21 6.4

2013 Cheaters 21 163 26 9.2

2014 Magical Tour 33 220 20 8.1

Across all projects 118 825 22 8.6

RQ3: Is the performance of HitoshiIO sufficiently

reasonable to use in practice?

Because HitoshiIO is a dynamic system that requires a

workload to drive programs, we selected the Google Code Jam

repository [31], which provides input data, as the codebase of

our experiments. The Code Jam is the annual programming

competition hosted by Google. The participants need to solve

the programming problems provided by Google Code Jam and

submit their solutions as applications for Google to test. The

projects that pass Google’s tests are published online.

Each annual competition of Google Code Jam usually has

several rounds. We examine the projects from four years

(2011-2014), and consider the projects that passed the third

round of competitions. We only pick the projects that do

not require a user to input the data, which can facilitate

the automation of our experiments. Descriptive details for

these projects, which form our experimental codebase, can

be found in Table IV. For measurement purposes, we only

consider methods defined in each project — and not those

provided by the JVM, but used by the project. We also exclude

constructors, static constructors, toString, hashCode and

equals methods, since they usually don’t provide logic.

HitoshiIO observes the execution of each of these methods,

exhaustively comparing each pair of methods. In this evalu-

ation, we configured HitoshiIO to ignore comparing methods

for similarity that were written by the same developer in

the same year. This heuristic simulates the process of a new

developer entering the team, and looking for functionally

similar code that might look different — reporting functional

clone m2 of m1 where both m1 and m2 were written by the

same developer at the same time is unlikely to be particularly

helpful or revealing, since we hypothesize that these are likely

syntactically similar as well. This suite of projects allows

us to draw interesting conclusions about the variety of func-

tional clones detected: are there more functional clones found

between multiple implementations of the same overall goal

(i.e., between projects in the same year written by different

developers), or are there more functional clones found between

different kinds of projects overall (i.e., between years)?

We performed all of our similarity computations on Ama-

zon’s EC2 infrastructure [32], using a single c4.8xlarge ma-

chine, equipped with 36 cores and 60GB of memory.

7

Similarity Threshold
0.7 0.75 0.8 0.85 0.9 0.95

#
 o

f
F

u
n

c
ti
o

n
a

l
C

lo
n

e
s

600

650

700

750

800

850

900

950

1000

1050

1100
Functional Clones by HitoshiIO

Invoke10
Invoke25
Invoke50
Invoke75
Invoke100

Fig. 4: The number of functional clones detected by HitoshiIO with different

parameter settings.

A. RQ1: Clone Detection Rate

We manipulate two parameters in HitoshiIO, invocation

threshold, InvT and similarity threshold, SimT, to observe the

variation of the number of the detected functional clones.

The invocation threshold represents how many unique I/O

records should be generated from invocations of a method.

The way that we define the uniqueness of I/O records is by the

hash value derived from their ISrcs and OSinks. HitoshiIO

stops generating I/O records for a method, when its invocation

threshold is achieved. Intuitively, more functional clones can

be detected with a higher invocation threshold. The similarity

threshold sets the lower-bound for how similar two methods

must be to be reported as a clone.

Figure 4 shows the number of functional clones detected

by HitoshiIO while varying the similarity threshold (x-axis)

and the invocation threshold (each line). With InvT ≥ 50, the

number of the detected functional clones does not increase too

much. However, there is a remarkable increase from InvT =
25 to InvT = 50. If we fix the SimT to 85%, the difference

of detected clones between InvT = 25 and InvT = 50 is

114, but the difference between InvT = 50 and InvT = 100
is only 71. Figure 4 also shows that the number of clones does

not sharply decrease between SimT = 0.8 to SimT = 0.9.

Thus, for the remainder of our analysis, we set InvT = 50
and SimT = 0.85, and evaluate the quality and number of

clones detected with these parameters.

Given this default setting, HitoshiIO detects a total of 874
clones, which contain 185 distinctive methods that average

10.5 lines of code each. The methods found to be clones

were slightly larger on average than most methods in the

dataset. Table V shows the distribution of clones, broken down

between the pair of years that each method was found in, and

the size of each clone (less than or equal to 5 lines of code, or

larger). In total, HitoshiIO found 385 clones with LOC ≤ 5
(44%), while 489 of them are larger than 5 LOC (56%).

About half of the clones were found looking between multiple

TABLE V: THE DISTRIBUTIONS OF CLONES DETECTED BY HITOSHIIO

CROSS THE PROBLEM SETS.

Number of Clones Methods
Compared

Analysis Time
(mins)Year Pair ≤ 5 LOC > 5 LOC Total

2011− 2011 20 14 34 11.6M 1.2

2012− 2012 100 32 132 11.8M 0.9

2013− 2013 18 144 162 8.4M 0.8

2014− 2014 41 65 106 9.3M 0.9

2011− 2012 25 26 51 24.4M 1.9

2011− 2013 16 24 40 20.8M 1.8

2011− 2014 36 40 76 21.6M 2.2

2012− 2013 29 30 59 21.0M 1.7

2012− 2014 59 61 120 21.8M 1.5

2013− 2014 41 53 94 18.6M 1.6

Total 385 489 874 169.5M 14.5

projects in the same year (recall that projects in the same year

implement different solutions to the same overall challenge),

despite there being fewer potential pairs evaluated (“Methods

Compared” column). This interesting result shows that there

are many functional clones detected between projects that have

the same overall purpose, but there are still plenty of functional

clones detected among projects that do not share the same

general goal (comparing between years).

While we did find many clones, our total clone rate, defined

to be the number of methods that were clones over the total

number of methods, was 185/825 = 22%. It is difficult

for us to approximate whether HitoshiIO is detecting all of

the functional clones in this corpus, as there is no ground

truth available. Other relevant systems, e.g. Elva and Leavens’

IOE clone detector, were unavailable, despite contacts to the

authors [5]. Deissenboeck et al.’s Java system [8], although not

available to us, found far fewer clones with a roughly 1.64%

clone rate on a different dataset, largely due to technical issues

running their clone detection system. Assuming that the clones

we detected truly are functional clones, then we are pleased

with the quantity of clones reported by HitoshiIO: there are

plenty of reports.

B. RQ2: Quality of Functional Clones

To evaluate the precision of HitoshiIO, we randomly sam-

pled the 874 clones reported in this study (RQ1), selecting

114 of the clones (approximately 13% of all clones). These

114 functional clones contain 111 distinctive methods with 7.3
LOC in average. For these clones, we recruited two masters

students from the Computer Science Department at Columbia

University to each examine half (57) of the sampled clones,

and determine if they truly were functional clones or not.

These students had no prior involvement with the project and

were unfamiliar with the exact mechanisms originally used to

detect the clones. But they were given a high level overview

of the problem, and were requested to report if each pair

of clones is functionally similar. The first verifier had 1.5
year of experiences with Java, including constructing research

prototypes. The second verifier had 3 years of experiences with

Java, including industrial experiences as a Java developer.

8

We asked the verifiers to mark each clone they analyzed

by 3 categories: false positive, true positive, and unknown.

To prevent our verifiers from being stopped by some complex

clones, we set a (soft) 3-minute threshold for them to analyze

each functional clone, at which point they mark the clone as

unknown. Both verifiers completed all verifications between 2
to 2.5 hours.

Among these 114 functional clones, 78(68.4%) are marked

as true positive, 19(16.6%) are marked as unknown and

17(14.9%) are labeled as false positive. If we only consider

the categories of false and true positive, the precision can be

defined as

precision =
#TP

#FP +#TP
(7)

The precision of HitoshiIO over all sampling functional clones

is 0.82.

Our student-guided precision evaluation is difficult to com-

pare to previous functional clone works (e.g., [4], [5], [8]),

as previous works haven’t performed such an evaluation.

However, overall we believe that this relatively low false

positive rate is indicative that HitoshiIO can be potentially

used in practice to find functionally similar code.

C. RQ3: Performance

There are several factors that can contribute to the run-

time overhead of HitoshiIO: the time needed to analyze and

instrument the applications under study, the time to run the

applications and collect the individual input and output pro-

files, and the time to analyze and identify the clone pairs. The

most dominant factor for execution time in our experiments

was the clone identification time: application analysis was

relative quick (order of seconds), and the input-output recorder

added only a roughly 10x overhead compared to running the

application without any profiling (which was also on the order

of seconds). As shown in Table V, the total analysis time for

similarity computation needed to detect these 874 clones was

relatively quick though: only 14.5 minutes.

The analysis time is very directly tied with the InvT
parameter, though: the number of unique input-output profiles

considered for each method in the clone identification phase.

We varied this parameter, and observed the number of clones

detected, as well as the analysis time needed to identify the

clones, and show the results in Table VI. For each value of

InvT , we show the number of clones detected, the clone rate,

the number of clones that were verified as true positives (in

the previous section), but missed, and the total analysis time.

Even considering very few invocations (10) with real work-

loads, HitoshiIO still detects most of the clones, with very low

analysis cost. The time complexity to compute the similarities

for all invocations is O(n2), where n is the number of

invocations from all methods. This implies that the processing

time under InvT = 25 is about 25% of the baseline, but it can

detect 95% of the ground truth with real workloads. This result

is compelling because: (1) it shows that HitoshiIO’s analysis

is scalable, and can be potentially used in practice, and (2) it

shows that even with very few observed executions (e.g., due

TABLE VI: THE NUMBER OF MISSED FUNCTIONAL CLONES WITH DIFFER-

ENT INVOCATION THRESHOLDS DETECTED BY HITOSHIIO.

Clones Detected
Clones
Missed

Analysis Time
(mins)InvT Total Clone Rate

10 678 20.6% 10 0.6
25 762 21.6% 4 3.8
50 874 22.4% 0 14.5
75 916 22.5% 0 32.5

100 945 22.8% 0 56.6

to sparse existing workloads), functional clones can still be

detected.

VI. DISCUSSION

A. Threats to Validity

In designing our experiments, we attempted to reduce as

many potential risks to validity as possible, but we acknowl-

edge that there may nonetheless be several limitations. For

instance, we selected 118 projects from the Google Code Jam

repository for study, each of which may not necessarily rep-

resent the size and complexity of large scale multi-developer

projects. However, this choice allowed us to control the vari-

ability of the clones: we could look at multiple projects within

a year, which would show us method-level functional clones

between projects that have the same overall goal, and projects

across different years, which would show us those method-

level clones between projects that have completely different

overall goals. Future evaluations of HitoshiIO will include

additional validation that similar results can be obtained on

larger, and more complex applications.

For our evaluation of false positives, we recognize the

subjective nature of having a human recognize that two code

fragments are functionally equivalent. However, we believe

that we provided adequate training to well-experienced devel-

opers who could therefore, judge whether code was function-

ally similar or not, especially given the relatively small size

of most of the clones examined. Given additional resources,

cross-checking the experimental results between users might

increase our confidence in evaluating HitoshiIO in the future.

Ideally, we would be able to test HitoshiIO against a

benchmark of functional clones: a suite of programs, with

inputs, that have been coded by other researchers to provide a

ground truth of what functional clones exist. Unfortunately,

clone benchmarks (e.g., [33], [34]) are designed for static

clone detectors, and do not include any workloads to use to

drive the applications, making them unsuitable for a dynamic

clone detector like HitoshiIO.

There are also several implementation limitations that may

be causing the number of clones that HitoshiIO detects to

be lower than it should be. For instance, the heuristics that

it uses to decide what an I/O is are not sound (§IV-B),

which may result in identifying fewer I/Os than it ought to.

These limitations do not effect the validity of our experimental

results, as any implementation flaws would hence be reflected

in the results. To enhance HitoshiIO, we propose to have future

developments in the next section.

9

B. Future Work

To offer a more advanced mechanism to identify I/Os of

programs, we plan to apply a taint tracking system such as

[35] to capture these I/Os. Currently HitoshiIO records inputs

and outputs as sets without considering item orders. We expect

to develop a new feature that allows users to decide if their

data should be stored in sequence or not. Since our target is to

explore programs with similar functionalities, code coverage

rate is not our main concern. However, we are interested

in examining the relation between code coverage rate and

detection rate of functional clones in HitoshiIO. For enhancing

the similarity computation, given a method pair, we plan to

observe the correlation between all invocation pairs between

them, instead of the current approach to select the one with

the highest similarity.

VII. CONCLUSIONS

Prior work has underscored the challenges of detecting

functionally similar code in object oriented languages. In this

paper, we presented our approach, In-Vivo Clone Detection,

to effectively detect functional clones. We implemented such

approach in our system for Java, HitoshiIO. Instead of fixing

the definitions of program I/Os, HitoshiIO applies static data

flow analysis to identify potential inputs and outputs of indi-

vidual methods. Then, HitoshiIO uses real workloads to drive

the program and profiles each method by their I/O values.

Based on our similarity model to compare each I/O profile,

HitoshiIO detected 800+ functional clones in our evaluation

with only 15% false positive rate.

With these results, we enable future research that will

leverage the information of function clones. For instance, can

functional clones help in API refactoring? Can we help devel-

opers understand new code by showing them some previous

examined code that is functionally similar? We have made our

system publicly available on GitHub, and are excited by the

future investigations and developments in the community.

VIII. ACKNOWLEDGMENTS

The authors would like to thank Apoorv Prakash Patward-

han and Varun Jagdish Shetty for verifying the experimental

results. The authors would also like to thank the anonymous

reviewers for their valuable feedback. Su, Bell and Kaiser

are members of the Programming Systems Laboratory. Sethu-

madhavan is the member of the Computer Architecture and

Security Technology Laboratory. This work is funded by NSF

CCF-1302269, CCF-1161079 and NSF CNS-0905246.

REFERENCES

[1] T. Kamiya, S. Kusumoto, and K. Inoue, “Ccfinder: A multilinguistic
token-based code clone detection system for large scale source code,”
TSE, Jul. 2002.

[2] M. Kim, V. Sazawal, D. Notkin, and G. Murphy, “An empirical study
of code clone genealogies,” ser. ESEC/FSE-13, 2005.

[3] Z. Li, S. Lu, S. Myagmar, and Y. Zhou, “Cp-miner: A tool for finding
copy-paste and related bugs in operating system code,” ser. OSDI’04.

[4] L. Jiang and Z. Su, “Automatic mining of functionally equivalent code
fragments via random testing,” ser. ISSTA ’09.

[5] R. Elva and G. T. Leavens, “Semantic clone detection using method
ioe-behavior,” ser. IWSC ’12, pp. 80–81.

[6] H. Kim, Y. Jung, S. Kim, and K. Yi, “Mecc: Memory comparison-based
clone detector,” ser. ICSE ’11.

[7] M. Egele, M. Woo, P. Chapman, and D. Brumley, “Blanket execution:
Dynamic similarity testing for program binaries and components,” in
Proc of the 23rd USENIX Conference on Security Symposium, 2014.

[8] F. Deissenboeck, L. Heinemann, B. Hummel, and S. Wagner, “Chal-
lenges of the Dynamic Detection of Functionally Similar Code Frag-
ments,” ser. CSMR ’12.

[9] L. A. Neubauer, “Kamino: Dynamic approach to semantic code clone
detection,” Department of Computer Science, Columiba University,
Tech. Rep. CUCS-022-14.

[10] J. Bell, G. Kaiser, E. Melski, and M. Dattatreya, “Efficient dependency
detection for safe java test acceleration,” ser. ESEC/FSE 2015.

[11] C. K. Roy, J. R. Cordy, and R. Koschke, “Comparison and evaluation
of code clone detection techniques and tools: A qualitative approach,”
Sci. Comput. Program., vol. 74, no. 7, pp. 470–495, May 2009.

[12] B. S. Baker, “A program for identifying duplicated code,” in Computer

Science and Statistics: Proc. Symp. on the Interface, 1992, pp. 49–57.
[13] I. D. Baxter, A. Yahin, L. Moura, M. Sant’Anna, and L. Bier, “Clone

detection using abstract syntax trees,” ser. ICSM ’98.
[14] L. Jiang, G. Misherghi, Z. Su, and S. Glondu, “Deckard: Scalable and

accurate tree-based detection of code clones,” ser. ICSE ’07.
[15] M. Gabel, L. Jiang, and Z. Su, “Scalable detection of semantic clones,”

ser. ICSE ’08.
[16] C. Liu, C. Chen, J. Han, and P. S. Yu, “Gplag: Detection of software

plagiarism by program dependence graph analysis,” ser. KDD ’06.
[17] J. Krinke, “Identifying similar code with program dependence graphs,”

ser. WCRE ’01.
[18] J. Li and M. D. Ernst, “Cbcd: Cloned buggy code detector,” ser. ICSE

’12.
[19] A. Marcus and J. I. Maletic, “Identification of high-level concept clones

in source code,” ser. ASE ’01.
[20] C. McMillan, M. Grechanik, and D. Poshyvanyk, “Detecting similar

software applications,” ser. ICSE ’12.
[21] C. S. Collberg, C. Thomborson, and G. M. Townsend, “Dynamic

graph-based software fingerprinting,” ACM Trans. Program. Lang. Syst.,
vol. 29, no. 6, Oct. 2007.

[22] A. Carzaniga, A. Mattavelli, and M. Pezzè, “Measuring software redun-
dancy,” ser. ICSE ’15.

[23] C. Murphy, G. Kaiser, I. Vo, and M. Chu, “Quality assurance of software
applications using the in vivo testing approach,” ser. ICST ’09.

[24] C. Pacheco and M. D. Ernst, “Randoop: Feedback-directed random
testing for java,” ser. OOPSLA ’07.

[25] S. Thummalapenta, T. Xie, N. Tillmann, J. de Halleux, and W. Schulte,
“Mseqgen: Object-oriented unit-test generation via mining source code,”
ser. ESEC/FSE ’09.

[26] P. G. Frankl and E. J. Weyuker, “An applicable family of data flow
testing criteria,” IEEE Trans. Softw. Eng., vol. 14, no. 10, Oct. 1988.

[27] The java-util library. [Online]. Available: https://github.com/jdereg/java-
util/

[28] M. Levandowsky and D. Winter, “Distance between sets,” Sci. Comput.

Program., vol. 234, pp. 34–35, Nov. 1971.
[29] T. Lindholm, F. Yellin, G. Bracha, and A. Buckley, The Java Virtual

Machine Specification, Java SE 7 ed., Feb 2013. [Online]. Available:
http://docs.oracle.com/javase/specs/jvms/se7/html/jvms-2.html

[30] The xstream library. [Online]. Available: http://x-stream.github.io/
[31] Google code jam. [Online]. Available: https://code.google.com/codejam
[32] Amazon ec2. [Online]. Available: https://aws.amazon.com/ec2/
[33] D. E. Krutz and W. Le, “A code clone oracle,” ser. MSR ’14.
[34] J. Svajlenko, J. F. Islam, I. Keivanloo, C. K. Roy, and M. M. Mia,

“Towards a Big Data Curated Benchmark of Inter-project Code Clones,”
ser. ICSME ’14.

[35] J. Bell and G. Kaiser, “Phosphor: Illuminating dynamic data flow in
commodity jvms,” ser. OOPSLA ’14.

10

