

(https://www.abstractsonline.com/pp8/#!/4649)

Session 381 - Neurotoxicity, Inflammation, and Neuroprotection: Mechanisms of **Neurodegeneration II**

O Add to Itinerary

381.02 / M1 - The polyglutamine protein FAM171B localizes to neuronal cytoplasm

Movember 5, 2018, 1:00 PM - 5:00 PM

SDCC Halls B-H

Presenter at Poster

Mon, Nov. 5, 2018, 2:00 PM - 3:00 PM

Grant Support

MSU-Mankato Foundation

Grant Support

MSU-Mankato Biology

Authors

D. RAJAGURU, M. BAUER, D. S. SHARLIN, *G. M. GOELLNER; Biol., Minnesota State Univ- Mankato, Mankato, MN

D. Rajaguru: None. M. Bauer: None. D.S. Sharlin: None. G.M. Goellner: None.

Abstract

Expansion mutation within polyglutamine (polyQ) tract proteins is known to underlie a number of severe neurodegenerative disorders such as Huntington's Disease and Spinocerebellar Ataxia. Using a bioinformatics approach, we have identified a novel protein, FAM171B, that contains a stretch of 14 consecutive glutamines. Using in situ hybridization and immunohistochemistry experiments, our data strongly suggests that FAM171B is widely expressed in the brain with abundant expression in the hippocampus, cortex, and cerebellum. To begin elucidating FAM171B sub-cellular location we are using confocal fluorescence imaging of GFP-fusion tagged FAM171B and anti-FAM171B antibodies in vitro. Our findings indicate that FAM171B displays a punctate/vesicular staining pattern throughout the cytoplasm of human glioblastoma tissue culture cells and primary mouse cortical neurons. FAM171B localization is particularly enriched in the peri-nuclear region and adjacent to the plasma membrane. Current studies are utilizing organelle specific markers to verify sub-cellular locale and live-cell imaging to assay whether FAM171B may traffic between intracellular compartments.

Abstract Citation