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Abstract

“Composable core-sets” are an efficient framework for solving optimization problems in massive data
models. In this work, we consider efficient construction of composable core-sets for the determinant
maximization problem. This can also be cast as the MAP inference task for determinantal point processes,
that have recently gained a lot of interest for modeling diversity and fairness. The problem was recently
studied in [IMGR18], where they designed composable core-sets with the optimal approximation bound
of Õ(k)k. On the other hand, the more practical Greedy algorithm has been previously used in similar
contexts. In this work, first we provide a theoretical approximation guarantee of O(Ck2

) for the Greedy
algorithm in the context of composable core-sets; Further, we propose to use a Local Search based
algorithm that while being still practical, achieves a nearly optimal approximation bound of O(k)2k;
Finally, we implement all three algorithms and show the effectiveness of our proposed algorithm on
standard data sets.

1 Introduction

Given a set of vectors P ⊂ Rd and an integer 1 ≤ k ≤ d, the goal of the determinant maximization problem
is to find a subset S = {v1, . . . , vk} of P such that the determinant of the Gram matrix of the vectors in S is
maximized. Geometrically, this determinant is equal to the volume squared of the parallelepiped spanned by
the points in S. This problem and its variants have been studied extensively over the last decade. To this date,
the best approximation factor is due to a work of Nikolov [Nik15] which gives a factor of ek, and it is known
that the exponential dependence on k is unavoidable [CMI13].

The determinant of a subset of points is used as a measure of diversity in many applications where
a small but diverse subset of objects must be selected as a representative of a larger population [MJK17,
GCGS14, KT+12, CGGS15, KT11, YFZ+16, LCYO16]; recently, this has been further applied to model
fairness [CDKV16]. The determinant maximization problem can also be rephrased as the maximum a
posteriori probability (MAP) estimator for determinantal point processes (DPPs). DPPs are probabilistic
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models of diversity in which every subset of k objects is assigned a probability proportional to the determinant
of its corresponding Gram matrix. DPPs have found several applications in machine learning over the last
few years [KT+12, MJK17, GCGS14, YFZ+16]. In this context, the determinant maximization problem
corresponds to the task of finding the most diverse subset of items.

Many of these applications need to handle large amounts of data and consequently the problem has been
considered in massive data models of computation [MJK17, WIB14, PJG+14, MKSK13, MKBK15, MZ15,
BENW15]. One strong such model that we consider in this work, is composable core-set [IMMM14] which
is an efficient summary of a data set with the composability property: union of summaries of multiple data
sets should provably result in a good summary for the union of the data sets. More precisely, in the context of
the determinant maximization, a mapping function c that maps any point set to one of its subsets is called an
α-composable core-set if it satisfies the following condition: given any integer m and any collection of point
sets P1, · · · , Pm ⊂ Rd,

MAXDETk(
m⋃
i=1

c(Pi)) ≥
1

α
·MAXDETk(

m⋃
i=1

Pi)

where we use MAXDETk to denote the optimum of the determinant maximization problem for parameter
k. We also say c is a core-set of size t if for any P ⊂ Rd, |c(P )| ≤ t. If designed for a task, composable
core-sets will further imply efficient streaming and distributed algorithms for the same task. This has lead to
recent interest in composable core-sets model since its introduction [MZ15, AK17, IMGR18].

An almost optimal approximate composable core-set. In [IMGR18], the authors designed composable
core-sets of size O(k log k) with approximation guarantee of Õ(k)k for the determinant maximization prob-
lem. Moreover, they showed that the best approximation one can achieve is Ω(kk−o(k)) for any polynomial
size core-sets, proving that their algorithm is almost optimal. However, its complexity makes it less appealing
in practice. First of all, the algorithm requires an explicit representation of the point set, which is not present
for many DPP applications; a common case is that the DPP kernel is given by an oracle which returns the
inner product between the points; in this setting, the algorithm needs to construct the associated gram matrix,
and use SVD decomposition to recover the point set, making the time and memory quadratic in the size of the
point-set. Secondly, even in the point set setting, the algorithm is not efficient for large inputs as it requires
solving O(kn) linear programs, where n is size of the point set.

In this paper, we focus on two simple to implement algorithms which are typically exploited in practice,
namely the Greedy and the Local-Search algorithms. We study these algorithms from theoretical and
experimental points of view for the composable core-set problem with respect to the determinant maximization
objective, and we compare their performance with the algorithm of [IMGR18], which we refer to as the
LP-based algorithm.

1.1 Our Contributions

Greedy algorithm. The greedy algorithm for determinant maximization proceeds in k iterations and at
each iteration it picks the point that maximizes the volume of the parallelepiped formed by the set of points
picked so far. [ÇMI09] has studied the approximation of the greedy algorithm in the standard setting. In
the context of submodular maximization over large data sets, variants of this algorithm have been studied
[MKSK13]. One can view the greedy algorithm as a heuristic for constructing a core-set of size k. To the best
of our knowledge, the previous analysis of this algorithm does not provide any multiplicative approximation
guarantee in the context of composable core-sets.1

1For more details, see related work.
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Our first result shows the first multiplicative approximation factor for composable core-sets on the
determinant maximization objective achieved by the Greedy algorithm.

Theorem 1.1. Given a set of points P ⊂ Rd, the Greedy algorithm achieves a O(Ck
2
)-composable core-set

of size k for the determinant maximization problem, where C is a constant.

The Local Search algorithm. Our main contribution is to propose to use the Local Search algorithm for
constructing a composable core-set for the task of determinant maximization. The algorithm starts with the
solution of the Greedy algorithm and at each iteration, swaps in a point that is not in the core-set with a point
that is already in the core-set, as long as this operation increases the volume of the set of picked points. While
still being simple, as we show, this algorithm achieves a near-optimal approximation guarantee.

Theorem 1.2. Given a set of points P ⊂ Rd, the Local Search algorithm achieves an O(k)2k-composable
core-set of size k for the determinant maximization problem.

Directional height. Both of our theoretical results use a modular framework: In Section 3, we introduce a
new geometric notion defined for a point set called directional height, which is closely related to the width of
a point set defined in [AHPV05]. We show that core-sets for preserving the directional height of a point set
in fact provide core-sets for the determinant maximization problem. Finally, we show that running either the
Greedy (Section 5) or Local Search (Section 4) algorithms on a point set obtain composable core-sets for its
directional height. We believe that this new notion might find applications elsewhere.

Experimental resutls. Finally, we implement all three algorithms and compare their performances on two
real data sets: MNIST[LBBH98] data set and GENES data set, previously used in [BQK+14, LJS15] in the
context of DPPs. Our empirical results show that in more than 87% percent of the cases, the solution reported
by the Local Search algorithm improves over the Greedy algorithm. The average improvement varies from
1% to up to 23% depending on the data set and the settings of other parameters such as k. We further show
that although Local Search picks fewer points than the tight approximation algorithm of [IMGR18] (k vs.
upto O(k log k)), its performance is better and it runs faster.

1.2 Related Work

In a broader scope, determinant maximization is an instance of the (non-monotone) submodular maximization
where the logarithm of the determinant is the submodular objective function. There is a long line of work
on distributed submodular optimization and its variants [CKT10, BMKK14, MKSK16, KMVV15]. In
particular, there has been several efforts to design composable core-sets in various settings of the problem
[MKSK13, MZ15, BENW15]; In [MKSK13], authors study the problem for monotone functions, and show
the greedy algorithm offers a min(m, k)-composable core-set for the problem where m is the number of
parts. On the other hand, [IMMM14] shows that it is impossible to go beyond an approximation factor of
Ω(
√
k

log k ) with polynomial size core-sets. Moreover, [MZ15, BENW15] consider a variant of the problem
where the data is randomly distributed, and show the greedy algorithm achieves constant factor “randomized”
composable core-sets for both monotone and non-monotone functions. However, one can notice that these
results can not be directly compared to the current work, as a multiplicative approximation for determinant
converts to an additive guarantee for the corresponding submodular function.

As discussed before, the determinant is one way to measure the diversity of a set of items. Diversity
maximization with respect to other measures has been also extensively studied in the literature, [HRT97,
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GS09, BLY12, BGMS16]. More recently, the problem has received more attention in distributed models
of computation, and for several diversity measures constant factor approximation algorithms have been
devised [ZGMZ17, IMMM14, CPPU17]. However, these notions are typically defined by considering only
the pairwise dissimilarities between the items; for example, the summation of the dissimilarities over all pairs
of items in a set can define its diversity.

One can also go further, and study the problem under additional constraints, such as matroid and knapsack
constraints. This has been an active line of research in the past few years, and several centralized and
distributed algorithms have been designed in this context for submodular optimization [MBK16, LMNS09,
LSV10, CGQ15] and in particular determinant maximization [ESV17, NS16].

2 Preliminaries

Throughout the paper, we fix d as the dimension of the ambient space and k(k ≤ d) as the size parameter of
the determinant maximization problem. We call a subset of Rd a point set, and use the term point or vector to
refer to an element of a point set. For a set of points S ⊂ Rd and a point p ∈ Rd, we write S + p to denote
the set S ∪ {p}, and for a point s ∈ S, we write S − p to denote the set S \ {s}.

Let S be a point set of size k. We use VOL(S) to denote the k-dimensional volume of the parallelepiped
spanned by vectors in S. Also, let MS denote a k × d matrix where each row represents a point of S. Then,
the following relates volume to the determinant det(MSM

ᵀ
S) = VOL2(S). So the determinant maximization

problem can also be phrased as volume maximization. We use the former, but because of the geometric nature
of the arguments, sometimes we switch to the volume notation. For any point set P , we use MAXDETk to
denote the optimal of determinant maximization for P , i.e. MAXDETk(P ) = maxS det(MSM

ᵀ
S), where S

ranges over all subsets of size k. MAXVOLk is defined similarly.
For a point set P , we use 〈P 〉 to refer to the linear subspace spanned by the vectors in P . We also denote

the set of all k-dimensional linear subspaces byHk. For a point p and a subspaceH, we use dist(p,H) to
show the Euclidean distance of p fromH.

Greedy algorithm for volume maximization. As pointed out before, a widely used algorithm for
determinant maximization in the offline setting is a greedy algorithm which given a point set P and a parameter
k as the input does the following: start with an empty set C. For k iterations, add argmaxp∈Pdist(p, 〈C〉) to
C. The result would be a subset of size k which has the following guarantee.

Theorem 2.1 ([ÇMI09]). Let P be a point set and C be the output of the greedy algorithm on P . Then
VOL(C) ≥ MAXVOLk(P )

k! .

2.1 Core-sets

Core-set is a generic term used for a small subset of the data that represents it very well. More formally, for a
given optimization task, a core-set is a mapping c from any data set P into one of its subsets such that the
solution of the optimization over the core-set c(P ) approximates the solution of the optimization over the
original data set P . The notion was first introduced in [AHPV04] and many variations of core-sets exist. In
this work, we consider the notion of composable core-sets defined in [IMMM14].

Definition 2.2 (α-Composable Core-sets). A function c(P ) that maps the input set P ⊂ Rd into one of
its subsets is called an α-composable core-set for a function f : 2R

d → R if, for any collection of sets
P1, · · · , Pn ⊂ Rd, we have f(C) ≥ f(P )/α where P =

⋃
i≤n Pi and C =

⋃
i≤n c(Pi).
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For simplicity, we will often refer to the set c(P ) as the core-set for P and use the term “core-set function”
with respect to c(·). The size of c(·) is defined as the smallest number t such that c(P ) ≤ t for all sets P
(assuming it exists). Unless otherwise stated, we might use the term “core-set” to refer to a composable core-
set when clear from the context. Our goal is to find composable core-sets for the determinant maximization
problem.

3 k-Directional Height

As pointed out in the introduction, we introduce a new geometric notion called directional height, and reduce
the task of finding composable core-sets for determinant maximization to finding core-sets for this new notion.

Definition 3.1 (k-Directional Height). Let P ⊂ Rd be a point set andH ∈ Hk−1 be a (k − 1)-dimensional
subspace. We define the k-directional height of P with respect toH, denoted by h(P,H), to be the distance
of the farthest point in P fromH, i.e., h(P,H) = maxp∈P dist(p,H).

The notion is an instance of an extent measure defined in [AHPV05]. It is also related to the notion of
directional width of a point set previously used in [AHPV05], which for a direction vector v ∈ Rd is defined
to be maxp∈P 〈v · p〉 −minp∈P 〈v · p〉.

Next, we define core-sets with respect to this notion. It is essentially a subset of the point set that
approximately preserves the k-directional height of the point set with respect to any subspace inHk.

Definition 3.2 (α-Approximate Core-set for the k-Directional Height). Given a point set P , a subset
C ⊆ P is a α-approximate core-set for the k-directional height of P , if for any H ∈ Hk−1, we have
h(C,H) ≥ h(P,H)/α.

We also say a mapping c(.) which maps any point set in Rd to one of its subsets, is an α-approximate
core-set for the k-directional height problem, if the above relation holds for any point set P and c(P ).

The above notion of core-sets for k-directional height is similar to the notion of ε-kernels defined in
[AHPV05] for the directional width of a point set.

We connect it to composable core-sets for determinant maximization by the following lemma.

Lemma 3.3. Let P1, . . . , Pm ∈ Rd be an arbitrary collection of point sets, and for any i, let c(Pi) be an
α-approximate core-set for the k-directional height for Pi. Then

MAXDETk(

m⋃
i=1

Pi) ≤ α2k ·MAXDETk(

m⋃
i=1

c(Pi)).

Proof. Let W ⊂
⋃m
i=1 Pi be any subset of size k, and also let w ∈W \

⋃m
i=1 c(Pi). We claim that there is a

point q in the union of the core-sets such that α · VOL(W − w + q) ≥ VOL(W ). Note that showing this
claim is enough to prove the lemma. Since, one can start from the optimum solution which achieves the
largest volume on

⋃m
i=1 Pi, and for at most k iterations, replace a point outside

⋃m
i=1 c(Pi) by a point inside,

while decreasing the volume by a factor of at most α.
So it remains to prove the claim. Let W = {w1, . . . , wk}, and let H = 〈w2, . . . , wk〉 ∈ Hk−1 be the

plane spanned by w2, . . . , wk. By definition, VOL(W ) = dist(w1, H) ·VOL(W − w1). On the other hand,
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suppose that w1 ∈ Pi. Then by our assumption, there exists q ∈ c(Pi) so that dist(q,H) ≥ dist(w1,H)
α .

Replacing w1 with q, we get

VOL(W − w1 + q) = dist(q,H) ·VOL(W − w1)

≥ dist(w1, H) ·VOL(W − w1)

α
=

VOL(W )

α

which completes the proof.

Corollary 3.4. Any mapping which is an α-approximate core-set for k-directional height, is an α2k-
composable core-set for the determinant maximization.

We employ the above corollary to analyze both greedy and local search algorithms in Sections 4 and 5.

4 The Local Search Algorithm

In this section, we describe and analyze the local search algorithm and prove Theorem 1.2. The algorithm is
described in Algorithm 1.

To prove Theorem 1.2, we follow a two steps strategy. We first analyze the algorithm for individual point
sets, and show that the output is a (2k)-approximate core-set for the k-directional height problem, as follows.

Lemma 4.1. Let P be a set of points and c(P ) be the result of running the local search algorithm on P .
Then, for anyH ∈ Hk−1,

h(c(P ),H) ≥ h(P,H)

2k(1 + ε)
.

Next, we apply Corollary 3.4, which implies that local search gives (2k(1 + ε))2k-composable core-sets
for the determinant maximization. Clearly this completes the proof of the theorem by setting ε to a constant.

So proving Theorem 1.2 boils down to showing Lemma 4.1. Before, getting into that, we analyze the
running time, and present some remarks about the implementation.

Running time. Let C0 be the output of the greedy. By Theorem 2.1 VOL(C0)
MAXVOLk(P ) ≥

1
k! . The algorithm

starts with C0 and by definition, in any iteration increases the volume by a factor of at least 1 + ε, hence
the total number of iterations is O( k log k

log(1+ε)). Finally, each iteration can be naively executed by iterating
over all points in P , forming the corresponding k × k matrix, and computing the determinant in total time
O(|P | · kd · k3|P |).

We also remark that unlike the algorithm in [IMGR18], our method can also be executed without any
changes and additional complexity, when the point set P is not explicitly given in the input; instead, it is
presented by an oracle that given two points of P returns their inner product. One can note that in this case
the algorithm can be simulated by querying this oracle for at most O(|P |k) times.

4.1 Proof of Lemma 4.1

With no loss of generality, suppose that ε = 0, the proof automatically extends to ε 6= 0. Therefore, c(P )
has the following property: for any v ∈ P \ c(P ) and u ∈ c(P ), VOL(c(P )) ≥ VOL(c(P ) − u + v).

6



Algorithm 1 Local Search Algorithm

Input: A point set P ⊂ Rd, integer k, and ε > 0.
Output: A set C ⊂ P of size k.
Initialize C = ∅.
for i = 1 to k do

Add argmaxp∈P\CVOL(C + p) to C.
end for
repeat

If there are points q ∈ P \ C and p ∈ C such that

VOL(C + q − p) ≥ (1 + ε)VOL(C)

replace p with q.
until No such pair exists.
Return C.

Fix H ∈ Hk−1, and let p = argmaxp∈Pdist(p,H). Our goal is to show there exists q ∈ c(P ) so that

dist(q,H) ≥ dist(p,H)
2k .

Let G = 〈c(P )〉 be the k-dimensional linear subspace spanned by the set of points in the core-set, and let
pG be the projection of p onto this subspace. We proceed with proof by contradiction. Set dist(p,H) = 2x,
and suppose to the contrary that for any q ∈ c(P ), dist(q,H) < x

k . With this assumption, we prove the two
following lemmas.

Lemma 4.2. dist(p, pG) < x.

Lemma 4.3. dist(pG ,H) < x.

One can note that, combining the above two lemmas and applying the triangle inequality implies
dist(p,H) ≤ dist(p, pG) + dist(pG ,H) < 2x, which contradicts the assumption dist(p,H) = 2x and
completes the proof.

Therefore, it only remains to prove the above lemmas. Let us first fix some notation. Let c(P ) =
{q1, . . . , qk} and for any i, let Gī denote the (k − 1)-dimensional subspace spanned by points in c(P ) \ {qi}.

Proof of Lemma 4.2. For 1 ≤ i ≤ k, let q′i be the projection of qi ontoH. We prove that there exists an
index j ≤ k such that we can write q′j =

∑
i6=j αiq

′
i where every αi ≤ 1. Let r be the rank, i.e., maximum

number of independent points of C′ = {q′i|i ≤ k} and clearly asH has dimension k − 1, we have r ≤ k − 1.
Take a subset S ⊂ C′ of r independent points that have the maximum volume and let q′j be a point in C′ \ S
and note that this point should exist as there are k points in the core-set. Thus we can write q′j =

∑
i:q′i∈S

αiq
′
i.

With an idea similar to the one presented in [ÇMI09], we can prove that the following claim holds.

Claim 4.4. For any i such that q′i ∈ S, we have |αi| ≤ 1.

Proof. We prove that if the claim is not true, then S \ {q′i} ∪ {q′j} has a larger volume than S which
contradicts the choice of S. Let F be the linear subspace passing through S \ {q′i}. It is easy to see that

VOL(S)
VOL(S\{q′i}∪{q′j})

=
dist(q′i,F)
dist(q′j ,F)

, meaning that dist(q′i,F) ≥ dist(q′j ,F). However, if |αi| > 1 then since q′i is

the only point in S which in not in F , then dist(q′j ,F) ≥ dist(q′i,F) which is a contradiction.
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Finally, for any q′i /∈ S, set the corresponding coefficient αi = 0. So we get that q′j =
∑

i6=j αiq
′
i where

every |αi| ≤ 1.
Now take the point q =

∑
i6=j αiqi. Note that, q′j is in fact the projection of q ontoH. Therefore, using

triangle inequality, we have

dist(q′j , q) = dist(q,H) ≤
∑
i6=j
|αi| dist(qi,H) ≤ (k − 1)x

k (1)

Then we get that

dist(p, pG) = dist(p,G)

≤ dist(p,Gj̄) as Gj̄ ⊂ G
≤ dist(qj ,Gj̄) by the local search property

≤ dist(qj , q) as q ∈ Gj̄
≤ dist(qj , q

′
j) + dist(q′j , q) by triangle inequality

< x/k + (k − 1)x/k by our assumption and Equation 1

= x

Proof of Lemma 4.3. Again we prove that we can write pG =
∑k

i=1 αiqi where all |αi| ≤ 1. We assume
that the set of points qi are linearly independent, otherwise the points in P have rank less than k and thus the
volume is 0. Therefore, we can write pG =

∑k
i=1 αiqi. Note that for any i, we have

dist(pG ,Gī) ≤ dist(p,Gī)
≤ dist(qi,Gī) by the local search property

where the first inequality follows since Gī is a subspace of G and pG is the projection of p onto G. Again,
similar to the proof of Claim 4.4, this means that |αi| ≤ 1. Therefore, using triangle inequality

dist(pG ,H) = dist(
k∑
i=1

αiqi,H) ≤
k∑
i=1

|αi| dist(qi,H)

< k × x/k = x.

5 The Greedy Algorithm

In this section we analyze the performance of the greedy algorithm (see section 2) as a composable core-set
function for the determinant maximization and prove Theorem 1.1. Our proof plan is similar to the to the
analysis of the local search. We analyze the guarantee of the greedy as a core-set mapping for k-directional
height, and combining that with Corollary 3.4 we achieve the result. We prove the following.

Lemma 5.1. Let P be an arbitrary point set and c(P ) denote the output of running greedy on P . Then, c(P )
is a (2k) · 3k-approximate core-set for the k-directional height of P , i.e. for anyH ∈ Hk−1 we have

h(c(P ),H) ≥ 1

2k · 3k
· h(P,H)

8



So the greedy is a (2k · 3k)-approximate core-set for k-directional height problem. Combining with
Corollary 3.4, we conclude it is also a (2k · 3k)2k composable core-set for the determinant maximization
which proves Theorem 1.1.

5.1 Proof of Lemma 5.1

The proof is similar to the proof of Lemma 4.1. Let G = 〈c(P )〉 be the k-dimensional subspace spanned
by the output of greedy. Also for a point p ∈ P , define pG to be its projection onto G. Fix H ∈ Hk−1, let
h(c(P ),H) = x

k for some number x, which in particular implies that for any q ∈ c(P ), dist(q,H) ≤ x
k .

Then, our goal is to prove h(P,H) ≤ 2 · 3k · x. We show that by proving the following two lemmas.

Lemma 5.2. For any p ∈ P , dist(pG ,H) ≤ 2k−1x.

Lemma 5.3. For any p ∈ P , dist(p, pG) ≤ 3kx.

Clearly, combining them with triangle inequality, we get that for any p ∈ P , dist(p,H) < 2 · 3kx, which
implies h(P,H) ≤ 2 · 3k · x and completes the proof. So it remains to prove the lemmas. Let the output of
the greedy c(P ) be q1, . . . , qk with this order, i.e. q1 is the first vector selected by the algorithm.

Proof of Lemma 5.2. Recall that q1, . . . , qk is the output of greedy. For any p ∈ P and for any 1 ≤ t ≤ k,
let Gt = 〈q1, . . . , qt〉 and define pt to be the projection of p onto Gt. We show the lemma using the following
claim.

Claim 5.4. For any p ∈ P and any 1 ≤ t ≤ k, we can write pt =
∑t

i=1 αiqi so that for each i, |αi| ≤ 2t−1.

Let us first show how the above claim implies the lemma. It follows that we can write pG = pk =∑k
i=1 αiqi where all |αi| ≤ 2k−1. Now since for each i ≤ k, dist(qi,H) ≤ x/k by assumption, we have that

dist(pG ,H) ≤
∑
αidist(qi,H) ≤ 2k−1x. Therefore, it suffices to prove the claim.

Proof of Claim 5.4. We use induction on t. To prove the base case of induction, i.e., t = 1, note that q1 is
the vector with largest norm in P . Thus we have that ||p1|| ≤ ||q1|| and therefore we can write p1 = α1q1

where |α1| ≤ 1. Now, lets assume that the hypothesis holds for the first t points; that is, the projection of any
point p onto Gt can be written as

∑
j≤t αjqj where |αj |’s are at most 2t−1.

Now, note that by the definition of the greedy algorithm, qt+1 is the point with farthest distance from
Gt. Therefore, for any point p ∈ P \ {q1, · · · , qt+1}, we know that dist(p,Gt) ≤ dist(qt+1,Gt), and thus,
dist(pt+1,Gt) ≤ dist(qt+1,Gt). Therefore if we define qtt+1 to be the projection of qt+1 onto Gt, we can
write

pt+1 = αt+1qt+1 − αt+1q
t
t+1 + pt where |αt+1| ≤ 1.

By the hypothesis, we can write pt =
∑

j≤t βjqj , and qtt+1 =
∑

j≤t γjqj , where |βj | ≤ 2t−1, and |γj | ≤ 2t−1.
Since |αt+1| ≤ 1, we can write

pt+1 = αt+1qt+1 +
∑
j≤t

(βj − αt+1γj)qj =
∑
j≤t+1

αjqj

where |αj | ≤ 2t. This completes the proof.

Proof of Lemma 5.3. First, note that for any t, we have dist(qt+1,Gt) ≥ dist(p,Gk−1). This is because
the greedy algorithm has chosen qk over p in its k-th round which means that dist(p,Gk−1) ≤ dist(qk,Gk−1),
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and by definition of the greedy algorithm for any i < j we have dist(qi+1,Gi) ≥ dist(qj+1,Gj). So it is
enough to prove

∃ 1 ≤ t ≤ k − 1 s.t. dist(qt+1,Gt) ≤ 3kx (2)

For 1 ≤ i ≤ k, let q′i be the projection of qi ontoH. Recall that, we are assuming that for any i, dist(qi, q
′
i) <

x/k. To prove (2), we use proof by contradiction, so suppose that for all t, dist(qt+1,Gt) > 3kx. We also
define G′t to be the projection of Gt on H, i.e., G′t = 〈q′1, . . . , q′t〉. Given these assumptions, we prove the
following claim.

Claim 5.5. For any 1 ≤ t ≤ k − 1, we can write Π(G′t)(q′t+1) =
∑

i≤t αiq
′
i where |αi| ≤ 3t, where for a

point q and a subspace A, Π(A)(q) denotes projection of q onto A.

Proof. Intuitively, this is similar to Claim 5.4. However, instead of looking at the execution of the algorithm
on the points q1, · · · , qk, we look at the execution of the algorithm on the projected points q′1, · · · , q′k. Since
all of these k points are relatively close to the hyperplane H, the distances are not distorted by much and
therefore, we can get approximately the same bounds. Formally, we prove the claim by induction on t, and
show that for any j s.t. j > t, the point Π(G′t)(q′j) can be written as the sum

∑
i≤t αiq

′
i such that |αi| ≤ 3t.

Base Case. First, we prove the base case of induction, i.e., t = 1. Recall that by our assumption, ||q1|| > 3kx,
and thus by triangle inequality, we have that ||q′1|| ≥ ||q1|| − x/k ≥ 3kx− x/k ≥ 2x. Therefore, since q1 is
the vector with largest norm in P , using triangle inequality again, we have that for any j > 1,

||q′j || ≤ ||qj || ≤ ||q1|| ≤ ||q′1||+ x/k ≤ (1 +
1

2k
)||q′1||

Therefore we can write Π(G′1)(q′j) = α1q
′
1 where |α1| ≤ 2.

Inductive step. Now, lets assume that the hypothesis holds for G′t. In particular this means that we
can write Π(G′t)(q′t+1) =

∑
i≤t βiq

′
i where |βi| ≤ 3t, and that for a given j > t + 1, we can write

Π(G′t)(q′j) =
∑

i≤t γiq
′
i where |γi|’s are at most 3t. Now let ` = dist(q′t+1,G′t). By triangle inequality, we

get that

dist(qt+1,Gt) ≤ dist(qt+1, q
′
t+1) (3)

+ dist(q′t+1,Π(G′t)(q′t+1)+ (4)

dist(Π(G′t)(q′t+1),Gt)

≤ x/k + `+ dist(
∑
i≤t

βiq
′
i,
∑
i≤t

βiqi)

≤ x/k + `+
∑
i≤t
|βi|x/k

≤ `+ 3tx. (5)

Now we consider two case. If ` ≤ 3tx then using the above

dist(qt+1,Gt) ≤ 2 · 3tx ≤ 3kx,

which contradicts our assumption of dist(qt+1,Gt) > 3kx. Otherwise,

dist(Π(G′t+1)(q′j),G′t) ≤ dist(q′j ,G′t) ≤ dist(qj ,Gt)
≤ dist(qt+1,Gt) ≤ 2`,
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where the last inequality follows from Equation 3 . Therefore, we can write Π(G′t+1)(q′j) = αt+1q
′
t+1 −

αt+1Π(G′t)(q′t+1) + Π(Gt)(q′j) where αt+1 ≤ 2.
By the hypothesis, we can write Π(G′t)(q′j) =

∑
i≤t γiq

′
i, where |γi| ≤ 3t. Since |αt+1| ≤ 2, we can

write

Π(G′t+1)(q′j) = αt+1q
′
t+1 +

∑
i≤t

(γi − αt+1βi)q
′
i

=
∑
i≤t+1

αiq
′
i where |αi| ≤ 3t+1.

This completes the proof of the claim.

To finish the proof of the lemma, let us show how it follows from the claim. First, note that q′1, . . . , q
′
k

are k points in the (k − 1)-dimensional space H, so for some t, q′t+1 should lie inside G′t and we have
Π(G′t)(q′t+1) = q′t+1. Fix such t. Define the point qα =

∑
i≤t αiqi where |αi| ≤ 3k are taken from the above

claim which means q′t+1 =
∑

i≤t αiq
′
i. Note that by definition q′t+1 = Π(H)(qα). Therefore,

dist(q′t+1, qα) = dist(qα,H) (6)

≤
∑
i≤t

αidist(qi,H) ≤ 3kt · x/k. (7)

Then we get that

dist(qt+1,Gt) ≤ dist(qt+1, qα) as qα ∈ Gt
≤ dist(qt+1, q

′
t+1) + dist(q′t+1, qα)

≤ x/k + 3kt · x/k ≤ 3kx

where the second inequality holds because of triangle inequality and the last one from (6) and the fact that
t ≤ k − 1. This contradicts our assumption that dist(qt+1,Gt) > 3kx, and proves the lemma.

6 Experiments

In this section, we evaluate the effectiveness of our proposed Local Search algorithm empirically on real data
sets. We implement the following three algorithms.

• The Greedy algorithm of Section 5 (GD).

• The Local Search algorithm of Section 4 with accuracy parameter ε = 10−5 (LS).

• The LP-based algorithm of [IMGR18] which has almost tight approximation guarantee theoretically
(LP). Note that this algorithm might pick up to O(k log k) points in the core-set.

Data sets. We use two data sets that were also used in [LJS15] in the context of approximating DPPs over
large data sets.
• MNIST [LBBH98]: contains a set of 60000 images of hand-written digits, where each image is of size

28 by 28.
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• GENES [BQK+14]: contains a set of 10000 genes, where each entry is a feature vector of a gene. The
features correspond to shortest path distances of 330 different hubs in the BioGRID gene interaction
network. This data set was initially used to identify a diverse set of genes to predict a tumor. Here, we
slightly modify it and remove genes that have an unknown value at any coordinate which gives us a
data set of size ∼ 8000.

Moreover, we apply an RBF kernel on both of these data sets using σ = 6 for MNIST and σ = 10 for
GENES. These are the same values used in the work of [LJS15].

6.1 Experiment Setup.

We partition the data sets uniformly at random into multiple data sets P1, · · · , Pm. We use m = 10 for the
smaller GENES data set, and for the larger MNIST data set we use m = 50 and also we use m = 10 (equal
to the number of digits in the data set). Moreover, since the partitions are random, we repeat every experiment
10 times and take the average in our reported results.

We then use a core-set construction algorithm ALGc to compute core-sets of size k, i.e., S1 =
ALGc(P1, k),· · · ,Sm = ALGc(Pm, k), for ALGc ∈ {GD, LS, LP}. Recall that GD, LS and LP corre-
spond to the Greedy, Local Search and LP-based algorithm of [IMGR18] respectively.

Finally, we take the union of these core-sets UALGc = S1 ∪ · · · ∪ Sm and compute the solutions for
UALGc . Since computing the optimal solution can take exponential time (∼ nk), we will instead use an
aggregation algorithm ALGa (either GD, LS or LP). We will use the notation ALGa/ALGc to refer to the
constructed set of k points, returned by ALGa(UALGc , k). For example, GD/LS refers to the set of k points
returned by the Greedy algorithm on the union of the core-sets, where each core-set is produced using the
Local Search algorithm.

Finally, we vary the value of k from 3 to 20.

6.2 Results

Local Search vs. Greedy as offline algorithms. Our first set of experiments simply compares the quality
of Greedy and Local Search as centralized algorithms on whole data sets. We perform this experiment to
measure the improvement of Local Search over Greedy in the offline setting. Intuitively, this improvement
upper bounds the improvement one can expect in the core-set setting. Figure 1 shows the improvement ratio
of the determinant of the solution returned by the Local Search algorithm over the determinant of the solution
returned by the Greedy algorithm. On average over all values of k, Local Search improves over Greedy by
13% for GENES data set and 5% for MNIST data set. Figure 2 shows the ratio of the time it takes to run
the Local Search and Greedy algorithms as a function of k for both data sets. On average, it takes about 6.5
times more to run the Local Search algorithm.

Local Search vs. Greedy as core-sets. In our second experiment, we use Greedy algorithm for aggregation,
i.e., ALGa = GD, and compare GD/LS with GD/GD. Figure 3 shows the improvement of local search
over greedy as a core-set construction algorithm. The graph is drawn as a function of k, and for each k, the
improvement ratio is an average over all 10 runs, and shown for all data sets (including GENES, MNIST
with partition number m = 10, and MNIST with m = 50).

On average this improvement is 9.6%, 2.5% and 1.9% for GENES, MNIST10 and MNIST50 respectively.
Moreover, in 87% of all 180 runs of this experiment, Local Search performed better than Greedy, and for
some instances, this improvement was up to 58%. Finally, this improvement comes at a cost of increased
running time. Figure 4 shows average ratio of the time to construct core-sets using Local Search vs. Greedy.
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k GENES MNIST
3 1.0003 1.0051
4 1.0017 1.008
5 1.0436 1.012
6 1.0739 1.0159
7 1.0578 1.0196
8 1.057 1.0276
9 1.025 1.0275

10 1.0507 1.0445
11 1.1653 1.0373
12 1.1805 1.0417
13 1.172 1.0581
14 1.16 1.0696
15 1.187 1.0597
16 1.219 1.0908
17 1.2295 1.0648
18 1.2608 1.0857
19 1.2697 1.0912
20 1.2533 1.0932
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Figure 1: Average improvement of Local Search
over Greedy as a function of k.

k GENES MNIST
3 4.252185014 4.520659
4 3.628135018 5.518008
5 3.912222876 4.002805
6 5.152512352 5.395237
7 5.849152274 5.288874
8 4.828292535 6.615502
9 4.206225084 3.87074
10 5.53964497 5.40507
11 6.181963621 5.473657
12 6.041923838 4.335843
13 5.406760241 8.769056
14 5.216842902 6.972853
15 6.986131002 5.94605
16 8.856555323 12.0629
17 10.7310948 8.706691
18 10.72993578 12.60435
19 11.88349435 6.716885
20 8.440220912 6.78466
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Figure 2: Average ratio of the run time of Local
Search over Greedy as a function of k.

k GENES MNIST-10 MNIST-50
3 1.000194 1.003479 1.001885
4 1.005521 1.004642 1.00749
5 1.036231 1.0144 1.005689
6 1.032768 1.011723 1.008064
7 1.06398 1.014276 1.010439
8 1.09823 1.012169 1.01977
9 1.087714 1.01805 1.01114

10 1.067736 1.02087 1.013931
11 1.046544 1.035041 1.016783
12 1.102721 1.027204 1.019066
13 1.13496 1.020826 1.024314
14 1.173495 1.023743 1.027036
15 1.157351 1.03209 1.020481
16 1.130523 1.05138 1.031221
17 1.089536 1.027524 1.019298
18 1.18106 1.028207 1.03196
19 1.2357 1.04914 1.04261
20 1.089619 1.0476 1.024008
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Figure 3: Average improvement of Local Search
core-set over Greedy core-set as a function of k.

k GENES MNIST-10 MNIST-50
3 3.73747 4.38475 3.86649
4 3.84755 4.27594 3.92829
5 4.37303 4.62134 4.31193
6 4.38702 4.57284 4.4227
7 4.51448 4.69427 4.48828
8 4.6806 4.89812 4.62614
9 4.70881 4.93325 4.7406

10 4.75682 5.4794 4.93229
11 5.06356 5.28644 5.56463
12 5.49037 5.64965 5.85102
13 5.30494 5.81666 5.77457
14 5.74853 6.03808 5.9246
15 6.10616 6.21079 6.07948
16 7.28558 7.42259 8.8368
17 7.91365 7.66249 8.84374
18 7.7918 7.40373 8.35701
19 7.75119 8.23935 8.46941
20 7.33111 7.9146 8.07712
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Figure 4: Average ratio of the run time of Local
Search over Greedy as a function of k.

Local Search vs. Greedy - identical algorithms. We also consider the setting where the core-set con-
struction algorithm is the same as the aggregation algorithm. This mimics the approach of [MKSK13], who
proposed to use the greedy algorithm on each machine to achieve a small solution; then each machine sends
this solution to a single machine that further runs the greedy algorithm on the union of these solutions and
reports the result.

In this paper show that if instead of Greedy, we use Local Search in both steps, the solution will improve
significantly. Using our notation, here we are comparing LS/LS vs. GD/GD. Figure 5 shows the improvement
as a function of k, taken average over all 10 runs.

On average the improvement is 23%, 5.5% and 6.0% for GENES, MNIST10 and MNIST50 respectively.
Moreover, in only 1 out of 180 runs the Greedy perfomed better than Local Search. The improvement could
go as high as 67.7%.

Comparing Local Search vs. the LP-based algorithm. In this section, we compare the performance of
the Local Search algorithm and the LP-based algorithm of [IMGR18] for constructing core-sets, i.e., we
compare GD/LS with GD/LP. Figure 6 shows how much Local Search improves over the LP-based algorithm.
On average this improvement is 7.3%, 1.8% and 1.4% for GENES, MNIST10 and MNIST50 respectively.
Moreover, in 78% of all runs, Local Search performed better than Lp-based algorithm, and this improvement
can go upto 63%. Figure 7 shows the average ratio of the time to construct core-sets using the LP-based
algorithm vs. Local Search. As it is clear from the graphs, our proposed Local Search algorithm performs
better than even the LP-based algorithm which has almost tight approximation guarantees: while picking
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k GENES MNIST-10 MNIST-50
3 1.00038 1.00679 1.004816
4 1.00825 1.01155 1.0139
5 1.06605 1.02156 1.01871
6 1.08368 1.02305 1.02654
7 1.0968 1.02702 1.03494
8 1.15284 1.03589 1.03807
9 1.17544 1.03784 1.04446

10 1.14347 1.04779 1.04836
11 1.19226 1.06291 1.04698
12 1.26892 1.05858 1.05559
13 1.32342 1.05628 1.06886
14 1.40534 1.06039 1.07202
15 1.31914 1.08091 1.07585
16 1.31383 1.08835 1.09425
17 1.3437 1.07632 1.08998
18 1.33159 1.09253 1.12321
19 1.49332 1.09935 1.11266
20 1.43793 1.11094 1.10643
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Figure 5: Average improvement of Local Search over Greedy as a function of k, in the identical algorithms
setting.

fewer points in the core-set, in most cases it finds a better solution and runs faster.

k GENES MNIST-10 MNIST-50
3 1.000124054 1.001715 1.001806
4 1.003197666 1.004108 1.004867
5 1.024120491 1.011481 1.005427
6 1.024554844 1.01006 1.006916
7 1.048889085 1.012598 1.009603
8 1.075159321 1.00706 1.018686
9 1.068101367 1.008979 1.009526

10 1.052013164 1.005951 1.007937
11 1.013192948 1.023985 1.011816
12 1.068254112 1.020296 1.014486
13 1.093764917 1.013679 1.0179
14 1.152385691 1.021577 1.022474
15 1.118240745 1.028806 1.010807
16 1.115802233 1.03473 1.03248
17 1.043254253 1.024259 1.011253
18 1.195888835 1.024141 1.015632
19 1.214422179 1.040717 1.047187
20 1.010183695 1.037825 1.019219
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Figure 6: Average improvement of Local Search
over LP-based algorithm for constructing core-
sets as a function of k.

k GENES MNIST-10 MNIST-50
3 47.33821314 30.86994 120.8938
4 26.34109406 17.13871 47.24331
5 17.57559353 11.73645 32.19383
6 14.26120983 8.983629 25.88948
7 11.40078344 7.159142 21.03272
8 10.42236235 5.114151 20.81031
9 8.040940524 6.794177 15.28664

10 7.67089475 4.965756 13.28056
11 6.060403191 4.271216 10.77189
12 4.816823431 3.049642 11.96998
13 4.376154146 2.512919 8.332015
14 4.175234906 2.277239 7.556957
15 3.679920977 2.076699 6.927933
16 2.917858246 2.146268 3.999247
17 2.464225892 2.069627 3.458858
18 2.31127254 1.617301 3.498983
19 2.173437596 1.316572 3.20848
20 2.194894447 1.304353 3.495524
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Figure 7: Average ratio of the run time of the
optimal algorithm over local search as a function
of k.

7 Conclusion

In this work, we proposed to use the Local Search algorithm to construct composable core-sets for the
determinant maximization problem. From theoretical perspective, we showed that it achieves a near-optimal
approximation guarantee. We further analyzed its performance on large real data sets, and showed that most
of the times, Local Search performs better than both the almost optimal approximation algorithm, and the
widely-used Greedy algorithm. Generally, for larger values of k, the percentage of this improvement has an
increasing pattern, however, the amount of this improvement depends on the data set. We also note that here,
we used the naive implementation of the Local Search algorithm: one could tune the value of ε to further
improve the quality of the solution. Finally, we provided a doubly exponential guarantee for the Greedy
algorithm, however, our experiments suggest that this bound might be open to improvement.
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