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Abstract— Reactivity controlled compression ignition (RCCI)
engines center on a combustion strategy with higher thermal
efficiency, lower particulate matter (PM), and lower oxides
of nitrogen (NOx) emissions compared to conventional diesel
combustion (CDC) engines. However, real time optimal control
of RCCI engines is challenging during transient operation due
to the need for high fidelity combustion models. Development
of a simple, yet accurate control-oriented RCCI model from
physical laws is time consuming and often requires substantial
calibrations. To overcome these challenges, data-driven models
can be developed. In this paper, a data-driven linear parameter-
varying (LPV) model for an RCCI engine is developed. An LPV
state space model is identified to predict RCCI combustion
phasing as a function of multiple RCCI control variables. The
results show that the proposed method provides a fast and
reliable route to identify an RCCI engine model. The developed
model is then used for the design of a model predictive
controller (MPC) to control crank angle for 50% fuel burnt
(CA50) for varying engine conditions. The experimental results
show that the designed MPC with the data-driven LPV model
can track desired CA50 with less than 1 crank angle degree
(CAD) error against changes in engine load.

I. INTRODUCTION

RCCI is a dual fuel low temperature combustion (LTC)
strategy for internal combustion engines (ICE) which runs
with a blend of a low reactive fuel and a high reactive
fuel. It offers higher fuel conversion efficiency at lower and
medium loads and lower NOx emissions at higher loads
compared to diesel and spark ignition (SI) engines [1–3].
The low reactive fuel (e.g., gasoline) is introduced to fresh
air via port fuel injection (PFI) that provides opportunity to
form a well-mixed blend of fuel, air and recirculated exhaust
gases, if any. The high reactive fuel (e.g., diesel) is early
direct injected (DI) inside cylinder during the compression
stroke which creates reactivity gradient in the combustion
chamber. The controlled reactivity gradient in RCCI engines
causes longer combustion duartion and lower pressure rise
rates compared to homogeneous charge compression ignition
(HCCI) engines [4]. In RCCI engines, ignition initially
occurs at small isolated high reactive pockets which continue
to grow and merge with other expanding pockets while
other ignition pockets emerge [5]. This form of distributed
combustion initiation leads to lower gas temperatures com-
pared to CDC which results in a lower heat loss and higher
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fuel conversion efficiency. Due to the sensitivity of RCCI
reactions to thermal and chemical composition of air fuel
mixtures, combustion control of RCCI engines is a major
challenge during transient operations. Prior works on RCCI
combustion controller design fall into two categories based
on the platform for controller implementation and testing.
The first category includes RCCI controllers using high
fidelity RCCI models to verify controller performance, while
the second category included controllers validated on a real
RCCI engine.

Among simulation studies, Wu et al. [6] conducted the first
RCCI combustion control based on a rule based control de-
sign. They studied load transitions on a validated CFD model
of an RCCI engine to investigate CA50 trends and developed
a control strategy based on adjusting PFI to DI fuel ratio.
They used an offline map to design a feedforward steady state
controller. Sadabadi et al. [7] developed the first validated
physics-based control-oriented model for RCCI combustion.
The model in reference [7] could predict start of combustion,
burn duration, and CA50 with average tracking errors of 2
CAD. In another simulation based research, Indrajuana et
al. [8] formed a function for ignition delay (τid), indicated
mean effective pressure (IMEP), and premixed ratio (PR)
of a validated RCCI engine model that ran with diesel and
natural gas fuels. They linearized this function and formed
a multiple-input and multiple-output (MIMO) proportional
controller to control τid, IMEP and PR on a multi-zone
model. Recently, Indrajuana et al. [9] developed a new
controller for switching from conventional dual fuel (CDF)
operation to RCCI operation. They used an RCCI engine
model and proposed a model-based controller for switching
from CDF to RCCI operation.

Second catagory of RCCI combustion controllers design
includes studies with RCCI controller implementation on an
experimental engine setup. As the first work in this catagory,
Arora et al. [10] designed and implemented the first real time
transient combustion phasing and load controller for an RCCI
engine. They developed two PI controllers to adjust CA50
and IMEP using real time combustion phasing and IMEP
calculation from a designed field programmable gate array
(FPGA). In another study, Kondipati et al. [11] developed
a PI controller for an RCCI engine and used a physics
based model to tune the PI controller. Their experimental
results proved controller capability to reach desired CA50
in 2-3 engine cycles with an average tracking error of 1
CAD. In another study, Raut et al. [12],[13] designed and
implemented the first online MPC on an RCCI engine based
on a physics-based control-oriented model. Their controller
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was designed as a switched MPC controller based on PR
values to extend controller range. These works [6–10,12,13]
on RCCI combustion control used first principle physical
models as the basis to develop control-oriented models.
While the physics-based approach is powerful, it requires
accurate, control-oriented models which are hard and time
consuming to develop. In this situation, data-driven modeling
(DDM) approaches can be offered as an alternative. Data-
driven approaches do not require thorough knowledge of the
underlying physics and can be developed based on avail-
able measured data and initial information about involved
variables, internal states, and system structure [14]. This
paper develops a new DDM for RCCI engine identification
and utilizes the data-driven models in an MPC framework
[15]. Here, a support vector machine (SVM) based DDM
is developed to identify linear parameter-varying (LPV)
models for RCCI engine combustion. The LPV framework is
selected due to its capability to (i) simplify nonlinear RCCI
dynamics into an array of linear models characterized by a
scheduling variable, and (ii) guarantee stability of closed-
loop system for broad range of engine operations. To the
best of authors’ knowledge, this paper is the first study
undertaken to develop a data-driven LPV model to capture
RCCI nonlinear dynamics by an easily implementable data-
driven LPV model. The new model is used in an MPC
framework and verified on a real RCCI engine setup to
control CA50 in real time.

This paper is arranged as follows. The engine experimental
setup is explained in Section II. Next, the LPV state space
model development is discussed in Section III. The MPC
controller design and implementation results are presented
in Sections IV and V. Finally, conclusions from this study
are summarized in Section VI.

II. EXPERIMENTAL SETUP

A GM 2.0L 4-cylinder Ecotec turbocharged Gasoline
Direct Injection (GDI) engine was modified to run in RCCI
mode. Direct fuel injection pressure is set at 100 bar while
port fuel injection runs with 3 bar fuel pressure. Further
information on engine specification and setup can be found
in reference [12]. During engine modification, low pressure
fuel rail and port fuel injectors were added at intake ports
to enable RCCI mode operation. Iso-octane is injected into
intake ports as low reactive fuel and n-heptane is injected
as high reactive fuel directly into the combustion chamber.
Premixed ratio (PR) is used to describe the ratio between low
reactive fuel and high reactive fuel. It is defined according
to Eq. (1) based on chemical energy from the low reactive
fuel divided by the total chemical energy delivered by both
fuels.

PR =
misoLHViso

misoLHViso +mnhepLHVnhep
, (1)

where LHV represents lower heating value of a fuel. A
controllable air heater was included at intake air flow path to
adjust intake air temperature for RCCI operation. A dSPACE
MicroAutoBox (MABX) unit is programmed and used as the

engine control unit (ECU) in addition to dSPACE RapidPro
as the power and signal conditioning stage for sensors. In-
cylinder pressure is measured by PCB piezoelectric pressure
transducers. A Spartan-6 field FPGA was programmed in
Xilinx to use real time pressure data to compute CA50, and
IMEP to provide feedback to the ECU.

Two sets of experiments were conducted in this research.
First set of experiments was carried out to obtain training
and test data for state space (SS) identification of the RCCI
LPV model. In these identification experiments, fuel quantity
(FQ) was defined as the scheduling variable since it is the
main control variable to adjust engine load (IMEP). Thus,
changing FQ leads to changing of the engine load. Measured
inputs including PR, FQ, and n-heptane SOI were used along
with CA50 as the output to develop a data-driven SS model.
The data-driven SS model was then used in conjunction with
an MPC controller to form a RCCI combustion controller.
The second set of experiments was conducted to evaluate
tracking performance of the MPC controller at transient
operations. All tests in this research were conducted at 1500
RPM engine speed, without turbocharging and exhaust gas
recirculation (EGR) while intake temperature was kept at 333
K (60◦C).

III. STATE SPACE MODEL IDENTIFICATION

Development of a predictive model to capture RCCI en-
gine combustion is essential for designing RCCI combustion
controller for transient operation. It is also important to
have a model with low computational demand to be easily
implemented on the ECU. DDM approaches can meet these
requirements efficiently for less model development costs
compared to physics-based approaches. Here, the data-driven
SS identification algorithm from reference [16] is adapted for
RCCI engine combustion modeling.
Discrete-time LPV models can be described as

Xk+1 = A(pk)Xk +B(pk)Uk +K(pk)Ek,

Yk = C(pk)Xk + Ek, (2)

where Xk, Yk, and pk represent the internal states, the
outputs, and the time-varying scheduling variable at discrete-
time instant k. Additive Gaussian white noise is denoted by
Ek . Matrices A(pk) ∈ Rn×n, B(pk) ∈ Rn×nu , K(pk) ∈
Rn×ny and C(pk) ∈ Rny×n represent LPV-SS matrices with
a functional dependency on the scheduling variable pk. We
can now re-write the LPV-SS model (2) as

Xk+1 = (A(pk)−K(pk)C(pk))︸ ︷︷ ︸
∼
A(pk)

Xk +B(pk)Uk +K(pk)Yk,

Yk = C(pk)Xk + Ek. (3)

The objective here is to identify the functional matrix depen-
dencies

∼
A(pk), B(pk), C(pk) based on measured training

data {Xk, Uk, pk, Yk}Nk=1 from the plant. A Least-Squares
Support Vector Machine (LS-SVM) approach is taken, and
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the matrix functions are re-written as

Xk+1 = W1Φ1(pk)Xk +W2Φ2(pk)Uk +W3Φ3(pk)Yk,

Yk = W4Φ4(pk)Xk + Ek, (4)

where W1,2,3 ∈ Rn×nH and W4 ∈ Rny×nH are unknown
weighting matrices, while Φ1(pk) ∈ RnH×n, Φ2(pk) ∈
RnH×nu , Φ3(pk) ∈ RnH×ny , and Φ4(pk) ∈ RnH×n are
unknown feature maps with (possibly infinite) dimension
nH . Feature maps can be defined using a kernel function such
as polynomial, Gaussian or sigmoid. The following least-
squares (LS) objective function is considered:

J =
1

2

4∑
i=1

||Wi||2F +
1

2

N∑
k=1

Ek
>ΓEk, (5)

where || · ||F represents Frobenius norm and Γ is the reg-
ularization matrix diag(γ1, γ2, ..., γny

) on estimation error
Ek. The optimization parameters are the weighting matrices
W1,2,3,4. Dropping the notation for dependence on pk for
brevity, the problem can be written in the dual form and a
Lagrangian function can be written as

L(W1,W2,W3,W4, α, β,E) =

J −
N∑
j=1

(
α>j {W1Φ1Xj +W2Φ2Uj +W3Φ3Yj −Xj+1}

)

−
N∑
j=1

βj
>{W4Φ4Xj + Ej − Yj+1}, (6)

where αj ∈ Rn, βj ∈ Rny are Lagrange multipliers at
discrete time j. Lagrangian function has convex form and
its global optimum can be found where derivatives are equal
to zero.

∂L
∂αj

= 0⇒

Xj+1 = W1Φ1(pj)Xj +W2Φ2(pj)Uj +W3Φ3(pj)Yj ,
(7a)

∂L
∂W1

= 0⇒W1 =
N∑
j=1

αjXj
>Φ>1 (pj), (7b)

∂L
∂W2

= 0⇒W2 =

N∑
j=1

αjUj
>Φ>2 (pj), (7c)

∂L
∂W3

= 0⇒W3 =
N∑
j=1

αjYj
>Φ>3 (pj), (7d)

∂L
∂W4

= 0⇒W4 =
N∑
j=1

βjXj
>Φ>4 (pj), (7e)

∂L
∂Ej

= 0⇒ βj = ΓEj , (7f)

∂L
∂βj

= 0⇒ Yj = W4Φ4(pj)Xj + Ej . (7g)

Substituting (7) into (4), the model can be re-written as

Xk+1 =
N∑
j=1

αjXj
>Φ>1 (pj)︸ ︷︷ ︸

W1

Φ1(pk)Xk

+
N∑
j=1

αjUj
>Φ>2 (pj)︸ ︷︷ ︸

W2

Φ2(pk)Uk

+
N∑
j=1

αjYj
>Φ>3 (pj)︸ ︷︷ ︸

W3

Φ3(pk)Yk,

Yk =
N∑
j=1

βjXj
>Φ>4 (pj)︸ ︷︷ ︸

W4

Φ4(pk)Xk + Γ−1βk︸ ︷︷ ︸
Ek

. (8)

Inner product of the feature maps Φ>i (pk)Φi(pj) can be
expressed by using the so-called kernel trick and defining
the following Gramian matrices

[Ω]j,k =
3∑

i=1

Z>i (j)k̄i(pj , pk)Zi(k), (9a)

[Ξ]j,k = X>j k̄
4(pj , pk)Xk, (9b)

where Zi(k) is Xk, Uk, Yk for i = 1, 2, 3. In this work, we
choose the kernel function k̄i(·, ·) as

k̄i(pj , pk) = exp
(
− ||pj − pk||

2
2

2σ2
i

)
, (10)

where σi is the spread of the Gaussian function and || · ||2
denotes L2 norm of the vector. We now express (8) in the
matrix form as

Xk+1 = αΩ,

Y = βΞ + Γ−1β, (11)

where Ω ∈ RN×N and Ξ ∈ RN×N are kernel matrices
defined in (9) and α = [α1 · · · αN ] ∈ Rn×N and β =
[β1 · · · βN ] ∈ Rny×N are Lagrange multipliers. Variables
Xk+1 = [X1 · · ·XN ] ∈ Rn×N and Y = [Y1 · · ·YN ] ∈ Rny×N

are the states and outputs for the N samples, respectively.
Solving (11) for α and β, we obtain

α = Xk+1Ω−1,

vec(β) =

(
IN ⊗ Γ−1 + Ξ> ⊗ Iny

)−1
vec(Y), (12)

where ⊗ denotes the Kronecker product and vec(·) repre-
sents the vectorization operator that vertically concatenates
columns of a matrix. IN and Iny

are identity matrices of ap-
propriate dimensions. Using training data {Xk, Uk, Yk}Nk=1,
α = [α1 · · · αN ] and β = [β1 · · · βN ] can be computed and
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the estimated LPV-SS matrices at Eq. 3 can be written as

∼
Ae(·) = W1Φ1(·) =

N∑
k=1

αkX
>
k k̄

1(pk, ·), (13a)

Be(·) = W2Φ2(·) =
N∑

k=1

αkU
>
k k̄

2(pk, ·), (13b)

Ke(·) = W3Φ3(·) =
N∑

k=1

αkY
>
k k̄

3(pk, ·), (13c)

Ce(·) = W4Φ4(·) =
N∑

k=1

βkX
>
k k̄

4(pk, ·), (13d)

where the subscript e denotes estimate. For the case of the
RCCI engine, in order to identify the LPV-SS model, we
define the states (X), inputs (U), and output (Y ) as

X =
[
CA50 Tsoc Psoc IMEP

]>
, (14a)

U =
[
PR SOI FQ

]>
, (14b)

Y =
[
CA50

]
. (14c)

As mentioned before, fuel injected per engine cycle,
FQ (mg/cycle), is chosen as the scheduling variable. The
experimental data are collected and divided into training
and test sets. 65% of the data is reserved for training the
model and the remaining is used for testing the model.
Lagrange multipliers α and β are computed and SS matrices
are estimated.
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Fig. 1. LPV-SS model validation for Tin = 333 K, N = 1500 rpm,
Pin = 96.5 kPa, PR=20, 273 kPa<IMEP<771 kPa.

Using the computed α and β from (12), the trained model
is validated using the test data set. The model is excited
using the test inputs and scheduling variable, and CA50 is
estimated. These estimated values of CA50 are compared
with the measured CA50 for PR = 20, as shown in Figure
1. The results show that the developed model can predict
CA50 with an average error of 1 CAD. Figure 2 shows
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Fig. 2. LPV-SS model validation for Tin = 333 K, N = 1500 RPM,
Pin = 96.5 kPa, PR=40, 442 kPa<IMEP<806 kPa.

similar results for PR = 40. These results demonstrate
the capability of the identified LPV-SS model to accurately
capture the dynamics of the RCCI combustion and the
functional dependencies of the model on the FQ. These
results show that the model can predict with an acceptable
degree of accuracy, the behavior of the RCCI engine, and
can thus be used for the synthesis of an LPV MPC control
strategy.

IV. MODEL-BASED COMBUSTION CONTROLLER DESIGN

In this work, MPC is chosen as the combustion control
strategy due to its capability to consider actuator and state
constraints while performing online optimization. Here, an
MPC is designed to track desired CA50 by considering 5
engine cycles as prediction horizon to compute optimal n-
heptane SOI as the control variable. The state space LPV
model of the RCCI engine can be represented in discrete
time as

Xk+1 = A(FQ)Xk +B(FQ)Uk, (15a)
Yk+1 = C(FQ)Xk+1 +D(FQ)Uk+1, (15b)

where states (X), inputs (U), and output (Y ) were previ-
ously defined by Eq. (14). Based on an iterative calculation,
the plant output at prediction horizon can be computed as
[17]:

Yk = FX(ki) + ΦUk, (16)

where

Yk = [Y (ki + 1|ki) Y (ki + 2|ki) Y (ki + 3|ki)
Y (ki + 4|ki) Y (ki + 5|ki)]>,

(17)

Uk = [U(ki) U(ki + 1) U(ki + 3)

U(ki + 3) U(ki + 4)]>,
(18)

and Y (ki+N |ki) denotes the predicted output at step ki+N
with plant information at step ki, and U(ki + N) denotes
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control variable at step ki + N . Matrices F and Φ in Eq.
(16) are calculated based on A, B, and C matrices from Eq.
(15) and are described as

F =


CA
CA2

CA3

CA4

CA5

 ; Φ =


CB 0 0 0 0
CAB CB 0 0 0
CA2B CAB CB 0 0
CA3B CA2B CAB CB 0
CA4B CA3B CA2B CAB CB


(19)

where notation for dependence of matrices on FQ was
dropped for brevity. An MPC cost function is defined to min-
imize prediction tracking error and control action magnitude
as

J =
N∑
i=1

[(Ψi − Yi)>Q(Ψi − Yi) + U>i RUi], (20)

where the Ψ is defined as the reference outputs over the
prediction horizon, Q is the weighting matrix on tracking
errors and R is the weighting matrix on the magnitude
of control variables through the prediction horizon. The
optimal solution to control variable matrix U to minimize
cost function (20) can be derived as

U = (ΦTQΦ +R)−1Φ>Q(Ψ− FXk). (21)

The MPC cost function for constrained conditions can be
expressed by

J =
1

2
U>EU + U>H, (22)

where matrices E and H are determined by

E = (Φ>QΦ +R), (23)

H = Φ>Q(Ψ− FXk). (24)

Constraints are defined by Eq. (25) for control commands
to actuators and magnitude of output states to protect RCCI
engine from receiving excessive control commands.

AconsU 6 Bcons, (25)

where

Acons =

[
I10×10
−I10×10

]
;Bcons =

[
Umax − u(ki − 1)
Umin + u(ki − 1)

]
. (26)

Figure 3 shows the LPV MPC controller schematic and its
connections with the RCCI engine and the FPGA. The ECU
is loaded with the LPV plant model, a Kalman filter, and
the MPC controller. The MPC controller receives identified
SS plant matrices as well as states and input values to
compute optimal n-heptane SOI values based on Eq. (21)
as the optimal MPC solution. SS matrices are provided to
the MPC controller from the trained LPV model. SS models
are dependent on FQ as the scheduling variable which is
assigned based on the engine load. The Kalman filter is
utilized to estimate Tsoc and Psoc states which are difficult to
measure. Only the first step value for calculated optimal n-
heptane SOI is implemented and the rest of calculated SOIs
are updated in the next time steps.

Fig. 3. Schematic of the designed LPV MPC controller.

V. EXPERIMENTAL RESULTS

In this section, the combustion controller performance is
evaluated under transient conditions. Figure 4 presents CA50
tracking results for controller performance at a constant fuel
quantity condition. It demonstrates the controller’s capability
to track desired CA50 with 0.7 CAD average error by
adjusting SOI as the control variable. By comparing data-
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Fig. 4. Controller performance in tracking desired combustion phasing with
Tin = 333 K, N = 1500 RPM, Pin = 96.5 kPa, FQ = 25 mg/cycle.

driven combustion control results with the physics-based
combustion control results for the same engine which were
presented by Raut et al. [12], it can be observed that data-
driven combustion phasing controller in this paper has similar
average tracking error compared to the physics-based method
in [12]. Considering the efforts required for developing
physics-based control-oriented models, these results demon-
strate the advantage of data-driven methods over physics-
based controller designs due to their shorter development
time and similar tracking performance.

Figure 5 presents controller tracking performance for
varying FQ quantities. FQ is increased step-wise from 20
to 28 mg/cycle. The engine model is defined for combustion
controller by the data-driven model at each step. Desired
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CA50 is also changed at each step and controller adjusts n-
heptane SOI to track the desired CA50. Closed loop response
results show that desired CA50 is tracked with an average
error of 0.6 CAD. Combustion controller results in Figure 5
demonstrate that the learned LPV model can switch between
SS models correctly based on scheduling variable and the
MPC controller is capable of reaching the desired CA50 with
small tracking error within 3 engine cycles.

VI. SUMMARY AND CONCLUSION

This paper introduced the first data-driven LPV model for
an RCCI engine using the method of least-squares support
vector machines. Experimental measurements of the RCCI
engine inputs (i.e., SOI, PR, FQ) and the desired output (i.e.,
CA50) were used to develop the LPV model. This model
used FQ (related to engine load) as the scheduling variable
and determined CA50 as a function of three control inputs.
The data-driven model was employed to estimate CA50 by
using measured engine inputs from another experimental
data set and was validated based on comparing estimated
CA50 results with measured CA50 values. Validation results
showed that the estimated state space LPV model could
predict combustion phasing (CA50) with an average error
less than 1 CAD. The LPV model was then incorporated
into an MPC framework to control CA50 by modifying
start of injection (SOI) of n-heptane as the DI fuel. Ex-
perimental results for the controller demonstrated that the
LPV based MPC controller was able to track desired CA50
with a maximum of 0.7 CAD average error for varying
engine conditions. These experimental results demonstrated
that data-driven MPC combustion controller can provide
similar results compared to physics-based MPC combustion
controller while requiring less development time.
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