Models, Devices, Properties,
and Verification of Artificial Pancreas Systems.

Taisa Kushner!, B. Wayne Bequette?,
Faye Cameron?, Gregory Forlenza®, David Maahs* and Sriram Sankaranarayanan'.

Abstract In this chapter, we present the interplay between models of human physiology,
closed loop medical devices, correctness specifications and verification algorithms in the
context of the artificial pancreas. The artificial pancreas refers to a series of increasingly
sophisticated closed loop medical devices that automate the delivery of insulin to people
with type-1 diabetes. On one hand, they hold the promise of easing the everyday burden
of managing type-1 diabetes. On the other, they expose the patient to potentially deadly
consequences of incorrect insulin delivery that could lead to coma or even death in the
short term, or damage to critical organs such as the eyes, kidneys and the heart in the
longer term. Verifying the correctness of these devices involves a careful modeling of
human physiology, the medical device, and the surrounding disturbances at the right level
of abstraction. We first provide a brief overview of insulin glucose regulation and the
spectrum of associated mathematical models. At one end are physiological models that try
to capture the transport, metabolism, uptake and interactions of insulin and glucose. On
the end are data driven models which include time series models and neural networks. The
first part of the chapter examines some of these models in detail in order to provide a basis
for verifying medical devices. Next, we present some of the devices which are commonly
used in blood glucose control, followed by a specification of key correctness properties and
performance measures. Finally, we examine the application of some of the state-of-the-art
approaches to verification and falsification of these properties to the models and devices
considered. We conclude with a brief presentation on future directions for next generation
artificial pancreas, and the challenges involved in reasoning about them.
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1 Introduction

This chapter presents research challenges pertaining to the application of automated
reasoning and formal methods to the artificial pancreas project. The artificial pancreas is a
technological treatment for type-1 diabetes, consisting of a set of devices which automate
the external delivery of insulin to individuals with type-1 diabetes.

Type-1 diabetes is a condition that affects millions of individuals around the world. It
is characterized by the destruction of the islet cells of the pancreas. These cells secrete the
hormone insulin which is responsible for the regulation of blood glucose (BG) levels in
the human body. In order to take up glucose from the blood, many cells, such as those of
the musculoskeletal system, require insulin. As a result, a depletion or absence of insulin
results in these cells being unable to take up glucose from the blood, leading these cells
to starve even when BG levels are high. The treatment for type-1 diabetes is to replace the
insulin secreted by the pancreas through external infusion of artificial insulin, known as
insulin analogs. However, this insulin must be delivered in careful doses to keep the BG
levels in a narrow euglycemic range of [70,180] mg/dL. BG levels below 70 mg/dL results
in a condition known as hypoglycemia, which carries risks of loss of consciousness, coma
or even death. On the other hand, BG levels above 180mg/dL result in a condition called
hyperglycemia, and pose long-term risks which include damage to the heart, kidneys, eyes,
and peripheral nerves. In order for insulin to be delivered, it is often infused subcutaneously
through an insulin pump - a device that is programmed to deliver a constant low rate of
insulin, known as basal insulin, to supply insulin during endogenous glucose production by
the liver. Additionally, the patient has to deliver a bolus of insulin in advance of the meal to
cover the carbohydrates and proteins that they will consume. This is performed by estimating
the carbohydrate consumption and using a linear factor to determine the amount of insulin.

Additionally, an individual with diabetes must periodically check their BG levels using
a glucometer, or a continuous glucose monitor, and deliver a “correction” bolus if high
BG levels persist. Due to changes in insulin sensitivity during exercise, fever, or high
stress, the patient must take special care to turn off their pump during these periods.
Therefore, the patient acts as a manual controller for managing their own BG levels. This
has many drawbacks: (a) it places a heavy burden on the patient who must constantly pay
attention to their BG levels as many as 9-10 times a day; (b) mistakes such as miscounting
carbohydrates, failing to turn off the pump, forgetting to bolus for meals and incorrectly
estimating the meal bolus relative to the meal time, risk serious health consequences of
falling into hypo- or hyperglycemia; and finally (c) hypoglycemia that happens during sleep
can lead to dangerous consequences such as seizures or death, requiring constant vigilance.

The artificial pancreas project seeks to partially or fully automate the delivery of
insulin by combining a continuous glucose monitor (CGM) which periodically senses
BG levels subcutaneously, an insulin pump that delivers insulin, and a closed-loop control
algorithm that uses inputs from the CGM and the user to control BG levels to a target value
(typically in the range 80—120mg/dL). A schematic diagram is shown in Figure 2. The
development of the artificial pancreas was originally envisioned by the JDRF (formerly the
Juvenile Diabetes Research Foundation), to be developed in three generations as shown in
Figure 1. The development of these devices has proceeded concurrently. In this conception,
each stage is built upon the capabilities of the previous stages with more automation,
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lessening user-required inputs at each stage. The road map was thoroughly revised in
2015 to reclassify insulin delivery beyond stage 3 into “insulin-only”” and “multihormonal”
control [89]. These generations are all under various stages of clinical evaluation: the
Medtronic 670G, a “stage 3” hybrid closed loop system, obtained FDA approval in
2016 [74], and many other devices are nearing commercialization at time of writing.
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is not currently available in a shelf stable form. Thus, we imagine a car with an accelerator,
but no breaks. However, withholding insulin has the effect of bringing BG levels back
up due to the endogenous glucose production in the liver, making insulin-only control a
feasible option.

In this insulin-only option, a serious limitation lies in the action profile of currently
available insulin analogs. Insulin that is infused subcutaneously requires time to diffuse
into the blood stream before it can begin to take action. Once in the blood, it achieves peak
action in about 75 minutes, and remains in the system for nearly 3—35 hours before being
metabolized. As a result, insulin infused at time ¢ can remain in the system and continue to
act for a much longer time than potentially needed. In the cruise-control analogy imagine
a car with “sticky” gas pedal that take time to start acting but once it does, remains “stuck”
for a while. Thus, the presence of delays and persistence of insulin with the absence of
glucagon makes the problem quite hard. For instance, if a control responds to a surge
in BG levels by pumping a proportional amount of insulin, this insulin will persist and
continue to bring down BG levels well after the surge has vanished, exposing the patient
to the risks of hypoglycemia.

Finally, user actions such as meals and physical activities have large and long lasting
effects on the BG levels. Digestion of meals will result in a surge of glucose into the blood
stream that must be counteracted by a dose of insulin delivered before the meal so that
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Fig. 2 Overview of the key components of an artificial pancreas control system. b(t): external insulin,
u(t): insulin infused, G(¢): BG level, n(z): measurement error, G (¢): sensed glucose level, u.(¢): insulin
infusion commanded.

the peak action of the delivered insulin coincides with the peak appearance of the meal
carbohydrates in the blood stream which could be as late as 5 hours, depending on the
type of food. Also, physical activity can lower BG levels and have long lasting effects well
after the activity has abated. Unfortunately, unless specifically announced to the device,
there are no currently available direct sensors which can be used to accurately warn the
system of impending meals/exercise.

Thus, AP devices are, by the very nature of the problem, complex and safety critical.
They need to be used by patients 24/7/365 without expert supervision, though they are
capable of serious harm to the patient. As a result, their design and implementation
requires careful consideration and thus form an ideal target for formal methods/automated
reasoning approaches.

Structure of the Survey: In this survey, we will provide an overview of five important
aspects of artificial pancreas systems. First, we will discuss human physiology, in particular
the regulation of BG levels through insulin. Next, we discuss mathematical models of
human physiology which form the basis for designing control algorithms. We discuss two
important classes of control algorithms including PID and MPC algorithms with a focus
on algorithms that are either in advanced stage clinical trials, or commercial products.
Next, we discuss correctness and performance specifications. Finally, we discussion the
application of verification techniques. The survey concludes by summarizing important
challenges and the direction taken by next generation devices.

Comparison with Other Surveys: There have been numerous surveys and methodological
reviews that have focused on various aspects of the problem of managing type-1 diabetes
ranging from surveys that explain the nature of the problem including the capabilities
of various technologies behind the artificial pancreas and the challenges underlying the
development of control algorithms [35, 75]. More recent surveys including those by De
Nicolau et al [119] and Lunze et al [101] have focused on the development of control
algorithms. The lower level details of implementing model-predictive controllers for
the artificial pancreas is described by Zavitanou et al [152]. In particular, they provide
detailed descriptions of solver selection for MPC, the design of safety layers, a detailed
hazard analysis, and also mention security risks. In contrast, this survey presents the
clinical background as well as a description of the control algorithms to motivate the
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challenges specific to the verification and personalization of these algorithms. Rather
than focus on system level hazards, our focus is on the fundamental correctness of the
core control algorithm in terms of whether it conforms to a detailed specification. We
describe these issues in light of the recent developments, such as FDA approval of the
first commercially available device in the US, the Medtronic 670G [74]. Additionally, we
mention review articles that have argued in favor of specific approaches to AP control
including Bequette’s survey making the case for MPC [12] and Steil’s review arguing
the case for PID control [146]. An important review by Doyle et al surveys various
control algorithms based on the clinical outcome measures and the need for improved
head-to-head comparisons based on common measures of performance used in clinical
evaluations [48].

2 The Glucose-Insulin Regulatory System

We first review the basic facts about the glucose-insulin regulatory system. Glucose is
the sole source of energy to maintaining functioning of the brain and red blood cells, and
is utilized to an extent by almost every other cell in the body. It is primarily obtained by
digesting complex carbohydrates, which are then broken down into smaller molecules
and enter the blood stream via the gut. However, food is consumed sporadically and
blood glucose concentration must be maintained within a narrow range. Blood glucose
concentrations which are too high can disrupt the osmotic balance in the human body and
lead to long-term vascular disease. On the other hand, low blood glucose concentrations
can lead to cellular starvation and neurological complications such as seizure. Thus, after
each meal, the potentially large influx of glucose must be carefully regulated to be stored
and transported to the cells as needed. The liver takes up excess glucose where it is stored
for the short-term as glycogen. Glucose is also taken up by fat (adipose) cells where it is
stored for the long-term as fat tissue. The stored glucose is released into the blood stream
whenever needed through the breakdown of glycogen in the liver and the breakdown of
fatty molecules in cases of extreme starvation.

In order for glucose to reach the cells and be used for energy, it must be transported
throughout the body. This is accomplished via the blood stream, as dissolved blood
glucose. Thus, in order to maintain a constant supply of energy to cells, the body constantly
regulates blood glucose levels to be within the narrow range of about 70—110mg/dL.

The two main hormones which regulate this process are produced by the pancreas:
insulin and glucagon [5, 105, 112]. Insulin is a small peptide hormone produced by the
B-cells of of the pancreas. It acts primarily on the insulin receptor to increase cellular intake
of glucose into muscle and fat cells via translocation of the Glut-4 transporter. Glucagon
is a peptide hormone produced by the alpha cells of the pancreas. It acts primarily on
the Glucagon receptor to stimulate breakdown of glycogen and production of glucose in
the liver. In this way, insulin and glucagon oppose each other to control blood glucose
in the normal human body: in the presence of high blood glucose, insulin promotes
moving glucose into the cells to lower blood glucose; in the presence of low blood glucose,
glucagon promotes moving glucose out of the liver to raise blood glucose.
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Rising blood sugar is sensed by pancreatic beta cells via passive diffusion of glucose into
the cells through the Glut-2 transporter. When blood sugar levels rise, insulin production
in the pancreatic S-cells is stimulated. Within about five minutes, the newly produced
insulin crosses into interstitial space where it lowers blood glucose in three main ways:
1. Encourages most cells, especially muscle and fat cells to take up glucose (and other

simple sugars) via the Glut-4 transporter
2. Inhibits breakdown of glycogen in the liver
3. Counters metabolic activity that would increase plasma glucose levels by inhibiting the

conversion of animo acids or fats to glucose

This multi-delay feedback loop between glucose and insulin maintains healthy fasting
blood glucose levels and controls for large disturbances such as meals and exercise,
however it also results in a highly nonlinear, complex system which is difficult to remedy
when a key component is off, such as in the case of diabetes [132].

3 Diabetes Mellitus

For some individuals, a metabolic disorder causes inhibitions in the body’s production
(hyposecretion), or use (hypoactivity) of insulin. Disorders of this type are broadly known
as Diabetes Mellitus (or diabetes). The World Health Organization estimates that about
422 million individuals had a disorder of this type in 2014, and that number expected to
rise to 642 million by 2040 making diabetes a defining issue in public health.

There are three main types of diabetes, Type 1, Type 2, and Gestational Diabetes.
The most prevalent type of diabetes, Type-2 Diabetes, occurs in roughly 95% of cases.
Individuals with Type 2 Diabetes are able to produce insulin, however the effects of insulin
are deficient. Type I Diabetes results from the autoimmune destruction of the pancreatic
B-cells, resulting in the individual being unable to produce insulin. The third type of
diabetes, Gestational Diabetes, is a temporary condition which develops during pregnancy.

In all cases, blood sugar levels remain high after meals because glucose is unable to
enter most tissue cells. The exceptions to this are liver, kidney, and brain tissues, as these
cells are able to uptake glucose independent of insulin levels. When sustained, elevated
blood sugar levels result in a condition known as hyperglycemia, which is a characteristic
of diabetes. Typically, a diagnosis of diabetes is made when fasting blood glucose levels
exceed 126mg/dL. or when random glucose levels exceed 200 mg/dL [4].

Development of insulin-deficient hyperglycemia occurs in a paradoxical fashion
whereby blood glucose is elevated, but intracellular glucose and energy molecules are
deficient. Thus while there are excessive energy molecules available in the blood stream,
there is energy deficiency within cells which are unable to uptake glucose without adequate
insulin. In order to compensate, the body mobilizes fats which results in high levels of
fatty acids and their metabolites, known as ketones, in the blood. Ketones are acidic,
and their accumulation in the blood stream results in a drop in pH levels, triggering
a condition known as ketoacidosis. If left untreated, ketoacidosis can disrupt oxygen
transport, heart activity, trigger loss of electrolytes, depress the nervous system and even
lead to death [27, 112, 142]. Even when treated, long-term complications of diabetes due
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to persistent hyperglycemia include kidney disease or diabetic nephropathy, complications
of retinopathy with potential blindness, nerve damage and cardiovascular disease [27, 142].

3.1 Treatment Strategies

Type-1 diabetes is treated by the injection of artificial insulin analogues either through a
syringe or subcutaneously through an insulin pump. The use of external insulin is also
common in insulin-dependent type-2 diabetes However, the latter occurs due to decreased
sensitivity to insulin rather than a lack of insulin secretion. We will focus mostly on type-1
diabetes for the rest of this document. Treatments for diabetes depend both on the type
and severity of the illness but in all cases include an interplay of diet, exercise and the
individual having to ‘be the pancreas”: closely monitoring their blood glucose levels, and
dosing insulin to maintain blood glucose in the healthy euglycemic range of 70-180mg/dL.

Unfortunately, as previously noted, the human glucose-insulin regulatory system is
incredibly complex, highly nonlinear, and difficult to control. In addition to all of this,
individuals with diabetes exhibit a large range of variations in physiological characteristics
such as gender, weight, and insulin sensitivity, all of which affect their response to blood
glucose levels and insulin doses. These characteristics vary not only between individuals,
but within an individual over time as changes in weight, activity level, and growth and
development during childhood, play major roles in altering insulin requirements throughout
the lifetime.

As we noted, too little insulin is a problem. However, insulin levels which are too
high are even more dangerous. Too much insulin will cause an individual to fall into
hypoglycemia. Hypoglycemia causes glucose deprivation in the brain and central nervous
system leading to brain damage [38]. Furthermore, complications from hypoglycemia
occur on a faster time scale than those from hyperglycemia, and hence individuals must
be very careful to not administer too much insulin. All of this makes the problem of
self-regulation incredibly difficult and a large burden on the patient.

The AP system is currently the most promising treatment option for reducing patient
burden and improving diabetes management. In order to manage the intricacies of BG
control described above, a central component of the AP system is a model of human
physiology used to predict future blood glucose levels. In the following section, we cover
a history of such models, their contributions, as well as strengths and weakness of each.

4 Physiological Modeling

For several decades, scientists pursued a reductionist approach, moving from identifying
events on the organ level, down to enzymes and genes. This enabled characterization
of signaling pathways for how insulin binds to cells, enhances protein synthesis, and
performs a variety of other functions [14, 92, 115]. However, in order to better understand
the insulin-glucose response and identify how diabetes develops, a systems-level approach
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was needed. This is achieved through use of mathematical models. These models have
enabled novel insight into glucose-insulin dynamics, and provided an “artificial patient”
test platform for evaluating diabetic treatments, in particular the AP system [126].

Since the early 1960s, numerous mathematical models have been proposed. In this
section we survey a range of models and approaches, focusing on those which have resulted
in key developments in the field. Mathematical modeling of the glucose-insulin system
began with Victor Bolie in 1961. In order to retain the minimum possible mathematical
complexity, Bolie employed a single compartment system using two first order differential
equations to model glucose and insulin concentrations [18]. While his model was able
to capture steady plasma glucose levels, it was limited to fluctuations in the range of
30-150mg/dL, and was unable to capture the oscillatory dynamics. On the other hand,
Srinivasan et al. proposed a very complicated model. This model defined individual
model states for lipid, carbohydrate, and protein loops, and included highly nonlinear
interconnections [144]

The next pivotal breakthrough came in 1979 when Richard Bergman proposed what
is now called the “minimal model” for insulin-glucose physiology. Through use of their
ordinary differential equation (ODE) based model, Bergman and his coworkers were able
to gain insight into blood glucose regulation while avoiding the hurdle of how to describe
the B-cell [16]. To do this, they developed the intravenous glucose-tolerance test IVGTT),
and took frequent measurements of plasma glucose and insulin after glucose injection in
dogs. This was both less invasive than the glucose-clamp and pancreatic suppression test
methods of the time, and allowed them to reveal the complex dynamics between plasma
glucose and insulin [13, 15, 16, 28].

The minimal model, presented in below, consists of two equations.

LZ—C; =—(Sg +X(1))xG, Z—f =poXI(t)—p3x X(t).

Here G is plasma glucose, and X is insulin in the interstitial compartment. The first
equation states that the effect of glucose (S¢), and the effect of interstitial insulin, (X(z)), act
synergistically with glucose to restore plasma glucose levels after injection of glucose from
meals. The second equation states that the flux of insulin from the plasma to the interstitial
compartment is a product of the fractional rate of insulin appearance in the interstitial
fluid, (p7), with the plasma insulin, (I(¢)), minus the fractional clearance of insulin from
the interstitial compartment, (p3), times the insulin in the interstitial compartment, (X(z)).

Since its publication, the minimal model has been validated by several other laboratories,
and resulted in multiple major discoveries [49, 86]. Most importantly, they found that the
effect of insulin is slow - insulin has to move from blood plasma to another compartment,
later identified to be the interstitial fluid, in order to effect glucose.

While the minimal model is able to reasonably capture the nonlinear insulin-glucose
response, it does not model aspects such as endogenous glucose production by the liver,
insulin dependent vs. insulin independent uptake of glucose by various tissues in the
body, and the effect of renal clearance of glucose which happens during hyperglycemia.
Additionally, the model assumes that insulin and glucose inputs are given directly into the
bloodstream, leaving it unable to model meals.
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4.0.1 The Hovorka Model

Following the minimal model, more detailed physiological models were proposed, notably
those of Hovorka et al. [76, 151] and Dalla Man et al [40, 108]. Each advancement in
modeling was accompanied by novel biological studies, stressing the importance of how
novel insight is gained through cross-disciplinary work.

The model proposed by Dr. Roman Hovorka and his colleagues builds upon the minimal
model by introducing additional compartments. This Hovorka model separates glucose
into two main compartments: an accessible glucose compartment, which represents blood
plasma as well as tissues which are able to quickly equilibrate with plasma, as well as
an inaccessible compartment which represents interstitial and intracellular space [76]. A
single insulin compartment is used. These main compartments of the model are further
broken down into effect compartments.

The model also includes insulin-independent glucose utilization, which is represented
as a constant outflow from the accessible glucose compartment. Overall, the model
contains nine equations and twelve parameters, which are theoretically identifiable, though
require invasive studies with glucose tracers [76].

By separating insulin-dependent uptake of glucose from insulin-dependent uptake,
Hovorka et al. were able to identify new nonlinearities in the glucose-insulin regulatory
system. They found that, under fasting conditions, insulin-independent uptake dominates,
and insulin-dependent uptake represents only about 13% of total glucose turnover. However,
after meals, in a phase referred to as postprandial conditions, insulin-dependent uptake
dominates. Hence an increase in basal insulin by 50% will have drastically different effects
depending on when it occurs. While this 50% increase in basal insulin results in a 50%
increase in insulin-dependent glucose uptake, the whole body glucose uptake changes by
50% only in the postprandial condition. During fasting conditions, the effect on whole
body glucose uptake is only 7% [76, 77].

4.0.2 The Dalla Man Model and UVA/Padova Simulator

In 2006, Dalla Man et al. proposed a novel simulation model of the glucose-insulin system
with mixed-meal simulation which was developed using data from both non-diabetic
individuals, as well as those with type 2 diabetes [40, 108]. Prior to this, a few models
describing oral rather than intravenous glucose absorption were available, however they
were limited as validation of these models was performed on plasma glucose concentrations
alone [95].

Aided by data from a triple-tracer glucose absorption study [9], Dalla Man et al.
developed a simulation model which describes the physiological events that occur
after a meal, and provides the basis for the FDA approved in-silico testing system, the
“UVA/Padova simulator”. This simulator has replaced animal trials and greatly reduced
costs of preclinical testing [88, 126].

Similar to the minimal and Hovorka models, the Dalla Man model is a nonlinear
ordinary differential equation model. It consists of 10 state variables with nearly 40 patient
parameters, and is divided into subsystems. The two main subsystems of the Dalla Man



10 Kushner et al.

INSULIN INsULIN
————+
| '| TRANSPORT NSULIN

INnsuLIN
DEPENDENT

MEAL' | DIGESTIVE
SYSTEM

NERvVOUS
SUBCUTANEOUS
SysTEM

_________________________________

N e e e e e T - T -

Fig. 3 Structure of the interaction between subsystems in the Dalla-Man et al model.

model are the glucose and insulin systems which are linked to one another via the control
of insulin on glucose utilization as well as endogenous glucose production, EGP.

Figure 3 shows the overall structure of the model. The glucose subsystem of the
Dalla Man model consists of two compartments, one for plasma glucose and rapidly
equilibriating tissues, G, and one for the slowly equilibriating tissues, G; both with units
(mg/kg). System equations are presented below,

Gp(t):EGP(t)+Ra(t)—Uii(t)—E(t)—k1 ‘Gp(D)+k-Gi(2)

Gy(1)==Usa(t)+k1-Gp(t)—kocotG,(t)

G@t)= %

Here Ra is the rate ofG appearance of glucose in blood plasma (mg/kg/min), EGP is
endogenous glucose production (mg/kg/min), U is utilization (mg/kg/min), G is plasma
glucose concentration (mg/dL), Vs is glucose distribution volume (dL/kg), U, and U; are
insulin independent and dependent glucose utilization, respectively, (mg/kg/min), k1,k»
are rate parameters (min~'), and E denotes renal excretion (mg/kg/min) which occurs if
plasma glucose exceeds a threshold:

The Dalla Man model also uses two compartments to describe insulin kinetics. The
first equation, /;(¢), denotes insulin masses in the liver, and the second equation, /,(¢),
denotes insulin concentrations in the blood plasma. Both have units (pmol/kg).

L(t)=—(my+m3(0))-Ii(t)+ma 1, (1) +S(t)
1, (t)=—(ma+ma)-I,(t)+my - Ij ()

I
I(t)==
Vi
Here I is plasma insulin concentration (pmol/L), S is insulin secretion (pmol/kg/min), V;
is insulin distribution volume (L/kg), and n1y,m,,m, are rate parameters with units (min~").
Peripheral degradation, m4 is assumed to be linear, and mj3 is related to hepatic
extraction.
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For the subsystems above, EGP,Ra, and Ug,U; are the most important model processes.
The Dalla Man model assumes that suppression of EGP is linearly dependent on the
concentrations of plasma glucose (G,), portal insulin (/,,, with units pmol), and a delayed
insulin signal (I with units pmol/L):

EGP(I):kpl _kpZ'Gp([)_kzﬁ'Id(t)_kp4'lp0(t) H

here kp,kp3,kp4 are parameters which govern liver glucose effectiveness (min_l),

amplitude of delayed insulin action (mg/kg/min per pmol/L), and amplitude of portal

insulin action (mg/kg/min/pmol), respectively. The rate of glucose absorption, Ra is

assumed to depend on two stomach compartments (solid and liquid phases), a gut

compartment, and a rate constant for gastric emptying which is defined to be a nonlinear
function of the amount of glucose in the stomach, identified in an earlier study [107].

Insulin independent glucose utilization, Uy, is constant and represents glucose uptake
by the brain and erythrocytes. Insulin dependent glucose utilization, U; occurs in a remote
compartment and depends nonlinearly on glucose in peripheral tissues.

50 G0
Vo Gpp
Ui(0)=Ki(0)-Gy(1)=X(1)-Gy 1)

Here PCRy, is the basal plasma clearance rate in (dL/kg/min), S is fractional glucose
effectiveness (min™'), X is insulin action (min~!), and the suffixes » denote basal state.
These unit processes, EGP,Ra,U,,U;, were identified with a forcing function strategy,
mathematical details for which can be found in [40, 108].

The full Dalla Man model has been incorporated into a simulator called the UVA/Padova
Simulator, which provides a platform of virtual, in silico patients. This model, and its
subsequent implementation into an easy-to-use simulator, has enabled the testing of
safety and limitation of closed-loop AP systems, guided clinical studies, and has been a
cost-effective method for pre-clinical testing. [32, 41, 69, 111] In 2013, the UVA/Padova
simulator was updated to include the notion that insulin-dependent utilization of glucose
increases nonlinearly when glucose falls below a selected threshold, and the generation of
“virtual patients” was updated [109].

In addition to the aforementioned models, a variety of others have been proposed which
utilize ordinary-, partial-, and even delay- and integro- differential equations [85, 97, 98,
121, 125].

Patient-Specific Models: While these models have been incredibly useful, a key critique
is that these models are incredibly difficult to adapt to individual patients using readily
available data. While a set of 300 virtual patients with varied demographics exists for use
in the UVA-Padova Simulator, extending this to “real” patients is an ill-posed problem.
The Dalla-Man model involves upwards of 40 patient parameters, 27 of which are free
parameters. Some of these parameters can vary in time, some require intrusive radiological
tracer studies to identify, and some have no biological relevance, making parameter
estimation an ill-posed problem [34]. Recent work has begun to use Bayesian parameter
inference methods for parameter estimation, however, fitting parameters remains an open
area of research [128].

PCR, S PCRy,

Ug(1)=12- 1:Gp(®)
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4.1 Data-Driven Approaches

The recent development and wise-spread use of continuous glucose sensors and insulin
pumps has resulted in an upsurge of available data, and, consequently, has spurred
the development of data-driven models. As with ODE-based models, a variety of data
driven models and approaches have been proposed [64, 67, 70, 91, 123]. Broadly, these
data-driven approaches seek to improve diabetic treatment protocols by characterizing
glucose-insulin dynamics on the individual person level using readily available data
that includes periodic BG levels and insulin infused. Whereas ODE-based approaches
seek to develop models based on experimental knowledge of small molecule, enzyme,
and tissue interactions, data-driven approaches seek to learn dynamics from data sets,
most often time series data. However, it should be noted that ODE-based models can
also be made “data-driven” by identifying parameters for the model that best fits the
observed data. In fact, the UVA/Padova simulator with “virtual patients” falls under such
an umbrella [34, 70, 77, 138].

Multiple papers have employed auto-regressive moving average, ARMA, based
approaches [67, 91]. In general, given a time series of data points, an ARMA model
provides a tool for understanding dynamics and predicting future values.

Given a discrete-time process with past states x(z),x(t—1),..., and inputs u(t),u(t—1),...,
an ARMA model has the form: ] |

p- q-

x(t+1)= ) ax(t—i)+ Y biu(t—j)+e(),

i=0 =0
wherein ay,...,a,,—1 represent the coefficients ojf the “auto-regressive” part of the model,
b,....by—1 represent the “moving average” part of the model and e(¢) =0 is the prediction
error. Such models enable accurate, short term prediction, however they assume linearity
and hence one needs to be cautious when applying them to prediction of nonlinear
dynamics such as those of the glucose-insulin regulatory system.

A recent approach by Kushner et al [91] sought to overcome this limitation by
intersecting multiple linear models to predict bounds on future BG levels (Fig. 4). These
models were successfully used to optimize the tuning of gains, and verification of AP
controllers for individual patients.

Statistical criteria, such as the partial autocorrelation and Akaike Information Criterion,
were used to determine important time-lags in insulin action and predictors for future
glucose levels. Based on these identified features, a parsimonious ARMA-like model
was developed with order p=2 [3, 71, 91, 99] In order to include confidence bounds for
BG prediction, an uncertainty interval, [L,U], was added which resulted in the following
nondeterministic model form which can predict BG levels with 99% confidence bounds:

G(t+Ag) EaoG(t)+a1G(I—AG)+bI(I—A1)+[L,U]
These models state that future glucose at G(¢+A¢) can be predicted using the right hand
side, using L as the lower confidence bound, and U as the upper bound.

To account for nonlinearity, five models fit with varying combinations of Ag,A;, are
intersected in a manner shown in 4. Intersecting models does present a trade-off with
prediction accuracy, however, by Boole’s inequality this new composite model prediction
is at least 95% accurate.
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Fig. 4 Figure illustrating how multiple ARMA-based models are intersected to determine improved
bounds for BG prediction. Each model uses a different prediction horizon, A, and pulls different
combinations of inputs, A . These combinations are taken in a way such that all model predictions intersect
at one future point in time, .. The final predicted range at this point is taken to be the intersection of
ranges predicted by each model. Individual predicted ranges are depicted as vertical lines at z.. [91].

By using these models as “virtual patients” and coupling them with an in silico
implementation of a FDA approved AP controller, Kushner et al. optimized the tuning of
the control scheme, and increased time-in-range (blood glucose between 70-180mg/dL)
for 83% of patients [61, 74, 91, 137, 145].

A shortcoming of the model by Kushner et al. is that it was not developed for
use with disturbances such as meals and exercise. With respect to the development
of AP control systems, a significant hurdle has been how to handle these two major
disturbances: unannounced meals, and exercise. Consequently, a large number of models
have been developed that try to characterize glucose-insulin dynamics in light of meals
and exercise [41, 83, 123, 136].

Recent work by Paoletti et al [123], used data-driven methods to learn uncertainty
sets from historic meal and exercise patterns in order to eliminate the need for meal
announcements by the patient. An uncertainty set refers to the set of values that some
parameter can take. To create a virtual patient, Paoletti et al used an extended version
of the Hovorka ODE model for their “virtual patient” which they coupled with a model
predictive control scheme [83, 136]. In order to identify meal and exercise schedules,
Paoletti et al. learned uncertainty sets following a methodology developed by Bertsimas et
al [17]. These uncertainty sets tried to capture patterns in when an individual would eat,
or exercise, and were optimized against worst-case scenarios. Then, these uncertainty sets,
along with the virtual patient model, were used to inform their AP controller of when an
individual was likely to eat or exercise. The group showed their approach was able to keep
virtual patients time-in-range around 93% [123].

Within the past year, data-driven approaches based on machine learning techniques
such as neural networks, clustering, and support vector regression have gained traction [50,
57, 62, 63, 84, 127, 131]. Most approaches have predicted 30-60min horizons, with
varying degrees of accuracy. A notable approach by Dutta et al. [50] utilized multiple
neural networks to predict quantile bounds on future blood glucose levels. This approach
is further discussed in 5.2.3. These approaches show promise, however they are not an
end-all, and care should be taken to avoid increasing model complexity while yielding
minimal improvement over linear predictions [131].
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S Control Algorithms

We briefly survey the vast space of control algorithms, focusing on two important class of
algorithms for the artificial pancreas: PID-based control approaches and model predictive
control (MPC) approaches. The design of control algorithms must tackle numerous
challenges: (a) time lags in the sensor (10—20 minutes), the delayed action (15—20 mins)
of subcutaneously delivered insulin and the persistence of insulin delivered in the body
(3—4 hours) [28]; (b) large disturbances due to meals, physical activity, sensor noise,
calibration errors, and infusion failures; and (c) one-sided control authority: insulin can
reduce BG levels but the controller lacks the means to directly raise BG levels. Note
that bihormonal control algorithms employ both insulin and glucagon [52]. However,
stable form of glucagon is currently not available for use in a closed-loop AP although
development is underway.

The AP controllers tested through clinical trials share many similarities in the control al-
gorithms used: Proportional-Integral-Derivative (PID) control [ 146, 150], Model-Predictive
Control [12,21, 33, 68], and rule-based “fuzzy logic” control [48, 120]. In addition, safety
rules which limit insulin-on-board - a term describing how much insulin is currently
active in the body, handle pressure induced sensor attenuation (PISA) events [10], detect
infusion set failures [79, 80] and request user intervention, are integral components of
the control algorithms [134]. Cameron et al have proposed a multi-model predictive
approach (MMPPC) that uses probabilistic models to predict the likelihood of future
disturbances such as meals, thus taking a step towards removing the requirement for
meal announcement [22]. An important advancement since carbohydrate counting is very
burdensome on patients, and many patients do not comply with standard meal bolusing
strategies advised by their clinical team. Other groups have since integrated meal detection
strategies into their AP platforms [149]. Variations on this core MMPPC AP system have
been tested in both inpatient [24] and hotel settings on people with T1D [26, 56].

5.1 PID Control

PID stands for “proportional, integral and derivative” control, a widely used scheme that
controls a single target quantity (BG levels) through a control feedback which is computed
as a simple summation of three terms based on the control error: e(t): G(t)—G*, wherein

G" is the desired target BG level. A PID controller delivers insulin according to the formula
! de(t
u(t):  Kpe(t) + Ki/ e(s)ds + Ky de() .
_— 0 dt

Proportional

Integral Derivative

Here, K),,K;,K  are the proportional, integral and derivative gains, respectively. This
simple scheme has numerous drawbacks when it comes to delivering insulin.
Saturation: First, the approach does not limit the maximum amount of insulin deliverable
to the patient, which is required to ensure their safety. Next, it is easy to see that u(¢) can go

negative, signifying some means to “take away” already delivered insulin. We ordinarily
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Fig. 5 PID-based control with insulin feedback equations that govern the insulin delivered to the patient
u.(t) based on the glucose input G(¢). The control law is based on parameters highlighted in blue. Brief
explanations for each equation is also shown.

lack such means (pending shelf-stable glucagon). To counter this, the control algorithm
saturates the insulin delivery to an upper limit uy,x and a lower limit of 0.

Insulin Action: A major drawback of this approach is the delayed onset and persistence
of insulin, mentioned previously. Delivering insulin according to the “current” BG levels
alone does not account either the past infusions which can “stack” large amounts of insulin
in the system, or for the fact that delivered insulin will persist well into the future. This
problem can have fatal consequences for the patient.

Finally, it is well known that the presence of saturation in PID control leads to integrator
windup, a condition where the built-up integral error, from when the control input was
saturated, takes a prohibitively long time to “unwind”. This leads the controller to deliver
maximum insulin during this period and potentially endanger the patient.

PID Control Scheme for Artificial Pancreas: Steil et al proposed a hybrid closed
loop controller based on the PID control scheme for delivering insulin, while at the
same time overcoming the key limitations due to saturation and insulin action noted
above [137, 145, 146, 150]. This control algorithm has been validated by numerous clinical
trials and is the basis of a commercially available closed-loop system [74].

Figure 5 shows the equations that govern the calculation of the current insulin input,
uc(t), from the input glucose signal, G(¢). First the PID controller is operated in discrete
time with periodic updates to the value of u(f) at 5 minute (or 1 minute) time intervals.
This leads the integral error, I.(¢), to be calculated as a summation rather than an integral
of the overall error. Similarly, the derivative D(z) is computed as a simple difference
between current and past values divided by the time period. In order to account for past
insulin, the controller tracks a term, /,,(¢), that is updated at each step according to the
insulin delivered over the past 5 minutes, ig(t —5), and the past values of I,,, up to two
time steps ago. The term r(z) calculates the “raw insulin” by summing up the PID terms
and adjusting for insulin already present in the system.

The controller is governed by parameters that include PID gains K, the proportional
gain, K;: the integral gain and Kj: the derivative gain. Other gains include that of the
insulin feedback term, y. The controller also uses a maximum insulin delivery rate ;-
Finding suitable values for these parameters is an important problem. Weinzimer et al
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propose a basic rule of thumb for setting the gains using the daily insulin requirement of
the patient [150]. We present an analysis of the rule using data driven models in Section 7.

5.2 MPC Control

Model predictive control (MPC) is based on the use of a prediction model to forecast
the effects of proposed manipulated input changes on the desired output. At each time
step k, an optimization problem is solved to obtain the current and future manipulated
input changes for a control horizon of M moves, based on an objective function evaluated
over a prediction horizon of P time steps. A major advantage to this approach is that
constraints can be imposed directly, particularly on the manipulated inputs. MPC largely
arose through applications in the chemical process industry to multivariable systems
with many constraints [39]. Application to these large-scale systems was not limited by
computational power because the sample times were often large (scale of many minutes).
While the optimization problem solves for a sequence of control moves (step k to k+M —1),
generally only the first control move (at time step k) is implemented. At the next time
step (k+1), a new set of measurements is obtained, the model is updated, and a new
optimization problem is solved. How the model is updated at each time step has a major
impact on the closed-loop performance; Muske and Badgwell [116] discuss approaches
that result in the best performance for unknown input disturbances.

This optimization problem has an analytical solution when the model is linear and no
constraints are imposed. For a linear model with constraints, efficient quadratic program-
ming (QP) algorithms are often used to find solutions [60]. Nonlinear model predictive
control is a broad area with many challenges and many solution methodologies [135].

5.2.1 Artificial Pancreas Applications of MPC

While a number of PID [146] and fuzzy-logic (FL) [7, 113] based approaches have been
proposed for closed-loop control algorithms, MPC-based methods have been most widely
applied in clinical trials. For an overview of the algorithms, see Bequette [12]. While many
articles have reported simulation-based results, the focus of this review is on algorithms
that have been used in human clinical trials. Additionally, our effort is directed to the
delivery of insulin and not to multi-hormone approaches that include glucagon.

Hovorka et al. presented a nonlinear model predictive control approach based on
a seven-state compartmental model updated at different time intervals using Bayesian
parameter estimation [77].

In this system, blood glucose is sampled and insulin infusion is adjusted using a
15-minute sample time. To calculate the next insulin infusion rate, u(f + 1), two components
are considered: the difference between target trajectory, y(¢+i) and predicted trajectory,
$(¢+il), and the variation in the infusion rate, u(t). These are balanced by changing k¢,
the "aggressiveness’ constant of the controller such that this difference is minimized over
a4 hour prediction horizon:



Artificial Pancreas Systems. 17

N

{Z [$(+ile)=y(e+i) P+ — > [u(e+)—u(e+i- 1)}

0<u(t+1) u(t+N)<4 arg pr
Clinical studies were performed on 15 subjects, using prediction and control horizons of
4 hours (16 time steps). The desired glucose reference trajectory depended on whether
the current glucose was high or low: if high, a relatively slow trajectory is used, and if
low, a rapid first-order approach to the setpoint is specified. These trials were post-dinner,
overnight studies with the controller activated several hours after the last meal, and thus
did not tackle the challenges of meals or exercise.

There are many advantages of using MPC in automated insulin dosing, as discussed by
Bequette [12]. A number of closed-loop algorithms are directly compared in simulation
studies by Cameron et al [21]. A clinical trial directly comparing MPC and PID is reported
by Pinsker et al [129], who show that MPC has better performance (lower mean glucose
and longer glucose time-in-range) in a 27.5-hour trial involving 20 subjects.

Tuning and Adaptation of MPC Algorithms: MPC algorithms are usually tuned
according to an individualized subject parameter, such as insulin sensitivity (drop in blood
glucose for each unit of insulin delivered), or the carb/insulin ratio (the inverse of the
amount of insulin needed for each gram of carbohydrate consumed). These factors can
also be estimated based on an individuals total daily insulin dose [82]. Models can also be
adapted in real-time, as detailed by Turksoy et al [147, 148].

Feedforward Control: Meals, Exercise and Other Events. The majority of control
algorithms require feedforward action for “events” that have a major effect on blood
glucose and insulin requirements to maintain desired glucose. For example, the meal is
ideally “announced” with an estimate of the amount of carbohydrates to be consumed, and
an insulin bolus based on a known insulin/carb ratio. However, to reduce patient burden, it
is desirable to have algorithms that can detect a meal based on changing glucose levels and
other information. Explicit meal detection for improved MPC performance is presented
by Lee et al [93, 94]. A probabilistic method for meal detection is presented by Cameron
et al., who use a 7-state discrete compartmental model [22].

Exercise can have a rapid affect on blood glucose, so it is desirable to announce exercise
and reduce insulin delivery well in advance of exercise. If an individual consumes a snack
in anticipation of exercise, it is important that any meal detection features be deactivated
to avoid risky insulin delivery. Activity monitors to detect exercise has been used in the
algorithms presented by Cameron et al [26] and Turksoy et al [149].

State estimation: Whereas MPC approaches require the state of the predictive model at
each time step, we are often unable to directly measure all the state variables used in the
predictive model, and the measurements on actual patients are noisy or unsynchronized.
For AP systems in particular, these measurements may come from CGMs, insulin pumps,
and activity monitors. In order to clean these measurements and extract the components
needed for the initial model state from which the optimization problem is calculated, a
state estimator is often used. Many varieties of estimators such as Luenberger observers,
Kalman filters, and Moving-Horizon Estimators. [19, 37, 65, 66]

Kalman filters, which use a series of measurements taken over time to smooth noise
and other inaccuracies, have been particularly popular for estimating rates of change
in glucose, as well as meal inputs [36, 93, 94] Methods which exploit device-specific
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knowledge, such as sensor calibrations have also been successfully used. In particular,
Gondhalekar et al. [65] used a moving-horizon like estimator to ameliorate effects of
delays between measurements and controller action, instances of CGM sensor drop out,
and discontinuities due to CGM calibrations.

5.2.2 Glucose Control Objectives

The vast majority of MPC algorithms use an objective function based on the mean glucose
prediction over a future time horizon. Most often the objective function minimizes the sum
of the squares of predicted errors (setpoint minus predicted output) over the prediction
horizon. However, rather than controlling to a specific setpoint, the zone MPC approach
attempts to keep BG within a desired range, over the prediction horizon. Harvey et al.
studied 12 subjects in a 24-hour trial, using a zone of 80-140 mg/dL [73]. Forlenza et al
compared zone MPC with sensor augmented pump therapy in a crossover trial involving
19 subjects [55]. While the zone MPC approach presented above is for day and night use,
its performance is comparable to the predictive hypo/hyperglycemia minimizer used in
overnight studies by Spaic et al. [143] and Bequette et al. [11].

The multiple model probabilistic predictive control (MMPPC) approach, on the other
hand, manipulates insulin to achieve a probability of a hypoglycemic risk (2.5% probability
of going below 100 mg/dL, for example) over the prediction horizon [22]. The approach
is anticipatory, based on a database of common eating patterns. For example, as the time
becomes longer between meals the probability that a meal will be consumed in the near
future increase; similarly, when an individual has been awake for a longer period of time,
the probability that they will go to sleep increase, resulting in less aggressive insulin
delivery to avoid the risk of nocturnal hypoglycemia.

MMPPC results are presented by Cameron et al. for 10 subjects using a laptop-based
platform in a clinical research center study [24]. Using an ambulatory platform, Cameron
etal. [26] present results for 10 subjects in a 30-hour in-clinic study at two sites, followed
by 15 subjects in 54-hour hotel-based study at three sites. Forlenza et al. study six adults
and four adolescents in a 72-hour hotel-based study at three sites [56]. The study compared
announced vs unannounced meals with 4-hour post-meal glucose averaging 140.6 and
197.8 mg/dL, for announced and unannounced meals respectively.

5.2.3 Robust MPC

In practice, all models used in MPC-based approaches have an inherent uncertainty
due to inter- and intra-patient variability with respect to insulin sensitivity and glucose
utilization, sensor noise, and meal detection. Multiple groups have taken up this problem of
developing robust MPC approaches [50, 93, 104, 124]. Lee and Bequette [93] developed
a deterministic multisine approach to estimate insulin-to-glucose dynamics and estimate
meal size when tested in silico on virtual patients using the Hovorka model described in
Section 4.0.1.
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A novel approach developed by Dutta et al. [50] combines quantile prediction with
neural network models to learn robust MPC controllers. By utilizing three separate patient
models in their MPC approach, Dutta et al. were able to bound blood glucose predictions
with 95% certainty. This resulted in controllers which provide model guarantees and
bound risks on hypo and hyperglycemia for real data and simulated patients, and can
handle unannounced meals.

6 Specifications

In this section, we describe correctness and performance specifications for artificial
pancreas controllers. These specifications are of great importance since they ultimately
define the means by which the patient’s safety, and the efficacy of the treatment, can be
guaranteed. We will also motivate the need to carefully model “usage scenarios” under
which correctness properties can be asserted.

The most important correctness properties include “appropriate” behavior of the
controller under hypoglycemia (defined as BG <70mg/dL) and hyperglycemia (defined
as BG >180mg/dL). It is tempting to specify that these conditions should never occur in
the first place. However, this objective is quite unlikely to be achieved by any algorithm,
pending significant scientific/engineering advances such as shelf-stable glucagon that
provides the ability to counteract delivered insulin; insulin analogues that act faster and
persist for a shorter duration; and highly accurate CGM sensors devoid of dropouts,
sensor attenuation or other types of failures. Fundamentally, the magnitude of disturbances
due to meals, exercise, adrenaline response, and sensor errors can rapidly cause the
patient’s BG to fall below hypoglycemic limits or above hyperglycemic limits before the
controller can sense/act upon these changes. Inter-patient variability is yet another major
impediment to guaranteeing correctness. As we have seen thus far, control algorithms
exhibit numerous parameters that must be carefully “tuned” to individual patients for
correctness and performance. Individual variations are characterized roughly in terms
of insulin sensitivity, BG responses to meals and physical activities, or through a large
number of model parameters that are hard to identify from available data.

Thus, specifications must be coupled with usage scenarios which constrain user
behavior such as the meals (timing, amount, and duration), exercise (timing and intensity),
and accurate announcements of impending meals and physical activities. Furthermore, the
scenarios themselves may be dependent on specific combinations of patient characteristics
and control algorithm parameters. At the time of writing, the mapping between specific
patient characteristics and algorithm parameters remains an open challenge.

6.1 Interface Correctness

One of the most fundamental correctness specifications addresses the inferface between
the algorithm, the insulin pump, and the CGM. First, the device must receive the data



20 Kushner et al.

from the CGM for the patient being treated without any form of data corruption. For
instance, “cross-talk” between CGMs of two different patients in close physical proximity
is a potentially dangerous situation. Likewise, CGM values can be “spoofed” by malicious
attackers to cause serious consequences, including death to the patient [133]. One approach
to defending against some of these issues is through standard cryptographic encryption
and authentication. Another solution is to implement filters that can “‘smooth” away rapid
fluctuations in CGM readings - scenarios which are potentially indicative of corrupted
data.

The interface to the insulin pump is another safety critical component [2, 96]. First,
the commands issued by the algorithm to the pump must be carried out in an accurate,
reliable, and verifiable manner. Next, user inputs such as manual insulin boluses must be
reported to the algorithm and taken into account for future insulin delivery. For instance,
if a user-provided bolus is not reported to the algorithm, the insulin on board estimate
diverges from the actual value, risking serious harm to the patient.

It is notable that many practitioners in the field, including the authors of this paper,
recognize the issue of interface correctness. Furthermore, adverse events involving incorrect
interfaces are known anecdotally from past clinical trials. However, this issue has received
relatively little discussion in the academic literature at the time of writing. Most interfaces
to CGMs and insulin pumps remain proprietary, with very few accepted standards across
various commercially available models.

6.2 Algorithm Correctness and Performance

Algorithm correctness has many aspects including: (a) the algorithm must not command
actions that make adverse situations worse — for instance, fail to shut down the pump
during hypoglycemia, or shut down the pump when the BG level is too high; and (b)
the algorithm must guarantee that under carefully defined nominal (reasonable) usage
conditions, the patient should not exhibit hypoglycemia or extreme hyperglycemia.

As mentioned earlier, correctness in terms of avoiding hypo/hyperglycemia requires us
to carefully define “usage” scenarios in terms of meals and physical activities. Figure 6
depicts a set of possible usage scenarios defined by ranges over the meal timings, meal
amounts, the timings of boluses relative to the meal, and the timing of when the user
switches from open loop to closed loop control mode. Other aspects of the scenario may
include specifying carbohydrates counting errors, wherein the user reports the wrong
amount of carbohydrate to the algorithm. Some of the parameters used in a previous work
are reported in Table 1.

Correctness properties are specified using common logics such as Metric/Signal
Temporal logics [90, 106]. Temporal logics are a widely used formalism across many
areas of hardware and software verification. A temporal logic formula specifies the desired
behavior of a system over time using logical connectives such as And (A), Or (V), Not (—)
and Implications (=) in addition to temporal connectives such as Always (G), Eventually
(7) and Until (W) [8, 110]. This allows assertions about the behavior of a system to be
translated into a computer readable formalism. In addition, these constructs can be further
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Fig. 6 Illustration of a usage scenario specification that includes two meals with limits on their timings
and carbohydrates along with time range for switching to the closed-loop system.

enriched with time intervals that allow us to specify that certain events must or must not
happen inside specific time intervals.

Let us consider an example of such a specification. We wish to specify that “whenever
the blood glucose levels fall below 70mg/dL., the insulin pump must be shutoff, and remain
so until the levels rise above 70 mg/dl and remain so for at least 10 minutes.

G<70mg/dL. = (ur=0) Uu (Q[Q]()]G >70mg/dL)
| —_—
BG levels below 70 mg/dL No insulin input Until BG is continuously above 70 mg/dL for 10 minutes

Temporal logic specifications are a starting point for building safe and verified medical
devices. Examples of complex temporal specifications for the artificial pancreas are
described in previous work involving subsets of the coauthors that provided property
specification for the PID control algorithm [25] and a Kalman-filter based pump shutoff
controller [139].

Specifying Performance: A large variety of performance metrics have been studied for
AP systems through various clinical trials [81]. Perhaps the most important performance
metrics include the percentage of time that the BG levels remain inside the euglycemic
range of [70,180]mg/dL. Studies that focus on longer term usage of AP systems have
focused on the improvements to the HbA1C levels, a biochemical measure of the average
BG levels over a period of time. However, the HbA1C levels are hard to simulate in
mathematical models and are in fact a proxy for the average time inside the euglycemic
range. An important class of performance metrics compare the behavior under closed
loop against that under open loop. Such a comparison is hard to perform clinically since
the patient’s physiological state may vary between sessions. However, it is possible to do
so in simulation since we can initialize the model to the same initial state. This class of
performance metrics compares the insulin infused under a closed loop system against the
daily insulin requirements by adding up the basal insulin and boluses.

As is the case with “correctness”, performance requires specifying a distribution of
usage scenarios. In-patient clinical trials control for this distribution by making the patients
adhere to a strict meal and exercise protocol before and during the trial. The relatively
shorter duration of these trials makes this feasible. However, controlling usage scenarios is
hard for outpatient trials. For instance, it is well known that the use of a new device can
change patient’s meal and exercise habits either through positive or negative reinforcement.
Currently, modeling patient’s usage of devices and how they may change over time due
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Fig. 7 An ideal verifier that attempts to prove as well as disprove at the same time is infeasible due to
the undecidability of the halting problem. As a result, many approaches focus on “best effort” search for
counterexamples (falsification) or finding proofs of correctness (verification).

to the introduction of a new AP closed loop system is an important unmet challenge for
clinical researchers as well as engineers.

7 Verification and Synthesis

We provide a brief overview of formal methods that encompass mathematically rigorous
approaches to the design and verification of safety-critical systems. Formal methods
(along with computationally less expensive heuristic approaches known as semi-formal
methods) consist of logical and machine readable specifications that enable the designer
to write down correctness specifications for the system, modeling approaches that can
capture the behavior of the controller and the operating environment; as well as verification
approaches that establish proofs of correctness or find counterexample traces.

We have already looked at correctness specifications using formalisms such as temporal
logic in the previous section. The verification problem takes as input (a) models of the
system and its operating environment, and (b) the desired correctness specifications, and
finds out whether or not the closed loop consisting of the system and environment satisfy
the desired specifications. This is often achieved in practice through informal processes
such as code review, unit /system tests, focusing on various forms of code coverage
and finally, monitoring the system through deployment. In contrast, formal verification
seeks to automate the verification process by using machine readable specifications of
correctness, models of the control algorithm and its operating environment. Figure 7
shows a schematic of a formal verification procedure that takes in a control design, an
environment specification, and correctness properties. It computes over these inputs and
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declares that the system is correct w.r.t specifications (optionally providing a formal
proof that can be machine checked), or a disproof in the form of environment inputs
that cause the closed loop to violate a specification. Although a formal verifier is quite
desirable to construct, there are fundamental limitations due to the undecidability of the
halting problem [141] that prevent us from building a perfect verifier. Nevertheless, most
verification approaches can be split into two main categories: falsification approaches that
seek to discover counter-examples or proof approaches that seek to discover reasons why
the system is correct.

Falsification approaches are based on exhaustive enumeration of all possible system
behaviors (a process called model checking [8, 31]). Recently, the use of constraint solvers
in model checking have enhanced the power of these approaches to search through an
astronomically large number of possibilities, while converging onto violations rapidly [43].
However, existing constraint solvers are limited to restricted classes of constraints such as
linear arithmetic with uninterpreted function symbols. AP systems are often nonlinear, and
exhibit a mix of continuous and discrete behaviors that make them particularly challenging.
Solvers for handling such systems are emerging at the time of writing and a subject of
much research in the formal methods community [59]. Another class of falsification
approaches rely on the concept of robustness of temporal formulas with respect to traces.
A more detailed description is provided in the latter half of this section.

In contrast to falsification search, proof approaches presume that the system is correct
and search for a mathematical proof of correctness. The proof itself can be written out as
a sequence of logical inferences and represented as such in a computer. This approach
is the basis of manual/semi-automated proof engines such as Keymaera [130]. However,
these systems require expert user interaction to guide the process of proving. In particular,
expertise is currently needed both in terms of understanding the design under verification
and the symbolic logic/ proof techniques used by the theorem prover. This gap remains
the focus on ongoing research in this area. Another approach called flowpipe construction
relies on simulating the system over sets of possible states in order to predict the behaviors
resulting from all these states in one shot [30, 58]. Currently flowpipe approaches have
demonstrated the capability to handle large linear ODEs interacting with software-based
control systems. However, their ability to handle nonlinear systems is an area of active
research.

7.1 Verification of AP Algorithms

We will now survey existing approaches to verification, summarizing results from two
representative case studies involving the PID-based system described in Section 5.1. AP
controllers are safety critical and require a high level of assurance. Currently, simulations
on virtual patient models and multiple stages of clinical trials on increasing numbers
of patients under in-patient, hotel/camp and outpatient settings are used to provide
assurance along with traditional software engineering practices such as design and code
reviews. However, AP devices are used by patients who are not necessarily experts in
human physiology or control systems. Furthermore, these devices will be expected to
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T, [0, 60] mins. Time for meal # 1

T [180, 300] mins. Time for meal # 2

X [50, 150] gms.  # Carbs in meal # 1

X2 [0, 40] gms. # Carbs in meal # 2

I1C,IC, [0,0.01] U/gm  Insulin to Carbs Ratio

51,02 [-15,15] min Timing of insulin bolus relative to meal

d(t),t € {100,105,...,720} [-20, 20]mg/dL Sensor error

Table 1 Parameters defining user scenario for the simulation based falsification of the PID algorithm.
The S-Taliro tool explores parameter values in the defined ranges to falsify given temporal properties over
the closed loop system.

be operational 24/7/365, dealing with largely unanticipated disturbances due to user
activities, physiological variations and component failures. Verification approaches that
can exhaustively analyze the behavior of the algorithm under a numerous usage conditions
are can help us evaluate safety and performance prior to large scale deployment.

A growing volume of approaches to verifying specific AP algorithms have been pro-
posed thus far. Chen et al studied a PID-based closed loop system meant for intraoperative
use in patients [29], using the dReal SMT solver [59] to prove safety for a range of
parameters and controller gains. Other approaches to verifying AP algorithms have relied
on falsification, using temporal logic robustness [47, 54], and incorporation of tools such
as S-Taliro [1, 117] and Breach [46].

A subset of the coauthors have studied the use of falsification techniques for verifying
closed loop control systems for the AP [25]. Their work investigated a PID controller
described in section 5.1. Another study by the same team [139] was performed to test a
predictive pump shutoff controller designed by Cameron et al. [23] that has undergone
outpatient clinical trials [102, 143]. Recently, the PID controller in section 5.1 was studied
over data-driven models using data from specific patients to synthesize gain parameters [91].
Shmarov et al present an approach to tuning PID controllers using stochastic hybrid system
models to capture the patient and disturbances [140]. However, the approach focuses on
tuning for a well defined ODE model of the patient physiology, whose advantages and
drawbacks have been previously mentioned.

We will describe two different approaches to verification of the PID controller: (a)
using simulation-based falsification applied to a detailed simulation model of the PID
control algorithm [25]; and (b) using a bounded-model checking approach applied to a
data-driven patient model described in section 4.1 and the PID control algorithm [91].

7.2 Simulation-Based Falsification of PID Algorithm

Sankaranarayanan et al performed a simulation-based verification of the PID control
algorithm using a detailed simulation model that combines the Dalla Man model for the
patient’s insulin-glucose regulation, the control algorithm implemented from published
descriptions [137, 145, 150] and constraints specifying the patients meals and boluses,



Artificial Pancreas Systems. 25

Property Result

BG levels always >70mg/dL NOT FALSIFIED
BG levels always <300mg/dL FALSIFIED
Insulin shutoff whenever BG <90mg/dL FALSIFIED

No hyperglycemia 10 hrs after start of simulation NOT FALSIFIED
No hyperglycemia lasting more than 3 hrs FALSIFIED

No hypoglycemia lasting more than 150 mins NOT FALSIFIED

Table 2 Falsification results for various properties of the PID algorithm, as originally reported by Cameron
et al [25].

as described in section 6 and detailed in Table 1. These components were implemented
using Matlab(tm), and the tool S-Taliro developed by Fainekos et al was used to drive
the falsification [1, 6]. Given a simulation model and a property of interest expressed in
metric temporal logic [90], S-Taliro systematically searches for behaviors that minimize
the robustness of the model’s traces with respect to the specification of finding a trace
that falsifies the specification. To generate traces, the tool adjusts the various model
inputs including (a) the parameters affecting the usage scenario in terms of meal amounts,
timings, and insulin boluses (see Table 1); and (b) the discrepancy/error between the
underlying BG values in the simulation model and the values reported to the algorithm.
Normally, this error has a stochastic nature [53], but is treated as an “adversarial” input to
search for violations. S-Taliro employs a variety of stochastic search algorithms including
random search, simulated annealing and genetic algorithms. The result of the approach
either finds a falsifying trace that violates the property, or fails to produce a trace after an
upper limit on the number of simulations has been exhausted. The properties examined
and the results from S-Taliro are summarized in Table 2.

7.3 Verification Using Data-Driven Models

In this section, we discuss an approach used for verification and improved tuning of the
PID control reported in Kusher et al [91]. The main specification is that the user’s BG
levels remain in a “safe’” (euglycemic) range of 70—180mg/dL. The approach combines
multiple linear data driven models, as described in Section 4.1. The models were derived
from overnight BG data for nearly 50 patients with 40 nights of data for each patient.
For each patient, multiple models are derived with each model predicting a future BG
value G(¢+T) as a linear function of past BG values, insulin on board values, and a
non-deterministic uncertainty.

p q
G(t+T)e ZajG(t—Tj)+ijl(t—Tj)+[f,u].
j=1 j=1
Multiple models were selected for various values of future lookahead T and past delays
T; for j =1,...,p. The models are treated as “data-driven” constraints that restrict the
range of future BG values. The insulin inputs are provided to the patient using a closed
loop algorithm described in Section 5.1. In order to determine whether an individual
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Real G(-AG,max)s---G(=5) History Gluc.
I(-Ar max),---1(=5) History IOB.
G(0),G(5),...G(T) Glucose
10),1(5),....I(T") 10B
uc(0),uc(5),....uc(T) Insulin
1.(0),1,(5),...,1.(T) Integral Err.
1,(0),I,(5),....1,(T) Ins. feedback
r(0),7(5),...,r(T) Raw ins.

Binary w(0),w(5),...,w(T) 0-1 variables
maximize G(T") minimize for lower bnd

Gmin £G(t) <Gmax <0

Lnin <I(t) <Thax Historical range

G(t+AG,i) Sa(),[G(t)‘Fa]’[G(t—AG’[+h[I(t—A[’i)+M[
G(I+AG,{,) > ao,iG(t)+a1,iG(t—AG,,j +biI(t—A],i)+l,‘

forall t=0,5,...,T,i=1,....k Model M; constr.
1(t)=F(ug(t),uq(t-5),1(t-5),1(t—10)) Insulin On Board Equation

I.(t)=1.(t-5)+(G(t)-Gyp) Integral error
II,(Z‘)ZK()id(l‘—S)+K1Ip(t—5)+K21p(l‘— 10)
IOB feedback

(l‘) K])(G(t)_G())+KiIe(t)+
r K CU=GE9) )
uc(t)=r(t)

uc(t) r(t)+imaxw(t)

e (t) Simax(1-w(t))

uc(t)=0 Saturation

Raw ctrl. output

Fig. 8 Optimization problem for finding the maximum possible G(T"), wherein the constraints describe
an execution of the closed loop according to the data-driven models Mj,..., M} and PID control equations
in Fig. 5 modified by encoding the saturation term using 0-1 variables.

will be safe under the action of the device, the maximum and minimum blood glucose
values attainable under all possible model and controller behaviors are calculated using
a mixed-integer optimization problem as shown in Fig. 8. This problem encodes the
behavior of the model in terms of constraints, and the relation between the BG values
output by the model and the insulin inputs of the controller. The integer variables arise
from the need to model saturation of the insulin delivered by the PID controller.

In order to encode this loop, each patient model is to identify upper and lower constraints
on future blood glucose levels. Next, the control scheme from [145, 150] is incorporated
as constraints on insulin input.

This analysis requires modeling the patient’s behavior prior to the start by assuming a
“reasonable” history of blood glucose and insulin inputs. The following history assumptions
are used,

1. For all t <0, G(t) €[ G min,Gmax ] wherein G, = 70mg/dL and G, = 180mg/dL

2. For all t <0, I(¢) € [Lnin,Imax ] wherein I,;;,, =0.5 U and I, =4.0 U

As such, these assumptions capture an infinite set of possible histories before # =0, when
the controller is turned on.

The verification is run over a time horizon 7" with the control law run every A=5
minutes. At each time step, the worst-possible attainable high and low blood glucose
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Reachabilty analysis for: PSO3-001-0011 win120 kpe8
- and hypoglycemia

(©

Fig. 9 Reachability analysis plots showing ranges of glucose values across time for selected individuals.
Green bars denote all possible blood glucose values attainable after x minutes under the AP Control device.
(a) Original tuning that works well; (b) original tuning that works poorly; and (c) results of improved
tuning for the patient and bin in (b).

values are calculated using the optimization problem in Figure 8. Details for the insulin on
board calculation, and soundness theorems can be found in Kushner et al [91].

7.3.1 Data-Driven Controller Tuning

Beyond just verifying the published approach to selecting the PID controller parame-
ters [150], Kushner et al investigated how to tune the gains of the controller to potentially
improve the time in range for the controller.

The tuning rule proposed by Weinzimer et al first selects the proportional gain K,. Once
K, is set, the value of integral gain is set to K; = K,,T; and derivative gain K=K, /T;.
Specifically, K}, is chosen as the patient’s daily insulin dose divided by 135. However, in
practice this rule-of-thumb base tuning is known to result in sub-optimal performance in
terms of time in range. In some instances, the reachability analysis observed convergence
of all possible behaviors of the closed loop to a desirable range (see Fig. 9(a)), whereas
others do not (see Fig. 9(b)). However, in the latter case, adjusting the K, parameter using
the verification results can result in drastically improved outcomes (see 9(c)).

Rather than search for parameters for each patient individually, it is possible to derive
a new tuning law in terms of a formula that suggests a value of K, parameter based
on the patient’s daily insulin requirement or HbA1C readings. In order to identify such
an improved tuning law, an exhaustive set of possible tuning parameters were selected
for each individual, and the reachability analysis procedure was run for each. After this,
the optimal tuning parameter is identified as that which enables the device to maintain
the individual’s blood glucose both within the range 70— 180mg/dL, and as close to the
euglycemic range, 80— 120mg/dL, as possible. Individuals are grouped based on how
much re-tuning they require. Analysis was performed to determine whether an individual’s
demographics are correlated with this proportion of required re-tuning, and a new tuning
protocol was identified based on a combination if individual’s HbA1lc levels as well as
daily insulin requirements. Details can be found in Kushner et al [91]. Under this new
tuning, time-in-range (time with blood glucose between 70—180mg/dL) was improved by
83%, and instances of hypo and hyperglycemia were significantly lessened (Table 3).
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Table 3 Changes in % time in range: original tuning rule vs. the new tuning rule.

Time Spent in Category Original Tuning Rule|New Tuning Rule
mean(std) mean(std)

Safe Range 70— 180mg/dL 14.80% (21.60%) 84.77% (26.54%)

Severe Hypoglycemia BG< 50mg/dL 29.14% (33.36%) 0% (0%)

Hypoglycemia BG< 70mg/dL 85.12% (21.56%) 15.23% (26.54%)

Hyperglycemia BG>250mg/dL 0% (0%) 0% (0%)

7.4 Verification of AP: Future Directions

The problem of verifying AP has received some attention with promising initial results.
At the same time, formal specification and verification approaches have remained mostly
irrelevant to the development of AP control systems. First of all, whereas existing approaches
such as S-Taliro are theoretically capable of handling a large class of controllers, they
suffer from the problem of “simulation explosion” wherein (a) simulations become more
expensive to perform at a higher level of fidelity, and (b) the number of simulations needed
to explore all corner cases is prohibitively high as the model is capable of generating
richer sets of behaviors. Furthermore, the problem of variability between patients requires
sophisticated data driven models. Currently, verification approaches that tackle data driven
models are restricted to simple linear models that can be readily encoded into existing
constraint solvers such as SAT-modulo theory (SMT) solvers or MILP solvers. The use of
neural networks or probabilistic generative models for capturing insulin-glucose response
in patients is currently being investigated by many groups including ours, and holds the
promise for improved verification results.

Another gap lies in explaining the results of verification to engineers and clinicians.
This involves explaining the violations found by the verification in terms of causal factors
or root causes. Work by Diwakaran et al demonstrates the analysis of neighborhoods
from falsifying traces to measure the influence of various inputs on the violation of a
property [44]. However, in practice this approach can be prohibitively expensive.

8 Conclusion

We conclude by looking forward to upcoming new features in the next generation artificial
pancreas algorithms which will pose new challenges for verification. The next generation
AP will be an autonomous system that completely controls the insulin delivery, reducing
the user burden to the minimum extent feasible. Currently, the main aspects include
proactively bolusing for future meals, shutting off insulin delivery in advance of strenuous
physical activities, periodically calibrating the CGM using a “finger-stick” glucometer,
delivering correction boluses to reduce high BG levels during meals, managing nighttime
low BG by setting alarms, and changing insulin delivery during periods of fever, stress,
and other physical conditions which affect insulin sensitivity. The next generation devices
seek to partially, or totally, eliminate many of these interventions. First, rather than rely
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on a single sensor these devices will rely on a variety of available sensors including a
“smart watch” that can sense physical activity, heart rate, body position, a GPS that can
sense physical location meaningful to BG levels such as a gym, soccer field or a restaurant,
specialized sensors such as Google’s contact lens BG meter [122], an in-ear sensor that can
potentially sense jaw movement [118], and a smart fork that can be used to eat and thus
inform the system about incoming meals [45, 72, 100]. At the same time, improvements to
natural language understanding have led to systems capable of communicating with their
users through natural language speech/text interfaces. The potential for these advances to
improve BG control is already being seen in early results [26, 83, 148].

Numerous critical challenges in specification and verification arise from these develop-
ments. The use of prediction models allows us to use MPC so that desirable properties can
“baked in” by construction, and thus, runtime monitors can be used to detect inconsistencies
between the forecasts and reality over time, responding to deviations which can threaten
patient well-being. To conclude, we have described the basic pathophysiology of type-1
diabetes, its treatment, the AP project, modeling approaches, control algorithms, and
specification and verification methodologies. Rapid advances in biomedicine combined
with data-driven Al approaches are revolutionizing this field with the promise of immense
benefits to people with type-1 diabetes and insulin-dependent type-2 diabetes. At the same
time, numerous challenges present themselves that will continue to engage researchers in
automated reasoning and formal methods as a whole for the foreseeable future.
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