






note that the (∀ θ) quantifier in (B) guarantees that this

decrease is achieved no matter where the current reference

state x(θ) lies relative to the current state xd. Also, we note

that the value of u0 (rate of change for θ) is obtained through

the feedback law derived from the CLF V .

Theorem 1: If there exists a function V which respects

Eq. (2), there exist a feedback law and a timing law (Son-

tag formula [21]) that are smooth almost everywhere, and

stabilize to the reference trajectory.

Proof: We appeal directly to Sontag’s result to obtain an

almost-everywhere smooth feedback u(xd, θ) and u0(xd, θ)
that guarantees that

.
V < 0 for all (xd, θ) with xd 6= 0 [21].

Since
.
V ≤ 0, and V is radially unbounded, La Salle’s

theorem guarantees that the dynamical system will stabilize

to the 0 level set V =0 : {(xd, θ)| V (xd) = 0} =
{(0, θ) | θ ∈ R}. Note however that V =0 is a subset of

the reference trajectory since xd = 0.

Thus far, we have only demonstrated how CLFs can be used

to decide on a timing law as well as a control to nullify

the deviation to 0. However, this does not address a key

requirement of progress: we need to ensure that
.
θ > 0 so

that we make progress along the reference from one end to

another. Other limitations include that saturation limits on u

are not enforced, and that the avoidance of obstacles is not

considered. Finally, the stability is required to be global in

the entire state-space, which is very restricting. All of these

restrictions will be removed in the next section.

IV. PATH SEGMENT FOLLOWING PROBLEM

In the previous section, we discussed path following in a

global sense using CLFs, but noted several limitations. We

will refine our approach to address them in this section.

Finite Trajectories: Consider a reference trajectory seg-

ment defined by xr(θ) for θ ∈ Θ : [0, T ]. However, defining

stability for such segments is cumbersome. Therefore, we

discuss reachability in finite time along with safety (reach-

while-stay).

We augment the given reference trajectory by adding

an initial set Î ∋ xr(0), a goal set Ĝ ∋ xr(T ), and a

parameterized family of safe sets Ŝ(θ) ∋ xr(θ) for θ ∈ Θ,

such that Ŝ(0) ⊇ Î and Ŝ(T ) ⊇ Ĝ. Let Ŝ :
⋃

θ∈Θ
Ŝ(θ)

denote the entirety of the safe set. For convenience, we

have defined Ŝ, Î, Ĝ in the original state space x. We will

now define them in terms of the deviation xd to define the

following sets:

I : {xd | xd + xr(0) ∈ Î}

G : {xd | xd + xr(T ) ∈ Ĝ}

S(θ) : {xd | xd + xr(θ) ∈ Ŝ(θ)}.

Finally, let us denote S :
⋃

θ∈Θ
S(θ).

Input saturation: Unlike infinite trajectories, here we

assume initially θ = 0 and in the end θ = T . In this

setting, we must ensure progress for θ at each time-step.

In other words, we wish to make sure
.
θ > 0. Recall that θ is

controlled by a virtual input u0 (
.
θ = u0). Therefore, we need

input saturation for u0 and we assume u0 ∈ [u0, u0], where

u0 > 0 and u0 < ∞. We also assume the reference trajectory

is feasible with respect to the dynamics. To ensure that the

reference trajectory remains feasible for the path following

problem, we enforce that u0 ≤ 1 ≤ u0 as the timing law is

simply
.
θ = 1 for the original reference trajectory (θ(t) = t).

Besides u0, we will add saturation limits to the inputs in u,

as well. Formally we restrict v ∈ V for a polytope V .

Definition 2 (Path Segment Following Problem): The

path segment following problem, given (S(θ), I, G) and

saturation constraints V , is to derive a control feedback law

u = u(θ,xd) and timing law u0 = u0(θ,xd) such that for

all initial states xd(0) ∈ I, θ(0) = 0, the resulting state-

control trajectory of the closed loop (θ(t),xd(t), u0(t),u(t))
satisfies the following conditions: (a) saturation constraints

are satisfied, (u0(t),u(t)) ∈ V for all times t, (b) there

exists t∗ > 0 such that xd(t
∗) ∈ G, i.e, the goal is reached,

and (c) for all t ∈ [0, t∗), xd(t) ∈ S(θ(t)), while staying

inside the safe set for all times until the goal is reached.

Finally, note that condition (a) guarantees progress is made

towards θ = T starting from θ = 0.

Proof Rules: The control Lyapunov function argument

can get extended to control funnels for formally satisfying

the reach-while-stay property [32]. We will define a control

funnel as the sublevel sets of a smooth function V (θ,xd).
For a smooth function V , and a relational operator ⊲⊳∈ {<
,≤,=,≥, >}, let us define the following families of sets

that are parameterized by θ: V ⊲⊳β(θ) : {x | V (θ,x) ⊲⊳ β}.

Furthermore, let V ⊲⊳β : ∪θ∈Θ V ⊲⊳β
θ .

Definition 3 (Control Funnel Function): A smooth func-

tion V (θ,xd) is called a control funnel function iff the

following conditions hold:

(a) (∀xd ∈ I) V (0,xd) < β
(b) (∀xd 6∈ int(G)) V (T,xd) > β
(c) (∀θ ∈ Θ,xd 6∈ int(S(θ))) V (θ,xd) > β

(d) (∀θ ∈ Θ,xd ∈ S(θ) ∩ V =β
θ )

(∃v ∈ V)
.
V (θ,xd,v) < 0.

(3)

The idea, depicted in Fig. 4, is as follows. Initially

(condition(a) in Eq. (3)), V < β (x ∈ V <β). Condition

(d) guarantees that for all the states in a neighborhood of

set V =β , there exist a feedback which decreases the value

of V . Therefore, by providing a proper feedback, the state

never reaches boundary of V ≤β (V =β) because the value of

V can be decreased just before reaching V =β . As a result, V
remains < β. This means the state stays inside V <β as long

as θ ∈ Θ. Also the state remains in S(θ) as value of V for

other states is ≥ β (condition (c)). Since θ is increasing at

minimum rate u0 at some point θ reaches T . Then, according

to condition (b), the state must be in the interior of G (top

green ellipse), because otherwise value of V would be ≥ β.

Theorem 2: Given a control funnel function V , there exist

a smooth feedback law and a timing law (Sontag formula [6])

for reaching G such that for any initial state xd(0) ∈ I , the

goal state is eventually reached at some time t∗ satisfying

T/u0 ≥ t∗ ≥ T/u0, while staying in set S for 0 ≤ t ≤ t∗.

Proof: Initially z(0) = [θ(0),xd(0)
t]t. Let V (t) =

V (z(t)). According to condition (a), V (0) = β0 < β





Fig. 5. Parkour car platform used for experiments.

Parkour Car In order to verify functionality of proposed

method we perform experiments on a 1

8

th
scale, four wheel

drive vehicle platform known as Parkour car (Fig.5) in a

lab environment equipped with a motion capture system.

Parkour car has a wheel base of l = 34cm and includes

an on-board computer to perform all computation on the

vehicle. While in action, the main computer receives a pose

update from motion capture system through WiFi connection,

after which a new control action is calculated based on the

synthesized control law which then gets transmitted to an

ECU (Electronic Control Unit). The ECU handles signal

conditioning for acceleration and steering motors on Parkour

car. One iteration of this control action calculation can be

performed in less than 300µs on a single CPU core running

at 3.5GHz. The low computation cost makes this method

attractive for real-time applications aboard platforms with

low computation capabilities.

Straight Path: In the first experiment, we consider a

straight path from x = −2 to x = 2 with the reference

trajectory xr(t) : [−π/2,−2 + 2t, 0, 2]⊺. The sets are

S(θ) : [−1, 1]3 × [−3, 3] , I : B0.5 , G : B0.5 ,

where Br is a ball of radius r centered at the origin.

The learning framework then successfully finds a PF-CF.

However, the learning framework fails to find a TT-CF. This

does not rule out the existence of a TT-CF, however. Next,

we increase the length of the path to 8m (from x = −4
to x = 4). In this case, the learning framework can find a

TT-CF. Fig. 6 shows simulation trajectories corresponding to

the PF-CF and the TT-CF. For comparison, starting from the

same initial conditions, the simulation is performed until x
reaches x(0)+12. Fig. 6(a) shows the results for initial states

where the initial state is near I . The simulations suggest that

both methods perform similarly and all trajectories converge

to the path (y converges to zero). The simulation time for

all cases are similar and around 6s. Also, the velocity of

the vehicle is almost constant for both methods. Fig. 6(b)

shows the results for cases when the initial states are further

away from G (it needs more forces/time to reach G). In this

case, the path-following method takes a longer time to reach

x = 4 as the speed increases smoothly. Fig. 6(c) considers

initial states that are closer to G. For these case, the path-

following method takes a shorter time to reach x = 12 as

the speed decreases smoothly. The results demonstrate that

the path-following method yields a faster convergence to

the reference path. Moreover, the velocity changes smoothly

while the trajectory tracking method settles the target veloc-

ity immediately.

We also investigate the same problem (straight path from

x = −4 to x = 4) where the velocity is more restricted:

S(θ) :[−1, 1]3 × [−0.5, 0.5]

I : G :{x|4α2 + 4x2 + 4y2 + 16v2 ≤ 1} .

Again, under these circumstances, learning TT-CF fails while

finding PF-CF is feasible. In other words, in trajectory

tracking the change of velocity is crucial for reducing the

tracking error.

Circular Path To carry out experiments on Parkour car and

examine the behavior over long trajectories, we consider a

circular path with radius 1.5m. The vehicle moves with a

constant velocity π
2
m/s and the reference trajectory would

be xr(t) : [π
3
t, 1.5 cos(t), 1.5 sin(t), π

2
]t. For the learning

process, we consider a finite trajectory (once around the

circle) where t ∈ [0, 6]. The sets are:

S(θ) : [−1, 1]× [−3, 3], I : B0.5, G : B0.5 .

Figure 7 shows the trajectories when the controller runs on

Parkour car. Despite the uncertainties in the measurements

and simple modeling, both controllers do a good job of

following the reference path. Fig. 8 shows the trajectories

for different initial states. Fig. 8(b) suggest that the tra-

jectory tracking method may take shortcuts to satisfy time

constraints.

We also investigated the same problem with higher refer-

ence velocity. When the reference velocity is increased to

π (from π/2), we could not find a TT-CF. Nevertheless,

increasing reference velocity does not seem to affect the

process of finding PF-CF, and we can discover solutions even

if the reference velocity is 10π.

Oval Path: Following a circular path is easy as the curva-

ture remains fixed. However, the problem is more challenging

when the path is an oval. The goal is to follow an oval path

P : {y2

12
+ x2

22
= 1}. First, a reference trajectory is generated

to follow this path closely. As polynomial approximations

of the reference path become more challenging, we divide

the reference path into two similar parts. Then, we find a

funnel for each part and make sure we can concatenate these

two funnels. For the first part, the goal is to reach from

B0.5([2, 0]) to B0.5([−2, 0]) going in a CCW direction and

then reach from B0.5([−2, 0]) to B0.5([2, 0]) again in a CCW

direction. For both segments we use the following sets:

S(θ) : [−1, 1]× [−3, 3], I : B0.5, G : B0.5 .

Notice that since G for the first segments fits in I for the

second segment, we can safely concatenate the funnels. If

a trajectory tracking method is being used, the learning

procedure fails to find solutions. However, the path follow-

ing method yields proper control funnels. Figure 9 shows







[26] M. Frego, E. Bertolazzi, F. Biral, D. Fontanelli, and L. Palopoli,
“Semi-analytical minimum time solutions with velocity constraints
for trajectory following of vehicles,” Automatica, vol. 86, pp. 18 –
28, 2017. [Online]. Available: http://www.sciencedirect.com/science/
article/pii/S0005109817304508

[27] S. M. LaValle, Planning Algorithms. Cambridge University Press,
2006. [Online]. Available: http://msl.cs.uiuc.edu/planning/

[28] Z. Artstein, “Stabilization with relaxed controls,” Nonlinear Analysis:

Theory, Methods & Applications, vol. 7, no. 11, pp. 1163 – 1173,
1983.

[29] I. Lopez and C. R. McInnes, “Autonomous rendezvous using artifi-
cial potential function guidance,” Journal of Guidance, Control, and

Dynamics, vol. 18, no. 2, pp. 237–241, 1995.
[30] J. Hauser and A. Saccon, “Motorcycle modeling for high-performance

maneuvering,” IEEE Control Systems Magazine, vol. 26, pp. 89–105,
2006.

[31] A. Saccon, J. Hauser, and A. Beghi, “A virtual rider for motorcycles:
Maneuver regulation of a multi-body vehicle model,” IEEE Trans. on

Control Systems Technology, vol. 21, pp. 332–346, 2013.
[32] P. Bouyer, N. Markey, N. Perrin, and P. Schlehuber-Caissier, “Timed-

automata abstraction of switched dynamical systems using control
invariants,” Real-Time Systems, vol. 53, no. 3, pp. 327–353, 2017.

[33] H. Ravanbakhsh and S. Sankaranarayanan, “Learning control lyapunov
functions from counterexamples and demonstrations,” CoRR, vol.
abs/1804.05285, 2018. [Online]. Available: http://arxiv.org/abs/1804.
05285

[34] A. Majumdar and R. Tedrake, “Robust online motion planning with
regions of finite time invariance,” in Algorithmic Foundations of

Robotics X. Springer, 2013, pp. 543–558.


