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Abstract— We present an approach to path following using
so-called control funnel functions. Synthesizing controllers to
“robustly” follow a reference trajectory is a fundamental
problem for autonomous vehicles. Robustness, in this context,
requires our controllers to handle a specified amount of
deviation from the desired trajectory. Our approach considers
a timing law that describes how fast to move along a given
reference trajectory and a control feedback law for reducing
deviations from the reference. We synthesize both feedback laws
using ‘““control funnel functions” that jointly encode the control
law as well as its correctness argument over a mathematical
model of the vehicle dynamics. We adapt a previously described
demonstration-based learning algorithm to synthesize a control
funnel function as well as the associated feedback law. We
implement this law on top of a 1/8th scale autonomous vehicle
called the Parkour car. We compare the performance of our
path following approach against a trajectory tracking approach
by specifying trajectories of varying lengths and curvatures.
Our experiments demonstrate the improved robustness ob-
tained from the use of control funnel functions.

[. INTRODUCTION

Recent advances in motion planning have brought truly
autonomous systems closer to becoming a reality. However,
one of the main challenges is their safety. Plan execu-
tion may fail because of considerable uncertainties such as
disturbances, imprecise measurements, and modeling. Such
failures can lead to safety violation with catastrophic conse-
quences. Given a reference trajectory with associated timing,
a straightforward solution is to design a feedback control
which tracks the reference trajectory and reduces tracking
errors. Another idea is to use “path-following” where the
goal is to track a path without timing constraints. Path-
following techniques provide smooth convergence to the
reference trajectory while avoiding input saturation [1], [2],
and are more robust with respect to measurement errors and
external disturbances [3]. In this paper, we investigate path-
following techniques to improve robustness and safety for
plan execution through control funnel functions.

First, we reformulate the problem as a path following
problem that adds an extra control input to the system to
decide how fast to move along the reference trajectory.
This naturally allows our approach to speed up/slow down
progress along the reference trajectory. Furthermore, our
method is based on control funnel functions inspired by
the concepts of control funnels [4], [5] and control barrier
functions [6]. Given a reference trajectory segment and a
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Fig. 1. Safe tracking with control funnels: the black box depicts an obstacle,
solid red line shows the reference trajectory generated by the planner. The
projection of the funnel on z-y plane is shown in green. The green circle at
the right is the head of the funnel and the one to the left is the tail. The blue
region enlarges the funnel to account for the non-zero size of the vehicle.

desired “safe region” around the trajectory, a control funnel
function guarantees that the system moves along one end
of the trajectory to another while remaining inside the
safe region. We use a previously-developed framework to
synthesize control funnels automatically given the vehicle
dynamics, the reference trajectory, and the surrounding safe
region [7].

We have implemented our method using a standard single-
track model for capturing the ground vehicle dynamics. The
resulting controllers are then tested on a %th scale vehicle
platform called the Parkour car developed at CU-Boulder.
Using our approach, we successfully synthesize controllers
for numerous reference trajectories and demonstrate the abil-
ity of the controller synthesized on a toy model to drive an
actual vehicle in the lab. We also show that, when contrasted
with trajectory tracking, path following approaches provide
a higher level of robustness as shown by some of our
experiments that involved large disturbances applied to the
car during motion.

In the rest of this section we review the literature. We
discuss previously developed methods and our notations in
Section II. Sections III and IV present our contributions.
Finally, in Section V, we discuss our experimental results.

A. Related Work

Stability for autonomous vehicles is a challenging prob-
lem. Brockett [8] showed that even a simple unicycle model
cannot be stabilized using continuous feedback laws. How-
ever, continuous feedback laws exist for stabilization to
non-stationary trajectories; these feedback laws are usually
obtained through linearization [9]. While trajectory tracking
has been widely used to solve plan execution, it has several
shortcomings which are addressed using path-following. In
pioneering work [10], [11], [12], [13], [14] the velocity



of the vehicle tracked a desired reference velocity and the
controller is designed to steer the vehicle to the path. These
path-following methods have been shown to yield a smoother
convergence to the trajectory while avoiding input saturation.
Beside these works, a wide diversity of approaches are used
to study the path-following problem. One line of work is
based on designing vector fields surrounding the path to
guarantee reaching and following the path [15], [16]. Another
approach is to use model predictive control [17], [18]. In this
article, we consider a line of effort distinct from these others.

Hauser et al. [1] proposed the conversion of the trajec-
tory tracking strategy to the so-called maneuver regulation
strategy. The main idea is to decrease the distance between
the state and the reference trajectory, not a specific point on
the trajectory. The reference trajectory x,(-) is parameterized
using a variable 6 (instead of time) and distance is defined as
a function of x—x,.(#). 6 and treated as a variable. An update
law (timing law) is then applied to ensure proper change of 6.
Hauser and Hindman showed that this maneuver regulation
trick would yield a system that avoids input saturation.
Similarly, Pappas [2] showed that by re-parameterizing the
trajectory, one could avoid input saturation. Subsequently,
Encarnacao et al. [19] extended the technique for the output
maneuvering problem on a restricted set of dynamics. m

Following Hauser et al. [1], others have divided the task
into two parts. The first task is to reach and follow the
reference trajectory using the variable 6 (instead of time),
and the second task is to improve the solution using an extra
control input 6. For example, in Skjetne et al. [20], first
the system output is stabilized, and then a control law for
0 is used to adjust the velocity. In this work, we use the
extra freedom to control # for increasing robustness. More
specifically, this extra degree of freedom allows us to design
more robust control Lyapunov functions (CLFs) from which
we extract the feedback as well as the timing law.

Control Lyapunov functions were originally introduced
by Sontag [21], [22]. Synthesis of CLFs is hard, involv-
ing bilinear matrix inequalities (BMIs) [23], [5]. Standard
approaches such as alternating minimization result often do
not converge to a solution. To combat this, Majumdar et al.
use LQR controllers and their associated Lyapunov functions
for the linearization of the dynamics as good initial seed
solutions [5]. In contrast, recent work by some of the authors
remove the bilinearity by using a demonstrator in the form
of a MPC controller [7]. Furthermore, this approach avoids
local saddle points and has a fast convergence guarantee.

Aguiar et al. [24] argue that there are performance limi-
tations for systems with unstable zero dynamics if one uses
trajectory tracking. However, using an extra control input
0, this restriction vanishes. The timing law in this work is
designed as a function of 6 and its higher derivatives.

Egerstedt et al. [3] develop a method where the reference
point dynamics are governed by tracking error feedback.
Similarly, Faulwasser et al. [25] proposed designing the
timing law as a function of 0, tracking error, and their higher
derivatives. For example, one can design a timing law which
slows down the progress of # when the distance between the

Fig. 2. A Schematic Diagram of the Bicycle Model.

state and the reference is large. They also combine the idea of
path-following with control funnels. They Similarly, we use
control funnels to provide formal guarantees. However, the
funnel is constructed using a CLF. Besides this, the timing
law in our work is a function of the state x and depends on
the structure of the CLF.

II. BACKGROUND

This paper investigates CLF-based path following focus-
ing on applications to ground vehicles. We will use the well-
known bicycle model, whose state consists of its position (z
and y), its orientation (), and velocity (v) [26], [3]. The rear
axle is perpendicular to the bicycle’s axis, the front wheel’s
orientation can be adjusted to steer the vehicle (see Figure 2).
Let v be the angle between the front axle and the bicycle
axis (Fig. 2). We will assume that v € [, 7] is a control
input to the model. Also, the thrust applied to the vehicle is
T € [—4,4]. The model has the following dynamics:

& = wvsin(—a), § = vcos(a) |
& = Jtan(y), v = T, M

wherein [ is the distance between the wheels and the control
inputs to the model (v, 7) are shown in blue.

We will use this model to analyze the behavior of ground
vehicles. In this paper, we will study the design of control
inputs to solve the problem of controlling the vehicle to
follow a given trajectory. Such trajectories are generated
using planning algorithms such as RRTs and are often
designed to avoid obstacles in the workspace [27].

As an example, consider a scenario where the vehicle
moving with speed 2m/s needs to circumnavigate an obstacle
as shown in Fig. 1. First, the planner generates a reference
trajectory shown with the solid red line. Note that, by
design, the reference trajectory keeps some distance from
the obstacle.

To guarantee safety and trajectory tracking at the same
time, we use a control funnel [4] (the green region in Fig. 1)
which contains the reference trajectory. The corresponding
control law for a funnel guarantees that once the state is
inside the funnel, it remains in the funnel until it reaches the
desired target set of states. In other words, the system safety
in the tracking process is formally guaranteed. In this work,
we wish to improve the process of funnel design to increase
robustness. Our funnel design technique is based on stability
analysis which is discussed first.



A. Stability Analysis

The dynamics for autonomous vehicles can be modeled
with Euler equations to study the behavior of these systems.
In a continuous time setting, the state of the system x € R"
updates w.r.t. an ordinary differential equation. Formally, x =
f(x,u), where x is the derivative of x w.r.t. time and u €
R™ 1is the control input. Stability is a fundamental property
of dynamical systems. Numerous control problems can be
viewed as controlling a given system to stabilize to a given
equilibrium state x,. or an “equilibrium” reference trajectory
x,(t). Control Lyapunov functions (CLF) are a powerful tool
for designing such stabilizing controls [22], [28]. We first
describe CLFs for stabilizing to an equilibrium state.

Definition 1 (Control Lyapunov Functions): A CLF V is

a smooth and radially unbounded function that maps each
state to a real non-negative value, such that (a) V' (x,) =
0 and V(x) > 0 for all x # x,, and (b) (V x #
x,) (3u) V(x,u) < 0, wherein V' is the Lie-derivative of
V wrt. f: V(x,u) = VV - f(x,u).
Condition (a) ensures that the value of V is zero at the
equilibrium and strictly positive everywhere else. Condition
(b) ensures that for any state, we can find a control input
that can achieve an instantaneous decrease to the value of
V. In this sense, CLFs are equivalent to artificial potential
functions over the state space [29]. Having a CLF, one can
design a feedback law which always decreases the value of V'
and therefore stabilizes the system to the equilibrium point.
For instance, Sontag provides a simple means to extract a
feedback law from a given CLF [21].

B. Trajectory Tracking vs. Path Following

Another form of stability appears in trajectory tracking,
wherein the goal is to stabilize to a reference trajectory x,.(¢).
Formally, let x4(t) : x(t) — x,.(t) describe the “deviation”
from the reference trajectory state at time t. The goal is
to stabilize x4 to the equilibrium O under the time-varying
reference frame that places x,.(¢) as the origin at time ¢. The
dynamics for x4 is defined as: x5 = f(x,u) —r(¢), wherein
X, = X = p(t).

One of the key drawbacks of trajectory tracking is that
it specifies the reference trajectory x,(t) along with the
reference timing, wherein the state x,.(¢f) must ideally be
achieved at time ¢. This poses a challenge for control design
unless the timing is designed very carefully. Imagine, a
reference trajectory that traverses a winding hilly road at
constant speeds. This compels the control to constantly
accelerate the vehicle on upslopes only to “slam the brakes”
on downhill sections [30].

Path following, on the other hand, separates these concerns
by allowing the user to specify a reference (feasible) path
parameterized with a scalar, 6 (instead of time), x,-(6) yields
a state for each 6 and ddx; = r(6). As proposed by Hauser
et al., one could define II as a function that maps a state x
to the closest state on the reference trajectory x,.(-), using
an auxiliary map 7 [1], [31]:

w(x)  argmin [x 3, (0) [} . 1) : %, (7(x0)

feedback law

Fig. 3. Schematic View of a System along the Parameterized Path.

where ||x||% : x!Px is a Lyapunov function for the
linearized dynamics around the reference trajectory. In order
to stabilize the system to the reference path, Hauser et al.
propose to decrease the value of ||x — II(x)||%. However, as
the projection function 7 can get complicated, they use local
approximations of 7.

Following this, others have proposed to design a control
law for a virtual input ug that controls 6 as a function of
time (called the timing feedback law), or in other words, the
progress (or sometimes regress) along the reference [20],
[24]. Therefore, the deviation is now defined as x4(¢) :
x(t) — x,(6(t)) wherein % = ug. As depicted in Fig. 3, 0 is
mapped to a state on the path x,.(6). For example Faulwasser
et al. [25] design the timing law as a function of 6, the
deviation (x4 for state feedback systems), and their higher
derivatives:

g(e(k)7xfjk)7"'7e7xdau0) = Oa

wherein (%) is the k' derivative of §. However, defining
the function g is a nontrivial problem.

ITII. PATH-FOLLOWING USING CLF

We now present the design of a path following scheme
by specifying a timing law as well as control for deviation
from the reference trajectory based on a control Lyapunov
function. Let us define a new coordinate system, in which
the state of the system is z* : [0, x/,], wherein x(t) = x4(t)+
x,-(6(t)) is the original state of the system. Also, the control
inputs are yt : [uo, u']. We assume 6 is directly controllable

using ug: 6 = ug. Therefore, X, = dj‘é"é = r(A)ug. and thus

Xq = f(Xd + Xr(e), 11) - I‘(Q)UO .

First, our goal is to design a control that seeks to stabilize
xqg = 0. We define a CLF as a function V' over x4, but
independent of 8, that respects the following constraints:

(A): V(0)=0and (Vx4 #0) V(xq) >0

B): (VO, x4#0) (Fu,ug) V(0,x,up,u) <O0.
Note that although V is a function of x4, its derivative is a
function of x4, 0, ug, u:

V(@,xd, up,u) = VV(x4) - X4
= VV(xq) - (f(xa +%x,(0),u) — r(O)u).
Conditions (A) and (B) are identical to those in Defini-

tion 1, requiring the function V' to be positive definite, and
the ability to choose controls to decrease V. Furthermore,

2)



note that the (V #) quantifier in (B) guarantees that this
decrease is achieved no matter where the current reference
state x(0) lies relative to the current state x4. Also, we note
that the value of uq (rate of change for 6) is obtained through
the feedback law derived from the CLF V.

Theorem 1: 1f there exists a function V' which respects
Eq. (2), there exist a feedback law and a timing law (Son-
tag formula [21]) that are smooth almost everywhere, and
stabilize to the reference trajectory.

Proof: We appeal directly to Sontag’s result to obtain an
almost-everywhere smooth feedback u(xg4, ) and uo(x4, 6)
that guarantees that V < 0 for all (x4,0) with x4 # 0 [21].

Since V < 0, and V is radially unbounded, La Salle’s
theorem guarantees that the dynamical system will stabilize
to the O level set V=0 {(x4,0)| V(xq) = 0}
{(0,0) | & € R}. Note however that V=" is a subset of
the reference trajectory since x4 = 0. [ ]
Thus far, we have only demonstrated how CLFs can be used
to decide on a timing law as well as a control to nullify
the deviation to 0. However, this does not addrqss a key
requirement of progress: we need to ensure that § > 0 so
that we make progress along the reference from one end to
another. Other limitations include that saturation limits on u
are not enforced, and that the avoidance of obstacles is not
considered. Finally, the stability is required to be global in
the entire state-space, which is very restricting. All of these
restrictions will be removed in the next section.

IV. PATH SEGMENT FOLLOWING PROBLEM

In the previous section, we discussed path following in a
global sense using CLFs, but noted several limitations. We
will refine our approach to address them in this section.

Finite Trajectories: Consider a reference trajectory seg-
ment defined by x,.(0) for € © : [0, T]. However, defining
stability for such segments is cumbersome. Therefore, we
discuss reachability in finite time along with safety (reach-
while-stay).

We augment the given reference trajectory by adding
an initial set / > x,(0), a goal set G > x,(T), and a
parameterized family of safe sets S(6) > x,.() for 6 € ©,
such that S(0) D I and S(T) 2 G. Let S : Usco S(8)
denote the entirety of the safe set. For convenience, we
have defined S, 1, G in the original state space x. We will
now define them in terms of the deviation x4 to define the
following sets:

I:{xq | xq+x,.(0) €I}
G {xq | xq +x,(T) € G}
S(6) : {xa | xa +x.(0) € S(6)}.
Finally, let us denote S : |Jycq S(0).

Input saturation: Unlike infinite trajectories, here we
assume initially & = 0 and in the end § = 7. In this
setting, we must ensure progress for f at each time-step.
In other words, we wish to make sure 6 > 0. Recall that 0 is
controlled by a virtual input ug (6 = ug). Therefore, we need
input saturation for uy and we assume wug € [@ ,Uo|, where

ug > 0 and ug < 0o. We also assume the reference trajectory
is feasible with respect to the dynamics. To ensure that the
reference trajectory remains feasible for the path following
problem, we enforce that ug < 1 < %g as the timing law is
simply 6 = 1 for the original reference trajectory O(t) =1).
Besides ug, we will add saturation limits to the inputs in u,
as well. Formally we restrict v € V for a polytope V.
Definition 2 (Path Segment Following Problem): The

path segment following problem, given (S(#),I,G) and
saturation constraints V, is to derive a control feedback law
u = u(f,x4) and timing law ug = ug(#,x4) such that for
all initial states x4(0) € I,0(0) = 0, the resulting state-
control trajectory of the closed loop (0(t),x4(t), uo(t), u(t))
satisfies the following conditions: (a) saturation constraints
are satisfied, (uo(t),u(t)) € V for all times ¢, (b) there
exists t* > 0 such that x4(t*) € G, i.e, the goal is reached,
and (c) for all ¢ € [0,t*), x4(t) € S(6(¢)), while staying
inside the safe set for all times until the goal is reached.
Finally, note that condition (a) guarantees progress is made
towards @ = T starting from 6 = 0.

Proof Rules: The control Lyapunov function argument
can get extended to control funnels for formally satisfying
the reach-while-stay property [32]. We will define a control
funnel as the sublevel sets of a smooth function V (6, x,).
For a smooth function V, and a relational operator <€ {<
,<,=,>,>}, let us define the following families of sets
that are parameterized by 6: V>5(0) : {x | V(0,x) > S}.
Furthermore, let V> : Upceo VQN

Definition 3 (Control Funnel Function): A smooth func-
tion V(0,x4) is called a control funnel function iff the
following conditions hold:

(a) (Vxq € I) V(0, xd) B
(b) (Vxq € int(G)) V(T',xq) > B
() (V0 €O,xq¢gint(5(0))) V B
( )

(0,xq) > 3)
d) (VoeO,xses80)nV,”
(Fvey V(G,xd, v) < 0.
The idea, depicted in Fig. 4, is as follows. Initially

(condition(a) in Eq. (3)), V < B (x € V<F). Condition
(d) guarantees that for all the states in a neighborhood of
set V=P, there exist a feedback which decreases the value
of V. Therefore, by providing a proper feedback, the state
never reaches boundary of V=8 (1V=5) because the value of
V can be decreased just before reaching V=5. As a result, V/
remains < 3. This means the state stays inside V<7 as long
as 6 € O©. Also the state remains in S(#) as value of V' for
other states is > J (condition (c)). Since 6 is increasing at
minimum rate ug at some point 6 reaches T'. Then, according
to condition (b), the state must be in the interior of G (top
green ellipse), because otherwise value of V' would be > /.
Theorem 2: Given a control funnel function V/, there exist
a smooth feedback law and a timing law (Sontag formula [6])
for reaching G such that for any initial state x4(0) € I, the
goal state is eventually reached at some time ¢* satisfying
T /ug > t* > T /g, while staying in set S for 0 < ¢ < t*.
Proof: Initially z(0) = [0(0),x4(0)"]". Let V(t) =
V(z(t)). According to condition (a), V(0) = By < B




5(0)

Fig. 4. Schematic View of a Funnel for reach while stay. S(61) defines
the safe set when 6 = 61. V(0) < 3 is an invariant.

as (0) = 0 According to condition (d) in Eq. (3) and
Sontag formula [21], [6], there exists a smooth feedback
which decreases value of V for all time instances that
0(t) € © Ax(t) € SAV(t) = . Also, by compactness
qf V=PNSitis guaranteed that under these circumstances,
V() < —e for some ¢ > 0. Moreover, there is a (3
Bo < 1 < Bstif O(t) € © Ax(t) € SAV(L) = b,
then V/(t) < —%. Now, we assume x(-) reaches boundary of
S before reaching G. Let ¢t be the first time instance that
x(+) reaches the boundary of S. According to condition (c),
V(t2) > B. By smoothness of V' and the dynamics, there
is a time ¢ (< tg) for which V(¢) = (1. Let t; be the first
time instance that V(¢;) = 81 and V*(¢;) > B1. However,
the feedback law forces V' to decrease at minimum rate §
which is a contradiction (V¥ (t;) < f31). Therefore, either
x4(+) remains inside R = V<#N .S forever or remains inside
R until it reaches G. On the other hand, let ¢; be the time
6(t;) =T and % <ty < % Since x4(-) remains in V<5,
V(xa(ty)) < B. According to condition (b), x4(ts) is in the
interior of G and therefore x(t¢) € int(G). [ |

In practice, we replace V=F in condition (d) of Eq. (3)
with V=2 for some 8 < . Using this trick we make sure the
value of V' can be decreased in a larger region to improve
robustness. Also, any set V<F (for B > ) would be an
invariant until € reaches 7. -

Increasing Robustness To improve robustness, one could
simply maximize A while feasibility is checked (Eq. (3)) as
the following:

Eq. GA(Y0 € ©,x4 € S(0)NVF)
(3v € V) V(0,x4,u9,u) < —\.
The bigger is the A, the faster the value of V can be
decreased, and therefore the resulting control law would be
more robust.

V. EXPERIMENTS

In this section, we discuss the process of designing control
funnels for a bicycle model, followed by implementation and
discussions.

Synthesizing Funnels: We adapted a recently developed
demonstrator-based learning framework to synthesize control
funnel functions for given sets I, G, and S [7]. We note that
it is possible to use SOS programming to design feedback
and funnel function [5] to address the control design prob-
lem. However, SOS programming yields a bilinear matrix
inequality, which comes with a lots of numerical issues
and slow convergence, and seems to perform poorer. For
a detailed comparison see [33]. Following that approach,
the control funnel function V' is parameterized as a linear
combination of some basis functions V' (z) : Z;Zl ¢;g;(z).
Next, we provide an MPC-based demonstrator that given a
concrete state (6, x,), demonstrates an optimal control input
(up, u) by minimizing a cost function (distance to reference
trajectory) for a given finite time horizon. Furthermore, the
conditions in Eq. (3) are checked for a given instantiation
of parameters (c1,...,c,) using a verifier that uses a LMI-
based relaxation.

We use the bicycle model presented in Eq. (1), but use
a “body fixed frame”, wherein the state of the vehicle is
given by z' : [0,x%], and xR : R, TR, YR, vR)". The state
variables in the inertial frame x(t) : [a(t), z(¢), y(t), v(¢)]*
are written in terms of xg as follows:

agr(t) + a.(0(1))
cos(ay (0(t)))zr(t) — sin(ay(0(t)))yr(t) + =, (0(¢))
sin(ay (0(t)))x r(t) + cos(ar (0(1)))yr(t) + yr (0(1))
vr(t) + vr(6(1))

In this frame, yg axis is always aligned to axis of the vehicle
in the reference trajectory.

We observe that the change of coordinates allows for
accurate low order polynomial approximations. Also, our
experimental results suggest that the learning framework
succeeds in finding a control funnel function of lower degree
over the new coordinates when compared to the inertial
frame. For all the experiments, we use the following param-
eterization of V: V(0,xg) : x%5Cxp + cofl, where ¢y and
C are the parameters to be synthesized. For demonstration,
we use an off-the-shelf offline MPC with a simple quadratic
cost function. Please refer to [7] for more details. As an
alternative to Path-Following based Control Funnel (PF-CF)
we compare with Trajectory Tracking based Control Funnel
(TT-CF) obtained by setting # = 1, and eliminating the
control input ug.

Control Law Extraction: For running the experiments, we
need to extract control laws from control funnels. For a TT-
CF, we merely use Sontag formula [21] with input saturation.
Moreover, for a PF-CF, the controller stores and tracks value
of 0 (as a non-physical variable). The control law is extracted
for both u and ug, and in addition to providing the feedback
u, the controller updates the value of § according to control
input ug.



Fig. 5. Parkour car platform used for experiments.

Parkour Car In order to verify functionality of proposed
method we perform experiments on a % scale, four wheel
drive vehicle platform known as Parkour car (Fig.5) in a
lab environment equipped with a motion capture system.
Parkour car has a wheel base of [ = 34cm and includes
an on-board computer to perform all computation on the
vehicle. While in action, the main computer receives a pose
update from motion capture system through WiFi connection,
after which a new control action is calculated based on the
synthesized control law which then gets transmitted to an
ECU (Electronic Control Unit). The ECU handles signal
conditioning for acceleration and steering motors on Parkour
car. One iteration of this control action calculation can be
performed in less than 300us on a single CPU core running
at 3.5GHz. The low computation cost makes this method
attractive for real-time applications aboard platforms with
low computation capabilities.

Straight Path: In the first experiment, we consider a
straight path from x = —2 to = 2 with the reference
trajectory x,(t) : [—m/2,—2 + 2¢,0,2]T. The sets are

S(0):[-1,1* x [-3,3], I :Bos, G:Bos,

where 5, is a ball of radius r centered at the origin.
The learning framework then successfully finds a PF-CF.
However, the learning framework fails to find a TT-CF. This
does not rule out the existence of a TT-CF, however. Next,
we increase the length of the path to 8m (from v = —4
to x = 4). In this case, the learning framework can find a
TT-CF. Fig. 6 shows simulation trajectories corresponding to
the PF-CF and the TT-CF. For comparison, starting from the
same initial conditions, the simulation is performed until x
reaches x(0)+12. Fig. 6(a) shows the results for initial states
where the initial state is near I. The simulations suggest that
both methods perform similarly and all trajectories converge
to the path (y converges to zero). The simulation time for
all cases are similar and around 6s. Also, the velocity of
the vehicle is almost constant for both methods. Fig. 6(b)
shows the results for cases when the initial states are further
away from G (it needs more forces/time to reach G). In this
case, the path-following method takes a longer time to reach
x = 4 as the speed increases smoothly. Fig. 6(c) considers
initial states that are closer to G. For these case, the path-

following method takes a shorter time to reach x = 12 as
the speed decreases smoothly. The results demonstrate that
the path-following method yields a faster convergence to
the reference path. Moreover, the velocity changes smoothly
while the trajectory tracking method settles the target veloc-
ity immediately.

We also investigate the same problem (straight path from
r = —4 to x = 4) where the velocity is more restricted:

S(0) :[~1,1]* x [~0.5,0.5]
I:G {x|4a® +42® + 4y* + 160* < 1} .

Again, under these circumstances, learning TT-CF fails while
finding PF-CF is feasible. In other words, in trajectory
tracking the change of velocity is crucial for reducing the
tracking error.

Circular Path To carry out experiments on Parkour car and
examine the behavior over long trajectories, we consider a
circular path with radius 1.5m. The vehicle moves with a
constant velocity 5m/s and the reference trajectory would
be x,(t) : [§t,1.5cos(t), 1.5sin(t), 5] For the learning
process, we consider a finite trajectory (once around the
circle) where ¢ € [0, 6]. The sets are:

5(9) : [—1, 1] X [—3,3], I: 60.5, G: 80,5 .

Figure 7 shows the trajectories when the controller runs on
Parkour car. Despite the uncertainties in the measurements
and simple modeling, both controllers do a good job of
following the reference path. Fig. 8 shows the trajectories
for different initial states. Fig. 8(b) suggest that the tra-
jectory tracking method may take shortcuts to satisfy time
constraints.

We also investigated the same problem with higher refer-
ence velocity. When the reference velocity is increased to
7w (from 7/2), we could not find a TT-CF. Nevertheless,
increasing reference velocity does not seem to affect the
process of finding PF-CF, and we can discover solutions even
if the reference velocity is 107.

Oval Path: Following a circular path is easy as the curva-
ture remains fixed. However, the problem is more challenging
when t2he path is an oval. The goal is to follow an oval path
P:{{f+ “23—3 = 1}. First, a reference trajectory is generated
to follow this path closely. As polynomial approximations
of the reference path become more challenging, we divide
the reference path into two similar parts. Then, we find a
funnel for each part and make sure we can concatenate these
two funnels. For the first part, the goal is to reach from
Bo.5([2,0]) to By.5([—2,0]) going in a CCW direction and
then reach from By 5([—2, 0]) to By 5([2,0]) again in a CCW
direction. For both segments we use the following sets:

5(9) : [—1, 1] X [—3,3], I: 60.5, G: 80,5 .

Notice that since G for the first segments fits in I for the
second segment, we can safely concatenate the funnels. If
a trajectory tracking method is being used, the learning
procedure fails to find solutions. However, the path follow-
ing method yields proper control funnels. Figure 9 shows
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Solid (dashed) lines are simulation trajectories corresponding to PF-CF (TT-CF). Blue (red) trajectories start from the same

initial condition.

Fig. 6.
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Fig. 7. Projection of trajectories, generated on Parkour car, for the circular
path. Parkour car finishes five rounds around the circle. The reference
trajectory is shown in black.

the trajectories generated from our experiments using the
CF-based controller. The tracking is not precise when the
curvature is at its maximum. We believe the main reason is
input saturation for the steering, which occurs because of the
imprecise model we use (Fig. 9).

Obstacle Avoidance: Going back to the scenario of
obstacle avoidance, we wish to find a control funnel to
guarantee safety (avoiding the obstacle). Having a reference
trajectory, instead of defining S(6), we simply define S as

S x| ([x,y] ® Boas) NO =0},

where O is the obstacle, @ is the Minkowski sum, and
0.25m is the distance between the center of the car and
its corners (the body of Parkour car fits in g o5). This
trick allows to reason only about the center of the car, and
safety is guaranteed as long as the center of the car is in
S. Next, we set I : Bysos and G : Bgos. However, we
can not find a solution using the learning framework. To
relax the conditions, we allow G to be larger G : Bys.
In this case, we were able to find a solution (only if the

Simulation Results for a Straight Path

Fig. 8. projection of trajectories, generated on Parkour car, for the circular
path form different initial states. Blue (red) lines corresponds to the path-
following (trajectory tracking) method. The reference trajectory is shown in
black. Initial state: (a) [—7/2,0,0,0] and (b) [7,2.25, —1.4,0].

path-following method is being used). For the experiment,
Parkour car moves toward the obstacle with different initial
states and the CF-based controller engages when the car is
1.5m to the left or right of the obstacle’s x position. Fig. 10
shows the projection of the funnel on z-y plain. We note
that if a trajectory starts from the head of the funnel, not
only its initial  and y, but also its initial v and « should
also be inside the funnel. Fig. 10 (a) shows trajectories
where the initial state is inside the head of the funnel. As
shown, the trajectories remain inside the funnel and reach
the tail. However, as demonstrated in Fig. 10 (b), even if
the trajectory starts outside of the funnel head, the whole
body of the car may remain in the guaranteed region (blue
region). Nevertheless, the safety is not guaranteed any longer
as Fig. 10 (c) shows trajectories where Parkour car leaves the
guaranteed region.

VI. CONCLUSIONS

In this work, we investigate the use of control Lyapunov
functions for path following and provide a characterization



Fig. 9. Projection of the trajectory, generated on Parkour car, for the oval
path. The reference trajectory is shown in black.

(© (]

Fig. 10. Projection of trajectories on z — —y plane generated by Parkour
car for the obstacle avoidance problem. Funnel boundary is shown in gray
and as long as the center of car is in the funnel, the whole body of the
car remains in the blue region. (a) guaranteed traces, (b) not guaranteed but
safe traces, (c) not guaranteed and unsafe traces.

of control funnel functions for tracking a trajectory segment.
Our approach lends itself to an efficient synthesis technique
presented previously. We implement the resulting controller
on the Parkour car and show its effectiveness through a set of
tracking problems. Future work will focus on integrating our
approach more closely with planning approaches to augment
existing approaches to the synthesis of control funnels [34].
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