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Abstract. We describe a construction of the cyclotomic structure on topolog-
ical Hochschild homology (THH) of a ring spectrum using the Hill–Hopkins–
Ravenel multiplicative norm. Our analysis takes place entirely in the category
of equivariant orthogonal spectra, avoiding use of the Bökstedt coherence ma-

chinery. We are also able to define two relative versions of topological cyclic
homology (TC) and TR-theory: one starting with a ring Cn-spectrum and

one starting with an algebra over a cyclotomic commutative ring spectrum A.
We describe spectral sequences computing the relative theory ATR in terms of
TR over the sphere spectrum and vice versa. Furthermore, our construction
permits a straightforward definition of the Adams operations on TR and TC.
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1. Introduction

Over the last two decades, the calculational study of algebraic K-theory has
been revolutionized by the development of trace methods. In analogy with the
Chern character from topological K-theory to ordinary cohomology, there exist
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“trace maps” from algebraicK-theory to various more homological approximations,
which also can be more computable. For a ring R, Dennis constructed a map to
Hochschild homology

K(R) −→ HH(R)

that generalizes the trace of a matrix. Goodwillie lifted this trace map to negative
cyclic homology

K(R) −→ HC−(R) −→ HH(R)

and showed that, rationally, this map can often be used to compute K(R).
In his 1990 ICM address, Goodwillie conjectured that there should be a “brave

new” version of this story involving “topological” analogues of Hochschild and cyclic
homology defined by changing the ground ring from Z to the sphere spectrum.
Although the modern symmetric monoidal categories of spectra had not yet been
invented, Bökstedt developed coherence machinery that enabled a definition of
topological Hochschild homology (THH) along these lines. Further, he constructed
a “topological” Dennis trace map [7]

K(R) −→ THH(R).

Subsequently, Bökstedt–Hsiang–Madsen [8] defined topological cyclic homology
(TC) and constructed the cyclotomic trace map to TC, lifting the topological Den-
nis trace

K(R) −→ TC(R) −→ THH(R).

They did this in the course of resolving the K-theory Novikov conjecture for
groups satisfying a mild finiteness hypothesis. Subsequently, seminal work of Mc-
Carthy [35] and Dundas [14] showed that when working at a prime p, TC often
captures a great deal of information about K-theory. Hesselholt and Madsen (inter
alia, [21]) then used TC to make extensive computations in K-theory, including a
computational resolution of the Quillen–Lichtenbaum conjecture for certain fields.

The calculational power of trace methods depends on the ability to compute
TC(R), which ultimately derives from the methods of equivariant stable homo-
topy theory. Bökstedt’s definition of THH(R) closely resembles a cyclic bar con-
struction, and as a consequence THH(R) is an S1-spectrum. Topological cyclic
homology is constructed from this S1-action on THH(R), via fixed point spectra
TRn(R) = THH(R)Cpn . In fact, THH(R) has a very special equivariant struc-
ture: THH(R) is a cyclotomic spectrum, which is an S1-spectrum equipped with
additional data that models the structure of a free loop space ΛX.

The cyclic bar construction can be formed in any symmetric monoidal category
(A,⊠, 1); we will let N cyc

⊠
denote the resulting simplicial (or cyclic) object. Recall

that in the category of spaces, for a group-like monoid M , there is a natural S1-
equivariant map

|N cyc
× M | −→ Map(S1, BM) = ΛBM

(where | · | denotes geometric realization) that is a weak equivalence on fixed points
for any finite subgroup Cn < S1. Moreover, for each such Cn, the free loop space
is equipped with equivalences (in fact homeomorphisms)

(ΛBM)Cn ∼= ΛBM

of S1-spaces, where (ΛBM)Cn is regarded as an S1-space (rather than an S1/Cn-
space) via pullback along the nth root isomorphism

ρn : S
1 ∼= S1/Cn.
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In analogy, a cyclotomic spectrum is an S1-spectrum equipped with compatible
equivalences of S1-spectra

tn : ρ
∗
nLΦ

CnX −→ X,

where LΦCn denotes the (left derived) “geometric” fixed point functor.
The construction of the cyclotomic structure on THH has classically been one

of the more subtle and mysterious parts of the construction of TC. In a modern
symmetric monoidal category of spectra (e.g., symmetric spectra or EKMM S-
modules), one can simply define THH(R) as

THH(R) = |N cyc
∧ R|,

but the resulting S1-equivariant spectrum did not appear to have the correct equi-
variant homotopy type [31, 2.5.9]. Only Bökstedt’s original construction of THH
seemed to produce the cyclotomic structure.

Although this situation has not impeded the calculational applications, reliance
on the Bökstedt construction has limited progress in certain directions. For one
thing, it does not seem to be possible to use the Bökstedt construction to define TC
relative to a ground ring that is not the sphere spectrum S. Moreover, the details
of the Bökstedt construction make it difficult to understand the equivariance (and
therefore relevance to TC) of various additional algebraic structures that arise on
THH, notably the Adams operations and the coalgebra structures.

The purpose of this paper is to introduce a new approach to the construction of
the cyclotomic structure on THH using an interpretation of THH in terms of the
Hill–Hopkins–Ravenel multiplicative norm. Our point of departure is the observa-
tion that the construction of the cyclotomic structure on THH(R) ultimately boils
down to having good models of the smash powers

R∧n = R ∧R ∧ . . . ∧R︸ ︷︷ ︸
n

of a spectrum R as a Cn-spectrum such that there is a suitably compatible collection
of diagonal equivalences

R −→ ΦCnR∧n.

The recent solution of the Kervaire invariant one problem involved the detailed anal-
ysis of a multiplicative norm construction in equivariant stable homotopy theory
that has precisely this type of behavior. Although Hill–Hopkins–Ravenel studied
the norm construction NG

H for a finite group G and subgroup H, using the cyclic

bar construction one can extend this construction to a norm NS1

e on associative
ring orthogonal spectra; such a construction first appeared in the thesis of Martin
Stolz [11, 41].

For the following definition, we need to introduce some notation. Let S denote

the category of orthogonal spectra and let SS
1

U denote the category of orthogonal
S1-spectra indexed on the complete universe U . Finally, letAss denote the category
of associative ring orthogonal spectra.

Definition 1.1. Define the functor

NS1

e : Ass −→ SS
1

U

to be the composite functor

R 7→ IU
R∞ |N

cyc
∧ R|,
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with |N cyc
∧ R| regarded as an orthogonal S1-spectrum indexed on the standard trivial

universe R∞. Here IU
R∞ denotes the change of universe functor (see Definition 2.6).

Since both the cyclic bar construction and the change of universe functor preserve
commutative ring orthogonal spectra, the norm above also preserves commutative
ring orthogonal spectra. In the following proposition, proved in Section 4, Com and

ComS1

U denote the categories of commutative ring orthogonal spectra and commu-
tative ring orthogonal S1-spectra, respectively.

Proposition 1.2. NS1

e restricts to a functor

NS1

e : Com −→ ComS1

U

that is the left adjoint to the forgetful functor from commutative ring orthogonal
S1-spectra to commutative ring orthogonal spectra.

The forgetful functor from commutative ring orthogonal S1-spectra to commu-
tative ring orthogonal spectra is the composite of the change of universe functor
IR

∞

U and the functor that forgets equivariance. The proof of the above proposition

identifies NS1

e : Com→ ComS1

U as the composite functor

R 7→ IU
R∞(R⊗ S1),

which is left adjoint to the forgetful functor. Here ⊗ denotes the tensor of a commu-
tative ring orthogonal spectrum with an unbased space, and we regard (−)⊗S1 as a
functor from commutative ring orthogonal spectra to commutative ring orthogonal
spectra with an action of S1.

The deep aspect of the Hill–Hopkins–Ravenel treatment of the norm functor is
their analysis of the left derived functors of the norm. As part of this analysis they

show that the normNG
H preserves certain weak equivalences. For our normNS1

e into

SS
1

U , we work with the homotopy theory defined by the F-equivalences of orthogonal
S1-spectra, where an F-equivalence is a map that induces an isomorphism on all
the homotopy groups at the fixed point spectra for the finite subgroups of S1. We
prove the following theorem in Section 4.

Proposition 1.3. Assume that R is a cofibrant associative ring orthogonal spec-
trum and R′ is either a cofibrant associative ring orthogonal spectrum or a cofi-
brant commutative ring orthogonal spectrum. If R → R′ is a weak equivalence,

then NS1

e R→ NS1

e R′ is an F-equivalence in SS
1

U .

Of course the conclusion holds if R is a cofibrant commutative ring orthogonal
spectrum as well; the point of Proposition 1.3 is to compare cofibrant replacements
in associative and commutative ring orthogonal spectra.

As a consequence we obtain the following additional observation about the ad-
junction in the commutative case. See Proposition 4.10 for a more precise state-
ment.

Proposition 1.4. The functor

NS1

e : Com −→ ComS1

U

is Quillen left adjoint to the forgetful functor (for an appropriate model structure
with weak equivalences the F-equivalences on the codomain); in particular, its left
derived functor exists and is left adjoint to the right derived forgetful functor.



TOPOLOGICAL CYCLIC HOMOLOGY VIA THE NORM 5

Our first main theorem is that when R is a cofibrant associative ring orthogonal

spectrum, NS1

e R is a cyclotomic spectrum. To be precise, we use the point-set
model of cyclotomic spectra from [6], which provides a definition entirely in terms
of the category of orthogonal S1-spectra.

Theorem 1.5. Let R be a cofibrant associative or cofibrant commutative ring or-

thogonal spectrum. Then NS1

e R has a natural structure of a cyclotomic spectrum.

Experts will recognize that one can give a direct construction of the cyclotomic
trace induced by the inclusion of objects in a spectral category enriched in orthog-
onal spectra (e.g., see [5]). We review this construction in Section 5.

Proposition 1.4, which describes NS1

e as the homotopical left adjoint to the
forgetful functor, suggests a generalization of our construction of THH that takes
ring orthogonal Cn-spectra as input. For commutative ring orthogonal Cn-spectra,

we can define NS1

Cn
as the left adjoint to the forgetful functor. However, to extend

to the non-commutative case, we need an explicit construction. We give such a
construction in Section 8 in terms of a cyclic bar construction, which we denote as

N cyc,Cn
∧ R. Its geometric realization |N cyc,Cn

∧ R| has an S1-action, and by promoting
it to the complete universe we obtain a genuine orthogonal S1-spectrum that we

denote as NS1

Cn
R. The following proposition is a consistency check.

Proposition 1.6. Let R be a commutative ring orthogonal Cn-spectrum. Then

NS1

Cn
R is isomorphic to the left adjoint of the forgetful functor from commutative

ring orthogonal S1-spectra to commutative ring orthogonal Cn-spectra.

Again, we can describe the left adjoint in terms of a tensor

NS1

Cn
R = IU

R∞(R⊗Cn
S1),

where the relative tensor R⊗Cn S
1 may be explicitly constructed as the coequalizer

(i∗R)⊗ Cn ⊗ S
1
⇒ (i∗R)⊗ S1

of the canonical action of Cn on S1 and the action map (i∗R)⊗ Cn → i∗R, where
i∗ denotes the change-of-group functor to the trivial group. Choosing an appro-
priately subdivided model of the circle produces the isomorphism between the two
descriptions.

As above, by cofibrantly replacing R we can compute the left-derived functor

of NS1

Cn
, and in this case NS1

Cn
R is a p-cyclotomic spectrum (see Definition 3.1)

provided either n is prime to p or R is “Cn-cyclotomic” (q.v. Definition 8.7 below).
This leads to the obvious definition of TCCn

R. This Cn-relative THH (and the
associated constructions of TR and TC) is expected to be both interesting and
comparatively easy to compute for some of the equivariant spectra that arise in
Hill–Hopkins–Ravenel, in particular the real cobordism spectrum MUR.

We can also consider another kind of relative construction, namely in the situa-
tion where R is an algebra over an arbitrary commutative ring orthogonal spectrum
A. Definition 1.1 can be extended to the relative setting; the equivariant indexed
product can be carried out in any symmetric monoidal category, and the homotopi-
cal analysis in the case of A-modules is given in Section 6.

Definition 1.7. Let A be a cofibrant commutative ring orthogonal spectrum, and
denote by A-Alg the category of A-algebras. We define the A-relative norm functor

AN
S1

e : A-Alg −→ AS1 -ModS
1

U
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by

R 7→ IU
R∞ |N

cyc
∧A
R|.

Here AS1 denotes IU
R∞A, constructed by applying the point-set change of universe

functor IU
R∞ to A regarded as a commutative ring orthogonal S1-spectrum (on the

universe R∞) with trivial S1-action. Then AS1 is a commutative ring orthogonal

S1-spectrum (on the universe U) and AS1 -ModS
1

U denotes the category of AS1 -

modules in SS
1

U .

We write ATHH(R) for the underlying non-equivariant spectrum of AN
S1

e R;
this spectrum was denoted thhA(R) in [15, IX.2.1]. When R is a commutative

A-algebra, AN
S1

e R is naturally a commutative AS1 -algebra. The functor

AN
S1

e : A-Com −→ AS1 -ComS1

U

is again left adjoint to the forgetful functor. However, due to the subtleties of the
behavior of IU

R∞ when applied to cofibrant commutative ring orthogonal spectra

regarded as S1-spectra with trivial action, AN
S1

e R is not in general cyclotomic.
Instead, we must settle for the following weaker analogue of Theorem 1.5, which
we prove in Section 7.

Theorem 1.8. Let A be a cofibrant commutative ring orthogonal spectrum that
is ι∗eA for a cofibrant p-cyclotomic commutative ring orthogonal S1-spectrum A.

Moreover, assume that the canonical counit map NS1

e A → A is a p-cyclotomic
map. Let R be a cofibrant A-algebra. Then

AN
S1

e R ∼= NS1

e R ∧NS1
e A A

is a p-cyclotomic spectrum.

In fact, we have a slightly more general version of this result.

Theorem 1.9. Let A be a cofibrant commutative ring orthogonal spectrum and R
a cofibrant A-algebra. Let M be a p-cyclotomic object in NS1

e A-modules. Then the
smash product

NS1

e R ∧NS1
e AM

is a p-cyclotomic spectrum.

We do not know many interesting examples of commutative ring orthogonal
spectra A for which the conditions of Theorems 1.8 and 1.9 apply; in all the cases
we are aware of, A is closely related to the sphere spectrum with its standard
cyclotomic structure, as we explain in Section 7. As a consequence, we regard
the conditions in these theorems as elucidating the structural difficulties of finding
relative cyclotomic structures in nature.

Nonetheless, when these theorems apply, we can form relative topological cyclic
homology ATC(R), which is the target of an A-relative cyclotomic trace K(R) →

ATC(R), defined as the composite K(R)→ TC(R)→ ATC(R).

Theorem 1.10. Under the hypotheses above, there is an A-relative cyclotomic
trace map K(R) → ATC(R) making the following diagram commute in the stable
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category

K(R) //

$$

TC(R) //

��

THH(R)

��

ATC(R) //
ATHH(R).

Using the identification NS1

e A ∼= IUR∞(A⊗ S1) in the commutative context, the
map S1 → ∗ induces a map of equivariant commutative ring orthogonal spectra

NS1

e A → AS1 . Just as in the non-equivariant case, we can identify AN
S1

e R as
extension of scalars along this map.

Proposition 1.11. Let R be an associative A-algebra. There is a natural isomor-
phism

AN
S1

e R ∼= NS1

e R ∧NS1
e A AS1 .

When A is a cofibrant commutative ring orthogonal spectrum and R is a cofibrant
associative A-algebra or cofibrant commutative A-algebra, this induces a natural
isomorphism in the stable category

AN
S1

e R ∼= NS1

e R ∧L
NS1

e A
AS1 .

The equivariant homotopy groups πCn
∗ (NS1

e R) are the TR-groups TRn∗ (R) and

so πCn
∗ (AN

S1

e R) are by definition the relative TR-groups ATR
n
∗ (R). The Künneth

spectral sequence of [26] can be combined with the previous theorem to compute the
relative TR-groups from the absolute TR-groups and Mackey functor Tor. More
often we expect to use the relative theory to compute the absolute theory. Non-
equivariantly, the isomorphism

(1.12) THH(R) ∧A ∼= ATHH(R ∧A)

gives rise to a Künneth spectral sequence

TorA∗(R∧SR
op)

∗,∗ (A∗(R), A∗(R)) =⇒ A∗(THH(R)).

An Adams spectral sequence can then in theory be used to compute the homotopy
groups of THH(R). For formal reasons, the isomorphism (1.12) still holds equiv-
ariantly, but now we have three different versions of the non-equivariant Künneth
spectral sequence (none of which have quite as elegant an E2-term) which we use
in conjunction with equation (1.12). We discuss these in Section 9.

A further application of our model of THH and TC is a construction, when R

is commutative, of Adams operations on NS1

e R and AN
S1

e R that are compatible
(in the absolute case) with the cyclotomic structure. McCarthy explained how
Adams operations can be constructed on any cyclic object that, when viewed as a
functor from the cyclic category, factors through the category of finite sets (and all
maps). As a consequence, it is possible to construct Adams operations on THH of
a commutative monoid object in any symmetric monoidal category of spectra. An
advantage of our formulation is that we can easily verify the equivariance of these
operations and in particular show they descend to TC. We prove the following
theorem in Section 10.

Theorem 1.13. Let A be a commutative ring orthogonal spectrum and R a com-

mutative A-algebra. There are Adams operations ψr : AN
S1

e R → AN
S1

e R. When r
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is prime to p, the operation ψr is compatible with the restriction and Frobenius maps
on the p-cyclotomic spectrum THH(R) and so induces a corresponding operation
on TR(R) and TC(R).

We have organized the paper to contain a brief review with references to much
of the background needed here. Section 2 is mostly review of [32] and [23, App. B],
and Section 3 is in part a review of [6, §4]. In addition, the main results in Sec-
tion 4 overlap significantly with [41], although our treatment is very different: we
rely on [23] to study the absolute S1-norm whereas [41] directly analyzes the con-
struction by using a somewhat different model structure and focuses on the case of
commutative ring orthogonal spectra.

Acknowledgments. The authors would like to thank Lars Hesselholt, Mike Hop-
kins, and Peter May for many helpful conversations. We thank Lars Hesselholt,
Aaron Royer, and Ernie Fontes for helping to identify serious errors in previous
drafts. We thank Cary Malkiewich and Thomas Nikolaus for many helpful ques-
tions and suggestions regarding a previous draft. This draft was improved by com-
ments and corrections suggested by an anonymous referee. This project was made
possible by the hospitality of AIM, the IMA, MSRI, and the Hausdorff Research
Institute for Mathematics at the University of Bonn.

2. Background on equivariant stable homotopy theory

In this section, we briefly review necessary details about the category of orthog-
onal G-spectra and the geometric fixed point and norm functors. Our primary
sources for this material are the monograph of Mandell-May [32] and the appen-
dices to Hill–Hopkins–Ravenel [23]. See also [6, §2] for a review of some of these
details. We begin with two subsections discussing the point-set theory followed by
two subsections on homotopy theory and derived functors.

2.1. The point-set theory of equivariant orthogonal spectra. Let G be a
compact Lie group. We denote by T G the category of based G-spaces and based
G-maps (where “spaces” means compactly-generated weak Hausdorff spaces). The
smash product of G-spaces makes this a closed symmetric monoidal category, with
function object F (X,Y ) the based space of (non-equivariant) maps from X to Y
with the conjugation G-action. In particular, T G is enriched over G-spaces. We will
denote by U a fixed universe of G-representations [32, §II.1.1], by which we mean a
countable dimensional vector space with linear G-action and G-fixed inner product
that contains R∞, is the sum of finite dimensional G-representations, and that has
the property that any G-representation that occurs in U occurs infinitely often.
Let VG(U) denote the set of finite dimensional G-inner product spaces which are
isomorphic to a G-vector subspace of U . Except in this section, we always assume
that U is a complete G-universe, meaning that all finite dimensional irreducible
G-representations are in U . For V , W in VG(U), denote by IG(V,W ) the space
of (non-equivariant) isometric isomorphisms V → W , regarded as a G-space via
conjugation. Let I U

G be the category enriched in G-spaces with VG(U) as its
objects and IG(V,W ) as its morphism G-spaces; we write just IG when U is
understood. We also fix a skeleton skI U

G of I U
G .
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Definition 2.1 ([32, II.2.6]). An orthogonal G-spectrum is a G-equivariant con-
tinuous functor X : IG → T

G equipped with a structure map

σV,W : X(V ) ∧ SW −→ X(V ⊕W )

that is a natural transformation of enriched functors IG ×IG → T
G and that is

associative and unital in the obvious sense. A map of orthogonal G-spectraX → X ′

is a natural transformation that commutes with the structure map.

We denote the category of orthogonal G-spectra by SG. When necessary to
specify the universe U , we include it in the notation as SGU .

The category of orthogonal G-spectra is enriched over based G-spaces, where the
G-space of maps consists of all natural transformations (not just the equivariant
ones). Tensors and cotensors are computed levelwise. The category of orthogonal
G-spectra is a closed symmetric monoidal category with unit the equivariant sphere
spectrum SG (with SG(V ) = SV ).

For technical reasons, it is often convenient to give an equivalent formulation
of orthogonal G-spectra as diagram spaces. Following [32, §II.4], we consider the
category JG which has the same objects as IG but morphisms from V to W given
by the Thom space of the complement bundle of linear isometries from V to W .

Proposition 2.2 ([32, II.4.3]). The category SG of orthogonal G-spectra is equiv-
alent to the category of JG-spaces, i.e., the continuous equivariant functors from
JG to TG. The symmetric monoidal structure is given by the Day convolution.

This description provides simple formulas for suspension spectra and desuspen-
sion spectra in orthogonal G-spectra.

Definition 2.3 ([32, II.4.6]). For any finite-dimensional G-inner product space V
we have the shift desuspension spectrum functor

FV : T G −→ SG

defined by

(FVA)(W ) = JG(V,W ) ∧A.

This is the left adjoint to the evaluation functor which evaluates an orthogonal
G-spectrum at V .

Remark 2.4. In [23], the desuspension spectrum FV S
0 is denoted as S−V and

F0A is denoted as Σ∞A in a nod to the classical notation. (They write S−V ∧ A
for FVA ∼= FV S

0 ∧A.)

Since the category SGU is symmetric monoidal under the smash product, we have
categories of associative and commutative monoids, i.e., algebras over the monads
T and P that create associative and commutative monoids in symmetric monoidal
categories (e.g., see [15, §II.4] for a discussion).

Notation 2.5. Let AssG and ComG denote the categories of associative and com-
mutative ring orthogonal G-spectra.

For a fixed object A in ComG, there is an associated symmetric monoidal category
A-ModG of A-modules in orthogonal G-spectra, with product the A-relative smash
product ∧A. As in Notation 2.5, there are categories A-AlgG of A-algebras, and
A-ComG of commutative A-algebras [32, III.7.6].
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We now turn to the description of various useful functors on orthogonal G-
spectra. We begin by reviewing the change of universe functors. In contrast to
the classical framework of “coordinate-free” equivariant spectra [29], orthogonal G-
spectra disentangle the point-set and homotopical roles of the universe U . A first
manifestation of this occurs in the behavior of the point-set “change of universe”
functors.

Definition 2.6 ([32, V.1.2]). For any pair of universes U and U ′, the point-set
change of universe functor

IU
′

U : SGU −→ S
G
U ′

is defined by IU
′

U X(V ) = J (Rn, V )∧O(n)X(Rn) for V in VG(U ′), where n = dimV .

These functors are strong symmetric monoidal equivalences of categories:

Proposition 2.7 ([32, V.1.1,V.1.5]). Given universes U,U ′, U ′′,

(1) IUU is naturally isomorphic to the identity.

(2) IU
′′

U ′ ◦ IU
′

U is naturally isomorphic to IU
′′

U .

(3) IU
′

U is strong symmetric monoidal.

We are particularly interested in the change of universe functors associated to
the universes U and UG. The latter of these universes is isomorphic to the standard
trivial universe R∞. Note that the category of orthogonal G-spectra on R∞ is just
the category of orthogonal spectra with G-actions.

Given a closed subgroup H < G, we can regard a G-space X(V ) as an H-space
ι∗HX(V ). The space-level construction gives rise to a spectrum-level change-of-
group functor.

Definition 2.8 ([32, V.2.1]). For a closed subgroup H < G, define the functor

ι∗H : SGU −→ S
H
ι∗HU

by

(ι∗HX)(V ) = JH(Rn, V ) ∧O(n) ι
∗
H(X(Rn))

for V in VH(ι∗HU), where n = dim(V ).

As observed in [32, V.2.1, V.1.10], for V in VG(U),

(ι∗HX)(ι∗HV ) ∼= ι∗H(X(V )).

In contrast to the category of G-spaces, there are two reasonable constructions
of fixed-point functors: the “categorical” fixed points, which are based on the de-
scription of fixed points as G-equivariant maps out of G/H, and the “geometric”
fixed points, which commute with suspension and the smash product (on the level
of the homotopy category). Again, the description of orthogonal G-spectra as JG-
spaces in Proposition 2.2 provides the easiest way to construct the categorical and
geometric fixed point functors [32, §V].

For any closed normal subgroup H ⊳ G, let JH
G (V,W ) denote the G/H-space

of H-fixed points of JG(V,W ). Given any orthogonal spectrum X, the collection
of fixed points {X(V )H} forms a JH

G -space. We can turn this collection into
a JG/H -space in two ways. There is a functor q : JG/H → JH

G induced by
regarding G/H-representations as H-trivial G-representations via the quotient map
G→ G/H.
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Definition 2.9 ([32, §V.3]). For H a closed normal subgroup of G, the categorical
fixed point functor

(−)H : SGU −→ S
G/H

UH

is computed by regarding the JH
G -space {X(V )H} as a JG/H -space via q.

On the other hand, there is an equivariant continuous functor φ : JH
G →JG/H

induced by taking a G-representation V to the G/H-representation V H .

Definition 2.10 ([32, §V.4]). For H a closed normal subgroup of G, let FixH

denote the functor from orthogonal G-spectra (=JG-spaces) to JH
G -spaces defined

by (FixH X)(V ) = (X(V ))H . The geometric fixed point functor

ΦH(−) : SGU −→ S
G/H

UH

is constructed by taking ΦH(X) to be the left Kan extension of the JH
G -space

FixH X along φ.

Remark 2.11. Hill–Hopkins–Ravenel [23, B.190] call the point-set geometric fixed
point functor “the monoidal geometric fixed point functor” and define it using the
coequalizer

∨
V,W<U

JH
G (V,W ) ∧ FWHS0 ∧ (X(V ))H //

//
∨
V <U

FV HS0 ∧ (X(V ))H ,

where the notation V < U means that V is a finite-dimensional G-stable subspace
of the universe U . This formula is derived from applying the geometric fixed point
functor above to the “tautological presentation” of X:

∨
V,W<U

JG(V,W ) ∧ FWS
0 ∧X(V ) //

//
∨
V <U

FV S
0 ∧X(V ),

noting that ΦHFVA ∼= FV HAH for a G-space A. Although ΦH does not preserve
coequalizers in general, it does preserve the coequalizers preserved by FixH , and
FixH preserves the canonical coequalizer diagram since it is levelwise split. Thus,
the definition above agrees with the definition in [23, B.190].

Both fixed-point functors are lax symmetric monoidal [32, V.3.8, V.4.7] and so
descend to categories of associative and commutative ring orthogonal G-spectra.

Proposition 2.12. Let H ⊳ G be a closed normal subgroup. Let X and Y be
orthogonal G-spectra. There are natural maps

ΦHX ∧ ΦHY −→ ΦH(X ∧ Y ) and XH ∧ Y H −→ (X ∧ Y )H

that exhibit ΦH and (−)H as lax symmetric monoidal functors.
Therefore, there are induced functors

ΦH , (−)H : AssG −→ AssG/H

and

ΦH , (−)H : ComG −→ ComG/H .

For a commutative ring orthogonal G-spectrum A, a corollary of Proposition 2.12
is that the fixed-point functors interact well with the category of A-modules.
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Corollary 2.13. Let A be a commutative ring orthogonal G-spectrum. The fixed-
point functors restrict to functors

ΦH : A-ModG −→ (ΦHA)-ModG/H

and

(−)H : A-ModG −→ AH -ModG/H .

Remark 2.14. We can extend these constructions to closed subgroups H < G that
are not normal by considering the normalizer NH and quotient WH = NH/H.
However, since we do not need this generality herein, we do not discuss it further.

Let z ∈ G be an element in the center of G. Then multiplication by z is a
natural automorphism on objects of SG

R∞ or on objects of A-ModG
R∞ . In particular,

it will induce a natural automorphism IU
R∞z of NG

HX or of AN
G
HX, as described in

Sections 4 and 7.

Proposition 2.15. Let z be an element in the center of G, and K a normal
subgroup. Then for any X ∈ SG

R∞ , we have an identification

ΦK(IU
R∞z) = IU

K

R∞ z̄

where z̄ = zK ∈ G/K. In particular, for z ∈ K the map ΦK(IU
R∞z) is the identity.

Proof. Using the tautological presentation of IU
R∞X and naturality, it suffices to

verify this identity on orthogonal spectra of the form FV Y for a G-representation
V ∈ VG(U); on such spectra, the map IU

R∞z : FV Y → FV Y is given by f ∧ y 7→
(f ◦ z−1) ∧ (z · y). The result follows from the fact the fixed point functor (−)K

takes multiplication by z to multiplication by z̄, and the functor JK
G → JG/K

induces maps JK
G (V, V )→JG/K(V K , V K) taking z to z̄. �

2.2. The point-set theory of the norm. Central to our work is the realization
by Hill, Hopkins, and Ravenel [23] that a tractable model for the “correct” equi-
variant homotopy type of a smash power can be formed as a point-set construction
using the point-set change of universe functors. It is “correct” insofar as there is
a diagonal map which induces an equivalence onto the geometric fixed points (see
Section 2.3 below). They refer to this construction as the norm after the norm map
of Greenlees-May [19], which in turn is named for the norm map of Evens in group
cohomology [16, Chapter 6].

The point of departure for the construction of the norm is the use of the change-
of-universe equivalences to regard orthogonal G-spectra on any universe U as G-
objects in orthogonal spectra. (Good explicit discussions of the interrelationship
can be found in [32, §V.1] and [40, 2.7].) We now give a point-set description of the
norm following [40] and [12]; these descriptions are equivalent to the description
of [23, §A.3] by the work of [12].

For the construction of the norm, it is convenient to use BG to denote the
category with one object, whose monoid of endomorphisms is the finite group G.
The category SBG of functors from BG to the category S of (non-equivariant)
orthogonal spectra indexed on the universe R∞ is isomorphic to the category SG

R∞

of orthogonal G-spectra indexed on the universe R∞. We can then use the change
of universe functor IU

R∞ to give an equivalence of SBG with the category SGU of
orthogonal G-spectra indexed on U .
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Definition 2.16. Let G be a finite group and H < G be a subgroup with index n.
Fix an ordered set of coset representatives (g1, . . . , gn), and let α : G → Σn ≀H be
the homomorphism

α(g) = (σ, h1, . . . , hn)

defined by the relation ggi = gσ(i)hi. The indexed smash-power functor

∧GH : SBH −→ SBG

is defined as the composite

SBH
∧n

// SB(Σn≀H) α∗

// SBG.

The norm functor

NG
H : SHU −→ S

G
U ′

is defined to be the composite

X 7→ IU
′

R∞(∧GH(IR
∞

U X)).

This definition depends on the choice of coset representatives; however, any other
choice gives a canonically naturally isomorphic functor (the isomorphism induced
by permuting factors and multiplying each factor by the appropriate element of
H). As observed in [23, A.4], in fact it is possible to give a description of the norm
which is independent of any choices and is determined instead by the universal
property of the left Kan extension. Alternatively, Schwede [40, 9.3] gives another
way of avoiding the choice above, using the set 〈G : H〉 of all choices of ordered sets
of coset representatives; 〈G : H〉 is a free transitive Σn ≀H-set and the inclusion of
(g1, . . . , gn) in 〈G : H〉 induces an isomorphism

∧GHX
∼= 〈G : H〉+ ∧Σn≀H X∧n.

In our work, G will be the cyclic group Cnr < S1 and H = Cr (usually for r = 1),
and we have the obvious choice of coset representatives gk = e2π(k−1)i/nr, letting
us take advantage of the explicit formulas. In the case r = 1, we have the following.

Proposition 2.17. Let G be a finite group and U a complete G-universe. The
norm functor

NG
e : S −→ SGU

is given by the composite

X 7→ IU
R∞X∧G,

where X∧G denotes the smash power indexed on the set G.

When dealing with commutative ring orthogonal G-spectra, the norm has a
particularly attractive formal description [23, A.56], which is a consequence of the
fact that the norm is a symmetric monoidal functor.

Theorem 2.18. Let G be a finite group and let H be a subgroup of G. The norm
restricts to the left adjoint in the adjunction

NG
H : ComH

⇆ ComG : ι∗H ,

where ι∗H denotes the change of group functor along H < G.

The relationship of the norm with the geometric fixed point functor is encoded
in the diagonal map [23, B.209].
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Proposition 2.19. Let G be a finite group, H < G a subgroup, and K ⊳ G a
normal subgroup. Let X be an orthogonal H-spectrum. Then there is a natural
diagonal map of orthogonal G/K-spectra

∆: N
G/K
HK/KΦH∩KX −→ ΦKNG

HX.

(Here we suppress the isomorphism H/H ∩ K ∼= HK/K from the notation.) In
the case when X is an associative ring orthogonal H-spectrum, ∆ is a map of
associative ring orthogonal G/K-spectra.

Proof. The construction of ∆ is the same as [23, Proposition B.209] after gener-
alizing the corresponding space-level diagonal. To do this, first note that for any
based H-space A, there is a natural isomorphism

∆: N
G/K
HK/KA

H∩K ∼=
−−→ (NG

HA)
K .

For this, it is convenient to model the space-level norm as follows. The space NG
HA

is isomorphic to the subspace of tuples a = (ag)g∈G ∈
∧
g∈GA such that ahg = hag.

The left G-action is given by (k · a)g = agk.

Under this identification, N
G/K
HK/KA

H∩K consists of tuples b = (b[g])[g]∈G/K of

elements in AH∩K such that b[hg] = hb[g] for h ∈ H. Similarly, (NG
HA)

K consists of
tuples a = (ag)g∈G such that ahg = hag for h ∈ H and agk = ag for k ∈ K. This
allows us to define the bijection ∆ by (∆b)g = b[g].

When X is an associative ring orthogonal H-spectrum, checking that ∆ is a map
of associative ring orthogonal G/K-spectra is checking that the map is compatible
with the multiplication and unit. For the unit, this is clear by naturality and the
compatibility of the natural isomorphisms

N
G/K
HK/KΦH∩KS ∼= S and ΦKNG

HS
∼= S.

To check the multiplication, it suffices to show that for all X,Y , the diagram

(N
G/K
HK/KΦH∩KX) ∧ (N

G/K
HK/KΦH∩KY )

∆∧∆

��

// N
G/K
HK/KΦH∩K(X ∧ Y )

∆

��

(ΦKNG
HX) ∧ (ΦKNG

HY ) // ΦKNG
H (X ∧ Y )

commutes, where the horizontal maps are the lax monoidal structure maps. In
fact, it suffices to show that the underlying non-equivariant diagram commutes.
The underlying non-equivariant orthogonal spectrum of

(N
G/K
HK/KΦH∩KX) ∧ (N

G/K
HK/KΦH∩KY )

is a smash power of ΦH∩KX ∧ ΦH∩KY , which is rigid in the sense of [33, §3.3] by
the argument of [33, 3.19]. Since both composites in the diagram agree since they
agree when X and Y are each of the form FV Z, they agree for all X and Y . �

For any particular commutative ring orthogonal spectrum A, the indexed smash-
power construction of Definition 2.16 can be carried out in the symmetric monoidal
category A-Mod. Denote the A-relative indexed smash-power by (∧A)

G
H . For X

an A-module with H-action, we understand (∧A)
G
HX to be

(∧A)
G
HX := α∗X∧n,
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where the nth smash power is over A and α∗ is as in Definition 2.16. This is an
A-module (in SG

R∞). We then have the following definition of the A-relative norm
functor:

Definition 2.20. Let A be a commutative ring orthogonal spectrum. Write AH
for the commutative ring orthogonal H-spectrum IU

R∞A obtained by regarding A
(with trivial H-action) as an object of SBH and applying the change of universe
functor, and similarly for AG. The A-relative norm functor

AN
G
H : AH -ModHU −→ AG-ModGU ′

is defined to be the composite

X 7→ IU
′

R∞((∧A)
G
H(IR

∞

U X)).

The theory of the diagonal map in the A-relative context is somewhat more
complicated than in the absolute setting; we explain the details in Section 7.

2.3. Homotopy theory of orthogonal spectra. We now review the homotopy
theory of orthogonal G-spectra with a focus on discussing the derived functors
associated to the point-set constructions of the preceding section. We begin by
reviewing the various model structures on orthogonal G-spectra. All of these model
structures are ultimately derived from the standard model structure on T G (the
category of based G-spaces), which we begin by reviewing.

Following the notational conventions of [32], we start with the sets of maps

I = {(G/H × Sn−1)+ −→ (G/H ×Dn)+}

and
J = {(G/H ×Dn)+ −→ (G/H × (Dn × I))+},

where n ≥ 0 and H varies over the closed subgroups of G. Recall that there is a
compactly generated model structure on the category T G in which I and J are the
generating cofibrations and generating acyclic cofibrations (e.g., [32, III.1.8]). The
weak equivalences and fibrations are the maps X → Y such that XH → Y H is a
weak equivalence or fibration for each closed H < G. Transporting this structure
levelwise in VG(U), we get the level model structure in orthogonal G-spectra.

Proposition 2.21 ([32, III.2.4]). Fix a G-universe U . There is a compactly gen-
erated model structure on SGU in which the weak equivalences and fibrations are the
maps X → Y such that each map X(V )→ Y (V ) is a weak equivalence or fibration
of G-spaces. The sets of generating cofibrations and acyclic cofibrations are given
by IUG = {FV i | i ∈ I} and J

U
G = {FV j | j ∈ J}, where V varies over the objects of

skVG(U).

The level model structure is primarily scaffolding to construct the stable model
structures. In order to specify the weak equivalences in the stable model structures,
we need to define equivariant homotopy groups.

Definition 2.22. Fix a G-universe U . The homotopy groups of an orthogonal
G-spectrum X are defined for a closed subgroup H < G and an integer q as

πHq (X) =





colim
V <U

πq((Ω
VX(V ))H) q ≥ 0

colim
R−q<V<U

π0((Ω
V−R

−q

X(V ))H) q < 0,

(see [32, §III.3.2]).
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These are the homotopy groups of the underlying G-prespectrum associated to
X (via the forgetful functor from orthogonal G-spectra to prespectra). We define
the stable equivalences to be the maps X → Y that induce isomorphisms on all
homotopy groups.

Proposition 2.23 ([32, III.4.2]). Fix a G-universe U . The standard stable model
structure on SGU is the compactly generated symmetric monoidal model structure
with the cofibrations given by the cofibrations of Proposition 2.21, the weak equiv-
alences the stable equivalences, and the fibrations determined by the right lifting
property. The generating cofibrations are given by IUG as above, and the generating
acyclic cofibrations K are the union of JUG and certain additional maps described
in [32, III.4.3].

This model structure lifts to a model structure on the category AssGU of associa-
tive monoids in orthogonal G-spectra.

Theorem 2.24 ([32, III.7.6.(iv)]). Fix a G-universe U . There are compactly gener-
ated model structures on AssGU in which the weak equivalences are the stable equiva-
lences of underlying orthogonal G-spectra indexed on U , the fibrations are the maps
which are stable fibrations of underlying orthogonal G-spectra indexed on U , and
the cofibrations are determined by the left lifting property.

To obtain a model structure on commutative ring orthogonal spectra, we also
need the “positive” variant of the stable model structure. We define the positive
level model structures in terms of the generating cofibrations (IUG )

+ ⊂ IUG and
(JUG )+ ⊂ JUG , consisting of those maps FV i and FV j such that the representation
V contains a nonzero trivial representation; these also extend to a positive stable
model structure.

Theorem 2.25 ([23, B.129]). Fix a G-universe U . There are compactly generated
model structures on ComG

U in which the weak equivalences are the stable equiva-
lences of the underlying orthogonal G-spectra, the fibrations are the maps which are
positive stable fibrations of underlying orthogonal G-spectra indexed on U , and the
cofibrations are determined by the left lifting property.

We will also use a variant of the standard stable model structure that can be
more convenient when working with the derived functors of the norm. We refer to
this as the positive complete stable model structure. See [23, §B.4] for a compre-
hensive discussion of this model structure, and [43, §A] for a brief review. In order

to describe this, denote by (I
ι∗HU
H )+ and (J

ι∗HU
H )+ generating cofibrations for the

positive stable model structure on orthogonal H-spectra indexed on the universe
ι∗HU .

Theorem 2.26 ([23, B.63]). Fix a G-universe U . There is a compactly generated
symmetric monoidal model structure on SG with generating cofibrations and acyclic

cofibrations the sets {G+ ∧H i | i ∈ (I
ι∗HU
H )+, H < G} and {G+ ∧H j | j ∈

(J
ι∗HU
H )+, H < G} respectively. The weak equivalences are the stable equivalences,

and the fibrations are determined by the right lifting property.

We then have corresponding positive complete model structures for ComG and
AssG.
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Theorem 2.27 ([23, B.130], [23, B.136 (0908.3724v3)]). Fix a G-universe U .
There are compactly generated model structures on AssGU and ComG

U in which the
weak equivalences are the stable equivalences of the underlying orthogonal G-spectra,
the fibrations are the maps which are positive complete stable fibrations of underly-
ing orthogonal G-spectra indexed on U , and the cofibrations are determined by the
left-lifting property.

For a fixed object A in ComG
U , there are also lifted model structures on the cate-

gories A-ModGU of A-modules, A-AlgGU of A-algebras, and A-ComG
U of commutative

A-algebras in both the stable and positive complete stable model structures ([32,
III.7.6] and [23, B.137]). There are also lifted model structures on the category

A-ModGU of A-modules when A is an object of AssGU , but we will not need these.
Part of the following is [23, B.137]; the rest follows by standard arguments.

Theorem 2.28. Fix a G-universe U . Let A be a commutative ring orthogonal
G-spectrum indexed on U . There are compactly generated model structures on the
categories A-ModGU and A-AlgGU in which the fibrations and weak equivalences are
created by the forgetful functors to the stable, complete stable, and positive complete
stable model structures on SGU . There are compactly generated model structures on
A-ComG

U in which the fibrations and weak equivalences are created by the forget-
ful functors to the positive stable and positive complete stable model structures on
A-ModGU .

Finally, when dealing with cyclotomic spectra, we need to use variants of these
model structures where the stable equivalences are determined by a family of sub-
groups of G. Recall the definition of a family: a family F is a collection of closed
subgroups of G that is closed under taking closed subgroups (and conjugation).
We say a map X → Y is an F-equivalence if it induces an isomorphism on ho-
motopy groups πH∗ for all H in F . All of the model structures described above
have analogues with respect to the F-equivalences (e.g., see [32, IV.6.5]), which
are built from sets I and J where the cells (G/H × Sn−1)+ → (G/H ×Dn)+ and
(G/H × Dn)+ → (G/H × (Dn × I))+ are restricted to H ∈ F . We record the
situation in the following omnibus theorem.

Theorem 2.29. There are stable, positive stable, and positive complete stable com-
pactly generated model structures on the categories SGU and AssGU where the weak
equivalences are the F-equivalences. There are positive stable and positive complete
stable compactly generated model structures on the category ComG

U where the weak
equivalences are the F-equivalences.

Let A be a commutative ring orthogonal G-spectrum. There are stable, positive
stable, and positive complete stable compactly generated model structures on the
categories A-ModGU , A-Alg

G
U where the weak equivalences are the F-equivalences.

There are positive stable and positive complete stable compactly generated model
structures on A-ComG

U where the weak equivalences are the F-equivalences.

We are most interested in case of G = S1 and the families FFin of finite subgroups
of S1 and Fp of p-subgroups {Cpn} of S

1 for a fixed prime p.

2.4. Derived functors of fixed points and the norm. We now discuss the use
of the model structures described in the previous section to construct the derived
functors of the categorical fixed point, geometric fixed point, and norm functors.
We begin with the categorical fixed point functor. Since this is a right adjoint,
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we have right-derived functors computed using fibrant replacement (in any of our
available stable model structures):

Theorem 2.30. Let H ⊳ G be a closed normal subgroup. Then the categorical

fixed point functor (−)H : SGU → S
G/H

UH is a Quillen right adjoint; in particular, it
preserves fibrations and weak equivalences between fibrant objects in the stable and
positive complete stable model structures on SGU .

As the fibrant objects in the model structures on associative and commutative
ring orthogonal spectra are fibrant in the underlying model structures on orthogonal
G-spectra, we can derive the categorical fixed points by fibrant replacement in any
of the settings in which we work.

In contrast, the geometric fixed point functor admits a Quillen left derived func-
tor (see [32, V.4.5] and [23, B.197]).

Theorem 2.31. Let H be a closed normal subgroup of G. The functor ΦH(−)
preserves cofibrations and weak equivalences between cofibrant objects in the stable,
positive stable, and positive complete stable model structures on SGU .

Since the cofibrant objects in the lifted model structures on AssGU are cofibrant
when regarded as objects in SGU [32, III.7.6], an immediate corollary of Theorem 2.31
is that we can derive ΦH by cofibrant replacement when working with associative
ring orthogonal G-spectra. In contrast, the underlying orthogonal G-spectra as-
sociated to cofibrant objects in ComG, in either of the model structures we study,
are essentially never cofibrant and the point-set functor ΦG does not always agree
on these with the geometric fixed point functor on the equivariant stable category.
(Although note that Stolz has produced model structures in which the underlying
spectra for commutative ring orthogonal spectra are cofibrant [41].)

The first part of the following theorem is [23, B.104]; the statement in the case
of A-modules is similar and discussed in Section 6.

Theorem 2.32. The norm NG
H (−) preserves weak equivalences between cofibrant

objects in any of the various stable model structures on SH , AssH , and ComH .
Let A be a commutative ring orthogonal spectrum. Then the A-relative norm

AN
G
e (−) preserves weak equivalences between cofibrant objects in any of the various

stable model structures on A-Mod, A-Alg, and A-Com.

The utility of the positive complete model structure is the following homotopical
version of Theorem 2.18 [23, B.135].

Theorem 2.33. Let H be a subgroup of G. The adjunction

NG
H : ComH

⇆ ComG : ι∗H

is a Quillen adjunction for the positive complete stable model structures.

Finally, we have the following result about the derived version of the diagonal
map [23, B.209]. We note the strength of the conclusion: the diagonal map is an
isomorphism on cofibrant objects, not just a weak equivalence.

Theorem 2.34 ([23, B.209]). Let H be a closed normal subgroup of G. The diag-
onal map

∆: ΦHX −→ ΦGNG
HX
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is an isomorphism of orthogonal spectra (and in particular a weak equivalence) when
X is cofibrant in any of the stable model structures on SH , or when X is a cofibrant
object in AssH .

Along the lines of Proposition 2.19, we also need the following more general
statement, which essentially follows from the argument of [23, B.209] using the
isomorphism given in the proof of Proposition 2.19 to start the induction.

Theorem 2.35. Let G be a finite group, H < G a subgroup, and K ⊳G a normal
subgroup. Let X be an orthogonal H-spectrum. The diagonal map of orthogonal
G/K-spectra

∆: N
G/K
HK/KΦH∩KX −→ ΦKNG

HX.

is an isomorphism of orthogonal spectra (and in particular a weak equivalence) when
X is cofibrant in any of the stable model structures on SH or when X is a cofibrant
object in AssH .

We also need the commutative ring orthogonal spectrum version of Theorem 2.34.

Theorem 2.36. The diagonal map

∆: X −→ ΦGNG
e X

is an isomorphism of orthogonal spectra when X is a cofibrant commutative ring
orthogonal spectrum.

Proof. The induction in [23, B.209] and monoidality of both sides reduces the state-
ment to the case when X = (FVB+)

(m)/Σm where V is a finite-dimensional (non-
equivariant) inner product space and B is the disk Dn or sphere Sn−1—in par-
ticular, when B is a compact Hausdorff space. In general, for a (non-equivariant)
orthogonal spectrum T the diagonal map is constructed as follows: for every (non-
equivariant) inner product space Z, the universal property of the indexed smash

product gives a map of based G-spaces NG
e (T (Z)) → (NG

e T )(Ind
G
e Z), which re-

stricts on the diagonal to a map

(2.37) T (Z) −→ (NG
e T (Ind

G
e Z))

G = (FixG(NG
e T ))(Ind

G
e Z),

and the construction of ΦG from FixG then induces a map

T (Z) −→ (ΦG(NG
e T ))((Ind

G
e Z)

G) = (ΦG(NG
e T ))(Z).

When T is a cell of the form FVB+, the map in (2.37) factors as

T (Z) = Je(V, Z) ∧B+ −→J G
G (IndGe V, Ind

G
e Z) ∧B+ −→

(JG(Ind
G
e V, Ind

G
e Z) ∧N

G
e (B)+)

G = (FixG(NG
e T ))(Ind

G
e Z).

The first map T (Z) = Je(V, Z) ∧ B+ → J G
G (IndGe V, Ind

G
e Z) ∧ B+ induces an

isomorphism

T −→ Pφ(J
G
G (IndGe V,−) ∧B+) ∼= Je((Ind

G
e V )G,−) ∧B+.

By passing to quotients, we see that likewise in the case of interest,

T = X = (FVB+)
(m)/Σm ∼= FVmBm+ /Σm,

the diagonal map factors as an isomorphism

X −→ Pφ(J
G
G (IndGe V

m,−) ∧Σm
Bm+ ) ∼= Je((Ind

G
e V

m)G,−) ∧Σm
Bm+
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followed by a map

Pφ(J
G
G (IndGe V

m,−) ∧Σm
Bm+ ) −→ ΦG(NG

e X)

that is the induced map on left Kan extension from a map of J G
G -spaces

J G
G (IndGe V

m,−) ∧Σm
Bm+ −→ (JG(Ind

G
e V

m,−) ∧Σ×G
m

NG
e (Bm)+)

G.

Thus, it suffices to show that the latter map is an isomorphism. This amounts to
showing that for each G-inner product space W , the map

J G
G (IndGe V

m,W ) ∧Σm
Bm+ −→ (JG(Ind

G
e V

m,W ) ∧Σ×G
m

NG
e (Bm)+)

G

is a homeomorphism, but since both sides are compact Hausdorff spaces, it amounts
to showing that the map is a bijection. The map is clearly an injection. To see that
it is a surjection, we note that any non-basepoint x of JG(Ind

G
e V

m,W ) ∧NG
e Σm

NG
e (Bm)+ is represented by a collection of points ~bh ∈ B

m (indexed on h ∈ G) and

isometries φh : V
m → W (indexed on h ∈ G) such that

⊕
h φh : IndGe V

m → W is
injective. The point x is G-fixed if for every g ∈ G, there exist an element σ(g) in
NG
e Σm such that

(2.38) g · ((φh), (~bh)) = ((φh) ◦ σ(g)
−1, σ(g) · (~bh)).

If we write σ(g) also in coordinates σ(g) = (σh(g)), where

(φh) ◦ σ(g)
−1 = (φh ◦ σh(g)

−1) and σ(g) · (~bh) = (σh(g) ·~bh),

then (2.38) becomes

g ◦ φg−1h = φh ◦ σh(g)
−1

~bg−1h = σh(g)~bh.

for all g, h ∈ G, where we have written h ◦ (−) to denote the action of h on W (and

likewise we use (−) ◦ h below to denote the action of h on IndGe V
m). Let

φ′h = h ◦ φ1 = φh ◦ σh(h)
−1

~b′h = σh(h) ·~bh = ~b1,

Then ((φ′h), (
~b′h)) also represents the element x, with (~b′h) clearly a diagonal element.

Since

(g · φ′)h = (g ◦ φ′ ◦ g−1)h

= g ◦ φ′g−1h = g ◦ g−1h ◦ φ1

= h ◦ φ1 = φ′h,

we also have (φ′h) in the image of J G
G (IndGe V

m,W ). �

3. Cyclotomic spectra and topological cyclic homology

In this section, we review the details of the category of p-cyclotomic spectra
and the construction of topological cyclic homology (TC). The diagonal maps that
naturally arise in the context of the norm go in the opposite direction to the usual
cyclotomic structure maps, and so we also explain how to construct TC from these
“op”-cyclotomic spectra. In the following, fix a prime p and a complete S1-universe
U .
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3.1. Background on p-cyclotomic spectra. In this section, we briefly review
the point-set description of p-cyclotomic spectra from [6, §4]; we refer the reader to
that paper for more detailed discussion.

Definition 3.1 ([6, 4.5]). A p-precyclotomic spectrum X consists of an orthogonal
S1-spectrum X together with a map of orthogonal S1-spectra

tp : ρ
∗
pΦ

CpX −→ X.

Here ρp denotes the p-th root isomorphism S1 → S1/Cp. A p-precyclotomic spec-
trum is a p-cyclotomic spectrum when the induced map on the derived functor
ρ∗pLΦ

CpX → X is an Fp-equivalence. (Here LΦCp denotes the left derived func-

tor of ΦCp and Fp denotes the family of p-subgroups of S1.) A morphism of
p-cyclotomic spectra consists of a map of orthogonal S1-spectra X → Y such that
the diagram

ρ∗pΦ
CpX //

��

X

��

ρ∗pΦ
CpY // Y

commutes.

Remark 3.2. A cyclotomic spectrum is an orthogonal spectrum with p-cyclotomic
structures for all primes p satisfying certain compatibility relations; see [6, 4.7–8]
for details.

Following [6, 5.4–5], we have the following weak equivalences for p-precyclotomic
spectra.

Definition 3.3. A map of p-precyclotomic spectra is a weak equivalence when it
is an Fp-equivalence of the underlying orthogonal S1-spectra.

Proposition 3.4 ([6, 5.5]). A map of p-cyclotomic spectra is a weak equivalence
if and only if is a weak equivalence of the underlying (non-equivariant) orthogonal
spectra.

3.2. Constructing TR and TC from a cyclotomic spectrum. In this sec-
tion, we give a very rapid review of the definition of TR and TC in terms of the
point-set category of cyclotomic spectra described above. The interested reader is
referred to the excellent treatment in Madsen’s CDM notes [31] for more details on
the construction in terms of the classical (homotopical) definition of a cyclotomic
spectrum.

For a p-precyclotomic spectrum X, the collection {XCpn } of (point-set) categor-
ical fixed points is equipped with maps

F,R : XCpn −→ XCpn−1

for all n, defined as follows. The Frobenius maps F are simply the obvious inclusions
of fixed points, and the restriction maps R are constructed as the composites

XCpn ∼= (ρ∗pX
Cp)Cpn−1

(ρ∗pω)
C
pn−1

−−−−−−−−→ (ρ∗pΦ
CpX)Cpn−1

(tp)
C
pn−1

−−−−−−→ XCpn−1 ,

where the map ω is the usual map from categorical to geometric fixed points [32,
V.4.3]. The Frobenius and restriction maps satisfy the identity F ◦ R = R ◦ F .
When X is fibrant in the Fp-model structure (of Theorem 2.29), we then define

TR(X) = holimRX
Cpn and TC(X) = holimR,F X

Cpn .
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The homotopy limit for TC is often computed in two steps; since R and F commute,
F acts on TR(X), and TC(X) can be defined as the homotopy fixed points of the
action on TR(X) by the free monoid generated by F .

In general, we define TR and TC using a fibrant replacement that preserves the
p-precyclotomic structure; such a functor is provided by the main theorems of [6,
§5], which construct model structures on p-precyclotomic and p-cyclotomic spectra
where the fibrations are the fibrations of the underlying orthogonal S1-spectra in the
Fp-model structure. Alternatively, an explicit construction of a fibrant replacement
functor on orthogonal spectra that preserves precyclotomic structures is given in [4,
4.6–7].

Proposition 3.5 (cf. [6, 1.4]). A weak equivalence X → Y of p-precyclotomic
spectra induces weak equivalences TR(Xf ) → TR(Yf ) and TC(Xf ) → TC(Yf )
of orthogonal spectra, where (−)f denotes any fibrant replacement functor in p-
cyclotomic spectra.

Remark 3.6. We do not yet have an abstract homotopy theory for multiplicative
objects in cyclotomic spectra, and the explicit fibrant replacement functor QI of
[4, 4.6] is lax monoidal but not lax symmetric monoidal. As a consequence, at
present we do not know how to convert a p-cyclotomic spectrum which is also a
commutative ring orthogonal S1-spectrum into a cyclotomic spectrum that is a
fibrant commutative ring orthogonal S1-spectrum.

3.3. Op-precyclotomic spectra. For our construction of THH based on the
norm (in the next section), the diagonal map X → ΦGNG

e X is in the opposite
direction of the cyclotomic structure map needed in the definition of a cyclotomic
spectrum. In the case when X is cofibrant (or a cofibrant ring or cofibrant com-
mutative ring orthogonal spectrum), the diagonal map is an isomorphism and so
presents no difficulty; in the case when X is just of the homotopy type of a cofi-
brant orthogonal spectrum, the fact that the structure map goes the wrong way
necessitates some technical maneuvering in order to construct TR and TC.

Definition 3.7. An op-p-precyclotomic spectrum X consists of an orthogonal S1-
spectrum X together with a map of orthogonal S1-spectra

γ : X −→ ρ∗pΦ
CpX.

An op-p-cyclotomic spectrum is an op-p-precyclotomic spectrum where the struc-
ture map is an Fp-equivalence. A map of op-p-precyclotomic spectra is a map of
orthogonal S1-spectra that commutes with the structure map. A map of op-p-
precyclotomic spectra is a weak equivalence when it is an Fp-equivalence of the
underlying orthogonal S1-spectra.

Note that the definition above uses a condition on the point-set geometric fixed
point functor rather than the derived geometric fixed point functor. Such a defi-
nition works well when we restrict to those op-p-cyclotomic spectra X where the
canonical map in the S1-equivariant stable category ρ∗pLΦ

CpX → ρ∗pΦ
CpX is an

Fp-equivalence. For op-p-cyclotomic spectra in this subcategory, a map is a weak
equivalence if and only if it is a weak equivalence of the underlying (non-equivariant)
orthogonal spectra.

Rather than study the category of op-p-precyclotomic spectra in detail, we simply
explain an approach to constructing TR and TC from this data. In what follows, let
(−)f denote a fibrant replacement functor in the Fp-model structure on orthogonal
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S1-spectra; to be clear, we assume the given natural transformation X → Xf is
always an acyclic cofibration. Then for an op-p-precyclotomic spectrum X, we get
a commutative diagram

X
γ

//
��

≃

��

ρ∗pΦ
CpX
��

≃

��

Xf γf
// (ρ∗pΦ

CpX)f ≃
// (ρ∗pΦ

Cp(Xf ))f

where the bottom right horizontal map is a weak equivalence because ρ∗p and ΦCp

preserve acyclic cofibrations. In place of the restriction map R, we have a zigzag

R : (Xf )
Cpn −→ ((ρ∗pΦ

Cp(Xf ))f )
Cpn−1 ←− (Xf )

Cpn−1

constructed as the following composite

(Xf )
Cpn

∼= // (ρ∗p(Xf )
Cp)Cpn−1 ≃ // ((ρ∗p(Xf )

Cp)f )
Cpn−1

rr

((ρ∗pΦ
Cp(Xf ))f )

Cpn−1 ((ρ∗pΦ
CpX)f )

Cpn−1

≃
oo (Xf )

Cpn−1 .oo

We can use this as an analogue of TR.

Definition 3.8. Define opTR(X) as the homotopy limit of the diagram

· · · ←− (Xf )
Cpn −→ ((ρ∗pΦ

Cp(Xf ))f )
Cpn−1 ←− (Xf )

Cpn−1 −→ · · ·

· · · ←− (Xf )
Cp −→ (ρ∗pΦ

Cp(Xf ))f ←− Xf .

The zigzags R are compatible with the inclusion maps

F : (Xf )
Cpn −→ (Xf )

Cpn−1

in the sense that the following diagram commutes:

(Xf )
Cpn+1 //

F ))

((ρ∗pΦ
Cp(Xf ))f )

Cpn

F

**

(Xf )
Cpnoo

F

))

(Xf )
Cpn // ((ρ∗pΦ

Cp(Xf ))f )
Cpn−1 (Xf )

Cpn−1oo

We can therefore form an analogue of TC.

Definition 3.9. Define opTC(X) by taking the homotopy limit over the diagram

· · ·
**

77
(Xf )

Cpnoo
33

// ((ρ∗pΦ
Cp(Xf ))f )

Cpn−1
))

(Xf )
Cpn−1 //oo

88 · · ·

where the middle parts are the R zigzags and the top and bottom the F maps.

This has the expected homotopy invariance property.

Proposition 3.10. Let X → Y be a weak equivalence of op-p-precyclotomic spec-
tra. The induced maps opTR(X) → opTR(Y ) and opTC(X) → opTC(Y ) are weak
equivalences.



24 V.ANGELTVEIT, A.BLUMBERG, T.GERHARDT, M.HILL, T.LAWSON, AND M.MANDELL

Although we have nothing to say in general about the relationship between p-
cyclotomic spectra and op-p-cyclotomic spectra or between opTC and TC, we have
the following comparison result in the case whenX has compatible p-cyclotomic and
op-p-precyclotomic structures. This in particular applies when X has the homotopy
type of a cofibrant orthogonal spectrum, as we explain in Section 4. We apply it in
Section 7 to prove Theorem 1.10.

Proposition 3.11. Let X be an op-p-precyclotomic spectrum and a p-cyclotomic
spectrum and assume that the composite of the two structure maps

ρ∗pΦ
CpX −→ X −→ ρ∗pΦ

CpX

is homotopic to the identity. Then there is a zig-zag of weak equivalences connecting
TR(X) and opTR(X) and a zig-zag of weak equivalences connecting TC(X) and
opTC(X).

Proof. In the case of the comparison of TR(X) and opTR(X), we can use a fibrant
replacement ofX in the category of cyclotomic spectra to compute both TR(X) and
opTR(X). It follows that it suffices to show that the homotopy limits of diagrams
of fibrant objects of the form

(3.12) . . . Ynoo
fn // Y ′

n Yn−1

g−1
noo // . . .

and

(3.13) . . . // Yn
fn // Y ′

n

gn // Yn−1
// . . .

are equivalent, where gn is an equivalence and g−1
n ◦gn is homotopic to the identity.

This kind of rectification argument is standard, although we are not sure of a place
in the literature where the precise fact we need is spelled out. We argue as follows.
Choosing a homotopy H from the identity to g−1

n ◦ gn, we get strictly commuting
diagrams of the form

Yn
fn // Y ′

n Yn−1

g−1
noo id // Yn−1

Yn

id

OO

id

��

fn×{0}
// Y ′
n × I

π1

��

H

OO

Y ′
n

id

��

gn

OO

id×{1}
oo

gn // Yn−1

id

OO

id

��

Yn
fn // Y ′

n Y ′
n

idoo
gn // Yn−1.

Note that all the vertical maps are weak equivalences, and therefore the induced
maps between the homotopy limits of the rows are both weak equivalences. The
homotopy limit of the top row is weakly equivalent to the homotopy limit of (3.12)
and the homotopy limit of the bottom row is weakly equivalent to the homotopy
limit of (3.13). This completes the comparison of TR(X) and opTR(X); the argu-
ment for comparing TC(X) and opTC(X) is analogous using “ladders” in place of
rows. �

Remark 3.14. The following sketches a reformulation of the above argument,
showing the equivalence of homotopy limits of (3.12) and (3.13), using the more
general-purpose machinery of coherent diagrams. All numbered references in the
following are to [30].
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As homotopy limits are invariant up to equivalence, we can assume that the
objects in the diagram are cofibrant-fibrant and hence that gn is a homotopy equiv-
alence. If N(S◦) denotes the “simplicial nerve” [1.1.5.5] of the simplicial category
of cofibrant-fibrant orthogonal spectra, homotopy limits can be computed in the
quasicategory N(S◦) [4.2.4.8].

There is a simplicial setK whose 0-simplices correspond to the objects Yn and Y ′
n,

whose 1-simplices correspond to the maps fn, gn, and g
−1
n , and whose 2-simplices

express the composition homotopies g−1
n ◦ gn ⇒ id. We have a homotopy coher-

ent diagram of orthogonal spectra indexed on K in the sense of Vogt (or [1.2.6])
expressed as follows:

· · ·Yn+1

fn+1
// Y ′
n+1

gn+1

%%

Yn

g−1
n+1

ff

ks

fn // Y ′
n

gn
%%

Yn−1

g−1
n

ee
ks

fn−1
// Y ′
n−1

gn−1

''

Yn−2 · · ·

g−1
n−1

hh

ks

We write K+ for the upper subcomplex containing the edges fn and gn, and simi-
larly write K− for the lower subcomplex containing the fn and g−1

n .
The inclusion K+ → K is an iterated pushout along horn-filling maps Λ2

0 → ∆2,
so this map is left anodyne [2.0.0.3] and hence final [4.1.1.3]. The restriction from
K-diagrams to K+-diagrams therefore preserves all homotopy limits [4.1.1.8].

We now consider the inclusion K− → K, which is an iterated pushout along
horn-filling maps Λ2

2 → ∆2 whose last edges are g−1
n . Because the maps g−1

n are
equivalences, the space of extensions of a diagram indexed on K− to a diagram
indexed on K is contractible because the map Λ2

2 → ∆2, with the final edge marked
as an equivalence, is marked anodyne [3.1.1.1, 3.1.3.4]. In addition, the subspace of
homotopy right Kan extensions is also contractible [4.2.4.8, 4.3.2.15]. Therefore, any
extension of this K−-diagram to a K-diagram is a homotopy right Kan extension,
and the homotopy limit of a homotopy right Kan extension is equivalent to the
homotopy limit of the original diagram [4.3.2.8].

The comparison between TC and opTC follows by a similar argument. There is
a diagram indexed by K × ∆1, representing the natural transformation F on the
comparison diagram for TR: we define a simplicial set L by identifying K × {1}
with K × {0} after a shift. There are subcomplexes L+ and L−, generated by
K+ × ∆1 and K− × ∆1 respectively, representing the diagrams defining TR and
opTR. As before, the inclusion L+ → L is left anodyne and the inclusion L− → L
only involves extension along equivalences.

4. The construction and homotopy theory of the S1-norm

In this section, we construct the norm from the trivial group to S1 and study
its basic point-set and homotopy properties. In particular, we prove that under
mild hypotheses it gives a model for THH which is cyclotomic. Unlike norms for
finite groups, the S1-norm does not apply to arbitrary orthogonal spectra; instead
we need an associative ring structure. In the case when R is commutative, we
identify the S1-norm as the left adjoint of the forgetful functor from commutative
ring orthogonal S1-spectra indexed on a complete universe to (non-equivariant)
commutative ring orthogonal spectra.
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Throughout this section, we fix a complete S1-universe U . As in the definition of
the norm for finite groups, the (point-set) equivalence of categories IU

R∞ discussed
in Section 2.1 will play a key technical role.

For a ring orthogonal spectrum R, let N cyc
∧ R denote the cyclic bar construction

with respect to the smash product; i.e., the cyclic object in orthogonal spectra with
k-simplices

[k] −→ R ∧R ∧ . . . ∧R︸ ︷︷ ︸
k+1

and the usual cyclic structure maps induced from the ring structure on R.

Lemma 4.1. Let R be an object in Ass. Then the geometric realization of the

cyclic bar construction |N cyc
∧ R| is naturally an object in SS

1

R∞ .

Proof. It is well known that the geometric realization of a cyclic space has a natural
S1-action [25, 3.1]. Since geometric realization of an orthogonal spectrum is com-
puted levelwise, it follows by continuous naturality that the geometric realization
of a cyclic object in orthogonal spectra has an S1-action. As noted in Section 2.1,

the category SS
1

R∞ of orthogonal S1-spectra indexed on R∞ is isomorphic to the
category of orthogonal spectra with S1-actions. �

Using the point-set change of universe functors we can regard this as indexed on
the complete universe U . The following definition repeats Definition 1.1 from the
introduction.

Definition 4.2. Let R be a ring orthogonal spectrum. Define the functor

NS1

e : Ass −→ SS
1

U

to be the composite functor

R 7→ IU
R∞ |N

cyc
∧ R|.

When R is a commutative ring orthogonal spectrum, the usual tensor homeo-
morphism of McClure-Schwanzl-Vogt [37] (see also [15, IX.3.3])

|N cyc
∧ R| ∼= R⊗ S1

yields the following characterization:

Proposition 4.3. The restriction of NS1

e to Com lifts to a functor

NS1

e : Com −→ ComS1

U

that is left adjoint to the forgetful functor

ι∗ : ComS1

U −→ Com.

Proof. To obtain the refinement of NS1

e to a functor Com → ComS1

U , it suffices to
construct a refinement of |N cyc

∧ | to a functor

|N cyc
∧ | : Com −→ Com

S1

R∞ .

We obtain this immediately from the strong symmetric monoidal isomorphism

|X•| ∧ |Y•| ∼= |X• ∧ Y•|
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for simplicial objects X•,Y• in orthogonal spectra and the easy observation that the
map is S1-equivariant for cyclic objects. Let P denote the free commutative ring
orthogonal S1-spectrum functor. Using the isomorphism

P|X•| ∼= |PX•|

and the fact that N cyc
∧ PX ∼= PN cyc

∨ X, we deduce that there is an isomorphism
|N cyc

∧ PX| ∼= P(X ∧ S1
+). Because |N cyc

∧ R| preserves reflexive coequalizers (see [15,
II.7.2]), we can use the canonical reflexive coequalizer

PPR //
// PR // R

to identify |N cyc
∧ R| as the reflexive coequalizer

P(PR ∧ S1
+)

//
// P(R ∧ S1

+) // R⊗ S1,

constructing the tensor of R with the unbased space S1 in the category of commu-
tative ring orthogonal spectra. A formal argument now identifies this as the left
adjoint to the forgetful functor

ι∗ : ComS1

R∞ −→ Com

and it follows that NS1

e is the left adjoint to the forgetful functor indicated in the
statement. �

We now show that the S1-norm NS1

e R is a cyclotomic spectrum in orthogonal
S1-spectra. For this, we need to work with the Cn geometric fixed points. Since
|N cyc

∧ R| is the geometric realization of a cyclic spectrum, the Cn-action can be
computed in terms of the edgewise subdivision of the cyclic spectrum N cyc

∧ R [8,
§1]. Specifically, the nth edgewise subdivision sdnN

cyc
∧ R is a simplicial orthogonal

spectrum with a simplicial Cn-action such that there is a natural isomorphism of
orthogonal S1-spectra

| sdnN
cyc
∧ R| ∼= |N

cyc
∧ R|,

where the S1-action on the left extends the Cn-action induced from the simplicial
structure (see [8], p. 471, first display, or Section 8 in this paper for further review).

For NS1

e then, taking Ũ = ι∗Cn
U , a complete Cn-universe, there is an isomorphism

of orthogonal Cn-spectra indexed on Ũ

ι∗Cn
NS1

e R ∼= IŨR∞(ι∗Cn
|N cyc

∧ R|).

This allows us to understand the Cn-action on NS1

e R in terms of the Cn-action on
|N cyc

∧ R|.

Writing this out, the orthogonal Cn-spectrum ι∗Cn
NS1

e (R) has a description as
the geometric realization of a simplicial orthogonal Cn-spectrum having k-simplices
given by norms

(NCn
e R)∧(k+1) ∼= IŨR∞(R∧n(k+1)),

where Cn acts by block permutation on R∧n(k+1) and Ũ = ι∗Cn
U (for U a complete

S1-universe). The faces are also given blockwise, with di for 0 ≤ i ≤ k− 1 the map

NCn
e (R∧(k+1)) −→ NCn

e (R∧k)

on norms induced by the multiplication of the (i+1)st and (i+2)nd factors ofR. The
face map dk is a bit more complicated and uses both an internal cyclic permutation
inside the last NCn

e R factor (as in Proposition 2.15) and a permutation of the (k+1)
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factors of (NCn
e R)∧(k+1) together with the multiplication d0. Writing g = e2πi/n

for the canonical generator of Cn < S1 and α for the natural cyclic permutation on
X∧(k+1), dk is the composite

(NCn
e R)∧(k+1) id∧k ∧IŨ

R∞
g

−−−−−−−−→ (NCn
e R)∧(k+1) α

−−→ (NCn
e R)∧(k+1) d0−−→ (NCn

e R)∧k.

In fact, we have the following concise description of the Cn-action in NS1

e -
bimodule terms. We obtain a (NCn

e R,NCn
e R)-bimodule gNCn

e R, using the standard

right action but twisting the left action using IŨ
R∞g. In the following statement, we

use the cyclic bar construction with coefficients in a bimodule, q.v. [8, §2].

Theorem 4.4. Let R be a ring orthogonal spectrum. For any Cn < S1, there is
an isomorphism of orthogonal Cn-spectra

ι∗Cn
NS1

e (R) ∼= |N
cyc
∧ (NCn

e R, gNCn
e R)|,

where the cyclic bar construction is taken in the symmetric monoidal category SCn

Ũ
.

Next we assemble the diagonal maps into a map NS1

e R → ρ∗nΦ
CnNS1

e R of
orthogonal S1-spectra. The following lemma (which is just a specialization of
Proposition 2.15) provides the basic compatibility we need. (The lemma also fol-
lows as an immediate consequence of the much more general rigidity theorem of
Malkiewich [33, §3].)

Lemma 4.5. Let R be an orthogonal spectrum, let H < S1 be a finite subgroup,

and let h ∈ H. Then the map ΦH(IŨ
R∞h) : ΦHNH

e R→ ΦHNH
e R is the identity.

We now prove the main theorem about the diagonal map cyclotomic structure.

Theorem 4.6. Let R be a ring orthogonal spectrum. The diagonal maps

∆n : R
∧(k+1) −→ ΦCnNCn

e R∧(k+1)

assemble into natural maps of S1-spectra

τn : N
S1

e R −→ ρ∗nΦ
CnIU

R∞ |N
cyc
∧ R| ∼= ρ∗nΦ

CnNS1

e R.

If R is cofibrant or cofibrant as a commutative ring orthogonal spectrum, then these
maps are isomorphisms.

Proof. Varying k, we get a map of cyclic objects

N cyc
∧ R −→ ΦCnIŨ

R∞ sdnN
cyc
∧ R

and on realization and change of universe, a map

NS1

e R −→ IU
R∞ |ΦCnIŨ

R∞ sdnN
cyc
∧ R|

of orthogonal S1-spectra. The map τn is the composite with the evident isomor-
phism of orthogonal S1-spectra

IU
R∞ |ΦCnIŨ

R∞ sdnN
cyc
∧ R| ∼= ρ∗nΦ

CnIU
R∞ | sdnN

cyc
∧ R| ∼= ρ∗nΦ

CnNS1

e R.

(In [13, §4], the first isomorphism is studied in detail.) When R is cofibrant, the
maps ∆n are isomorphisms, and so therefore are the maps τn. �

The previous theorem establishes a precyclotomic structure. For the cyclotomic
structure, we now just need to compare the pointset geometric fixed point functors
with their derived functors.
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Theorem 4.7. Let R be a cofibrant ring orthogonal spectrum or a cofibrant com-
mutative ring orthogonal spectrum. Then for any Cn < S1, the point-set geometric

fixed point functor on NS1

e R computes the left derived geometric fixed point functor

LΦCnNS1

e R
≃
−−→ ΦCnNS1

e R.

Moreover, there is an S1-equivariant isomorphism

ΦCnNS1

e R ∼= IUR∞ |ΦCnIŨ
R∞ sdnN

cyc
∧ R|.

Theorem 1.5, the assertion of the cyclotomic structure on NS1

e R for R a cofibrant
ring orthogonal spectrum or cofibrant commutative ring orthogonal spectrum, is
now an immediate consequence of the previous theorem and Theorem 4.6. If R
only has the homotopy type of a cofibrant object, application of Proposition 3.11
allows us to functorially work with opTR and opTC as models of TR and TC.

For the proof of the previous theorem, recall that a simplicial object in a category
enriched in spaces is said to be proper when for each n the map from the kth latching
object to the kth level is an h-cofibration. (Recall that an h-cofibration is a map
f : X → Y with the homotopy extension property: Any map φ : Y → Z and any
path in the space of maps from X to Z starting at φ◦f comes from the restriction of
a path in the space of maps from Y to Z starting at φ.) The geometric realization
of a proper simplicial object (in a topologically cocomplete category) is the colimit
of a sequence of pushouts of h-cofibrations. This is relevant to the situation above
because of the following lemma.

Lemma 4.8. Let R be a cofibrant ring orthogonal spectrum or a cofibrant commu-
tative ring orthogonal spectrum. Then for any Cn < S1,

IŨ
R∞ sdnN

cyc
∧ R

is proper as a simplicial object in SCn

Ũ
.

Proof. Since IŨ
R∞ is a topological left adjoint, it preserves pushouts and homotopies,

and therefore preserves properness. Thus, it suffices to show that

sdnN
cyc
∧ R

is a proper simplicial object in SCn

R∞ . In the case when R is a cofibrant ring or-
thogonal spectrum, each level is cofibrant as an orthogonal Cn-spectrum and the
inclusion of the latching object is a cofibration. In the case when R is cofibrant
as a commutative ring orthogonal spectrum, an argument similar to [15, VII.7.5]
shows that the iterated pushouts that form the latching objects are h-cofibrations
and the inclusion of the latching object is an h-cofibration. �

Proof of Theorem 4.7. Given the discussion above, we see that under the hypothe-
ses of the theorem, the point-set geometric fixed point functor ΦCn commutes with
geometric realization, giving us the isomorphism

ΦCnNS1

e R ∼= IUR∞ |ΦCnIŨ
R∞ sdnN

cyc
∧ R|.

Since the point-set geometric fixed point functor commutes with sequential colimits
of h-cofibrations, to see that it computes the derived geometric fixed point functor,
we just need to see that it does so on each of the objects involved in the sequence of
pushouts that constructs the geometric realization. This happens on the levels of

N• = IŨ
R∞ sdnN

cyc
∧ R because each Nk is the smash product of copies of NCn

e R and
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it happens on NCn
e R in the case when R is a cofibrant ring orthogonal spectrum by

Theorem 2.34 (and [23, B.89]) and in the case when R is a cofibrant commutative
ring orthogonal spectrum by Theorem 2.36 (combined with Theorem 2.34). The
other pieces are the orthogonal Cn-spectra Pk defined by the pushout diagram

Lk ∧ ∂∆
k
+

//

��

Lk ∧∆k
+

��

Nk ∧ ∂∆
k
+

// Pk,

where Lk denotes the latching object. The point-set geometric fixed point functor
computes the derived geometric fixed point functor for each Pk because it does so
for each Nk and for each latching object (by induction). �

Finally, we turn to the question of understanding the derived functors of NS1

e .
Recall that when dealing with cyclic sets, the S1-fixed points do not usually carry
homotopically meaningful information. As a consequence, we will work with the

model structure on SS
1

U provided by Theorem 2.29 with weak equivalences the
FFin-equivalences, i.e., the maps which are isomorphisms on the homotopy groups
of the (categorical or geometric) fixed point spectra for the finite subgroups of S1

(irrespective of what happens on the fixed points for S1). We will now write SS
1,FFin

U

for SS
1

U to emphasize that we are using the FFin-equivalences. We use analogous
notation for the categories of ring orthogonal S1-spectra and commutative ring
orthogonal S1-spectra.

We now observe thatNS1

e admits (left) derived functors when regarded as landing

in SS
1,FFin

U and (in the commutative case) ComS1,FFin

U . Theorems 4.6 and 4.7 have
the following consequence.

Theorem 4.9. Let R→ R′ be a weak equivalence of ring orthogonal spectra where
R and R′ is each either a cofibrant ring orthogonal spectra or a cofibrant commu-

tative ring orthogonal spectra (four cases). Then the induced map NS1

e R→ NS1

e R′

is an FFin-equivalence.

Proof. Since we have shown that NS1

e R and NS1

e R′ are cyclotomic spectra and
the map is a map of cyclotomic spectra, it suffices to prove that it is a weak
equivalence of the underlying non-equivariant spectra, where we are looking at the
map |N cyc

∧ R| → |N cyc
∧ R′|. At each simplicial level, the map R∧(k+1) → R′∧(k+1)is

a weak equivalence and the simplicial objects are proper, so the map on geometric
realizations is a weak equivalence. �

In the commutative case, we have the following derived functor result.

Proposition 4.10. Regarded as a functor on commutative ring orthogonal spectra,

the functor NS1

e is a left Quillen functor with respect to the positive complete model

structure on Com and the FFin-model structure on ComS1

U .

Proof. The forgetful functor preserves fibrations and acyclic fibrations. �

5. The cyclotomic trace

The modern importance of THH and TC derives from the application of the
trace maps K → TC and K → TC → THH to computing algebraic K-theory. In
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this section, we give a construction of the cyclotomic trace in terms of the norm
construction of THH.

First, observe that the constructions of Section 4 and 6 generalize without modifi-
cation to the setting of categories enriched in orthogonal spectra: Specifically, given
a small spectral category C we define the cyclic bar construction as the geometric
realization of the cyclic orthogonal spectrum with k-simplices

[k] 7→
∨

c0,...ck

C(c1, c0) ∧ C(c2, c1) ∧ . . . ∧ C(ck, ck−1) ∧ C(c0, ck).

This construction gives rise to an orthogonal S1-spectrum; we have the following
analogue of Lemma 4.1.

Lemma 5.1. Let C be a small category enriched in orthogonal spectra. Then the
geometric realization of the cyclic bar construction |N cyc

∧ C| is naturally an object in

SS
1

R∞ .

In order to obtain a cyclotomic structure, as in Theorem 1.5, we need to arrange
for the mapping spectra in C to be cofibrant. Such a spectral category is called
“pointwise cofibrant” [4, 2.5]. Following [4, 2.7], we have a cofibrant replacement
functor on spectral categories with a fixed object set that in particular produces
pointwise cofibrant spectral categories.

Theorem 5.2. Let C be a pointwise cofibrant spectral category, then IU
R∞ |N

cyc
∧ C|

has a natural structure of a cyclotomic spectrum.

Proof. Much of this goes through just as in Section 4. The only real divergence is
that although levelwise

IŨ
R∞ sdnN

cyc
∧ C

is no longer given as a smash of norms, the diagonal isomorphisms

∨

c0,...ck

C(c1, c0) ∧ C(c2, c1) ∧ . . . ∧ C(ck, ck−1) ∧ C(c0, ck)

−→ ΦCnIŨ
R∞

( ∨

c0,...cq

C(c1, c0) ∧ C(c2, c1) ∧ . . . ∧ C(cq, cq−1) ∧ C(c0, cq)

)

(where q = n(k + 1)− 1) arise as the composite of the diagonal isomorphism

∨

c0,...ck

C(c1, c0) ∧ C(c2, c1) ∧ . . . ∧ C(ck, ck−1) ∧ C(c0, ck)

−→ ΦCnNCn
e

( ∨

c0,...ck

C(c1, c0) ∧ C(c2, c1) ∧ . . . ∧ C(ck, ck−1) ∧ C(c0, ck)

)

and the isomorphism

ΦCnNCn
e

( ∨

c0,...ck

C(c1, c0) ∧ C(c2, c1) ∧ . . . ∧ C(ck, ck−1) ∧ C(c0, ck)

)

−→ ΦCnIŨ
R∞

( ∨

c0,...cq

C(c1, c0) ∧ C(c2, c1) ∧ . . . ∧ C(cq, cq−1) ∧ C(c0, cq)

)
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induced by the inclusion

( ∨

c0,...ck

C(c1, c0) ∧ C(c2, c1) ∧ . . . ∧ C(ck, ck−1) ∧ C(c0, ck)

)∧(n)

−→
∨

c0,...cq

C(c1, c0) ∧ C(c2, c1) ∧ . . . ∧ C(cq, cq−1) ∧ C(c0, cq)

of the summands where ci(k+1)+j = cj for all 0 < i < n, 0 ≤ j < k + 1. �

We simplify notation by writing THH(C) for the orthogonal S1-spectrum or
cyclotomic spectrum IU

R∞ |N
cyc
∧ C|. From this point, the construction of TR and TC

proceeds identically with the case of ring orthogonal spectra.
We now turn to the construction of the cyclotomic trace. The trace map is

induced from the inclusion of objects map

ob(C) −→ |N cyc
∧ C|

that takes x to the identity map x → x in the zero-skeleton of the cyclic bar
construction. To make use of this forK-theory, we use the Waldhausen construction
of K-theory as the geometric realization of the nerve of the multisimplicial spectral

category w•S
(n)
• C and consider the bispectrum THH(w•S

(n)
• C). The construction

now proceeds in the usual way (e.g., see [5, 1.2.5]).

6. A description of relative THH as the relative S1-norm

In this section, we extend the work of Section 4 to the setting of A-algebras
for a commutative ring orthogonal spectrum A. The category of A-modules is
a symmetric monoidal category with respect to ∧A, the smash product over A.
As explained in [23, §A.3], the construction of the indexed smash product can be
carried out in the symmetric monoidal category of A-modules. Our construction of
relative THH will use the associated A-relative norm.

We will write AG to denote the commutative ring orthogonal G-spectrum ob-
tained by regarding A as having trivial G-action; i.e., AG = IU

R∞A. This is a
commutative ring orthogonal G-spectrum since IU

R∞ is a symmetric monoidal func-
tor. For example, if A is the sphere spectrum then AG is the G-equivariant sphere
spectrum.

Warning 6.1. Although IU
R∞ performs the (derived) change of universe on stable

categories for cofibrant orthogonal spectra, and IU
R∞ has a left derived functor

on commutative ring orthogonal spectra (Proposition 6.2 below), the underlying
object in the stable category of AG is not the derived change of universe applied
to A except in rare cases like A = S; see Example 6.3 below. As a consequence, in
the following result the comparison map between the left derived functor and the
left derived functor of IU

R∞ : S → SGU is not an isomorphism.

Proposition 6.2. The functor IU
R∞ : Com→ ComG

U is a Quillen left adjoint.

Proof. The functor in question is the composite of the inclusion of Com in ComG
R∞

as the objects with trivial G-action (which is Quillen left adjoint to the G-fixed
point functor) and the Quillen left adjoint IU

R∞ : ComG
R∞ → ComG

U . The Quillen

right adjoint is the composite (−)G ◦ IR
∞

U . �
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Example 6.3. For X a non-equivariant positive cofibrant orthogonal spectrum,
PX is a cofibrant commutative ring orthogonal spectrum. We have that IU

R∞PX =
PIU

R∞X, whose underlying object in the equivariant stable category is isomor-
phic to

∨
EGΣn+ ∧Σn

IU
R∞X∧n by [32, III.8.4], [23, B.117]. On the other hand,

the underlying object of PX in the non-equivariant stable category is isomor-
phic to

∨
EΣn+ ∧Σn X

∧n, which the derived functor on stable categories takes to∨
EΣn+ ∧Σn

IU
R∞X∧n. In general, the commutative ring derived functor is related

to the stable category derived functor by change of operads along EΣ∗ → EGΣ∗,
cf. [3].

For an A-algebra R, let N cyc
∧A
R denote the cyclic bar construction with respect

to the smash product over A. The same proof as Lemma 4.1 implies the following.

Lemma 6.4. Let R be an object in A-Alg. Then the geometric realization of the

cyclic bar construction |N cyc
∧A
R| is naturally an object in A-ModS

1

R∞ .

Using the point-set change of universe functors we can turn this into an orthog-
onal S1-spectrum indexed on the complete universe U .

Definition 6.5. Let R be a ring orthogonal spectrum. Define the functor

AN
S1

e : A-Alg −→ AS1 -ModS
1

U

as the composite

AN
S1

e R = IU
R∞ |N

cyc
∧A
R|.

The argument for Proposition 4.3 also proves the following relative version.

Proposition 6.6. The restriction of AN
S1

e to commutative A-algebras lifts to a
functor

AN
S1

e : A-Com −→ AS1 -ComS1

U

that is left adjoint to the forgetful functor

ι∗ : AS1 -ComS1

U −→ A-Com

We now make a non-equivariant observation about relative THH (ignoring the
group action temporarily) that informs our description of the equivariant structure.
Similar theorems have appeared previously in the literature, e.g., [36, §5].

Lemma 6.7. Let R be an A-algebra in orthogonal spectra. Then there is an iso-
morphism

STHH(R) ∧
STHH(A) A ∼= ATHH(R).

Proof. Commuting the smash product with geometric realization reduces the lemma
to verifying the formula

(R ∧R ∧ . . . ∧R) ∧A∧A∧...∧A A ∼= R ∧A R ∧A . . . ∧A R,

which is a straightforward calculation. �

We now generalize Lemma 6.7 to take advantage of the equivariant structure.

Proposition 6.8. Let G be a finite group. Let A be a commutative ring orthogonal
spectrum and M an A-module. The A-relative norm is obtained by base-change
from the usual norm:

AN
G
e M

∼= NG
e M ∧NG

e A
AG
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Proof. Since M is an A-module, we know that NG
e M is an NG

e A-module (in the
category SGU ), using the fact that the norm is a symmetric monoidal functor [23,
A.53]. The right hand side is the extension of scalars along the canonical map
NG
e A→ AG obtained as the adjoint of the natural (non-equivariant) map A→ AG.

Because the map NG
e (−) → AN

G
e (−) is a monoidal natural transformation, we

obtain a canonical map fromNG
e M∧NG

e A
AG to AN

G
e M ; this map is an isomorphism

because it is clearly an isomorphism after forgetting the equivariance. �

Extending this to S1, if R is an A-algebra we have the following characterization
of relative THH as an S1-spectrum that follows by essentially the same argument.

Proposition 6.9. Let R be an A-algebra in orthogonal spectra. Then we have an
isomorphism

AN
S1

e R ∼= NS1

e R ∧NS1
e A AS1

We now turn to the homotopical analysis of AN
S1

e . The following theorem asserts

that the left derived functor of AN
S1

e exists.

Theorem 6.10. Let R → R′ be a weak equivalence of cofibrant A-algebras. Then

the induced map AN
S1

e R→ AN
S1

e R′ is an FFin-equivalence.

To prove this theorem, it suffices to prove the following theorem, which in par-
ticular implies Proposition 1.11.

Theorem 6.11. Let A be a cofibrant commutative orthogonal spectrum and let R be

a cofibrant A-algebra. The smash product NS1

e R ∧NS1
e A AS1 represents the derived

smash product in the FFin-model structure.

Proof. Let N be a cofibrant NS1

e A-module approximation of NS1

e R; the assertion
is that the map

N ∧NS1
e A AS1 −→ NS1

e R ∧NS1
e A AS1

is a FFin-equivalence. We compare to the bar construction: Let B(N,NS1

e A,AS1)
be the geometric realization of the simplicial object with k-simplices

N ∧NS1

e A ∧ · · · ∧NS1

e A︸ ︷︷ ︸
k

∧AS1 ,

and similarly for B(NS1

e R,NS1

e A,AS1). Then we have a commutative diagram

B(N,NS1

e A,AS1) //

��

N ∧NS1
e A AS1

��

B(NS1

e R,NS1

e A,AS1) // NS1

e R ∧NS1
e A AS1

We want to show that the righthand map is a FFin-equivalence; we show that the
remaining three maps are FFin-equivalences. We apply the change of groups functor
ι∗Cn

and show that they are weak equivalences of orthogonal Cn-spectra. Since ι
∗
Cn

commutes with smash product and geometric realization, we have isomorphisms

ι∗Cn
B(N,NS1

e A,AS1) ∼= B(ι∗Cn
N, ι∗Cn

NS1

e A,ACn
)

ι∗Cn
(N ∧NS1

e A AS1) ∼= ι∗Cn
N ∧ι∗Cn

NS1
e A ACn
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and similarly for NS1

e R in place of N .

Before proceeding, we note that ι∗Cn
NS1

e A and ι∗Cn
NS1

e R are flat in the sense of

[23, B.15]. This can be seen as follows. NCn
e A is flat by [23, B.147] and NCn

e R
is flat being the sequential colimit of pushouts over h-cofibrations of flat objects.

Likewise, ι∗Cn
NS1

e A, ι∗Cn
NS1

e R, and ι∗Cn
N are sequential colimits of pushouts over

h-cofibrations of objects that are flat, q.v. Theorem 4.4 for NS1

e A and NS1

e R. As
an immediate consequence, we see that the map

B(N,NS1

e A,AS1) −→ B(NS1

e R,NS1

e A,AS1)

is a FFin-equivalence as

B(ι∗Cn
N, ι∗Cn

NS1

e A, ι∗Cn
AS1) −→ B(ι∗Cn

NS1

e R, ι∗Cn
NS1

e A, ι∗Cn
AS1)

is a weak equivalence on each simplicial level and the simplicial objects are proper.

To see that ι∗Cn
B(N,NS1

e A,AS1) → ι∗Cn
(N ∧NS1

e A AS1) is a weak equivalence,

let M be a cofibrant NS1

e A-module approximation of AS1 . Since smash product
commutes with geometric realization, we have compatible isomorphisms

B(N,NS1

e A,NS1

e A) ∧NS1
e AM

∼= B(N,NS1

e A,M)

B(N,NS1

e A,NS1

e A) ∧NS1
e A AS1 ∼= B(N,NS1

e A,AS1)

Now we have a commutative diagram

B(N,NS1

e A,M) ∼=

��

B(N,NS1

e A,NS1

e A) ∧NS1
e AM

//

��

N ∧NS1
e AM

��

B(N,NS1

e A,AS1) ∼= B(N,NS1

e A,NS1

e A) ∧NS1
e A AS1 // N ∧NS1

e A AS1 .

with the bottom composite map becoming the map in question after applying ι∗Cn
.

The lefthand map becomes a weak equivalence after applying ι∗Cn
because both

ι∗Cn
N and ι∗Cn

NS1

e A are flat. The top map is a weak equivalence because (−)∧NS1
e A

M preserves the weak equivalence B(N,NS1

e A,NS1

e A) → N and the righthand
map is a weak equivalence because N ∧NeS1 (−) preserves the weak equivalence
M → AS1 .

Finally, to see that the map

ι∗Cn
B(NS1

e R,NS1

e A,AS1) −→ ι∗Cn
NS1

e R ∧NS1
e A AS1

is a weak equivalence, we apply Theorem 4.4 to observe that it is induced by a map
of simplicial objects

B(N cyc
∧ (NCn

e R, gNCn
e R), N cyc

∧ (NCn
e A, gNCn

e A), ACn
)

−→ N cyc
∧ (NCn

e R, gNCn
e R) ∧Ncyc

∧
(NCn

e A,gNCn
e A) ACn

.

Here at the kth level, the map is

B((NCn
e R)∧(k) ∧ gNCn

e R, (NCn
e A)∧(k) ∧ gNCn

e A,ACn
)

−→ ((NCn
e R)∧(k) ∧ gNCn

e R) ∧(NCn
e A)∧(k)∧gNCn

e A ACn ,
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which is a weak equivalence since (NCn
e R)∧(k) ∧ gNCn

e R is flat as a module over
(NCn

e A)∧(k) ∧ gNCn
e A. �

Similarly, we can extend the homotopical statement of Proposition 4.10 to the
relative setting.

Proposition 6.12. Regarded as a functor on commutative A-algebras, the functor

AN
S1

e is a left Quillen functor with respect to the positive complete model structure

on A-Com and the FFin-model structure on AS1 -ComS1

U .

Proposition 6.13. Let R → R′ be a weak equivalence of A-algebras where R
is cofibrant and R′ is a cofibrant commutative A-algebra. Then the induced map

AN
S1

e R→ AN
S1

e R′ is an FFin-equivalence.

Proof. By Theorem 6.11,

AN
S1

e R ∼= NS1

e R ∧NS1
e A AS1

represents the derived smash product. Since NS1

e R′ is cofibrant as a commutative

NS1

e A-algebra,

AN
S1

e R′ ∼= NS1

e R′ ∧NS1
e A AS1

also represents the derived smash product. �

7. When do we have relative cyclotomic structures?

One application of the perspective of THH as the S1-norm is the construction

of relative versions of TR and TC built from AN
S1

e R, which we discuss in this

section. In previous drafts, the authors asserted that AN
S1

e could in general be
endowed with cyclotomic structure or op-pre-cyclotomic structures. However, as
explained below, except for very special choices for A (such as A = S), this is
not correct. Some of the difficulties arise from subtleties of the behavior of the
derived functor of change of universe on commutative ring orthogonal spectra, q.v.
Example 6.3 above and Example 7.5 below. Other difficulties arise from a basic
incompatibility of diagonal maps, as we will explain.

We begin with an example due to Lars Hesselholt that illustrates the impossi-
bility of a general construction of a nontrivial cyclotomic structure. Let R be a
cofibrant commutative ring orthogonal spectrum. Recall that the cyclotomic struc-
ture on THH(R) yields an isomorphism THH(R)→ ρ∗pΦ

CpTHH(R). Essentially

by definition, there is a natural map ΦCpTHH(R) → THH(R)tCp , where (−)tCp

denotes the Tate fixed-points; this map is simply a relabeling of the map

(THH(R) ∧ ẼCp)
Cp −→ (F (EG+, THH(R)) ∧ ẼCp)

Cp

induced by the collapse map EG+ → S0. Therefore, we have a composite map

THH(R) −→ ρ∗pΦ
CpTHH(R) −→ ρ∗pTHH(R)tCp .

(In fact, in the Nikolaus-Scholze formalism for describing cyclotomic structures, it is
shown that for bounded-below R this map is equivalent to the data of a cyclotomic
structure as we present here [38].) The counterexample arises from consideration
of this map in the specific example of THHHZ(Fp).
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Example 7.1. Suppose that we could construct p-cyclotomic structures for general
R and A, and that the expected naturality holds. Then in particular we would have
a commutative diagram of ring orthogonal spectra

THH(Fp) //

��

THHHZ(Fp)

��

THH(Fp)
tCp // THHHZ(Fp)

tCp .

Passing to homotopy groups and composing with the edge homomorphism in the
Tate spectral sequence then yields a commutative diagram of graded rings

SFp
(t) //

��

ΓFp
(v)

��

SFp
(t, t−1)

∼= // SFp
(v, v−1),

where SFp denotes the symmetric algebra and ΓFp the divided power algebra. One
then concludes that the composite of the top horizontal map and the righthand
vertical map must be zero in positive degrees.

In order to understand the situation better, we now describe a natural op-
precyclotomic structure on AS1 . The geometric fixed point functor ΦH is lax
symmetric monoidal, and therefore gives rise to a functor

ΦH : AG-ModGU −→ (ΦHAG)-Mod
G/H

UH

when H is normal in G. In the case of a finite subgroup Cn < S1, for an AS1 -
module X, we have that ΦCnX is an orthogonal S1/Cn-spectrum and a module
over ΦCnAS1 . In fact, it is a module over AS1/Cn

.

Proposition 7.2. Let A be a (non-equivariant) commutative ring orthogonal spec-
trum and let H be a closed normal subgroup of a compact Lie group G. There is a
natural map of commutative ring orthogonal G/H-spectra AG/H → ΦHAG.

Proof. By adjunction, maps AG/H → ΦHAG are in bijective correspondence with

maps A → (ΦHAG)
G/H . The natural map in question can thus be constructed as

the adjoint of the composite

A −→ (AG)
G ∼= ((AG)

H)G/H −→ (ΦHAG)
G/H .

Alternatively, we can give a direct construction as follows. Let X be an arbitrary
non-equivariant orthogonal spectrum and write XG for the application of the point-
set functor IU

R∞ . We write ΦHXG as the coequalizer

∨
V,W<U

J U
G (V,W )H ∧ FWHS0 ∧ (XG(V ))H //

//
∨
V <U

FV HS0 ∧ (XG(V ))H

in orthogonal G/H-spectra. For V an H-fixed G-inner product space, we can also
regard V as a G/H-inner product space, and we have

XG/H(V ) ∼= XG(V ) = (XG(V ))H .
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Writing XG/H as the coequalizer

∨
V,W<UH

J UH

G/H(V,W ) ∧ FWS
0 ∧XG/H(V ) //

//
∨

V <UH

FV S
0 ∧XG/H(V ),

we get a canonical natural map of orthogonal G/H-spectra λ : XG/H → ΦHXG.

The symmetric monoidal transformation ΦHXG∧Φ
HYG → ΦH(XG∧YG) is induced

by the natural map

FV H
1
S0∧(XG(V1))

H∧FV H
2
S0∧(YG(V2))

H −→ F(V1⊕V2)HS
0∧((XG∧YG)(V1⊕V2))

H ,

and we see that λ is also lax symmetric monoidal. Applying these observations to
the commutative ring orthogonal spectrum A and the multiplication map A∧A→
A, we see that λ induces a map of commutative ring orthogonal G/H-spectra
AG/H → ΦHAG, natural in the commutative ring orthogonal spectrum A. �

We now specialize this to the subgroup Cn < S1 and an AS1 -module X. Pulling
back along the nth root isomorphism ρn : S

1 → S1/Cn gives rise to an orthogonal
S1-spectrum ρ∗nΦ

CnX that is a module over AS1 ∼= ρ∗nAS1/Cn
.

Definition 7.3. An op-p-precyclotomic spectrum relative to A consists of an AS1 -
module X together with a map of AS1 -modules

γ : X −→ ρ∗pΦ
CpX.

Proposition 7.2 thus constructs an op-p-precylotomic spectrum structure on AS1 .
However, it is important to be clear about what this does and doesn’t prove: specif-
ically, we do not in general know that ΦCpAS1 computes the derived geometric fixed
points. This problem can be circumvented by working with E∞ objects in orthog-
onal spectra instead of strict commutative rings; in this case, for a cofibrant E∞

ring orthogonal spectrum A we do obtain a version of the map from Proposition 7.2
that lands in the derived geometric fixed points.

One would now hope to use the same argument as for Theorem 4.6 to construct

an op-p-precyclotomic structure on AN
S1

e R. Unfortunately, there is a basic com-
patibility issue which we now explain. It is possible to construct an A-relative
version of the diagonal map

∆A : X −→ ΦGAN
G
e X.

(a special case of the analogue of Proposition 2.19), which we can now state using
Proposition 7.2.

Proposition 7.4. Let A be a commutative ring orthogonal spectrum and let X be
an A-module. For any finite group G, there is a natural diagonal map

∆A : X −→ ΦGAN
G
e X.

of A-modules, where the A-module action on the right is induced by the composite
map A→ ΦGNG

e A→ ΦGAN
G
e X.

Proof. The map itself is constructed as the composite

X
∆
−−→ ΦGNG

e X −→ ΦG(AG ∧NG
e A

NG
e X) ∼= ΦGAN

G
e X,

where the last isomorphism is Proposition 6.8. To show that this is a map of
A-modules as specified, it suffices to show that the natural transformation Id →
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ΦGNG
e is lax monoidal, as the second part of the composite clearly is; this latter

statement follows from the Proposition 2.19.
�

The following example indicates some of the complexity of the behavior of this
diagonal map.

Example 7.5. In the previous proposition, consider the case when R = A and
A = PFRS

0 is the free commutative ring orthogonal spectrum on FRS
0 ≃ S−1.

When n = 2,

FixC2 PFRS
0(W ) =

∨

m

(JS1(Rm,W )/Σm)C2 .

In general for a (C2 × Σm)-set X, an element of X/Σm is C2-fixed when for a
representing element ξ, the C2-orbit lies in the Σm-orbit; when the action of Σm
on X is free, we can then associate to ξ a homomorphism fξ : C2 → Σm defined
by α · ξ = fξ(α) · ξ for α ∈ C2. (Choosing a different representative of the orbit
changes the homomorphism by conjugation fσξ = σfξσ

−1.)
For X = JS1(Rm,W ), and ξ : Rm → W an element of X, the C2-orbit of ξ

lies in the Σm-orbit precisely when there exists a homomorphism f : C2 → Σm such
that α ·ξ = ξ ·f(α)−1, where α acts by the C2-action onW and ξ ·f(α)−1 is induced
by the change of coordinates on Rm associated to the permutation f(α)−1 (and we
have fξ = f in the preceding notation). This gives us a decomposition of sets

(JS1(Rm,W )/Σm)C2 ∼=

( ∨

f : C2→Σm

JS1(f∗Rm,W )C2

)
/Σm,

where Σm acts by conjugation of the set of homomorphisms and permutation on the
coordinates, and f∗Rm denotes Rm with C2-action coming from f . It is essentially
clear that the bijection above is a homeomorphism thinking in terms of Thom spaces
of corresponding isometry spaces and noting that those are disjoint.

In summary, we have a homeomorphism

FixC2 PFRS
0(W ) ∼=

∨

m

( ∨

f : C2→Σm

JS1(f∗Rm,W )C2

)
/Σm.

The summands with f the trivial map contribute a summand of AS1/C2
, but the

remaining summands make non-trivial contributions of orthogonal G/H-spectra of
the form F(Rm)σS

0/Z(σ) where σ is an order 2 element of Σm, Z(σ) is its centralizer,
and (f∗Rm)σ is its fixed points. In this case we see that the natural map of
Proposition 7.2 is split, and in general it is split for free commutative ring orthogonal
spectra, but the splitting is not natural and so does not extend to a splitting for
arbitrary commutative ring orthogonal spectra A.

Although one might hope to use Proposition 7.4 to construct an op-cyclotomic
structure on ATHH, there is an issue related to the fact that the map of commu-
tative ring orthogonal spectra

A −→ ΦGNG
e A −→ ΦGAG

inducing the A-module structure on the relative diagonal is in general not the same
map as the canonical map given in Proposition 7.2. In order to elucidate the basic
incompatibility, we use the description of ATHH in terms of base change given by
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Proposition 6.9. Since ΦCp commutes with smash product, the required structure
amounts to the data of the following commutative diagram

NS1

e R

��

NS1

e A

��

//oo AS1

��

ΦCpNS1

e R ΦCpNS1

e A //oo ΦCpAS1 .

The left-hand square commutes by naturality. But using the op-precyclotomic
structure from Proposition 7.2, the right-hand diagram does not in general com-
mute!

However, this diagram does commute (essentially by hypothesis) in the case
that A is the underlying non-equivariant commutative ring orthogonal spectrum
of a p-cyclotomic commutative ring orthogonal S1-spectrum A, the canonical map

NS1

e A→ A is a map of p-cyclotomic spectra, and R is an A-algebra. Specifically, we
can immediately deduce Theorem 1.8 from the introduction (using Theorem 6.11
to retain homotopical control).

Theorem 7.6. Let A be a cofibrant commutative ring orthogonal spectrum that
is ι∗eA for a cofibrant p-cyclotomic commutative ring orthogonal S1-spectrum A.

Moreover, assume that the canonical counit map NS1

e A → A is a p-cyclotomic
map. Let R be a cofibrant A-algebra. Then the derived smash product

AN
S1

e R ∼= NS1

e R ∧NS1
e A A

is a p-cyclotomic spectrum.

The statement of Theorem 7.6 should be interpreted more as a precise explana-
tion of the difficulty of having a reasonable relative cyclotomic structure than as
a condition one expects to arise frequently. We know comparatively few examples
beyond S. One class of examples arises when A is a smashing localization of the

sphere spectrum; e.g., A = LKUS and A is the pushforward IS
1

e A. But in such
cases the relative and absolute THH are naturally weakly equivalent, and so these
examples are not very interesting.

More generally, one can consider the cyclotomic spectrum A = SS1 ∧ A for a
non-equivariant cofibrant commutative ring orthogonal spectrum A. As discussed

in warning 6.1, this spectrum is not typically equivalent to IS
1

e A. Therefore, it

is not formal that there exists a reasonable map NS1

e A → A in this case; e.g.,
when A = HZ one can check that no such map exists. However, an interesting
example is explained and applied in the context of p-adic Hodge theory by Bhatt-
Morrow-Scholze [1, §11.1]. Specifically, they show that the relative THH in the
case A = S[t] = Σ∞

+ N does admit a cyclotomic structure; Proposition [1, 11.3]
provides a verification of the conditions of Theorem 7.6, expressed in the formalism
of the Nikolaus-Scholze approach to cyclotomic spectra [38].

The same argument proves a slightly more general version of the preceding the-
orem, where instead we let A be a commutative ring orthogonal spectrum, R an A-

algebra, andM a coefficient spectrum which is an NS1

e A-module and a p-cyclotomic
spectrum. The following is Theorem 1.9 from the introduction.

Theorem 7.7. Let A be a cofibrant commutative ring orthogonal spectrum and R

a cofibrant A-algebra. Let M be a p-cyclotomic object in NS1

e A-modules. Then the
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derived smash product

NS1

e R ∧NS1
e AM

is a p-cyclotomic spectrum.

Under the hypotheses of Theorem 1.8, using the relative analogues of Defini-
tions 3.8 and 3.9, we obtain analogues of TR and TC which we denote ATR and

ATC. These constructions are evidently functorial, which proves Theorem 1.10
from the introduction.

8. THH of ring Cn-spectra

For G a finite group and H < G a subgroup, the norm NG
H provides a functor

from orthogonal H-spectra to orthogonal G-spectra. In this section, we generalize

this construction to a relative norm NS1

Cn
, which we view as a “Cn-relative THH”.

We begin with an explicit construction in terms of a cyclic bar construction, which
generalizes the simplicial object studied in Section 4 on the edgewise subdivision of
the cyclic bar construction.

Definition 8.1. Let R be an associative ring orthogonal Cn-spectrum indexed on

the trivial universe R∞. Let N cyc,Cn
∧ R denote the simplicial object that in degree

q is R∧(q+1), has degeneracy si (for 0 ≤ i ≤ q) induced by the inclusion of the unit
in the (i + 1)-st factor, has face maps di for 0 ≤ i < q induced by multiplication
of the ith and (i + 1)st factors. The last face map dq is given as follows. Let αq
be the automorphism of R∧(q+1) that cyclically permutes the factors, putting the
last factor in the zeroth position, and then acts on that factor by the generator
g = e2πi/n of Cn. The last face map is dq = d0 ◦ αq.

The previous definition constructs a simplicial object but not a cyclic object.
Nevertheless, it does have extra structure of the same sort found on the edgewise
subdivision of a cyclic object. The operator αq in simplicial degree q is the generator

of a Cn(q+1)-action (the action obtained by regarding R∧(q+1) as an indexed smash
product for Cn < Cn(q+1)). The faces, degeneracies, and operators αq satisfy the
following relations in addition to the usual simplicial relations:

αn(q+1)
q = id

d0αq = dq

diαq = αq−1di−1 for 1 ≤ i ≤ q

siαq = αq+1si−1 for 1 ≤ i ≤ q

s0αq = α2
q+1sq

This defines a Λop
n -object in the notation of [8, 1.5]. As explained in [8, 1.6–8], the

geometric realization has an S1-action extending the Cn-action.

Definition 8.2. Let R be an associative ring orthogonal Cn-spectrum indexed

on the universe Ũ = ι∗Cn
U . The relative norm NS1

Cn
R is defined as the composite

functor

NS1

Cn
R = IU

R∞ |N
cyc,Cn
∧ (IR

∞

Ũ
R)|

When R is a commutative ring orthogonal Cn-spectrum, we have the following
analogue of Proposition 4.3.
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Proposition 8.3. The restriction of NS1

Cn
to ComCn

Ũ
lifts to a functor

NS1

Cn
: ComCn

Ũ
−→ ComS1

U

that is left adjoint to the forgetful functor

ι∗ : ComS1

U −→ Com
Cn

Ũ
.

We now describe the homotopical properties of the relative norm. The following
analogue of Theorem 4.9 has the same proof.

Theorem 8.4. Let R → R′ be a weak equivalence of cofibrant associative ring

orthogonal Cn-spectra. Then NS1

Cn
R→ NS1

Cn
R′ is a FFin-equivalence.

In the commutative case, we have the following analogue of Proposition 4.10
(also using an identical proof).

Theorem 8.5. Regarded as a functor on commutative ring orthogonal Cn-spectra,

the functor NS1

Cn
is a left Quillen functor with respect to the positive complete model

structure on ComCn

Ũ
and the positive complete FFin-model structure on ComS1

U .

We now turn to the question of the cyclotomic structure.

Theorem 8.6. Let R be a cofibrant associative ring orthogonal Cn-spectrum. If p

is prime to n, then NS1

Cn
R has the natural structure of a p-cyclotomic spectrum.

Proof. As in the proof of Theorem 4.6, we can identify ι∗Cpn
NS1

Cn
R as the geometric

realization of a simplicial orthogonal Cpn-spectrum of the form

N
Cpn

Cn
(R∧(•+1)).

Since p is prime to n, by Proposition 2.19 we have a diagonal map R∧(q+1) →

ΦCpN
Cpn

Cn
R∧(q+1), which again commutes with the simplicial structure and induces

a diagonal map

τp : N
S1

Cn
R −→ ρ∗pΦ

CpNS1

Cn
R.

Under the hypothesis that R is cofibrant as an orthogonal Cn-spectrum, Theo-

rem 2.35 shows that the diagonal map R∧(q+1) → ΦCpN
Cpn

Cn
R∧(q+1) is an isomor-

phism, and it follows that τp is an isomorphism. The inverse gives the p-cyclotomic
structure map. �

As usual, we can construct TRCn
R and TCCn

R from the cyclotomic structure

on NS1

Cn
R. And as before, when R only has the homotopy type of a cofibrant object,

application of Proposition 3.11 allows us to work with opTRCn
and opTCCn

.
When p divides n, the diagonal map is of the form

NS1

Cn/p
ΦCpR −→ ΦCpNS1

Cn
R,

and is an isomorphism when R is cofibrant as an orthogonal Cn-spectrum or as
a commutative ring orthogonal Cn-spectrum. In these cases, we can get a p-
cyclotomic structure map if we have one on R of the following form.

Definition 8.7. For p | n, a Cn p-cyclotomic spectrum consists of an orthogonal
Cn-spectrum X together with a map of orthogonal Cn-spectra

t : NCn

Cn/p
ΦCpX −→ X
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that induces a genuine Cn-equivariant equivalence to X from the derived composite
functor.

Proposition 8.8. Assume p | n and let R be an associative ring orthogonal Cn-
spectrum with a Cn p-cyclotomic structure such that the structure map t is a ring

map. Then NS1

Cn
R has the natural structure of a p-cyclotomic spectrum.

At present, we do not know if the previous proposition is interesting. However,
for any (non-equivariant) ring orthogonal spectrum R′, R = NCn

e R′ satisfies the

hypothesese, and NS1

Cn
R ∼= NS1

e R′.

9. Spectral sequences for ATR

In this section we present four spectral sequences for computing ATR. In each
case we actually have two spectral sequences, one graded over the integers and
a second graded over RO(S1). We follow the modern convention of denoting an
integral grading with ∗ and an RO(S1)-grading with ⋆. Although the two look
formally similar, they are very different computationally, for reasons explained in
the introduction to [26]: the Tor terms are computed using very different notions

of projective module. Specifically, for V a non-trivial representation π
(−)
∗ (ΣVR)

cannot be expected to be projective as a π
(−)
∗ R Mackey functor module; however,

π
(−)
⋆ (ΣVR) is of course projective as a π

(−)
⋆ R Mackey functor module, being just a

shift of the free module π
(−)
⋆ R.

9.1. The absolute to relative spectral sequence. The equivariant homotopy

groups πCn
∗ (NS1

e R) are the TR-groups TRn∗ (R) and so πCn
∗ (AN

S1

e R) are by defini-
tion the relative TR-groups ATR

n
∗ (R).

Notation 9.1. Let

TR
(−)
∗ (R) = π

(−)
∗ (NS1

e (R)) TR
(−)
⋆ (R) = π

(−)
⋆ (NS1

e (R))

ATR
(−)
∗ (R) = π

(−)
∗ (AN

S1

e (R)) ATR
(−)
⋆ (R) = π

(−)
⋆ (AN

S1

e (R))

Using the isomorphism of Proposition 6.9

AN
S1

e (R) ∼= NS1

e (R) ∧NS1
e A AS1 ,

we can apply the Künneth spectral sequences of [26] to compute the relative TR-
groups from the absolute TR-groups and Mackey functor Tor. Technically, to apply
[26] and for ease of statement, we restrict to a finite subgroup H < S1. Recall that

for a commutative ring orthogonal spectrum A, AH denotes IŨ
R∞A where Ũ is the

complete S1-universe regarded as a complete H-universe, and we regard A as an
H-trivial orthogonal H-spectrum.

Theorem 9.2. Let A be a cofibrant commutative ring orthogonal spectrum and let
R be a cofibrant associative A-algebra or cofibrant commutative A-algebra. For each
finite subgroup H < S1, there is a natural strongly convergent spectral sequence of
H-Mackey functors

Tor
TR(−)

∗
(A)

∗,∗ (TR
(−)
∗ (R), π

(−)
∗ (AH)) =⇒ ATR

(−)
∗ (R),

compatible with restriction among finite subgroups of S1.
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Compatibility with restriction among finite subgroups of S1 refers to the fact that
for H < K, the restriction of the K-Mackey functor Tor to an H-Mackey functor
is canonically isomorphic to the H-Mackey functor Tor and the corresponding iso-
morphism on E∞-terms induces the same filtration on π∗. (Free K-Mackey functor
modules restrict to free H-Mackey functor modules essentially because finite K-sets
restrict to finite H-sets.)

We also have corresponding Künneth spectral sequences graded on RO(H) for
H < S1 or RO(S1). We choose to state our results in terms of the RO(S1)-
grading because this makes the behavior of the restriction among subgroups easier
to describe; the restriction maps RO(S1) → RO(H) are surjective, and as a re-
sult Tor-groups calculated in RO(H)-graded homological algebra restrict naturally
to Tor-groups calculated in RO(S1)-graded homological algebra. In the following
theorem, ⋆ denotes the RO(S1)-grading.

Theorem 9.3. Let A be a cofibrant commutative ring orthogonal spectrum and let
R be a cofibrant associative A-algebra or cofibrant commutative A-algebra. For each
finite subgroup H < S1, there is a natural strongly convergent spectral sequence of
H-Mackey functors

Tor
TR(−)

⋆ (A)
∗,⋆ (TR

(−)
⋆ (R), π

(−)
⋆ (AH)) =⇒ ATR

(−)
⋆ (R),

compatible with restriction among finite subgroups of S1.

9.2. The simplicial filtration spectral sequence. The spectral sequence of the
preceding subsection essentially gives a computation of the relative theory in terms
of absolute theory. More often we expect to use the relative theory to compute the
absolute theory. Non-equivariantly, the isomorphism

(9.4) THH(R) ∧A ∼= ATHH(R ∧A)

gives rise to a Künneth spectral sequence

TorA∗(R∧SR
op)

∗,∗ (A∗(R), A∗(R)) =⇒ A∗(THH(R)).

As employed by Bökstedt, an Adams spectral sequence can then in practice be
used to compute the homotopy groups of THH(R). For formal reasons, the iso-
morphism (9.4) still holds equivariantly, but now we have three different versions of
the non-equivariant Künneth spectral sequence (none of which have quite as elegant
an E2-term) which we use in conjunction with equation (9.4).

The first equivariant spectral sequence generalizes the Künneth spectral sequence
in the special case when π∗A is a field. Non-equivariantly, it derives from the
simplicial filtration of the cyclic bar construction; equivariantly, we restrict to a
finite subgroup H < S1 and look at the simplicial filtration on the nth edgewise
subdivision (described in the proof of Theorem 4.9).

Theorem 9.5. Let A be a cofibrant commutative ring orthogonal spectrum and let
R be a cofibrant associative A-algebra or cofibrant commutative A-algebra. Let H
be a finite subgroup of S1.

(1) There is a natural spectral sequence strongly converging to the integer graded

H-Mackey functor ATR
(−)
∗ (R) with E1-term

E1
s,t = πt(AN

H
e (R∧(s+1))).
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(2) There is a natural spectral sequence strongly converging to the RO(S1)−

graded H-Mackey functor ATR
(−)
⋆ (R) with E1-term

E1
s,τ = πτ (AN

H
e (R∧(s+1))).

The E2-terms of both spectral sequences are compatible with restriction among finite
subgroups of S1.

To see the compatibility with restriction among subgroups, we note that for
H = Cmn, the E

2-term (E2
∗,τ )

Cm is the homology of the simplicial object

sdn π
Cm
⋆ ((NCm

e A)∧(•+1)).

For H < K, the subdivision operators then induce an isomorphism on E2-terms.
In general, we do not know how to describe the E2-term of these spectral se-

quences. One can formulate box-flatness hypotheses that would permit the iden-
tification of the E2-term as a kind of Mackey functor Hochschild homology [2];
however, such hypotheses will rarely hold in practice. On the other hand, when
A = HF for F a field, for formal reasons, the E1-term is a purely algebraic functor
of the graded vector space π∗R. We conjecture that the E2-term is a functor of the
graded F-algebra π∗R.

9.3. The cyclic filtration spectral sequence. We have a second spectral se-
quence arising from the filtration on cyclic objects constructed by Fiedorowicz and
Gajda [17]. Although they work in the context of spaces, their arguments generalize
to provide an FFin-equivalence

|EX•| −→ |X•|

for cyclic orthogonal spectra, where E is the evident orthogonal spectrum general-
ization of the construction in their Definition 1:

EX• =

∫

[m]∈Λface

Xm ∧ Λ(•, [m])+

The proof of their Proposition 1 (which in fact only gives an FFin-equivalence for
spaces) also applies in the orthogonal spectrum context, substituting geometric
fixed points for fixed points, to prove the FFin-equivalence for orthogonal spectra.
Change of universe IU

R∞ commutes with geometric realization, and we use the coend
filtration of EX• for X• = N cyc

∧A
R to obtain the following Fiedorowicz-Gajda cyclic

filtration spectral sequences.

Theorem 9.6. Let A be a cofibrant commutative ring orthogonal spectrum and let
R be a cofibrant associative A-algebra or cofibrant commutative A-algebra. Let H
be a finite subgroup of S1.

(1) There is a natural spectral sequence of integer graded H-Mackey functors

strongly converging to ATR
(−)
∗ (R) with E1-term

E1
s,t = πt(I

U
R∞(S1

+ ∧Cs+1
R∧(s+1))).

(2) There is a natural spectral sequence of RO(S1)-graded H-Mackey functors

strongly converging to ATR
(−)
⋆ (R) with E1-term

E1
s,τ = πτ (I

U
R∞(S1

+ ∧Cs+1
R∧(s+1))).

The E1-terms are compatible with restriction among finite subgroups of S1.
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9.4. The relative cyclic bar construction spectral sequence. The third spec-

tral sequence directly involves Mackey functor Tor. For an A-algebra R, let gAN
Cn

e R

denote the (AN
Cn
e R,AN

Cn
e R)-bimodule obtained by twisting the left action of

AN
Cn
e R on AN

Cn
e R by the generator g = e2πi/n of Cn. We can identify the Cn-

homotopy type of AN
S1

e R in terms of this bimodule,

AN
S1

e R ∼= IUŨN
cyc
∧A

(AN
Cn
e R, gAN

Cn

e R),

where the cyclic bar construction on the right is taken in the symmetric monoidal
category of A-modules in orthogonal Cn-spectra and Ũ = ι∗Cn

U denotes U viewed
as a complete Cn-universe. A consequence of this description is that the main
theorem of [26] constructing the equivariant Künneth spectral sequence applies:

Theorem 9.7. Let A be a cofibrant commutative ring orthogonal spectrum and
let R be a cofibrant associative A-algebra or cofibrant commutative A-algebra. Fix
n > 0.

(1) There is a natural strongly convergent spectral sequence of integer graded
Cn-Mackey functors

E2
∗,∗ = Tor

NCn
e (R∧AR

op)
∗,∗ (π∗AN

Cn
e R, π∗

g
AN

Cn

e R) =⇒ ATR
(−)
∗ (R).

(2) There is a natural strongly convergent spectral sequence of RO(S1)-graded
Cn-Mackey functors

E2
∗,⋆ = Tor

NCn
e (R∧AR

op)
∗,⋆ (π⋆AN

Cn
e R, π⋆

g
AN

Cn

e R) =⇒ ATR
(−)
⋆ (R).

We see no reason why the E2-terms for the spectral sequences of the previous
theorem should be compatible under restriction among finite subgroups of S1.

10. Adams operations

In this section, we study the circle power operations on THH(R) for a commuta-
tive ring R and on ATHH(R) for a commutative A-algebra R. Such operations were
first defined on Hochschild homology by Loday [27] and Gerstenhaber-Schack [18]
and explained by McCarthy [35] in terms of covering maps of the circle and extended
to THH by [37]. Following [10, 4.5.3], we refer to these as Adams operations and
denote as ψr (though in older literature [28, 4.5.16], the Adams operations differ
by a factor of the operation number r). Specifically, we study how the operations
interact with the equivariance, and we show that when r is prime to p, ψr descends
to an operation on TR(R), TC(R), cf. [10, §7]. We study the effect of ψr on TR0(R)
and TC0(R), where we show it is the identity on TR0(R) when R is connective.

We recall the construction of McCarthy’s Adams operations, which ultimately
derives from the identification of N cyc

∧A
R as the tensor R ⊗ S1 in the category of

commutative A-algebras. Using the standard model for the circle as the geometric
realization of a simplicial set S1

• (with one 0-simplex and one non-degenerate 1-
simplex), the tensor identification is just observing that N cyc

∧A
R is the simplicial

object obtained by taking S1
• coproduct factors of R in simplicial degree •,

N cyc
∧A
R = R⊗ S1

• .

The operation ψr is induced by the r-fold covering map

qr : S
1 −→ S1, eiθ 7→ eriθ.

after tensoring with R.
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Definition 10.1. Let A be a commutative ring orthogonal spectrum and R a
commutative A-algebra. For r 6= 0, the Adams operation

ψr : ATHH(R) −→ ATHH(R)

is the map of (non-equivariant) commutative A-algebras obtained as the tensor of
R with the covering map qr : S

1 → S1.

We will study the equivariance of ψr using the Cn-action that arises on the
edgewise subdivision sdn of a cyclic set. To make this section more self-contained,
we again recall from [8, §1] how this works. There are natural homeomorphisms

δn : | sdnX| −→ |X|

for the n-fold edgewise subdivision of a simplicial space or simplicial orthogonal
spectrum, and canonical isomorphisms of simplicial objects sdr sdsX → sdrsX,
which together make the following diagram commute [8, 1.12]:

(10.2)

| sdr sdsX| //

δr

��

| sdrsX|

δrs

��

| sdsX|
δs

// |X|.

WhenX has a cyclic structure, sdnX comes with a natural Cn-equivariant structure
which on the geometric realization is the restriction to Cn of the natural S1-action;
moreover, in the diagram above, the left hand isomorphism is Cs-equivariant [8,
1.7–8].

We have a simplicial model of ψr by McCarthy’s observation that qs is the geo-
metric realization of a quotient map of simplicial sets sds S

1
• → S1

• . By naturality,
the maps qs are compatible with the maps δr and the top map in (10.2) in the sense
that the diagrams

| sdr sds S
1
• |

sdr qs //

δr

��

| sdr S
1
• |

δr

��

| sdr sds S
1
• | //

sdr qs

��

| sdrs S
1
• |

qrs

��

| sds S
1
• | qs

// |S1
• | | sdr S

1
• | qr

// |S1
• |

commute.

Proposition 10.3. Let A be a commutative ring orthogonal spectrum and R a
commutative A-algebra. For r 6= 0 and n relatively prime to r, the restriction of
qr is the r-power isomorphism Cn → Cn and the Adams operations ψr is a map of
commutative ring orthogonal Cn-spectra

ψr : ι∗CnAN
S1

e R −→ q∗r ι
∗
CnAN

S1

e R.

Moreover, for s relatively prime to n, the formula

(qr)
∗(ψs) ◦ ψr = ψrs : ι∗CnAN

S1

e R −→ q∗rsι
∗
CnAN

S1

e R.

holds.

Proof. As above, the r-fold covering map defining the Adams operations becomes
a Cn-equivariant map

sdn(sdr S
1) −→ (qr |Cn

)∗(sdn S
1).
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Tensoring levelwise and applying IŨ
R∞ , we obtain a map of simplicial commutative

A-algebras

IŨ
R∞(R⊗ (sdn sdr S

1)) −→ q∗rI
Ũ
R∞(R⊗ sdn S

1).

The result now follows from diagram (10.2) and the compatibility diagrams for the
quotient maps qs. �

In the case when p ∤ r, the previous proposition shows that in particular the
operation ψr should pass to categorical Cpn -fixed points (in the derived category
of A). Taking fibrant replacements, we get a map (of non-equivariant A-modules)

ψr : (AN
S1

e R)
Cpn

f −→ (AN
S1

e R)
Cpn

f

making the diagram

(AN
S1

e R)
Cpn+1

f

ψr

//

F

��

(AN
S1

e R)
Cpn+1

f

F

��

(AN
S1

e R)
Cpn

f ψr
// (AN

S1

e R)
Cpn

f

commute, where F is the natural inclusion of fixed-points. Passing to the homotopy
limit, we get an Adams operation ψr on ATF (R).

We next argue that for p ∤ r, the Adams operation ψr descends to TR(R) and
TC(R).

Theorem 10.4. Let R be a commutative ring orthogonal spectrum. For p ∤ r, the
Adams operation ψr induces maps

ψr : TR(R) −→ TR(R)

and
ψr : TC(R) −→ TC(R).

Proof. It suffices to consider the case when R is cofibrant and to show that ψr

commutes with the op-p-cyclotomic structure map

γ = τp : N
S1

e R −→ ρ∗pΦ
CpIŨ

R∞ | sdpN
cycR|.

This is clear from the naturality of (10.2). �

Finally, we provide the following computation for the action of the Adams oper-
ations on TR0 and TC0.

Theorem 10.5. Let R be a cofibrant commutative ring orthogonal spectrum. As-
sume that R is connective. Then for p ∤ r, the Adams operation ψr acts by the
identity on TR0(R).

Proof. Writing R0 = π0R, the hypothesis of connectivity implies that

π0TR(R) ∼= π0TR(R0),

and so it suffices to consider the case when R = HR0. By [20, Addendum 3.3], we
have a canonical isomorphism of TR0(R) with the ring of p-typical Witt vectors

W (R0) and canonical isomorphisms of π
Cpn

0 NS1

e R with Wn+1(R0), the p-typical
Witt vectors of length n + 1. Letting R0 vary over all commutative rings, ψr

then restricts to natural transformations ψrn+1 of rings Wn+1(−) → Wn+1(−),
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compatible with the restriction maps. We complete the proof by arguing that such
a natural transformation must be the identity.

Since the functor Wn+1 is representable, it suffices to prove that ψrn+1 is the
identity when R0 is the representing object Z[x0, . . . , xn], or, since this is torsion
free, when R0 = Q[x0, . . . , xn]. A fortiori, it suffices to prove ψrn+1 is the identity
when R0 is a Q-algebra. Since for a Q-algebra Wn+1(R0) is isomorphic as a ring
to the Cartesian product of n + 1 copies of R0 via the ghost coordinates, the
only possible natural ring endomorphisms of Wn+1 are the maps that permute the
factors. Since ψr commutes with the restriction map R on TR(R), and on the ghost
coordinates the restriction map induces the projection onto the first n factors, it
follows by induction that ψrn+1 is the identity. �

Corollary 10.6. Let R be a commutative ring orthogonal spectrum. Assume that R
is connective and that p ∤ r. Then TC0(R) has the Frobenius invariants of W (π0R)
as a quotient and the action of ψr descends to the identity map on this quotient.

Example 10.7. When we take R = S to be the sphere spectrum, [8, §5] identifies
TC(S)∧p as (S ∨ΣCP∞

−1)
∧
p , where CP∞

−1 denotes the Thom spectrum of the virtual
bundle −L, where L denotes the tautological line bundle. More to the point, ΣCP∞

−1

is the homotopy fiber of the S1-transfer ΣΣ∞
+ CP∞ → S. The tom Dieck splitting

identifies

TRn(S)∧p ≃
∏

0≤m≤n

(Σ∞
+ B(Cpn/Cpm))∧p

∼=
∏

0≤k≤n

(Σ∞
+ B(Cpk))

∧
p .

The operation ψr is defined on TC(S) for p ∤ r and acts on THH(S) as the identity
(on the point set level). By the formula in Theorem 10.3 it acts on the Cpn -fixed
points via the change of group isomorphism Cpn → Cpn given by the r-power
map. It therefore induces the corresponding r-power map on each classifying space
B(Cpn/Cpm) in each factor in TRn(S); of course, the r-power map on Cpn/Cpm
is the r-power map on Cpk under the canonical isomorphism. This allows us to
determine the action of ψr on TC(S). The computation of TC(S) in [8, §5] and
[31, §4.4] uses a weak equivalence

(ΣΣ∞
+ CP∞)∧p ≃ holim(Σ∞

+ BCpk)
∧
p ,

and the action of ψr on BCpk is compatible with the action of ψr on (ΣΣ∞
+ CP∞)∧p

given by multiplication by r on the suspension and the action on CP∞ ≃ K(Z, 2)
induced by the multiplication by r on Z. The fiber sequence

ΣCP∞
−1 −→ ΣΣ∞

+ CP∞ −→ S

has a consistent action of ψr (where we use the trivial action on S). After p-
completion, the action of {r | p ∤ r} extends to an action of the units of Z∧

p . The

Teichmüller character then gives an action of (Z/p)× and (since p− 1 is invertible
in Z∧

p ) a splitting into p− 1 “eigenspectra” wedge summands. This decomposition
of TC(S)∧p is well-known and plays a role in Rognes’ cohomological analysis of
Wh(∗)∧p at regular primes [39, §5].

11. Madsen’s remarks

In his CDM notes [31, p. 218], Madsen describes the restriction map, and notes
that the inverse is not as readily accessible even in the algebraic setting since
“∆(r) = r ⊗ · · · ⊗ r is not linear”. Yet in our framework, we naturally get the
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inverse to the cyclotomic structure map, rather than the cyclotomic structure map
itself. At first blush, this seems to pose a curious contradiction. The answer arises
from the transfer: v 7→ v⊗p is linear modulo the ideal generated by the transfer,
and this is exactly the ideal killed by LΦH .

The observation that the ideal killed by LΦH coincides with the ideal generated
by the transfer is essentially a formal consequence of the definition of the derived

geometric fixed point functor: LΦH(X) = (X ∧ ẼP)H is a composite of the cat-
egorical fixed points with the localization killing cells of the form S1/K for K a
proper subgroup of H. Computationally, this means that all transfers from proper
subgroups of H are killed.

The observation that the algebraic diagonal map is linear modulo the transfer is
more interesting. In particular, this question highlights the issue of constructing an
algebraic model of the norm functor that correctly reflects the homotopy theory. We
first consider the naive smash power which is simply the Cp-module (Z{x, y})⊗p,
where Z{x, y} is the free abelian group on the set {x, y}. Inside is the element
(x+ y)⊗p, which is obviously in the fixed points of the Cp-action. In this context,
Madsen’s remark boils down to the fact that (x + y)⊗p is not x⊗p + y⊗p. We can
expand (x + y)⊗p using a non-commutative version of the binomial theorem as
follows. Observing that the full symmetric group Σp acts on the tensor power (and
the Cp-action is just the obvious restriction), if we group all terms with i tensor
factors of x and p − i tensor factors of y, then we see that the symmetric group
permutes these and a subgroup conjugate to Σi×Σp−i stabilizes each element. We
therefore see that the sum of all of such terms for a fixed i can be expressed as the
transfer

Tr
Σp

Σi×Σp−i
x⊗i ⊗ y⊗(p−i).

Letting i vary and summing the terms (and then restricting back to Cp) shows that

(x+ y)⊗p = x⊗p + y⊗p +Res
Σp

Cp

( p−1∑

i=1

Tr
Σp

Σi×Σp−i
x⊗iy⊗(p−i)

)
.

All of the terms involving transfers are in the ideal generated by transfers by defi-
nition, and so we conclude that the pth power map is linear modulo these.

However, this algebraic model is not the correct analogue of the norm. First,
when we reduce modulo the transfer from proper subgroups in the pth tensor power
of a ring, then we also kill the transfer of the element 1. This then takes us from
Z-modules to Z/p-modules. Second, the fixed point Mackey functor associated to
the pth tensor power functor is not the right algebraic version of the norm.

There are now several constructions of a norm functor in the category of Mackey
functors that exhibit the correct homotopy-theoretic behavior. Mazur describes one
for cyclic p-groups [34], Hill-Hopkins gives one for a general finite group by stepping
through the norm in spectra [22], and subsequently Hoyer gave a purely algebraic
definition for all finite groups and showed it to be equivalent to the others [24].
One of the basic properties of the algebraic norm is that the norm from H-Mackey
functors to G-Mackey functors is the functor underlying the left adjoint to the
forgetful functor from G-Tambara functors to H-Tambara functors. In particular,
since π0(R) for R a commutative ring G-spectrum is a G-Tambara functor [9], the
algebraic norm precisely mirrors the multiplicative behavior of the norm in spectra.
A more detailed exposition of the connection between the algebraic norm and THH
will appear in [2].
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In this context, if R is a commutative ring, then the inverse map considered by
Madsen is exactly the universally defined norm map

NCp
e : R −→ NCp

e (R)(Cp/Cp)

underlying the Tambara functor structure. While this map is not linear, it is so
modulo the transfer [42]. In fact, just as in topology, this map is a right inverse
to the “geometric fixed points” functor ΦCp on Mackey functors, the map which
takes a Mackey functorM and returns the quotient groupM(G/G)/ im(Tr), where

im(Tr) denotes the image of the transfer: ΦCp ◦N
Cp
e = Id.

We close by illustrating this all with an example which shows the failure of the
“naive” tensor power approach and the strength (and relative computability) of the
Tambara functor approach to the algebraic norm. Let p = 2, and let R = Z[x].
Then the two-fold tensor power, C2-equivariantly, is

Z[C2 · x] = Z[x, gx].

The transfer ideal is generated by 2 and x+ gx, and modulo 2 and x+ gx, the map
x 7→ x · gx induces the canonical surjection

Z[x] −→ Z/2[x · gx].

In this example, the map from R to the quotient of the fixed points of R⊗2 by the
ideal given by the transfer is not an isomorphism; we can interpret the failure to
be an isomorphism as a failure to correctly interpret the transfer of the element 1.
In particular, restricting to the submodule generated by 1 we implicitly computed

NC2
e Z = Z,

endowed with the trivial action. This is not what the algebraic norm computes for
us!

For G = C2 and for R = Z[x], the fixed points of NC2
e (Z[x]) are the ring

Z[t, y, x · gx]/(t2 − 2t, ty − 2y),

with the elements t and y the transfers of 1 and x respectively (the restriction map
takes t to 2, y to x + gx and x · gx to itself). In particular, we observe that the
unit 1 generates not a copy of Z but rather a copy of the Burnside ring Z[t]/t2−2t.
Thus, modulo the image of the transfer, this ring is simply Z[x · gx], and the norm
map x 7→ x · gx is an isomorphism.
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