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Abstract

We study tensor completion in the agnostic setting. In the classical tensor completion problem, we
receive n entries of an unknown rank-r tensor and wish to exactly complete the remaining entries. In
agnostic tensor completion, we make no assumption on the rank of the unknown tensor, but attempt to
predict unknown entries as well as the best rank-r tensor.

For agnostic learning of third-order tensors with the square loss, we give the first polynomial time
algorithm that obtains a “fast” (i.e., O(1/n)-type) rate improving over the rate obtained by reduction
to matrix completion. Our prediction error rate to compete with the best d x d x d tensor of rank-r is
9] (r2d3/ 2/n). We also obtain an exact oracle inequality that trades off estimation and approximation
error.

Our algorithm is based on the degree-six sum-of-squares relaxation of the tensor nuclear norm. The
key feature of our analysis is to show that a certain characterization for the subgradient of the tensor
nuclear norm can be encoded in the sum-of-squares proof system. This unlocks the standard toolbox for
localization of empirical processes under the square loss, and allows us to establish restricted eigenvalue-
type guarantees for various tensor regression models, with tensor completion as a special case. The new
analysis of the relaxation complements Barak and Moitra (2016), who gave slow rates for agnostic ten-
sor completion, and Potechin and Steurer (2017), who gave exact recovery guarantees for the noiseless
setting. Our techniques are user-friendly, and we anticipate that they will find use elsewhere.

1 Introduction

Recovering structured mathematical objects from partial measurements is a fundamental task in machine
learning and statistical inference. One important example, which has been a mainstay of modern research
in machine learning and high-dimensional statistics, is matrix completion. Here, we receive n entries from
an unknown d x d matrix, and the goal is to complete the remaining entries when n is as small is possible.
The key structural assumption that enables recovery when n < d? is that the underlying matrix is low-rank.
A celebrated line of research on matrix completion (Srebro and Shraibman, 2005; Candés and Recht, 2009;
Candes and Tao, 2010; Keshavan et al., 2010; Gross, 2011; Recht, 2011) has culminated in the following
guarantee: to exactly recover an incoherent rank-r matrix, n = 5(rd) uniformly sampled entries suffice.

While low-rank matrix completion has seen successful application across many problem domains (most
famously in the context of the Netflix Problem), for many tasks it is natural to consider not just pairwise
interactions but higher-order interactions, leading to the problem of tensor completion. Tensor completion
poses significant computational hurdles compared to the matrix case, but in an impressive recent work,
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Potechin and Steurer (2017) provide an efficient algorithm based on the sum-of-squares hierarchy that ex-
actly recovers a d x d x d tensor of rank-r with incoherent and orthogonal components from O (rdg/ 2) mea-
surements. While this undershoots the optimal statistical rate of O (rd), there is evidence that this is optimal
amongst polynomial time algorithms under certain average-case hardness assumptions (Barak and Moitra,
2016).

In real-world applications, the assumption that the underlying tensor is truly low-rank may be too strong,
and model misspecification is unavoidable. This is the main thrust of agnostic learning (Haussler, 1992;
Kearns et al., 1994) which, rather than attempting to recover an unknown model in some class, attempts
to predict as well as the best model. The aim of this paper is to develop guarantees for agnostic tensor
completion: predicting as well as the best low rank tensor, even when exact recovery is impossible.

We work in the following agnostic tensor regression model, which captures tensor completion as a special
case: we receive examples (X1,Y7,),...,(X,,Y,) iid. from an unknown distribution D, where each
instance X; is a d x d x d tensor and Y; is a real-valued response. Letting (-,-) denote the usual inner
product, we measure predictive performance of a given d x d x d tensor T via its square loss risk Lp(T) =
E X’y)ND(<T, X) - Y)z. Our goal is to use the samples to produce a predictor T}, that enjoy low excess
risk:

Lp(T,) - inf Lp(T)<e(n,r,d), (1)

T rank-r

where the bound (n,, d) converges to zero as n — co. When the observations X are uniformly distributed
indicators (i.e. X =e; ® e; ® ey, where (7, j, k) is uniform) this recovers the usual measurement model for
tensor completion. If the model is well-specified in the sense that Y = (X, T™) + £, where T is a low-rank
tensor and E[£ | X'] = 0, then low excess risk implies approximate recovery of 7. In general, the guarantee
(1) is interesting because it implies non-trivial predictive performance even in the presence of severe model
misspecification.

In the matrix case, agnostic excess risk guarantees of the type in (1) were characterized by Koltchinskii et al.
(2011). There it was shown that to compete with the best rank-r matrix with bounded entries, empirical risk
minimization with nuclear norm penalization obtains a fast rate of the form £(n,r,d) = O(rdlogd/n), and
also showed that this is optimal.! The nomenclature fast rate is intended to contrast the 1/n dependency on
n with slow rates, which have a 1/\/n dependency on n, and which are typically much simpler to obtain
(see Gaiffas and Lecué (2011) for slow rates in the matrix setting).

The results of Koltchinskii et al. (2011) leverage strong understanding of the (matrix) nuclear norm, namely
matrix concentration and decomposability/subgradient properties. In this paper, we tackle the following
questions:

* Can we give similar guarantees for agnostic fensor completion?

» Can we obtain fast rates while at the same time relaxing the strong statistical assumptions (low rank
observations, incoherence) needed for exact recovery?

* What are the best rates we can obtain subject to employing a polynomial-time algorithm?

'Interestingly, their results also show that incoherence—usually taken as necessary in matrix completion for positive results —is
not necessary to obtain prediction error bounds; boundedness suffices.



1.1 Our contributions

Our main result is to give the first polynomial time algorithm with a fast O(1/n)-type rate for agnostic
completion of third order tensors that improves over the rate obtained by the natural reduction to matrix
completion. Our main theorem gives excess risk bounds relative to low-rank orthogonal tensors, i.e. tensors
of the form .
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where |u; |, = ||villy = |willy = 1 and {w;} are orthogonal, as are {v;} and {w;}. The result is as follows.
Theorem 1 (informal). There is a convex set of dx dx d tensors T derived from a sum-of-squares relaxation
of the tensor nuclear norm, for which the empirical risk minimizer T), := arg mingp- % YL (T, X)) - V)2
can be computed in polynomial time, and guarantees that with probability at least 1 — o(1),

F23/2 )

n

Lp(T),) - Lo inf Lp(T) < 5( (3)

: rank-r, orthogonal
The guarantee applies to both random indicator measurements (tensor completion) and gaussian measure-
ments (tensor compressed sensing).

The full version of the theorem is stated in Section 3. The result be thought of as a generalization of the
agnostic matrix completion results of Koltchinskii et al. (2011) to higher-order tensors. We also achieve a
more general exact oracle inequality that trades off approximation and estimation error. This takes the form

Lp(T,) < inf {LD(T) + O’(M)},

T": orthogonal

where r(7T') denotes the rank of 7.2

Algorithm. Our algorithm is based on the sum-of-squares (SoS) hierarchy of convex relaxations (Shor,
1987; Parrilo, 2000; Lasserre, 2001), applied to the tensor nuclear norm. For k£ € N, the sum-of-squares
hierarchy defines a sequence of outer convex relaxations |- | auc,, that give an increasingly tight approximation
to the (hard to approximate (Hillar and Lim, 2013)) tensor nuclear norm ||, . as k is increased. The SoS
nuclear norm was previously used in the work of Barak and Moitra (2016), who gave O(1/./n) rates for
tensor completion in the agnostic model with absolute loss. Their main contribution was to show how certain
spectral bounds arising in 3-SAT refutation (Coja-Oghlan et al., 2004) bound the Rademacher complexity
for the unit ball of the degree-six SoS nuclear norm, thereby controlling the usual empirical process via
uniform convergence. Our guarantees are based on empirical risk minimization over the (scaled) ball in this
norm, specifically the degree-six relaxation ||-|| and our analysis builds on their Rademacher complexity
bounds.

Aicg ?

Restricted eigenvalue and subgradient lemmas. While the O(1/\/n)-type rates provided in Barak and Moitra
(2016) are optimal (in terms of n dependence) for generic Lipschitz losses, it is not immediately obvious
whether their result can be used to provide O(1/n)-type fast rates for strongly convex losses like the square
loss. It has long been recognized that to obtain fast rates for prediction with strongly convex losses, more
refined control of the empirical process is necessary. In particular, it is well-known that local Rademacher
complexities and related fixed point complexities characterize the rates for empirical risk minimization in
a data-dependent fashion. To bound such localized complexities under convex relaxations, the typical ap-
proach is to establish a restricted eigenvalue property for the empirical design matrix (Negahban et al., 2012;

*Here the word “exact” refers to the fact that the leading constant in front of the loss on the right-hand-side is 1; such guarantees
generally do not easily follow from the usual machinery used to analyze well-specified models.



Bartlett et al., 2012; Lecué and Mendelson, 2017, 2018). Establishing such guarantees for regularizers such
as the /1 norm, nuclear norm, and so on is usually done by appealing to properties of the subgradient of
the norm and proving that the norm (approximately) decomposes across certain subspaces (Negahban et al.,
2012). The main tool we establish here, which allows us to unlock the full power of localized complexities
and establish rates fast rates, is a new guarantee of this type for the SoS nuclear norm. Informally, we show:
Theorem 2 (informal). Let T be a fixed orthogonal tensor, and let T = {T : |T| <. < |T" | /.. }- Then:

Alice Atice

|T-T| <O(r(T")-IT-T"|p VT eT.

nucy

This theorem is a consequence of a more general result we prove in Section 2, which gives a characterization
of the subgradient of |||, at any orthogonal tensor. The basic idea is to show that a characterization for
the subgradient of the tensor nuclear norm given in Yuan and Zhang (2016) can be captured in the sum-
of-squares proof system. The final result (Theorem 4) is fairly user-friendly, and packages the complexity
of SoS into a self-contained statement about geometric properties of the norm || ,. We hope that this
will find use in other applications. As one concrete example, in Section 3 we show how the subgradient
characterization can also be used to give agnostic fast rates for the problem of low-rank tensor sensing with
gaussian measurements. Here we also obtain 5(r2d3/ 2 /n)-type fast rates.

Lower bounds. Lastly, we prove that our results can’t be strengthened significantly while still obtaining
computationally efficient algorithms. It is straightforward to show that there is an inefficient predictor that
obtains O(rd/n) excess risk, whereas the dimension scaling in Theorem 1 is O(d®/?). This scaling is shared
by the other results based on the SoS nuclear norm (Barak and Moitra, 2016; Potechin and Steurer, 2017),
and Barak and Moitra (2016) show that finding relaxations for which the Rademacher complexity grows as
0(d3/ 2) is at least as hard as refuting random instances of 3-XOR. In Section 4 we give a computational
lower bound for agnostic learning that shows that obtaining square loss excess risk scaling as o(d3/ 2) is
at least as hard as a certain distinguishing problem for random 3-XOR, sometimes called learning sparse
parities with noise.

1.2 Related work

Early algorithms for computationally efficient tensor completion relied on unfolding: reshaping the tensor
into a matrix and applying a matrix completion algorithm (Tomioka et al., 2011; Tomioka and Suzuki, 2013;
Romera-Paredes and Pontil, 2013; Mu et al., 2014; Jain and Oh, 2014). This approach yields suboptimal
results for third-order tensors and other odd-order tensors. For example, for a third-order tensor in (R%)®3,
the most “balanced” unfolding of the tensor is a d x d® matrix, and so directly reducing to an algorithm
for agnostic matrix completion (e.g. Koltchinskii et al. (2011)) would yield suboptimal O(d?)-type sample
complexity.

Recent results of Montanari and Sun (2016), Potechin and Steurer (2017), and Xia et al. (2017) all give sub-
O(d?) type rates, but apply only to noiseless or well-specified models, and do not obviously extend to the
agnostic setting. Potechin and Steurer (2017) give exact completion in the noiseless case after 5(rd3/ 2)
entries are observed. Montanari and Sun (2016) show that a refined spectral approach based on unfolding
can obtain sub-O(d?) rates for prediction error in the noiseless setting, but they obtain a rate of O(1/ n?/ %)
that falls short of the O(1/n)-type rate we provide. Finally, Xia et al. (2017) recently showed that an algo-
rithm based on power iteration provides O(d/n)-type rates once n = Q(d®/?), but their result only applies
to well-specified models, and it seems unlikely that this algorithmic approach succeeds in the fully agnostic
setting.



Our results build on the seminal work of Barak and Moitra (2016) and Potechin and Steurer (2017), both
of which use sum-of-squares to give O(d3/ 2)-type guarantees that improve on unfolding. The former was
the first paper to study the agnostic setting, and gave slow excess risk guarantees for the absolute loss (i.e.,
rates growing as ﬁ). Technically, our results build on their Rademacher complexity bounds for the SoS
norms (Barak and Moitra, 2016), as well as spectral bounds from Hopkins et al. (2015). Obtaining fast
rates, however, requires developing new technical tools and necessitates that we control the subgradient of
the SoS norms. Our analysis here builds on ideas used to construct dual certificates for tensor completion in
Potechin and Steurer (2017).

Lastly, we mention that various recent works have begun to explore that power of SoS in other agnostic
learning settings. Notably, Klivans et al. (2018) provide square loss risk bounds for SoS algorithms for
robust regression. To the best of our knowledge our work is the first to provide fast rates for SoS algorithms
in any agnostic setting.

1.3 Preliminaries

We let ||-[|,, denote the £, norm, i.e. if z € R< is a vector then |||, = (z§:1|x,-|p)1/p. For a matrix A we
let || A, denote the operator norm/spectral norm and let |Al|,,. denote the nuclear norm. For matrices or
tensors we let |-| » denote the element-wise 2 norm. For any norm |-| we let |||, denote the dual.

We use O to suppress factors logarithmic in d, r, and 1/, where ¢ is the failure probability.

Tensor notation. The outer product between two vectors u € R% and v € R% is denoted v ® v, and
belongs to the space R™ ® R%. For a given vector u, we write u®* = u ® --- ® u (k times), and likewise
define (R?)®* = R?®---®@ R?. This paper develops algorithms for completion of 3-tensors in (R%)®3, which
we frequently identify with elements of R? x R? x R?. In more detail, for a tensor T ¢ (R%)®3, we let Tk
be such that T' =}, ; . T} j k- €; ® €j ® ey For a pair of matrices A, B, we let A ® B denote the Kronecker
product, which obeys the relation (A® B)(C® D) = (AC) ® (BD). Given matrices A, Ay, A3 and tensor
T =Y;u; ® v; ® w;, we define (A1 ® Ay ® A3)T = ¥,;(A1u;) ® (Asv;) ® (Asw;). Whenever T is an
orthogonal tensor of the form (2), we let (7") denote the rank.

2 Subgradient of the sum-of-squares nuclear norm

2.1 Tensor nuclear norm and sum-of-squares relaxation

In the classical results on matrix completion (Candes and Recht, 2009; Candés and Tao, 2010; Recht, 2011;
Koltchinskii et al., 2011), a central object is the nuclear norm, which arises as a convex relaxation of the
rank. A natural candidate to develop efficient algorithms for tensor completion is the tensor nuclear norm
(e.g. Hillar and Lim (2013); Friedland and Lim (2018)), which may be defined via

T T
1T e = inf{ZIAil TW = N @ vi @ wi, [uilly = [villy = [will, =1, e N}, S

i=1 i=1

and whose dual is the injective tensor norm | X | = supj,=|y|,=|z|,=1{X;z ® y ® z). Unfortunately,
the optimization problem here—maximizing a degree-three polynomial over the sphere—is intractable in
general.



The approach we take, following Barak and Moitra (2016) and Potechin and Steurer (2017), is to employ the
sum-of-squares hierarchy of convex relaxations (Shor, 1987; Parrilo, 2000; Lasserre, 2001) which provides
an increasingly tight sequence of relaxations of the optimization problem in (4). To describe the relaxations,
we require the notion of a pseudodistribution.

Definition 1 (Pseudodistribution (Barak and Steurer (2016))). Let 11 : R — R be a finitely supported func-
tion and let INE“ [ = Zaesupp(u) #1(x) f (). p is said to be a degree-k pseudodistribution if Eul =1 and

Eu f? >0 for all polynomials f of degree at most k/2.

Given a degree-s pseudodistribution ;2 and sytem of polynomial inequalities A = {f; >0,..., f, >0} U
{1 =0,...,9m =0}, we write u = A if for all S ¢ [m] and all sum-of-squares polynomials & such that
degh + Y ;cgdeg fi < s,

Eu[h]_[fi] >0, (5)

€S
and E,,[giq] = 0 for all i € [m/] and all polynomials g such that deg(g;q) < /.

With the pseudodistribution formalism, we define the degree-k SoS injective norm as follows:*

sup (X,E“[az@)y@z]). 6)
_ ,Lidegree-ﬁ
Eulzl3=Eulyl3=Exlz13=1

X1, =

The degree-k SoS nuclear norm is simply defined as the dual: |7| supy:| x| <i{X,T). It can
inj =

Aic,

equivalently be expressed by defining*
Ky = {T e R*™? | 3y degree-k :E [r@y®z] =T, E,|z|5=E,|yl5 =E,|2]5 =1}, (7

and then

|7 e, = inf{a | T € Kp/a}. @®)

A,

The SoS nuclear norm and injective norm can be evaluated in d°) time (Grotschel et al., 1981; Barak and Steurer,
2016). Moreover, the norms obey the ordering |1'],,c > ... > |75, 2 -+ 2 [Tl e, 2 [T > and likewise
X iy < <X, <o < I X g, < 1 X p

inj, =

re)

inj
2.2 Subgradient and norm compatibility

Our algorithms are based on empirical risk minimization with SoS nuclear norm constraints, i.e., algorithms
that minimize the empirical loss over the set 7 = {7 e (R?)®? | |7 e, < 7} for appropriate choice of T
and k. The technical challenge to analyzing this type of relaxation is that even if measurements are realized
by a rank-r tensor, there is nothing that guarantees a-priori that the tensor T, output by the algorithm is itself
low rank. Letting 7" be a rank-r orthogonal tensor, our main technical result here shows that if 7 = || 1] o, ,
then for all elements of 7" € T, the error A = 7" — T is “approximately low rank” in a sense that suffices to
guarantee good generalization performance.

Theorem 3 (Formal version of Theorem 2). Let k > 4. Let T € (IRd)®3 be an orthogonal rank-r tensor, and
let T' € (RY)®3 be an arbitrary tensor with A == T' = T. If |T'| T , then

— < T e
NuCgio — NUCk 42

| Al e, < 687 - [A]p- ©)

3There are minor technical differences (e.g., scaling) between the SoS injective/nuclear norm definitions we use and those of
Barak and Moitra (2016); Potechin and Steurer (2017).
*This equivalence is proven in Appendix A for completeness.

AUC,




In the analysis of nuclear norm regularization for matrix completion—and more broadly, throughout high-
dimensional statistics—the key tool used to establish guarantees along the lines of (9) is a characterization
for the subgradient for the nuclear norm, and the related notion of decomposability (Negahban et al., 2012;
Negahban and Wainwright, 2012). It is known clasically (Watson, 1992) that for any matrix W with singular
value decomposition W = UX VT,

W e ={UVT+ X [UTX = XV =0, | X],, < 1}- (10)

nuc

Our approach in the remainder of this section is to establish a similar result for the subgradient of the SoS

nuclear norm ||, at any orthogonal tensor T'. From here Theorem 3 will quickly follow.

As a first step, we need to define certain subspaces and projection operators associated with T'.

Subspaces For the remainder of the section we let T be a rank-r orthogonal tensor as in (2). Define
U = span{u;}, V = span{v; }, and W = span{w; }, and note that each subspace has dimension at most 7.
Let Py : R - R% and Py : R? - R? and Pyy : R? - R? be orthogonal projections onto these subspaces and

‘Pu:, Py: and Pyy: be the projections onto the respective orthogonal complements. We define projection
operators from (R%)®3 to (R%)®3 for all 23 combinations of subspaces:’

Q?pn =Py ® Py ® Py, Q?pl = Py: ® Py: ® Pyy:,
Q;"H = Pu: ® Py ® Pw, Q%pl =Py @ Pyr ® Pyy-,

2 2 (11)
QTH =Py ® Py: ® Py, QTL =Puyr ® Py ® Py,
Q3 =Py ®Py®Puws, Qb =Py ® Py ® Py
Lastly, we define two subspaces that play a central role in our analysis:
Qri = Qpy+ Qpy + Q5+ Qy, and  Qpu = Qu + Qi + Q7 + Qfu. (12)

One can verify via multilinearity that X = Q) (X) + Q7:(X) for all X € (R%)®3, and that any tensor in
the range of Q) spans at most r dimensions along at least two modes. We can now state our main theorem
for the subgradient.

Theorem 4 (Subgradient of SoS nuclear norm). Let k >4, and letT = Y;_; \i-u; ®v; @w; be an orthogonal
rank-r tensor. Define X* = ¥ u; ® v; ® w;. Then for all X € (RY)® with | X |~ < 1/64, and for all
T" e (RY)®3, it holds that

injj,

> (7| +(X" + Qnu(X), T -T). (13)

|
H AtCL o NUCk2

In other words, Theorem 4 states that

(X7 + 0 (X) [IX |, < 1/64) < 9|7

inj, = NUCk2?

which we may view as a generalization of the matrix subgradient characterization (10). Yuan and Zhang
(2016) proved a similar result for the (exact) tensor nuclear norm. Our proof of Theorem 4 shows that the
essence of their proof can be captured by a low-degree sum-of-squares proof. It builds on the approach
introduced in Potechin and Steurer (2017) to provide dual certificates for exact tensor completion.

>Following the convention in Section 1.3, if X = ¥, a; ® b; ® ¢;, then (Py ® Py ® Pw) X = ¥, (Pua;) ® (Pyb;) ® (Pwe;). It
is also useful to note that for any x,y, z we have ((Py ® Py ® Pw),z ® y ® z) = (X, (Puz) ® (Pyy) ® (Pwz)).



With the subgradient lemma in hand, the path to the “approximately low rank” result of Theorem 3 is clear.
Suppose that | 7]z, ., < |7 ,and let A = 7' - T. By appropriately choosing the dual tensor X in
(13), we can show that
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197 (A) ey, <64+ Q71 (A) | e, - (14)

which implies that |A| g, < 65 Q7 (A) |z, The final result follows because | Qi (A)[ e, S TIA] R
which is a consequence of the earlier remark that all the projections used to define Q in (12) project into
r dimensions along at least two modes. This full argument is in Appendix B.

3 Agnostic tensor completion

We now state our main learning results, which use the SoS nuclear norm to give efficient algorithms with
fast rates for agnostic tensor completion and tensor sensing. For both results we receive observations
(X1,Y1),...,(Xn,Yy) iid. according to an unknown distribution D, where (X;,Y;) € (R?)®3 x R, and
the goal is to obtain low square loss excess risk in the sense of equation (1). We let E, denote the empirical
expectation, which is uniform over the examples {(X;, Y2)};-;.

3.1 Tensor completion

In the tensor completion model we take observations X; to be of the form X; = e;, ® ej, ® ey,, where
(i¢, e, Kot ) € [d]3 is selected uniformly at random.® In the noiseless or well-specified setting, this corresponds
to observing a single entry of an unknown tensor, but we make no assumption on the responses Y; other than
boundedness. The main theorem is as follows.

Theorem 5 (Formal version of Theorem 1). Let T > 0 be fixed. Suppose that |Y'| < R almost surely, and let
T, be the empirical risk minimizer over the tensor class T = {T € (R?)®3 | |T| 7|7 < R}. Then
for all n < d3, with probability at least 1 - 6,

<
Atcg =

(15)

= 2,.2 *\ 73/2 6 2
Lo(Ty) - Lo(T*) SO(R r2(T")d*?log’d R 1og(1/5))
n

n

for all orthogonal tensors T* € (RY)®3 with |T*| . =7 and |T*| < R.

nuce
Let us spend a moment interpreting the theorem. First, let 7" = arg ming. .., Lp(7"). Then, by setting
=T we are guaranteed that with probability at least 1 - J,

nuce’

Lp(T},) - inf Lp(T) g()( (16)

:rank-r

R2r2d*?1ogb d . R?%1og(1/6)
n n '

More generally, (15) implies an exact oracle inequality (Koltchinskii et al., 2011; Gaiffas and Lecué, 2011):
With probability at least 1 — §, we have

LD(TH) < inf {LD(T) + O(

:|T”m6:7

R%r2(T)d*?10g® d . R?1og(1/6) )}
n n '

Let us compare the result in detail with Barak and Moitra (2016), which is the only other polynomial time
agnostic tensor completion result with sub-O(d?) sample complexity. For general noise distributions, their

®Note that we sample entries with replacement, whereas related works use without-replacement sampling (Barak and Moitra,
2016; Potechin and Steurer, 2017).
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analysis gives an excess risk bound that scales as O ( ) The bound in (15) matches this dependence

on all the parameters, but is squared, and is thus always tighter. The result has excess risk against arbitrary
tensors, however, while our bound requires orthogonality of the benchmark. We do not know whether this
restriction can be removed.

Interestingly, while Barak and Moitra (2016) give excess risk bounds against incoherent tensors, we do
not require incoherence. This is because we control the complexity of the benchmark through the /.
norm of the entries rather than through the Frobenius norm; this parallels the situation in the matrix setting
(Koltchinskii et al., 2011; Gaiffas and Lecué, 2011). Applying the spectral bounds of Barak and Moitra
(2016) without incoherence requires slightly tightening the analysis.

Lastly, we remark that the guarantee (16) requires setting the parameter 7 based on the norm of the unknown
benchmark 7*. Tt is likely that this can be relaxed by appealing to penalized empirical risk minimization
rather than empirical risk minimization as in Koltchinskii et al. (2011), but we leave this for future work.

3.2 Tensor sensing

In this setting we give agnostic learning guarantees for a setting we call fensor sensing, which generalizes the
matrix compressed sensing setup studied in Negahban and Wainwright (2011). We assume that observations
X e (R%)®3 have independent entries from A/(0;1) and—as in the tensor completion setting—allow Y € R
to be arbitrary. For each tensor 7', define R(7") to be the smallest almost-sure bound on [(7, X') - Y|. Asin
’"Qij/z )—type scaling.

Theorem 6. Let 7 > 0 be fixed, and let T, be the empirical risk minimizer over the tensor class T =
{T € (RY)® | |T|mge, <7} Then with probability at least 1 -6,

the tensor completion setup, the main result is a fast rate with 9] (

ntce

. 2 T* 2 T* 3/21 3
n
for all orthogonal tensors T* € (R%)®3 for which n = Q(r?(T*)d*?log*? d +1og(1/6)) and | T* | ges = T

Overview of analysis We now sketch how the subgradient theorem can be combined with empirical pro-
cess arguments to prove Theorem 5 and Theorem 6. We follow a generic recipe given in Appendix C.1—
specifically, Theorem 8—which shows that to control the generalization error of empirical risk minimization,
it suffices to bound a certain “offset” or “shifted” empirical process. For any fixed benchmark 7™, the excess
risk relative to 7 is bounded as

Lp(Ty) - Lp(T*) < sup {(E-E,)[2(A, X)((T",X) - V)] +E(A, X)* - 2E,(A, X)*}.  (18)
AeT-T*

The offset process on the right-hand side was used to obtain high-probability fast rates for misspecified
models by Liang et al. (2015), and its analysis is closely related to that of Lecué and Mendelson (2013);
Mendelson (2014). To bound the process, it suffices to establish a type of lower isometry/restricted eigen-
value property, which we state here for the case of tensor regression: let X,, : (R?)®3 — R™ be the data
operator, which maps any tensor 7 to the sequence (7', X1),...,(T, X,), and let ¥ = Ex[XXT] € R&
be the covariance matrix for the vectorized measurements. Then it suffices to show that with high probability,
the following restricted eigenvalue bound holds:

1

ﬁuxn(muﬁcuz”ﬁh VAT -T",



where ¢ > 1/1/2 is a sufficiently large constant.

Our starting point to establish the guarantee is to borrow a bound from Hopkins et al. (2015), which states
that E| X || g = O(d**1og'/* d) under gaussian measurements, and suffices to bound the Rademacher com-
plexity of our tensor class. Using this bound in conjunction with standard gaussian concentration arguments
and the “peeling” method (e.g. (Negahban and Wainwright, 2011)), we prove Theorem 10, which states that
with high probability,

1 Cd**og'* d
- S A,
Combined with Theorem 3, which asserts that all A € 7 —T™* have |A| <O(r(T"))-|A
the following consequence: once n = Q(r2(T*)d*?log"/? d), with high probability,
1
vn

[%n(A) 22079 [A] - - VA € (R)®.

e, 9, We have

[Xn(B)]22(0.79-0(1)) - [Alp VAT -T".

To establish the analogous bound in the tensor completion model we use the SoS Rademacher bound from
Barak and Moitra (2016), but utilize somewhat different concentration arguments. Indeed, due to the sparse
nature of the measurement distribution one cannot hope to exactly establish the restricted eigenvalue prop-
erty for X,,, and must instead show that it holds up to a small additive error.

4 Computational lower bounds

In the rank-one case, the excess risk bound of Theorem 5 scales as O (d3/ 2/n), while the excess risk attained
by the natural inefficient algorithm scales as O (d/n). It is natural to ask whether this O(dl/ 2) gap can be
improved or whether it poses a fundamental barrier. In the slow rate regime, Barak and Moitra (2016) gave
a computational lower bound showing that finding efficiently computable classes of tensors for which the
Rademacher complexity grows as o(/d3/2/n) is at least as hard as refuting random instances of 3-XOR
with 0(d3/ 2) clauses. In this section we show that this computational hardness is also present in the fast rate
regime: Under plausible average-case hardness assumptions, no polynomial time algorithm can obtain a fast
rate for square loss scaling as O(d*?¢/n) for any & > 0.

Our improper learning lower bound applies to any algorithm that obtains low excess risk in the sense of (15),
and states that under conjectured hardness of a certain distinguishing problem for 3-XOR it is not possible
to improve the O(d*/?) dependence on dimension.

We reduce from the 3-XOR problem over variables x € {il}d. A 3-XOR instance consists of a sequence of
m clauses of the form
Li+Lj Tk = Zijks

where z;;, € {1} is a target. We consider two families of instances:

* Planted. Fix an arbitrary assignment a ¢ {1}%. Select m triples (4, j, k) uniformly at random with
replacement.’ For each such triple (i, j, k), include a clause

a; - aj - aj, with probability 1 —n

Ti T T = ik = : o
§h Tk Sk {—ai-aj-ak, with probability 7.

"We work in the slightly non-standard with-replacement model to simplify the mapping onto the with-replacement tensor com-
pletion model in Theorem 5.
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Note, we sample the value z; ; . for a triple (4, 7, k) only once: if the triple is sampled multiple times,
the value z;;;, will be the same.

* Random. Select m triples (4, j, k) uniformly at random with replacement, and take each clause to be
T Tj T = Zijk, Where z;j; is drawn from {£1} uniformly at random. Again, we sample the value
2 ji, for a triple (4, j, k) only once.

An algorithm for the distinguishing problem takes m clauses as input and outputs either “Planted” or “Ran-
dom”. The algorithm is said to succeed if it outputs “Planted” for planted instances and ‘“Random” for
random instances with probability at least 1 — o(1) over the draw of the instance. Note that the problem
becomes easier as 77 gets smaller, and in particular when 7 = 0 the problem can be solved in polynomial time
using Gaussian elimination.

Conjecture 1. There is some constant 1 < 1/4 such that no algorithm that succeeds for the 3-XOR distin-
guishing problem with m = o(d*/?) runs in polynomial time.

All known polynomial time algorithms for distinguishing require m = Q(dg/ 2) clauses, and conjectured
hardness of the closely related problem of strong refutation for random 3-XOR for with 0(d3/ 2) clauses has
been used as a basis to establish hardness of other learning problems (Daniely, 2016; Raghavendra et al.,
2017; Kothari et al., 2017; Feldman et al., 2018).

Theorem 7. Let € > 0 be fixed. Assuming the 3-XOR distinguishing conjecture, there is no polynomial time
algorithm for agnostic tensor completion that guarantees that for any distribution D, with probability at
least 1 —o(1),

Lp(Ty) - inf Lp(T")= O( (19)

rank-

d3/2€)

n

5 Conclusion

Our results demonstrate the power of the sum-of-squares hierarchy for agnostic statistical learning, and show
that sum-of-squares algorithms can obtain fast rates for prediction with the square loss. We hope our work
will serve as a starting point for applying sum-of-squares to obtain polynomial time algorithms with fast
rates in statistical learning for broader classes of models.

A few immediate technical questions emerge. Can the dependence on rank in our results be improved? Can
the subgradient results be extended to the general undercomplete or even overcomplete case? Can similar
agnostic learning results be obtained with a more practical algorithm that does not rely on solving the full
sum-of-squares SDP?

Acknowledgements We thank Sasha Rakhlin and Ankur Moitra for helpful discussions and thank Matthew
J. Telgarsky for being a constant source of inspiration.
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A Preliminaries

A.1 Sum-of-squares proof system

Let A={f1>0,...,fm>0}u{g1 =0,...,gm =0} be asystem of polynomial constraints. A degree-¢ sum-
of-squares proof that A implies a constraint {h > 0} is a set of polynomials (qi)ie[m/] and sum-of-squares
polynomials (ps) sc[,,,] such that

h=> ps[[fi+ Y. @y

Sc[m] €S ie[m’]
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and where and deg(ps [Tics fi) < ¢ for all S and deg(q;g;) < ¢ for all i.> We write A -, {h > 0} whenever
such a proof exists. Our proofs going forward utilize the well-known duality of SoS proofs and pseudodis-
tributions. See O’Donnell and Zhou (2013) and Barak and Steurer (2016) for further discussion, as well as
inference rules for the SoS proof system.

We note the following well-known, but useful lemma:
Lemma 1 (Pseudo-Cauchy Schwarz). Let f and g be polynomials and let ¢ = 2max{deg f,degg}. Then
for any ) > 0,

1
- {fg < ng + 2—7792}. (20)

As a consequence, if 1 is a degree-s pseudodistribution with s > ¢, then

Eu[fg] < Eu[f?] 'Eu[gz]- (21)

A.2 Basic technical results
A.2.1 Sum-of-squares norms

We state a few lemmas capturing useful properties of the sum-of-squares norms.

Proposition 1. The SoS nuclear norm and SoS injective norm are dual: |- ”iﬁj* and |-|

= ”'”n'uvcr Atic, H'”ian.-

Proof of Proposition 1. It is immediate from the norm definitions that

HXH,TJE;; = sup (W, X) = sup (WX):HXH.HJ :
Wek, _ p degree-r T
Eulle|3=Eullyl3=E,]213=1
W=E,[z0y®z]

The other direction is a consequence of the standard duality theory for finite-dimensional Banach spaces.
See, e.g., Theorem 15.4 in Rockafellar (1970). ]

Lemma 2. Let 7T =7 ; \; - u; ® v; ® w; be an orthogonal rank-r tensor. Then for all & > 4.

T
1T, = 1T ue = 2l and [Ty = [T oy = max|Asl. (22)
i=1 <

iy inj

Lemma 2 states that the SoS relaxations of the nuclear norm and injective norm are essentially “integral”
for orthogonal tensors. Note, this should not be a huge surprise since it is well-known that polynomial time
methods such as power iteration succeed at decomposing orthogonal tensors (Kolda and Bader, 2009). We
should mention it doesn’t seem possible to directly apply such results to give agnostic learning guarantees
along the lines of our main theorem. While our benchmark is an orthogonal tensor, the data itself may have
no orthogonal structure, and thus there is no clear object to which one might apply such a decomposition.

Proof of Lemma 2. We may assume \; > 0 without loss of generality. We first prove equality for the
injective norms. Let i* = arg max;, \;. As a starting point, for any k£ we have HTH.FJk > [T 2 Aix by ex-
hibiting u;+ ® v;+ ® w;+ as a feasible solution to the supremum in | 1] = SUP|e|,=[y|,=|z],=1{1> Z @Yy & 2).

<7

8We use the convention [] e fi = 1, so that if - h then h itself is a degree-£ sum of squares.
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For the upper bound, let x, ¥, z be indeterminates and—exploiting orthogonality—Iet us change coordinates
such that u; = v; = w; = e;. Then we have

T
(Troy®=z)= Z NiTiYiZi
i=1
From equation (20), we have
Lo 1,55,
Fq TiYiz; < 5L + QY%
We also have +4 Y7, 9222 < (X0, y?) (25, 22). By the additivity of SoS proofs, and since we have
assumed \; > 0, this implies

1 1
1 (Tz ey ®2) < maxh- (512l + 5ul31:13)
1<Tr 2 2

Now let A = {|z|5 = 1,[y[3 = 1,25 = 1}. We claim A 4 |y[3] 2|3 = 1. To see this, write 1 - |y[3] 2|3 =
2 2 2 2 2 2
(T=yl) (1 +]z]3) + (1= [2]3) + (lyll5 — 1) and use that deg((1 - [y[5)(1 +|2[3)) = 4.

Putting everything together, we see that A +4 (T, ® y ® z) < max;<, A;. Thus, since the ¢, norm is
preserved under change of basis, it follows that if p is any feasible degree-4 pseudodistribution for the
maximization problem (6), we must have E, (T, ® y ® z) < max; A;, and so HTHiij < max; \;.

We now establish equality for the nuclear norms. We trivially have | T e, < 7] ,,c € X721 A by exhibiting
the decomposition 7" = Yi_; A; - u; ® v; ® w; as a feasible solution to the minimization problem in (4). For
the other direction, define X* = }I_; u; ® v; ® w;, and observe that the equality we just established for the
injective norm implies || X~ ”iﬁjk < 1. Thus, using the duality of the SoS nuclear norm and injective norm
from Proposition 1, we have

T
17| e, = sup (X,T)> (X", T) =Y N,
Xe(Rd)®3:HXHﬁjksl i=1
where the last equality uses that {u;}, {v; }, and {w;} are all orthogonal. O

Proposition 2. Let £ > 4. For any degree-k pseudodistribution g,

(T, [z oy e 2]) < |Tlg, - VEalol3 - Bulyl3 - Bulz13. (23)

Furthermore, the following statements hold:
2 T, 2 1, 9
{213 <1} r Tz @y ©2) <[ Tl - (51215 + 51u13).
2 o2 1, 9
(bl <1} Tz ey 2) < ITIg, - (51al3+ 51213, 24)

2 T2 1, 9
(el <1) i (T @y o 2) < Ty - (S1ol+ 21ei2)

Proof of Proposition 2. Equation (23) follows by rescaling a given pseudodistribution p by using 2’ =
z/\/E, |z |3 and so forth, so that the pseudodistribution is feasible for the maximization problem (6).

For (24), let 11 be a degree-k pseudodistribution with p = {||z||§ <1}. Then, using (23) and the AM-GM
1T,
‘ 2

Lk (Hng + HyHg) -(T,z@y® z)] > 0, and so (24) follows from the duality of

inequality we get (7, Efroy® z]) < (EuHﬂng + EtuHg) Using linearity of the pseudoexpectation
~ [IT
operator we have [, m

2
pseudoexpectations and sum-of-squares proofs. The remaining statements follow by symmetry. U
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A.2.2 Projections

Here we state some basic results regarding the projection operators defined in Section 2.2.
Proposition 3. Let z, y, z € R? be given. If at least two of the follow conditions hold:

DaxelU, 2)yeV, 3)zeW,
then Qi (r®@y® z) =0.

Proof of Proposition 3. Suppose that z € U and y € V. Then Py:(z) = 0, and so Q% (z ® y ® 2) =
Q2. (z@y®2) = Q% (r®y®z) = 0. We also have Py: (y) = 0, and so QL. (r®y ® z) = 0. The remaining
cases follow by symmetry. O

Lemma 3. Let k > 4. For any tensor X ¢ (R%)®3, and any subspaces U, V, W we have

[(Pu &Py e Pw)Xlg <IXI

inj, injj,’

<4| X, and [ Qr (X)[ 5, < 41X

injj, inj,*

and in particular | Q. (X)|| i i

Proof of Lemma 3. For any degree-4 pseudodistribution y over indeterminates z,y, z we have

E.((Py®Py®Pw)X,z0y® z) =E, (X, (Pyz) ® (Pyy) ® (Pwz))

= 2 T 2 = 2
<\Eu|Puz|?- B |Pyyl? - Byl Pw|?

= 2 = 2 = 2
<\Elol2 Bulyl2 B, 212,

where the first inequality uses Proposition 2 and the second uses that 5 |Pxz|3 < || for any subspace X.
This establishes the first result.

Now observe from (1) that |Qpy (T)] 5, € | Qiy (D), and |Qr (1), € ThalQh (D),
We thus obtain the second result by applying the first to each of the summands. U

A.2.3 Flattenings

The multilinear rank of a tensor 7" € (R%)®3 is the triple (ry,79,73), where
r(T) = dimspan{T ; . | j,k € [d]}, (25)

is the dimension of the space spanned by the mode-1 fibers and r5(7") and r3(7T") are defined likewise for
the second and third mode.

We define the ith flattening map b; : (R%)®3 — R yig

b1(T)s,¢5e) = 02(T) ;5 ik = b3(Tiyig) = ik (26)

A standard result is that rank(b;(7")) = 7;(7") (Friedland and Lim, 2018). We also have the following
comparison between the nuclear norm of the tensor and its flattenings.
Lemma 4 (Friedland and Lim (2018), Theorem 9.4). For any tensor 7" € (R%)®3,

HTHnuc < mln{ V Hlin{’r'Q,T‘g}H bl(T)HnuO V min{r17r3}”b2(T)Hnuc7 V min{rlvr2}Hb3(T)”nuc}'
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A.2.4 Concentration

Lemma 5 (Talagrand-type concentration for supremum of empirical process). Let F be a class of functions
of the form f : Z - R. Let z1,...,2, be sampled ii.d. from a distribution D over Z that satisfies
E[f(2)] = 0 and has |f(2)| < c almost surely. Let o2 = suprfEf2(z). Then for any 6 > 0, with
probability at least 1 — 20 over the i.i.d. draw of z1,..., z,,

2
<4E,, E up = Zetf(zt)_,_ 20%log(1/9)  2clog(1/9)
n n

Proof of Lemma 5. Follows from Theorem A.1 of Bartlett et al. (2005) applied to the classes F and —F
separately, along with the standard in-expectation symmetrization lemma for uniform convergence. O

Zf(zt)

sup|—
feF| M

B Proofs from Section 2

The main result in this section is to prove Theorem 4, then use this result to prove Theorem 3. Before
proceeding to the main proofs we state an intermediate result.

Lemma 6 (Potechin and Steurer (2017)). Let z,y, 2 € R? be indeterminates. Let A = { lyl3 = 1}. Then for
any r € [d],

T
Are ) wiyizi < o IIng —H H2‘_ Z 7} + 7] ——ZZyz(m +25 i (ol + 1213))-
i=1

z r+1 2 1j#¢

Corollary 1. Let A = {Hang =1,] 2|3 = 1}. Then for any 7 € [d],

1 d
A|—6Zx1y2zlsl—z Z a? + 27 ZZy (3: +yj+z]2)

i=r+1 z:ljﬂ

Proof of Corollary 1. We will show that A ¢ — ¢ | Y e Y2 Y; HxH2 =-y¢, ng yfyjz; the term involv-
ing ||z H2 follows from the same reasoning. The desired inequality is equivalent to Y%, 3" ; i y? Y; 2()| Hz‘l) =

0, which is clearly the product of a degree-4 polynomial and the equality constraint {Htz -1= O}. O

Proof of Theorem 4. Preliminaries. We first claim that the following equalities hold:
* QE}H (X7)=X".
* X7, = 1X7 5

< (X7 T) = |7

iNjpo HX*Hinj =L

e = 1T ey, = 1T lnue:

Indeed, it is immediate from the definition of X* that Q° 7l (X™) = X7, and it follows from Lemma 2 that
|X* |7 =1and (X*,T) = | T, forall k> 4.

injy
Bounding dual norm is sufficient. To establish the inequality (13), we reduce to a simpler problem. The

claim is as follows: Fix a constant a > 0. If for all X € (R%)®3 with | X Hiﬁjk < «, we have

[ X7+ Qre (X5 L, 27

'an+2 -
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then (13) holds for all X' with | X . o To see that this is the case, observe that for any T’ and all such
X we have

(X" + Qp(X), T -T) < | X" + Qe (X)) -
< ||

iNjgio Hnuck+2 - <X* + QTJ‘ (X)7T>

fie, ~ (X Qi (X),T)
ol L3 U 1 PR

where the first inequality uses Proposition 1, the second inequality uses (27), and the final equality uses the

definition of X * and that (Q7.(X),T) = (X, Qr:(T')) = 0. Rearranging the inequality yields (13).

Bounding the dual norm. The remainder of the proof establishes that (27) holds for o = 1/64.

Let x,y, 2z € R? be indeterminates. We will provide a degree-(k + 2) SoS upper bound on the polynomial
(X* + 97 (X),z ® y ® z), which will suffice to establish (27).

Let {u;};_1, {vi}iq, {wi};_; be as in (2). Then, let U = span({u;};_;), V = span({v;};_ 1) and W =
span({w; };_;), so that {u;},_; is a basis for U, and likewise for the other modes. Let {u; }4
for V*, and {w;}% ., for W,

i=r+1 be an

arbitrary orthonormal basis for U* and likewise with {vl}

i=r+1 i=r+1

We perform a change of basis and let u; = v; = w; = e;, where ¢; is the ¢th standard basis vector. Then with
x,y, z expressed in the new basis we can write

(X" + 9 (X),z@y®z) = ZazlylzZ (Or:(X),z®@y® 2). (28)

Let A = {Haz”% =1, HyHg =1, HzHg = 1}. From Corollary 1, we have

1 d
Ars Y wiz < = Hw\lz uzué z 22+ 22— - S Sy (a4 22+ 4).

1=1 2 r+1 8 i=1j#1
We now handle the second term in (28). We will establish that
d d
Arpo (Qri(X), 20y ®z) < +0(a)- ), 22+ 22+ 0(a)- > ny(az? + z]2- + y?) (29)
i=r+1 i=1j%#i

under the assumption that | X |~ < «. To do this it suffices show that for each 7 individually,

injg

Argy{Qr(X), 20y ®2) <O(a) 47 Y (25 + 27 +17),

J#i
with an extra additive factor of O(«) - y2(2? + 2z2) when i > 7.

Let 1 <i < dbefixed and let ' = x — z;e;, y' =y — y;e;, and 2’ = z — z;e;. We write

(Ori(X), 2@y ®2) = (X, OQr: ((wie; + 2") @ (yiei +y') ® (zie; + 27))). (30)

Case: 7 < r. Observe that with our change of basis we have e; € U along the first mode, e; € V along the
second mode, and e; € W along the third mode. In view of Proposition 3, this means we have

0=09r:((wie;) ® (yies) ® (zi€i))
= Or:((wie;) ® (yie;) ® 2')
= Qr: (2" ® (yie;) ® (z€1))
= Ori((wie;) ®y' ® (2:€;)).
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Consequently, using multilinearity we can write

(Qri(X),z@y®2) = (Qr:(X), 2" ®y ®2') + (Qr:(X), 2" ®y' ® (2¢4))

o / , G
+{Qru(X), (wie)) @y ® 2') + (972 (X), 2" ® (yie;) ® 2').

In what follows we will repeatedly invoke that A +o ”33262“3 < ||3:H§ <1, Ary ||3:'||§ < H:L"||§ < 1, and so
forth. We will also use that if | X Hiﬁjk < o then—via Proposition 2 and Lemma 3—for any indeterminates
a,b,c,

{lal3 <1} F (Qre(X),a®@b®c) < 2a([b]3 + |c]3),
{I6]5 <1} Fi (Qre(X),a @ b®c) < 2a(|al + [c]3),
{lle3 < 1} Fr (Qru(X),a®b®c) < 2a([b]5 + [b]3)-

These inequalities allow us to bound the terms in (31) as follows:

{Iyl3 <1} ri (Qre(X),2" @y & ) <20([[a"[; + | #]).
{1213 <1} ri (@ (X), 2" @y © (ziea)) < 2a( 2/ + |/'];)-
{I213 <1} b1 ( Qe (X), (wier) 0y @ ') < 20( |5 + '] ).
{Iyl3 <1} i (Qre (), 2" ® (ies) © 2') < 2a( [/ + | 2'])-
Adding these inequalities, we get

A (Qri(X), 2@y ®@z) <6a Y (a2 +y2 +22),

j#i
and by the multiplication rule for SoS proofs,

Ark y{Qre(X), 2 ®y ® 2) < 6o Y u; (25 +y + 27).

V)

Case: i > r. As in the previous case, we split the expression (Qr. (X)), (zie; + ') ® (yie; +y') ® (ze; + 2'))
in (30) using multilinearity, however we can no longer argue that four of the eight terms vanish. As a starting
point, for the four terms that appeared in the 7 < r case we can adopt the same upper bound to get

A (Qr:(X), 2 ®y ® 2) < Qre((wiei) ® (yiei) ® (zie;)) + Qre((wie;) ® Y’ ® (zie:))
+ QTL((JIZ'GZ') ® (y,ez) ® Z,) + QTJ. (a:' ® (yzez) ® (ziei))

+60 Y. (25 +y; +27).
jai

We bound the four remaining terms as follows:
{Iyl3 < 1} Fi Qra((wies) ® (yies) ® (ziei)) < 2a(a? + 22,
2
{Iyl3 <1} Fi Q1 ((wies) @ (yies) ® 2') < 207 + || £'],),
2
{Iyl3 < 1} #1 Qi (2" © (yies) ® (iex) < 2|2, + 27),
{5 < 1} ki Q1 ((wies) @y ® (zie)) < 2a(a} +27).
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Adding together all of these inequalities, we get

Arp (Ori(X), 2@y ®2) < 60‘(3%2 +zl-2) +8a2($? +y32- +Z]2'),

VE

and

A g0 y?(QTi(X),x ®Y®z)< 604y2-2(9cl2 + 22-2) + 8a2yi2(x? +y]2- +z]2-).
j#i

Putting everything together. Taking the inequalities we proved for the individual coordinates ¢ and summing
them up, we have

d d
A [yls (Qr(X),z@y®z) <b6a Y. yi(zf+27) +8ay. Yy (z] +yl +27).
i=r+1 i=1j#i
Since {Hy”g =1} c A, we get
4 5 d 2,2 .2 2
Arp (Qri(X),z@y®2) <ba ) (z7 +27)+8a), Y yi (i +y; +25).
i=r+1 i=1j%i
Returning to (28), this inequality plus the earlier bound from Corollary 1 imply

Ao (X7 + Qri(X), 20y ® 2)

<1+ (6a—1/4) Zd: (a:lz +zi2) +(8a—-1/8) iny(m? + 2]2- +yj2)

i=r+1 i=1j#i

<1, fora<1/64.

By the duality of SoS proofs and pseudodistributions, we have | X* + Q7. (X)]| <1 as desired. O

injp o

Proof of Theorem 3. We first establish equation (14). We combine the assumption that |7”|
|7 e, With equation (13) to get

__ <
NuCgy2 —

ntc

—__—_
NUCK 42

1T e, 2 [T i, HXT+Qri(X),A).

for all X with | X ”'?{Jk < 1/64 and X * as in Theorem 4. Rearranging, this yields

(X,07:(A)) =(Qr:(X),A) < = (X", A) = —(X", 2, (A)).

We now use that | X~ “iﬁjk < 1 (from Theorem 4) and choose X to be a point obtaining the supremum in
197+ (A) e, = suP)x|-. <1{X, Qr:(A)), scaled by 1/64. Then the inequality above implies
injp, =

(X, Q7 () = 52107+ (A) e, < | (2]

Ay,
We now establish equation (9). Observe that we can write

| Al = 1971 (A) + Q1 (A) | e, < 1271 (A) e, + 197+ (A) ] e
Combining this with (14), we get

| Al e, < 1971 (A) [ e, +64] Q74 (A)]

e
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Using the triangle inequality, we upper bound the first term as

4 4
1971 (A) | e, < ;H QH(A)H@«% < ;H (A e

To proceed, we flatten each tensor in the summation above into a matrix and use Lemma 4 to show that the
nuclear norm of the flattening leads to an upper bound. Let r; = dim U, 72 = dim 'V, and r3 = dim W. Then
the following inequalities hold

1971 (A e < V72l|b3( Q7 (D)) < V727s] Qo (A) | -
1971 (M) e < V7301 ( Q7 (A < V73] Q70 (A) | -
1931 (M) e < Vrtllb2( Q7 () < V2] Q70 (A) | -
The first inequality in each line above follows from Lemma 4 and the definitions in (11). The second follows

from the fact that |A|,,. < /rank(A)|A| for any matrix A, along with the fact that rank(b;(7"))
r;(T") for any tensor, and that flattening does not change the entrywise /2 norm. We have H Q%” (A) H

IN I

nuc

NTE H Q%” (A) H - as well by the same argument, though the choice of 71 /ro/rs in this case is arbitrary.

To combine all the bounds, we use that 71,72, 73 < r and that orthogonal projection decreases the £ norm,
which yields

| A, < 687 Al -

AUC,

C Proofs from Section 3

This section of the appendix is structured as follows.

First, in Appendix C.1, we provide we provide a generalization bound for general classes of tensors and
measurement models, from which all of our main statistical results will follow as special cases. This bound
assumes that a restricted eigenvalue-type property holds for the tensor class and measurement model under
consideration.

In Appendix C.2 and Appendix C.3 we establish that this restricted eigenvalue property holds for the mea-
surement models in Section 3.

In Appendix C.4 we combine these results to prove the main results of that section.

C.1 Agnostic generalization bounds for tensor classes

In this section we given generalization guarantees for empirical risk minimization in a general learning setup.
We receive a set of examples S := (X1,Y7),...,(X,,Y;) iid. from a distribution D over (R?)®3 x R. We
assume that a convex class of tensors e7 ¢ (R%)®3 is given, and that our goal is to achieve excess risk
against an unknown benchmark 7 € 7. We analyze the performance of empirical risk minimization over
T:

T, = argmin L, (T),
TeT
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where L,, is the empirical square loss. The main result from this section is Theorem 8, which bounds the
performance of ERM under various assumptions on the data distribution, the class 7, and the benchmark 7.
To state the result, recall from Section 3 that X is the population correlation matrix and X,, is the empirical
design operator.

Theorem 8. Let a benchmark T* € T be fixed, and let & = (Y; — (T, X)). Suppose there exist a pair of
dual norms |-| and ||-|, for which the following conditions hold:

1. There are constants 0 < ¢ < 2, v, > 0, and 6g > 0 such that with probability at least 1 — d,

1245 ¢ 2 .
HE AH2 < ﬁ”xn(A)HF"‘%L VAeT -T" (Property 1).
2. There are constants M > 0 and d1 > 0 such that with probability at least 1 — 6,

<M -\/n (Property2).

S 6.X, - E[¢X]
t=1

3. There is a constant > 0 such that

||A||3SI{2-H21/2AHi7 VAeT -T" (Property 3).

Then with probability at least 1 — (5o + 1),

2k2 M2

cn

Lp(T,) - Lp(T*) <

+ 27, (32)

Proof of Theorem 8. Since 7T is convex, and since T}, minimizes the (strongly convex) empirical risk, we
have

T * T (7T T [/ * =2l = |7 * 2 = A * 2
L(T*)-L(T,) 2 (VL.(T,). T - T,) + E,(T,, - T*. X) > E,(T,, - T", X)".
By rearranging and expanding the definition of L,,, this implies

2

E.((T",X) =) = Ba (T, X) - ¥)" =BT, - T, X) 2 0.

Since the left-hand side is non-negative, we can add it to the population excess risk, which implies

E((T,, X) - V)’ ~E((T", X) - Y)*
E((Th, X) - V) =E(T*, X) - Y)? + B, ((T*, X) - V) =B, ((T), X) - V)* =B, (T, - T*, X

IN

Rearranging, this is equal to
= (B-E,)[2(T, - T, X)((T*, X) - V)] + (T}, - T*, X)* = 2B, (T}, - T*, X’

Since T, — T™ is an element of 7 — T, we move to an upper bound by taking a supremum over elements of
this set.

< sup {(E-E,)[2(A, X)(T", X)- V)] +E(A, X)* - 2E,(A, X)}.
AeT-T*
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This establishes inequality (18). It remains to use the assumptions in the theorem statement to bound the
process. Property 1 states that with probability at least 1 — &y, E(A, X)? < ¢ E (A, X)? + v, for all
A eT —T*. Define ¢’ =2 — ¢ > 0, so that conditioned on this event we have

sup {(E-E,)[2(A, X)((T*, X) - Y)]+E(A, X)* - 2E,(A, X)?}
AeT-T*

< sup {(E E )[ < )((T*7X>_Y)]_C,'En<A7X>2}+’Yn-
AeT-T*

We expand the first term in the supremum as
(E_En)[2<A7X>(<T*7X> Y) __2712615 A Xt) [é(AvXH

- —2(1 S 6.X, ~E[¢X],A
ni

It follows from Holder’s inequality that this expression is bounded as
1 n

2| S e - wpexy| 1.
t=1

Defining ¢y, = |+ 7, & X, - E[€X ]|,

B(T0 X) - ¥)" - E(T", X) =YY< sup {20 |AL = 21X (8) 3} + 0.
AeT-T* n
Using Property 3 we upper bound the leading term by

R L B R e O H)

and the event we already conditioned on implies that this is at most

1 1
up {wn\ [, )2 - —||xn<A>||§} 2t/
AeT-T* n n

ZT,ZJZ
+ 2600/,

where the second inequality follows from AM-GM. Finally, by Property 2 we have that with probability at
least 1 — 01, ¢, < M /\/n, which leads to the final bound of
2702 2772
M 2k° M

n rorMy /2y Yn, < il

c'n n c'n

+ 279,.

C.2 Restricted eigenvalue for tensor completion
The main result in this section is Theorem 9, which relates the empirical covariance and population covari-

ance for all tensors with bounded entries and bounded SoS nuclear norm under sampling model for tensor
completion. This result is then used in the proof of Theorem 5 to establish a restricted eigenvalue guarantee.
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Theorem 9. Ler d*/? < n < d®, and let € ¢ (0,1/2). Suppose observed entries are drawn with replacement.
Then for any & > 0, with probability at least 1 - 8, all T € (RY)®3 with |T||,, < R satisfy

2 3/2
H21/2TH (1+2s) I, (T)2+0(RHTHMC4 /1053/21 R*log(log*(d f)/é))

En

The proofs in this section pass back and forth between the with-replacement sampling model for tensor
completion used in the main body of the paper and a without-replacement model, in which each entry is
only observed a single time for tensor completion. To distinguish between the models, we use S ~ D} to
refer to the draw of the dataset under the with-replacement sampling model and S ~ D' Jo 1O refer to the

draw under the without-replacement model. {2 C [d]3 will denote the support of the set of observed entries.
Before proving Theorem 9, we state and prove a number of auxiliary lemmas, from which the main result

will follow.
Proposition 4. Let N, ;, = |{t € [n] | j: = j, k; = k}|. Then

2n 10log(1/6)
PSN'D;‘L//O(NJ"]C 2 ﬁ + f <4

Proof of Proposition 4. This is an immediate consequence of Bernstein’s inequality for without-replacement
sampling. See Bardenet et al. (2015), Proposition 1.4. O

Lemma 7. The Rademacher complexity of ||-||.~ under without-replacement sampling is bounded as

inju

nlog*d
< 0( d?fz +\/logd). (33)
inj,

Es. o

Additionally, if n < d®, then the Rademacher complexity under with-replacement sampling is bounded as

Es.pn E sO( nlog’d log 3d ) (34)
injy

d3/2

Proof of Lemma 7. We first bound the Rademacher complexity in the without-replacement sampling case,
then handle the with-replacement case by reduction. This analysis follows Barak and Moitra (2016), except
that we handle certain “diagonal” terms that arise in the analysis slightly more carefully so as to get the right
scaling for our setup, which differs from theirs in that it does not assume incoherence.

Consider a fixed draw of €7.,, and X7.,,, and let Z = ¥} | €, X;. Leting z,y, z be indeterminates, we will give
a degree-four SoS upper bound on the polynomial (Z,z ® y ® z). This will imply that the pseudoexpecta-
tion of (Z,z ® y ® z) is bounded for any feasible pseudodistribution in the maximization problem defining

i,

To begin, for any fixed constant 1 > 0, Lemma 1 implies that

2
Fa(Z,2Qy®z) = ZZ7jkx2yyzk<—Z:E +§Z(2Z7jkyyzk) ,

1,7,k i \J,k
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and so

2
1
{Hw\|2—1}|—4 Z,x@y®z)< 2— gZ(ZZJky]zk).

. 2 2 . .. . 2 2 .
Define a matrix A € R4 >4 via Aj gtk = Zle Z; j ki j k- Define additional matrices D, B € R¥*d" yia

D _JAikiks G R) = (G K),
Jik.g' k= .
0, otherwise,

and B = A — D. Then we have

2
Z(Z Zi,j,kyjzk) = (A, (yo2)(y®2)")=(B,(yo2)(y®=2)")+(D,(y®2)(y®=2)").

i \j.k
We bound the first term by the operator norm of B via

{lyl2=11z13=1} 4 (B.(y @ 2)(y @ 2)") < | Bloply @ 217 = | Blloplly 2212 < [ Blop-

For the second term, define another matrix R € R via Rjy = >4, ZZ? ;& Then we can write

{lyl2=10z13=1} -4 (D, (y@2)(y®2)") = ZR]kyJZﬁHRII > ik = | Rl lylzl2l3 < IR -

gk
By the duality of sum-of-squares proofs and pseudodistributions, this implies that any degree-four pseu-

dodistribution 1z with p1 = {|z[3 =1, |yl3 =1, 2]3 = 1} has BE{Z,z @ y® 2) < 2(|Bl,, + | Rl,) + o
Optimizing over 71, we conclude that

121 [Bllop + 1 Blo

an4

The bound for the matrix B is taken care of Theorem 4.4 of Barak and Moitra (2016), which implies that

d3/2
model, for any j, k we have

\/ Es.pn B |B|2 op < O("log d) For the matrix R, observe that under the without-replacement sampling

d
ZZ,M Y 1{(i,4,k) € Q} = [{t € [n] : ji = 4, ke = k}|.
i=1
Proposition 4 thus implies that for any fixed j, k, with probability at least 1 — ¢,
Rj < O(n/d2 + 10g(1/<5))7

and so, by taking a union bound and integrating out the tail, we have

\ /ESND;/O |R|Z, < O(n/d* +logd).

Combining the bounds on B and R and using Jensen’s inequality yields

D) nlogtd
ESNDQ/OEEHZHiﬁhﬁ\/ES~DV’3/OEEHZH;;J-4§O gz T Vlesd] (35)
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This completes the bound for the without-replacement case. For the with-replacement case we reduce to the
bound on the second moment above. Condition on the draw of S, andlet T; ; , = {t € [n] : 4y = i, j; = j, k¢ = k}.
Then we have

Ee

n
YoaX| =E.
t=1 il

injy

> ( > et)wej@ek

(4,5,k)eQ\teT5 5 &

injy
Introduce a new sequence of Rademacher random variables o ¢ {il}ds. Then the right-hand side above is
equal to

E.E, -E, Z Oijk € ®€;®eg

< Ec max

€t
1,5,k

tETi’j’k

I

Z ( Z Et)0i7j,k-ei®ej®ek

(4,5,k)eQ\teT5 5

injy injy

where the inequality follows from the standard Lipschitz contraction lemma for Rademacher complexity
(Ledoux and Talagrand, 1991). By the Hoeffding bound, we have that for any fixed index (4,7, k) with

probability at least 1 -9,
< O(max \/|T5.j.k| log (1/6)).
ihjik
Taking a union bound and integrating out the tail, we have
Z €l < O(maxx/‘ﬂjk“ogd).
i7j7k i

tETi’ g,k
We now move to the final bound by taking the expectation over S. Using Cauchy-Schwarz, the development
above implies

2. @

tETi’j’k

Ec max
i,3:k

]ES'V'DQ”r E.

< \/ E S~Dn_

injy

2 Ok € ®€; ®eg
(1,5,k)eQ

n
Y aXy Tijkllogd: |Es.pp Es
=1

inj

Bernstein’s inequality and the union bound imply that

VEs-y. |Tijullogd < O(\/Iog d(n/d3 + log d)) < O(log d),

where the second inequality uses that n < d®. For the second term, we have

2
}ESNDQ’r EJ Z ik € ®e; B ek
(ivjvk)EQ IH]4
2
n
= > Psuppn (19 =m) -Esepp, [Eo|| Y oijk-ei®e;@e; ‘IQI =m
m=1 (iR)e0 e
2
n
= Z PSND$Y(|Q| = m) . ESND::/O E, Z Oijk € ®e; ®eg
m=1 (Zvjvk)EQ |?\]4

W

4
< O(nlog d Jrlogal)7

(mlog4d

< Z ]P)SN’Dnr(|Q| :m)O W +10gd)
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where the second inequality uses the bound we proved for the without-replacement setting and the second
inequality uses m < m and that the probabilities sum to one. Combining these two bounds completes the
proof.

0

Lemma 8. Define T = {T € (R")®? | |T| e, < 7 21/2THF <B,|T| . < R}. Under the with-replacement
sampling model, when d*/? < n < d, we have that for any § > 0, with probability at least 1 — 4,

6 2 22 2
SO(RT\/log d . [2R2B%10g(1/5) 2R log(1/5)) VT eT

(I - [

nd3/? n n
Proof of Lemma 8. To begin, we write
1 2 2 = 2 2
|16, - [ | - [Batr ) - BT X))
Using this representation, since entries are drawn i.i.d. with replacement, we can apply Lemma 5 with the

function class F = {X (T, X V2 —B(T,X)*|Te T}. In particular, note that for all 7' € 7~ we have
(T, X:)| =|T;, ..k | < R, and furthermore

SupIE((T,X)2 - I[*Z(T,X)z)2 < sup E(T, X)* < RZsup (T, X)? = R?sup
TeT TeT TeT TeT

e

Consequently, Lemma 5 implies that with probability at least 1 — §, forall T e T,

1
<4EgE.sup — Zet((T, X)2-E(T, X

12, \/2R2ﬁ210g(1/6)+2R210g(1/5)'

n

HEAGT b

TeT M

Using Jensen’s inequality and splitting the supremum, we have

EsE.sup — Zet( T, X,)? -E(T, X)?) < 2Eg E. sup — Zet T, X,)?.
TeT T TeT N

Using the Lipschitz contraction lemma for Rademacher complexity, we remove the square

1& 9 1& 2RT n
EsEcsup| — > e(T, X¢)" | <2REgEcsup| — > e(T, X3) | < —ESE EetXt
n i3

TeT|L M i1 TeTL M 21

inj,

Finally, using Lemma 7, we have

EgE,

Z € Xt

1.6 3/2 1.6 3/2
<0 log d+log d <0 log d+log d'
nd3/2 n nd3/2 n

The final bound follows by using n > d3? to simplify this expression.

injy
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Proof of Theorem 9. Let 7 = {T ¢ (R)®3 | |T| , < R}. Recall that for tensor completion, the population
correlation matrix ¥ under with-replacement sampling is equal to %I .

Let Tmax = Rd2, Bmax = = Rd*?, 1,1, = Rd/? [~/ Bmin = R/\/n, and let N [10g(7‘max/7'mm)] +1 and
M = [1og(Bmax/Pmin)] + 1. For each i € [N] and j € [M] define 7; = Tpaxe! ™ and Bj = Bmaxe! . Define

Ty = {TeT 17 < I The, <750 B < |12, < 85).

Using Lemma 8 and a union bound, we get that with probability at least 1 — 4, for all 4, j simultaneously, for
allT €T, j,

2 6 R23%21og(MN/§ 2
H21/2TH < lHDCn(T)HngO R [log d Bilog(MN/ )+R log(MN/6)
Fn nd3/? n

n

Now consider a fixed tensor 7" € 7. There are two cases. First, if |7, > Tmin and HZI/ 2TH 7 2 Bmin,

then there must be indices ¢ and j for which 7;.1 < |T'|,,c <7, Bj+1 < HZl/zTHF < Bj. Consequently, the
uniform bound above implies

e slxn<T>u§+o(RuT~ log’d |27 \/R“OWN/‘”+R”°g<MN/5>).
F n F n

nucy nd3/2 n

On the other hand, if either |T'||,,. < Twin OF HEI/ 2TH 7 < Bmin, we trivially have

nuc —

Hz:1/2TH L _fo (T))? + LB

Combining these cases, and using the values for N and M, we get that with probability at least 1 — ¢, for all
TeT,

Hzl/zTHi < %Hxn(T)Hg + O(R||T||m4 fiﬁg + H21/2THF\/R2 10g(10g27(ld3/2\/ﬁ)/5))

. O( R?log(log®(d%*/n)/0) )

n

Using the AM-GM inequality on the second-to-last term and rearranging, we have that for any € > 0,

2 3/2 5
B 122 o1 2 log® d R log(log*(d \/_)/)
(1-9)= THanxn<T>||2+0(RnTnm\/ —n —

When ¢ € (0,1/2), this implies

2 3/2
a2 (1+25) logd RZ%log(log?(d \/_)/5)
HE THF 15y, (T)Hz O\ R|T || e, \/ nd3/2 * en
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C.3 Restricted eigenvalue for tensor sensing

In this section we prove the main technical result used to establish restricted eigenvalue guarantees for tensor
sensing, which is as follows.
Theorem 10. Suppose X ~ N(0;I). There is some universal constant C > 0 such that for any € < \/2/,

ne

2
8),

with probability at least 1 —2¢732 [(1 — e~

1 Cd®¥*log!* d
Jn NG

To prove Theorem 10 we require two key technical lemmas.

Lemma 9. Let ||| be any norm, let |||, be the dual. Suppose that the rows of X,, are formed by drawing

Xi,..., Xy iid. from V(05 Ipxp), and let Ex.zro;1,,,) | X || < . Then for any € < \/2/, with probability
2

_ne

5 ),
%len(ﬁ)z > (V2/m-e)|Ap - f/_l/%

Lemma 10 (Corollary of Hopkins et al. (2015), Theorem 3.3). Let X ¢ (Rd)®3 have entries drawn 1.i.d.
from N'(0;1). Then

1% (A) 15 2 (V2/r =) | Al - Al VA € (RT)%. (36)

nucy

atleast 1 —2¢732 /(1 - ¢

A,  VAeRP. (37)

E| X, < O(d*"log"" d). (38)

injy =

Proof of Theorem 10. This is an immediate consequence of Lemma 9 and Lemma 10, along with the dual-
ity of ||, and |- O

N Aticy *

In the remainder of the section we prove Lemma 9. The result follows from fairly standard techniques
(e.g. Wainwright (2019)), but we include the proof for completeness. We first restate some basic results on
gaussian concentration.
Lemma 11 (Concentration for Lipschitz functions (Milman and Schechtman, 1986)). Let Z € R™ have
entries drawn i.i.d. from N'(0; 1), and let f : R™ — R be L-Lipschitz with respect to the {5 norm. Then for
allt >0, ,

P(f(Z2) ~E f(Z)] > t) < 2¢ 722

Lemma 12 (Gordon’s Inequality (Davidson and Szarek, 2001)). Let {Za,b} and {Ya,b} be zero-mean gaus-
sian processes indexed by A x B. Suppose that
E(Zap~Zaryy) < B(Yap-Yary)?  forall (a,b),(a’,b') e Ax B
and ) )
E(Zap - Zaw) =E(Yap - Yaor) foralla e A, b,b' € B.

Then
E sup ing Zap < Esup iné You-

acA be acA b€
Proof of Lemma 9. Part 1: Bound at a single scale.

nt2

Define B(7) = {A e R? | |A|y =1, A|, < 7}. We will prove that with probability at least 1 — 2e” =,

1 2 YT
%Hﬁcn(mgz\@—%—t, YA € B(7). (39)
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We will prove a lower bound on the random variable minap(;) ﬁ X5, (A)| 5, which is equivalent to pro-
viding an upper bound on the random variable

1
Snp(T)=— inf Xn(A)|,=- inf sup u, X (A sup inf — n(A)).
(7)== ) 1% @)=~ ) i el Ta(A) = s, X(2)

As a starting point, we show how to upper bound the expectation E[S,,(7)]. Define Za , = u, Xn(A)),

Lq
N
so that S,,(7) = SUPAeB(r) inf”uH2:1 ZA - Note that Za ,, is a gaussian process with variance n~1, since
|A|z = 1. We now define a new gaussian process that will serve as an upper bound through Gordon’s

inequality. Let g € R” and h € R™ be standard gaussian random variables, and define

i(h,u).

Y, =
A \/ﬁ

%(%A) +

Note that for any (A, u) and (A’,u") we have
1 2 1 2
E(YA’U - YAI’U/)2 = ﬁ HA - A,HF + gHu - ’LL,H2.
Interpreting A and A’ as vectors in Rdg, we also have
E(Zan - Zarw)? = ~|ulsT -/ AT
n
1 2 1 2 1
= EHA - A'HF + ﬁHu - u’H2 + E((u -u)AT ' (A - A’)T>

LA AP R Sy - 1)(1 - (A, A7)
n n n

2

where we have used that |u], = |u|, = [|A] 7 = |A"|z = 1. It is also easily seen from the representation
above that for any triple (A, u,u") we have equality: E(Za ,, — ZA7UI)2 =E(Ya - YAm,)z. This means
that the preconditions of Lemma 12 are satisfied, and so

E[S,(T)]< E sup inf Ya,

AeB(r) lula=1
1
=—E, sup (g9,A)+Ep, — min (h,u
Vvn gAeB(T)< )+ h\/_HUHQ‘1< )
T 1
=—"E - —E;|h
NG 9||9H NG rlhly
YT )2

The provides the desired upper bound in expectation. To establish the high probability result we appeal
to gaussian concentration for Lipschitz functions. Let X ¢ R denote the sequence of measurements
X1,...,X,, interpreted as a matrix with vectorized measurements as rows. Define f : R™ R via
f(X) = minaep(q) ﬁ |XA[,. Observe that we have

1 , 1 / 1 /
£ 7)€ sup (X=X, € =X X, € =X -X],.

T
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and so f is n_%—Lipschitz with respect to /5. Lemma 11 therefore implies that

P(IS0(7) ~E S (7)) 2 £) < 265

In other words, (39) holds.
Part 2: Bound at all scales. We will show that for any & < \/2/m, with probability at least 1 — 2732 /(1 —

71/52
e s ),
_||3C (A)”z—\/;‘ff‘_”A” VA: A =1. (40)

Define S(Tg,m) = {A eRP||A|p=1,7< WHAH < Tu}. Set 41 = £/2 and consider the classes B(0, )
and B(21711,2% 1) for i € N. Note that if equation (40) fails to hold and A € B(0, ;1) then

%xn(ﬁ)zﬁ\/j—e-—ﬁ*-\/jf—\/j—%

Furthermore, if equation (40) fails to hold and A € B(2¢~1 41, 2'11), then

1 2 2 ;
— | Xn(A)]l, < -—|A ——-2-2'u.
VS PERVEEEE T IR \/; p

Our development in part 1 of the proof implies that for any fixed 7, < 7,, with probability at least 1 —
2

2”3 ej?u,
1 2
B2 \[Z ~2m, VA B(LT). @
Thus, by a union bound, we get that with probability at least 1 — 2e™32 )72 e’QT, or conservatively at
n n€2
least 1 —2e732/(1—e "5),

% Hxn(A)H2 2 \/;_ 2. 22#7 VAe 8(22_1IU7 2Zlu)7 Vie N7

and

1 2
%xn(A”bZ\/;_zuv VAEB(O,/L),

or in other words, equation (40) holds.

We extend the guarantee in equation (40) to arbitrary A € RP by rescaling so that [A|, = 1 and then
exploiting homogeneity to get

%ﬁmmuzz(\@—e)uAuF AL, VAR
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C.4 Proofs of main results

Proof of Theorem 5. We prove the theorem by appealing to the generic result of Theorem 8 using norms

and |-, Let T be an arbitrary rank-r orthogonal tensor with |7 . = 7 and

-l = 1, = [l e, e

17" <

First, observe that all elements 7" € 7 have | T g, < 77| e
A €T - T~ satisfy

aieg- Consequently, Theorem 3 implies that all

| Al e, <687 - [A] g, (42)

Aucy =

which establishes Property 3 with x = O(r - d*/?).

To establish Property 2 we appeal to Theorem 9, which implies that for any £ < 1/2, with probability at least
1-4,all A eT —T" satisty

/ 2 3/2
H21/2AH (1+2€) 1%, (A)H2+O(RAnuc4 1053/21 R?log(log”(d \/_)/5))

ENn

Using equation (42) this is upper bounded by

1+2¢ r21ogl d R210g log?(d®/? §
[eaf) < L2, <A>\|2+O(RAF\/ L log {4 vin)f9)

(1+2€) ”x (A)||2+O(RH21/2AH /r2d3/210g d R210g(log (d3/2\/_)/5))

Using the AM-GM inequality, this is further upper bounded by

HZI/QAHQ . (1+2) %,(2)2 +EH21/2AH2 . O(R2r2d3/2 log® d . R? log(log2(d3/2\/ﬁ)/5))
F~ n " 2 F '

n EN

Rearranging, this is equivalent to

2 13/21,6 2 2( 132
(1- e)Hzl/QAH (1+2€) A+2e) (A)Hz (RZT d nlog d+R log(logg(: \/ﬁ)/é)),

and since € < 1/2 this implies

2 13/21,6 2 2¢ 13/2
HEl/ZAH (1+2€) I, (A)”z (RZT d nlog d+R log(logg(: \/ﬁ)/é))

Making the somewhat arbitrary choice of € = 1/100, and simplifying the right-hand-side, we get

9 2 13/2 106
s12pl < EHDCH(A)H2+O 2" d’*log” d +log(1/4) '
F n 2 n

So we can take ¢ = 1.1 and ~,, = O(R2 r2d*? log® d+log(1/6) )

n

Finally, we establish Property 1. Lemma 5 establishes that with probability at least 1 — 6,

+v/202nlog(1/8) + 4R1og(1/0),

injy

n

;q((T*,Xt) - Y;)Xt

X,-E[¢X]| <A4EgE.

an4
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A BT, X)((T*, Xy) - Y2)?] < supypy_
the standard in- expectation Lipschitz contraction lemma (e.g., Ledoux and Talagrand (1991)), we have

1
SO(R n(;id + R\/log3 )
injy

where o2 = sup|p|__ <1 d3 ||THF < d3 Using Lemma 7 with

Atcy Alcy

n

; Gt(<T*,Xt) - }/t)Xt

4EgE, <8REgE,

injy

Since n = Q(d3/ 2), these bounds together imply that we can take M = O(R\ / logﬁ;%)

Theorem 8 now implies the claimed result.

Z GtXt

t=1

O

Proof of Theorem 6. As in the tensor completion case, we prove the theorem by appealing to Theorem 8

using norms ||-| = |7 “and -], = -]

injy nocy

Let T be an arbitrary orthogonal tensor with |7 || =7, R(T*) = R,and r(T™) = r. Theorem 3 implies

that all A € 7 — T satisfy

AUCe

| Al < 68r- Al (43)

nucq
and thus, since X = I, we may take x = 68r to establish Property 3.

To establish Property 2 we appeal to Theorem 10. This implies that for any e < \/2/7, with probability at
n n52
least 1 —2e732/(1-e "8 ),

1 Cd3/*10g'* d
%H?Cn(A)Hz > (V2/m-¢e)|Alp - — 1A e,

where C' > 0 is some absolute constant. Using equation (43), we have that for all A € 7 — T, conditioned
on the event above,

C'rd¥*1og'* d

12 (A) ]y > (V2 - ) A - —

NG

This means that when n = Q(r2(T*)d3? log'/? d/e), we have

[AlE

INPE F 2)2—\\ (M)

It suffices to set € = 1/40 to get
52 1.8 2
[AlE < —=1Xa(A)]2.
So, simplifying, Property 2 is satisfied with ¢ = 1.8 and -, = 0 with probability at least 1 — e"51 when
n = Qr3(T*)d*?1og'? d).

To establish Property 1 we use Lemma 10, but some care needs to be taken to establish that this applies with
high probability. Pick a constant 7 > 0, and observe via Lemma 11 that

2

P(|X] 2 d*?+7) <277
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‘r2
Define a truncated sequence X/ = X;1{|X;| < d3? + 7}, and set &) = 2ne” . Observe that with proba-
bility at least 1 — §y, X; = X/ for all ¢, and so

S 6 X! ~E[¢X']

t=1

<

injy

S 6.X, - E[¢X]
t=1

injy

We apply Lemma 5 to the truncated complexity, which implies that with probability at least 1 — (6 + dp),

injy

Z;&Xt, -E[¢X]
t=

1

;et((T*7Xt) -Y)X{

<4Ex,, E.

o O(\/Uanog(l/é) + R(d*? + 7). log(l/é))7

injy

where 02 = SUP|7|_ <1 E[(T,X’)2((T*,Xt) —Y})Z] < supjp|_ 4| T|% - 4R? < 4R?. We now apply
Aucy = nucy =
Lipschitz contraction to bound the in-expectation Rademacher complexity as

n
Z EtXf{
t=1

n

t_Z;Et((T*,Xt)—Kt)XZ

4Ex,., Ec

< 8f%ﬂ3)({”LH§E

inju

injy
Integrating out the tail, we can bound the error due to truncation as
n n
!/
Z etXt Z GtXt
t=1 t=1

IE«Xlzn EE < IE«Xlzn EE

inj

~ +n.fdg/2”]P>(HXHF>t)dt
injy
We have

2

[ B ) 2 3 9
n./d3/2+T]P>(HXHF>t)dt_n.[d3/2+76 7dt <n-exp(-C(d’ +17)),

for some absolute constant C'. We pick 7 = (1/(d3/2n +1og(1/5))/C), so that the quantity above is o(1)
and &g < 4. Lastly, since X1., are gaussian, Lemma 10 implies

n
Z € X¢
t=1

= Vn Ex|X|= <O(d¥*logt* dy/n).

—~ injy
inju

IE*Xlzn EE

When n > d*/?, we have d®/? < d*/*\/n, and so we conclude that with probability at least 1 — 3,

) < O(Rd**10g®?(d/5)\/n),

injy

36X, ~ E[¢X]
t=1

so M = O(Rd**10g®?(d}6)).

D Proofs from Section 4

Proof of Theorem 7. Let £ > 0 be fixed and let m = d3/%7¢/2,

We will generate an instance of tensor completion from the 3-XOR instance by treating the indices (i, j, k)
in each clause as an observed entry. Precisely, for each clause, we set the corresponding X = ¢; ® ¢; ® ¢,
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and the corresponding Y = z;;,. The induced risk for each tensor T in this setting is simply Lp,(T") :=
% Yiik(Tijk — Zijk)?, where the tensor Z ¢ ({£1}%)®3 is defined as follows: in the random case, the
entries of Z are selected uniformly at random from {+1}; in the planted case with planted assignment
a € {il}d, we start off with the tensor a®3, then get Z by flipping each coordinate independently with
probability 7.

If we set n = Q(m), then we are guaranteed to receive (/) unique clauses under with-replacement
sampling, since there are at most logarithmically many repeats with inverse polynomial probability for m =
0(d3/ 2). With this observation, it is clear that any algorithm that takes as input the examples S and outputs
“Planted” with probability at least 1 — 0o(1) when Z comes from the planted distribution and “Random’
with probability at least 1 — o(1) when Z is from the random distribution is a successful distinguisher for
the planted 3-XOR problem with ©(m) clauses. Going forward we assume n = Q(d), since this is the
interesting regime for distinguishing and refutation.

s

Now, suppose we have an algorithm that enjoys the excess risk bound (19) for any n, and let Ts denote its
output given input dataset S. Since Z ¢ ({il}d)®3 we can take HTS Hoo < 1 without loss of generality. We

will turn Ts into a successful distinguishing algorithm for the planted 3-XOR problem as follows: Define
v = 1 - 4n, and note the assumption that < 1/4 implies that v > 0. Split the sample set .S into halves .S}
and So, and let Zgl and Zgz denote the empirical risk on the respective halves. Let Tsl be the output of the
assumed algorithm on S;. If ESZ (Tsl) > 1 - ~4/2 return “Random”, else return “Planted”.

We will show that the algorithm succeeds in both the planted and random case by analyzing the value of
Lg,(Ts,) in each case.

Random case. Let S} be the result of removing all entries that appear in Sy from S5. The number of repeats
is at most O(n?/d® + log(1/d)) with probability at least 1 — §. Tt follows that with probability at least, say,
1-0(d™),

Sy =
:52:21—0(1), and  Ls,(Ts,) > Lg; (Ts, ) - o(1).

Observe that for every remaining example X = ¢; ®¢; ®ey, in S5, the value of T. s, is statistically independent
of the value of Z; ; .. Abbreviating T, to T', this means that we have

1

- 1 _ _
Ez[Lsy(Ts,)] = 7= > Bz, vetety(Tigk - Zi,j,k)2 == > (Tijk) +1>1.
|SZ‘ X=ei®6]‘®ek€Sé |52| X=ei®€j®ek65’é

Condition on ). Since T. s, and Z have bounded entries, it follows from Hoeffding’s inequality that with
probability at least 1 — § over the choice of Z,

log(1/4)

Lsy(Ts,) > Bz[Lgy(Ts,)] - ¢ P
|53

for absolute constant ¢ > 0. Since |S5| = Q(m), we can use the AM-GM inequality to conclude with
probability at least 1 — O(d™1),
Ls,(Ts,) > LS& (T's,) —o(1).

It follows by union bound that
Ls,(Ts,) 21 -0(1) >1-~%/100 - o(1).

This proves that our strategy will indeed return “Random” for random instances.
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Planted case. For any Z, the assumed excess risk bound implies that for any rank-1 tensor 7™ with bounded
entries, we have

LDZ (TS1) - LDZ (T*) < 0(1)7

when n = w(d?’/ 2-¢). We choose T* = a®3, where a € {il}d is the planted assignment. Taking expectation
over the flips in Z, we have

4 :
Ez[Lp,(a®*)] =E, i 1{Z;;x. flipped} | = 4n.
i7j7k
Applying Bernstein’s inequality, we have that with probability at least 1 — O(d™') over the choice of Z,
Lp,(a®) <4(1+7)n+o(1) =1-~*+0(1).

Finally, we use Bernstein once more to show that the empirical loss for Sy converges to the population loss,
leveraging that S5 is an independent hold-out set for T's, . We have that for any choice of S, with probability
at least 1 — 9 over the draw of S5,

Lp,(Ts,)log(1/6) +6210g(1/5)

Ls,(Ts,) < Lp,(Ts,) + 01\/ - -

where c; and c; are absolute constants. Applying AM-GM, this implies that Ts, (T, ) < (1+7%)Lp,, (Ts, )+
o(1) with probability at least 1-O(d '), and so by combining this with the excess risk bound and the bound
on Lp,(a®3), we have

z/\52(7;51) <1- 74 + 0(1)'
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