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Abstract

We study tensor completion in the agnostic setting. In the classical tensor completion problem, we

receive n entries of an unknown rank-r tensor and wish to exactly complete the remaining entries. In

agnostic tensor completion, we make no assumption on the rank of the unknown tensor, but attempt to

predict unknown entries as well as the best rank-r tensor.

For agnostic learning of third-order tensors with the square loss, we give the first polynomial time

algorithm that obtains a “fast” (i.e., O(1/n)-type) rate improving over the rate obtained by reduction

to matrix completion. Our prediction error rate to compete with the best d × d × d tensor of rank-r is

Õ(r2d3/2/n). We also obtain an exact oracle inequality that trades off estimation and approximation

error.

Our algorithm is based on the degree-six sum-of-squares relaxation of the tensor nuclear norm. The

key feature of our analysis is to show that a certain characterization for the subgradient of the tensor

nuclear norm can be encoded in the sum-of-squares proof system. This unlocks the standard toolbox for

localization of empirical processes under the square loss, and allows us to establish restricted eigenvalue-

type guarantees for various tensor regression models, with tensor completion as a special case. The new

analysis of the relaxation complements Barak and Moitra (2016), who gave slow rates for agnostic ten-

sor completion, and Potechin and Steurer (2017), who gave exact recovery guarantees for the noiseless

setting. Our techniques are user-friendly, and we anticipate that they will find use elsewhere.

1 Introduction

Recovering structured mathematical objects from partial measurements is a fundamental task in machine

learning and statistical inference. One important example, which has been a mainstay of modern research

in machine learning and high-dimensional statistics, is matrix completion. Here, we receive n entries from

an unknown d × d matrix, and the goal is to complete the remaining entries when n is as small is possible.

The key structural assumption that enables recovery when n≪ d2 is that the underlying matrix is low-rank.

A celebrated line of research on matrix completion (Srebro and Shraibman, 2005; Candès and Recht, 2009;

Candès and Tao, 2010; Keshavan et al., 2010; Gross, 2011; Recht, 2011) has culminated in the following

guarantee: to exactly recover an incoherent rank-r matrix, n = Õ(rd) uniformly sampled entries suffice.

While low-rank matrix completion has seen successful application across many problem domains (most

famously in the context of the Netflix Problem), for many tasks it is natural to consider not just pairwise

interactions but higher-order interactions, leading to the problem of tensor completion. Tensor completion

poses significant computational hurdles compared to the matrix case, but in an impressive recent work,
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Potechin and Steurer (2017) provide an efficient algorithm based on the sum-of-squares hierarchy that ex-

actly recovers a d × d × d tensor of rank-r with incoherent and orthogonal components from Õ(rd3/2) mea-

surements. While this undershoots the optimal statistical rate of Õ(rd), there is evidence that this is optimal

amongst polynomial time algorithms under certain average-case hardness assumptions (Barak and Moitra,

2016).

In real-world applications, the assumption that the underlying tensor is truly low-rank may be too strong,

and model misspecification is unavoidable. This is the main thrust of agnostic learning (Haussler, 1992;

Kearns et al., 1994) which, rather than attempting to recover an unknown model in some class, attempts

to predict as well as the best model. The aim of this paper is to develop guarantees for agnostic tensor

completion: predicting as well as the best low rank tensor, even when exact recovery is impossible.

We work in the following agnostic tensor regression model, which captures tensor completion as a special

case: we receive examples (X1, Y1, ), . . . , (Xn, Yn) i.i.d. from an unknown distribution D, where each

instance Xt is a d × d × d tensor and Yt is a real-valued response. Letting ⟨⋅, ⋅⟩ denote the usual inner

product, we measure predictive performance of a given d × d × d tensor T via its square loss risk LD(T ) =
E(X,Y )∼D(⟨T,X⟩ − Y )2. Our goal is to use the samples to produce a predictor T̂n that enjoy low excess

risk:

LD(T̂n) − inf
T ∶ rank-r

LD(T ) ≤ ε(n, r, d), (1)

where the bound ε(n, r, d) converges to zero as n→∞. When the observations X are uniformly distributed

indicators (i.e. X = ei ⊗ ej ⊗ ek, where (i, j, k) is uniform) this recovers the usual measurement model for

tensor completion. If the model is well-specified in the sense that Y = ⟨X,T ⋆⟩ + ξ, where T ⋆ is a low-rank

tensor and E[ξ ∣ X] = 0, then low excess risk implies approximate recovery of T ⋆. In general, the guarantee

(1) is interesting because it implies non-trivial predictive performance even in the presence of severe model

misspecification.

In the matrix case, agnostic excess risk guarantees of the type in (1) were characterized by Koltchinskii et al.

(2011). There it was shown that to compete with the best rank-r matrix with bounded entries, empirical risk

minimization with nuclear norm penalization obtains a fast rate of the form ε(n, r, d) = O(rd log d/n), and

also showed that this is optimal.1 The nomenclature fast rate is intended to contrast the 1/n dependency on

n with slow rates, which have a 1/√n dependency on n, and which are typically much simpler to obtain

(see Gaiffas and Lecué (2011) for slow rates in the matrix setting).

The results of Koltchinskii et al. (2011) leverage strong understanding of the (matrix) nuclear norm, namely

matrix concentration and decomposability/subgradient properties. In this paper, we tackle the following

questions:

• Can we give similar guarantees for agnostic tensor completion?

• Can we obtain fast rates while at the same time relaxing the strong statistical assumptions (low rank

observations, incoherence) needed for exact recovery?

• What are the best rates we can obtain subject to employing a polynomial-time algorithm?

1Interestingly, their results also show that incoherence—usually taken as necessary in matrix completion for positive results —is

not necessary to obtain prediction error bounds; boundedness suffices.
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1.1 Our contributions

Our main result is to give the first polynomial time algorithm with a fast O(1/n)-type rate for agnostic

completion of third order tensors that improves over the rate obtained by the natural reduction to matrix

completion. Our main theorem gives excess risk bounds relative to low-rank orthogonal tensors, i.e. tensors

of the form

T = r∑
i=1
λi ⋅ ui ⊗ vi ⊗wi, (2)

where ∥ui∥2 = ∥vi∥2 = ∥wi∥2 = 1 and {ui} are orthogonal, as are {vi} and {wi}. The result is as follows.

Theorem 1 (informal). There is a convex set of d×d×d tensors T derived from a sum-of-squares relaxation

of the tensor nuclear norm, for which the empirical risk minimizer T̂n ∶= argminT ∈T
1
n ∑n

t=1(⟨T,Xt⟩ − Yt)2
can be computed in polynomial time, and guarantees that with probability at least 1 − o(1),

LD(T̂n) − inf
T ∶ rank-r, orthogonal

LD(T ) ≤ Õ(r2d3/2
n
). (3)

The guarantee applies to both random indicator measurements (tensor completion) and gaussian measure-

ments (tensor compressed sensing).

The full version of the theorem is stated in Section 3. The result be thought of as a generalization of the

agnostic matrix completion results of Koltchinskii et al. (2011) to higher-order tensors. We also achieve a

more general exact oracle inequality that trades off approximation and estimation error. This takes the form

LD(T̂n) ≤ inf
T ∶ orthogonal

{LD(T ) + Õ(r2(T )d3/2
n

)},
where r(T ) denotes the rank of T .2

Algorithm. Our algorithm is based on the sum-of-squares (SoS) hierarchy of convex relaxations (Shor,

1987; Parrilo, 2000; Lasserre, 2001), applied to the tensor nuclear norm. For k ∈ N, the sum-of-squares

hierarchy defines a sequence of outer convex relaxations ∥⋅∥ñuck that give an increasingly tight approximation

to the (hard to approximate (Hillar and Lim, 2013)) tensor nuclear norm ∥⋅∥nuc as k is increased. The SoS

nuclear norm was previously used in the work of Barak and Moitra (2016), who gave O(1/√n) rates for

tensor completion in the agnostic model with absolute loss. Their main contribution was to show how certain

spectral bounds arising in 3-SAT refutation (Coja-Oghlan et al., 2004) bound the Rademacher complexity

for the unit ball of the degree-six SoS nuclear norm, thereby controlling the usual empirical process via

uniform convergence. Our guarantees are based on empirical risk minimization over the (scaled) ball in this

norm, specifically the degree-six relaxation ∥⋅∥ñuc6 , and our analysis builds on their Rademacher complexity

bounds.

Restricted eigenvalue and subgradient lemmas. While theO(1/√n)-type rates provided in Barak and Moitra

(2016) are optimal (in terms of n dependence) for generic Lipschitz losses, it is not immediately obvious

whether their result can be used to provide O(1/n)-type fast rates for strongly convex losses like the square

loss. It has long been recognized that to obtain fast rates for prediction with strongly convex losses, more

refined control of the empirical process is necessary. In particular, it is well-known that local Rademacher

complexities and related fixed point complexities characterize the rates for empirical risk minimization in

a data-dependent fashion. To bound such localized complexities under convex relaxations, the typical ap-

proach is to establish a restricted eigenvalue property for the empirical design matrix (Negahban et al., 2012;

2Here the word “exact” refers to the fact that the leading constant in front of the loss on the right-hand-side is 1; such guarantees

generally do not easily follow from the usual machinery used to analyze well-specified models.
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Bartlett et al., 2012; Lecué and Mendelson, 2017, 2018). Establishing such guarantees for regularizers such

as the ℓ1 norm, nuclear norm, and so on is usually done by appealing to properties of the subgradient of

the norm and proving that the norm (approximately) decomposes across certain subspaces (Negahban et al.,

2012). The main tool we establish here, which allows us to unlock the full power of localized complexities

and establish rates fast rates, is a new guarantee of this type for the SoS nuclear norm. Informally, we show:

Theorem 2 (informal). Let T ⋆ be a fixed orthogonal tensor, and let T = {T ∶ ∥T ∥ñuc6 ≤ ∥T ⋆∥ñuc6}. Then:

∥T − T ⋆∥ñuc4 ≤ O(r(T ⋆)) ⋅ ∥T − T ⋆∥F ∀T ∈ T .
This theorem is a consequence of a more general result we prove in Section 2, which gives a characterization

of the subgradient of ∥⋅∥ñuc4 at any orthogonal tensor. The basic idea is to show that a characterization for

the subgradient of the tensor nuclear norm given in Yuan and Zhang (2016) can be captured in the sum-

of-squares proof system. The final result (Theorem 4) is fairly user-friendly, and packages the complexity

of SoS into a self-contained statement about geometric properties of the norm ∥⋅∥ñuc4 . We hope that this

will find use in other applications. As one concrete example, in Section 3 we show how the subgradient

characterization can also be used to give agnostic fast rates for the problem of low-rank tensor sensing with

gaussian measurements. Here we also obtain Õ(r2d3/2/n)-type fast rates.

Lower bounds. Lastly, we prove that our results can’t be strengthened significantly while still obtaining

computationally efficient algorithms. It is straightforward to show that there is an inefficient predictor that

obtains O(rd/n) excess risk, whereas the dimension scaling in Theorem 1 isO(d3/2). This scaling is shared

by the other results based on the SoS nuclear norm (Barak and Moitra, 2016; Potechin and Steurer, 2017),

and Barak and Moitra (2016) show that finding relaxations for which the Rademacher complexity grows as

o(d3/2) is at least as hard as refuting random instances of 3-XOR. In Section 4 we give a computational

lower bound for agnostic learning that shows that obtaining square loss excess risk scaling as o(d3/2) is

at least as hard as a certain distinguishing problem for random 3-XOR, sometimes called learning sparse

parities with noise.

1.2 Related work

Early algorithms for computationally efficient tensor completion relied on unfolding: reshaping the tensor

into a matrix and applying a matrix completion algorithm (Tomioka et al., 2011; Tomioka and Suzuki, 2013;

Romera-Paredes and Pontil, 2013; Mu et al., 2014; Jain and Oh, 2014). This approach yields suboptimal

results for third-order tensors and other odd-order tensors. For example, for a third-order tensor in (Rd)⊗3,

the most “balanced” unfolding of the tensor is a d × d2 matrix, and so directly reducing to an algorithm

for agnostic matrix completion (e.g. Koltchinskii et al. (2011)) would yield suboptimal O(d2)-type sample

complexity.

Recent results of Montanari and Sun (2016), Potechin and Steurer (2017), and Xia et al. (2017) all give sub-

O(d2) type rates, but apply only to noiseless or well-specified models, and do not obviously extend to the

agnostic setting. Potechin and Steurer (2017) give exact completion in the noiseless case after Õ(rd3/2)
entries are observed. Montanari and Sun (2016) show that a refined spectral approach based on unfolding

can obtain sub-O(d2) rates for prediction error in the noiseless setting, but they obtain a rate of O(1/n2/3)
that falls short of the O(1/n)-type rate we provide. Finally, Xia et al. (2017) recently showed that an algo-

rithm based on power iteration provides O(d/n)-type rates once n = Ω(d3/2), but their result only applies

to well-specified models, and it seems unlikely that this algorithmic approach succeeds in the fully agnostic

setting.
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Our results build on the seminal work of Barak and Moitra (2016) and Potechin and Steurer (2017), both

of which use sum-of-squares to give O(d3/2)-type guarantees that improve on unfolding. The former was

the first paper to study the agnostic setting, and gave slow excess risk guarantees for the absolute loss (i.e.,

rates growing as 1√
n

). Technically, our results build on their Rademacher complexity bounds for the SoS

norms (Barak and Moitra, 2016), as well as spectral bounds from Hopkins et al. (2015). Obtaining fast

rates, however, requires developing new technical tools and necessitates that we control the subgradient of

the SoS norms. Our analysis here builds on ideas used to construct dual certificates for tensor completion in

Potechin and Steurer (2017).

Lastly, we mention that various recent works have begun to explore that power of SoS in other agnostic

learning settings. Notably, Klivans et al. (2018) provide square loss risk bounds for SoS algorithms for

robust regression. To the best of our knowledge our work is the first to provide fast rates for SoS algorithms

in any agnostic setting.

1.3 Preliminaries

We let ∥⋅∥p denote the ℓp norm, i.e. if x ∈ Rd is a vector then ∥x∥p = (∑d
i=1∣xi∣p)1/p. For a matrix A we

let ∥A∥op denote the operator norm/spectral norm and let ∥A∥nuc denote the nuclear norm. For matrices or

tensors we let ∥⋅∥F denote the element-wise ℓ2 norm. For any norm ∥⋅∥ we let ∥⋅∥⋆ denote the dual.

We use Õ to suppress factors logarithmic in d, r, and 1/δ, where δ is the failure probability.

Tensor notation. The outer product between two vectors u ∈ Rd1 and v ∈ Rd2 is denoted u ⊗ v, and

belongs to the space R
d1 ⊗ R

d2 . For a given vector u, we write u⊗k = u ⊗ ⋯ ⊗ u (k times), and likewise

define (Rd)⊗k = Rd⊗⋯⊗Rd. This paper develops algorithms for completion of 3-tensors in (Rd)⊗3, which

we frequently identify with elements of Rd ×Rd ×Rd. In more detail, for a tensor T ∈ (Rd)⊗3, we let Ti,j,k
be such that T = ∑i,j,k Ti,j,k ⋅ ei ⊗ ej ⊗ ek. For a pair of matrices A,B, we let A⊗B denote the Kronecker

product, which obeys the relation (A⊗B)(C⊗D) = (AC)⊗ (BD). Given matrices A1,A2,A3 and tensor

T = ∑i ui ⊗ vi ⊗ wi, we define (A1 ⊗ A2 ⊗ A3)T = ∑i(A1ui) ⊗ (A2vi) ⊗ (A3wi). Whenever T is an

orthogonal tensor of the form (2), we let r(T ) denote the rank.

2 Subgradient of the sum-of-squares nuclear norm

2.1 Tensor nuclear norm and sum-of-squares relaxation

In the classical results on matrix completion (Candès and Recht, 2009; Candès and Tao, 2010; Recht, 2011;

Koltchinskii et al., 2011), a central object is the nuclear norm, which arises as a convex relaxation of the

rank. A natural candidate to develop efficient algorithms for tensor completion is the tensor nuclear norm

(e.g. Hillar and Lim (2013); Friedland and Lim (2018)), which may be defined via

∥T ∥nuc = inf{ r∑
i=1
∣λi∣ ∶W = r∑

i=1
λiui ⊗ vi ⊗wi, ∥ui∥2 = ∥vi∥2 = ∥wi∥2 = 1, r ∈ N}, (4)

and whose dual is the injective tensor norm ∥X∥inj = sup∥x∥
2
=∥y∥

2
=∥z∥

2
=1⟨X,x⊗ y ⊗ z⟩. Unfortunately,

the optimization problem here—maximizing a degree-three polynomial over the sphere—is intractable in

general.
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The approach we take, following Barak and Moitra (2016) and Potechin and Steurer (2017), is to employ the

sum-of-squares hierarchy of convex relaxations (Shor, 1987; Parrilo, 2000; Lasserre, 2001) which provides

an increasingly tight sequence of relaxations of the optimization problem in (4). To describe the relaxations,

we require the notion of a pseudodistribution.

Definition 1 (Pseudodistribution (Barak and Steurer (2016))). Let µ ∶ Rd → R be a finitely supported func-

tion and let Ẽµf = ∑x∈supp(µ) µ(x)f(x). µ is said to be a degree-k pseudodistribution if Ẽµ1 = 1 and

Ẽµf
2 ≥ 0 for all polynomials f of degree at most k/2.

Given a degree-s pseudodistribution µ and sytem of polynomial inequalities A = {f1 ≥ 0, . . . , fm ≥ 0} ∪{g1 = 0, . . . , gm′ = 0}, we write µ ⊧ A if for all S ⊆ [m] and all sum-of-squares polynomials h such that

degh +∑i∈S deg fi ≤ s,
Ẽµ[h∏

i∈S
fi] ≥ 0, (5)

and Ẽµ[giq] = 0 for all i ∈ [m′] and all polynomials q such that deg(giq) ≤ ℓ.
With the pseudodistribution formalism, we define the degree-k SoS injective norm as follows:3

∥X∥
ĩnjk
= sup

µ degree-k

Ẽµ∥x∥22=Ẽµ∥y∥22=Ẽµ∥z∥22=1

�纀X, Ẽµ[x⊗ y ⊗ z]⟩. (6)

The degree-k SoS nuclear norm is simply defined as the dual: ∥T ∥ñuck ∶= supX ∶∥X∥
ĩnjk
≤1⟨X,T ⟩. It can

equivalently be expressed by defining4

Kk = {T ∈ Rd×d×d ∣ ∃µdegree-k ∶ Ẽµ[x⊗ y ⊗ z] = T, Ẽµ∥x∥22 = Ẽµ∥y∥22 = Ẽµ∥z∥22 = 1}, (7)

and then ∥T ∥ñuck = inf{α ∣ T ∈ Kk/α}. (8)

The SoS nuclear norm and injective norm can be evaluated in dO(k) time (Grötschel et al., 1981; Barak and Steurer,

2016). Moreover, the norms obey the ordering ∥T ∥nuc ≥ . . . ≥ ∥T ∥ñuck ≥ . . . ≥ ∥T ∥ñuc2 ≥ ∥T ∥F , and likewise∥X∥inj ≤ . . . ≤ ∥X∥ ̃injk ≤ . . . ≤ ∥X∥ ̃inj2 ≤ ∥X∥F .

2.2 Subgradient and norm compatibility

Our algorithms are based on empirical risk minimization with SoS nuclear norm constraints, i.e., algorithms

that minimize the empirical loss over the set T = {T ∈ (Rd)⊗3 ∣ ∥T ∥ñuck ≤ τ} for appropriate choice of τ

and k. The technical challenge to analyzing this type of relaxation is that even if measurements are realized

by a rank-r tensor, there is nothing that guarantees a-priori that the tensor T̂n output by the algorithm is itself

low rank. Letting T be a rank-r orthogonal tensor, our main technical result here shows that if τ = ∥T ∥ñuck ,

then for all elements of T ′ ∈ T , the error ∆ = T ′ − T is “approximately low rank” in a sense that suffices to

guarantee good generalization performance.

Theorem 3 (Formal version of Theorem 2). Let k ≥ 4. Let T ∈ (Rd)⊗3 be an orthogonal rank-r tensor, and

let T ′ ∈ (Rd)⊗3 be an arbitrary tensor with ∆ ∶= T ′ − T . If ∥T ′∥ñuck+2 ≤ ∥T ∥ñuck+2 , then

∥∆∥ñuck ≤ 68r ⋅ ∥∆∥F . (9)

3There are minor technical differences (e.g., scaling) between the SoS injective/nuclear norm definitions we use and those of

Barak and Moitra (2016); Potechin and Steurer (2017).
4This equivalence is proven in Appendix A for completeness.
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In the analysis of nuclear norm regularization for matrix completion—and more broadly, throughout high-

dimensional statistics—the key tool used to establish guarantees along the lines of (9) is a characterization

for the subgradient for the nuclear norm, and the related notion of decomposability (Negahban et al., 2012;

Negahban and Wainwright, 2012). It is known clasically (Watson, 1992) that for any matrixW with singular

value decomposition W = UΣV ⊺,

∂∥W ∥nuc = {UV ⊺ +X ∣ U⊺X =XV = 0, ∥X∥op ≤ 1}. (10)

Our approach in the remainder of this section is to establish a similar result for the subgradient of the SoS

nuclear norm ∥⋅∥ñuck at any orthogonal tensor T . From here Theorem 3 will quickly follow.

As a first step, we need to define certain subspaces and projection operators associated with T .

Subspaces For the remainder of the section we let T be a rank-r orthogonal tensor as in (2). Define

U = span{ui}, V = span{vi}, and W = span{wi}, and note that each subspace has dimension at most r.

LetPU ∶ Rd → R
d and PV ∶ Rd → R

d and PW ∶ Rd → R
d be orthogonal projections onto these subspaces andPU⊥ , PV⊥ and PW⊥ be the projections onto the respective orthogonal complements. We define projection

operators from (Rd)⊗3 to (Rd)⊗3 for all 23 combinations of subspaces:5

Q0
T ∥
= PU ⊗PV ⊗PW, Q0

T ⊥ = PU⊥ ⊗PV⊥ ⊗PW⊥ ,
Q1

T ∥
= PU⊥ ⊗PV ⊗PW, Q1

T ⊥ = PU ⊗PV⊥ ⊗PW⊥ ,
Q2

T ∥
= PU ⊗PV⊥ ⊗PW, Q2

T ⊥ = PU⊥ ⊗PV ⊗PW⊥ ,
Q3

T ∥
= PU ⊗PV ⊗PW⊥ , Q3

T ⊥ = PU⊥ ⊗PV⊥ ⊗PW.
(11)

Lastly, we define two subspaces that play a central role in our analysis:

QT ∥ = Q0
T ∥
+Q1

T ∥
+Q2

T ∥
+Q3

T ∥
, and QT ⊥ = Q0

T ⊥ +Q1
T ⊥ +Q2

T ⊥ +Q3
T ⊥ . (12)

One can verify via multilinearity that X = QT∥(X) + QT ⊥(X) for all X ∈ (Rd)⊗3, and that any tensor in

the range ofQT ∥ spans at most r dimensions along at least two modes. We can now state our main theorem

for the subgradient.

Theorem 4 (Subgradient of SoS nuclear norm). Let k ≥ 4, and let T = ∑r
i=1 λi ⋅ui⊗vi⊗wi be an orthogonal

rank-r tensor. Define X⋆ = ∑r
i=1 ui ⊗ vi ⊗ wi. Then for all X ∈ (Rd)⊗3 with ∥X∥ ̃injk ≤ 1/64, and for all

T ′ ∈ (Rd)⊗3, it holds that

∥T ′∥
ñuck+2

≥ ∥T ∥ñuck+2 + �纀X⋆ +QT ⊥(X), T ′ − T ⟩. (13)

In other words, Theorem 4 states that

{X⋆ +QT ⊥(X) ∣ ∥X∥ ̃injk ≤ 1/64} ⊂ ∂∥T ∥ñuck+2 ,
which we may view as a generalization of the matrix subgradient characterization (10). Yuan and Zhang

(2016) proved a similar result for the (exact) tensor nuclear norm. Our proof of Theorem 4 shows that the

essence of their proof can be captured by a low-degree sum-of-squares proof. It builds on the approach

introduced in Potechin and Steurer (2017) to provide dual certificates for exact tensor completion.

5Following the convention in Section 1.3, if X = ∑i ai ⊗ bi ⊗ ci, then (PU ⊗PV ⊗PW)X = ∑i(PUai) ⊗ (PVbi)⊗ (PWci). It

is also useful to note that for any x, y, z we have ⟨(PU ⊗PV ⊗PW), x ⊗ y ⊗ z⟩ = ⟨X, (PUx) ⊗ (PVy) ⊗ (PWz)⟩.
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With the subgradient lemma in hand, the path to the “approximately low rank” result of Theorem 3 is clear.

Suppose that ∥T ′∥ñuck+2 ≤ ∥T ∥ñuck+2 , and let ∆ = T ′ − T . By appropriately choosing the dual tensor X in

(13), we can show that ∥QT ⊥(∆)∥ñuck ≤ 64 ⋅ ∥Q0
T ∥
(∆)∥

ñuck
. (14)

which implies that ∥∆∥ñuck ≤ 65∥QT ∥(∆)∥ñuck The final result follows because ∥QT ∥(∆)∥ñuck ≲ r∥∆∥F ,

which is a consequence of the earlier remark that all the projections used to define QT ∥ in (12) project into

r dimensions along at least two modes. This full argument is in Appendix B.

3 Agnostic tensor completion

We now state our main learning results, which use the SoS nuclear norm to give efficient algorithms with

fast rates for agnostic tensor completion and tensor sensing. For both results we receive observations(X1, Y1), . . . , (Xn, Yn) i.i.d. according to an unknown distribution D, where (Xt, Yt) ∈ (Rd)⊗3 × R, and

the goal is to obtain low square loss excess risk in the sense of equation (1). We let Ên denote the empirical

expectation, which is uniform over the examples {(Xt, Yt)}nt=1.

3.1 Tensor completion

In the tensor completion model we take observations Xt to be of the form Xt = eit ⊗ ejt ⊗ ekt , where(it, jt, kt) ∈ [d]3 is selected uniformly at random.6 In the noiseless or well-specified setting, this corresponds

to observing a single entry of an unknown tensor, but we make no assumption on the responses Yt other than

boundedness. The main theorem is as follows.

Theorem 5 (Formal version of Theorem 1). Let τ > 0 be fixed. Suppose that ∣Y ∣ ≤ R almost surely, and let

T̂n be the empirical risk minimizer over the tensor class T = {T ∈ (Rd)⊗3 ∣ ∥T ∥ñuc6 ≤ τ, ∥T ∥∞ ≤ R}. Then

for all n ≤ d3, with probability at least 1 − δ,
LD(T̂n) −LD(T ⋆) ≤ O(R2r2(T ⋆)d3/2 log6 d

n
+ R2 log(1/δ)

n
) (15)

for all orthogonal tensors T ⋆ ∈ (Rd)⊗3 with ∥T ⋆∥ñuc6 = τ and ∥T ⋆∥∞ ≤ R.

Let us spend a moment interpreting the theorem. First, let T ⋆ = argminT ∶rank-r LD(T ). Then, by setting

τ = ∥T ⋆∥ñuc6 , we are guaranteed that with probability at least 1 − δ,
LD(T̂n) − inf

T ∶rank-r
LD(T ) ≤ O(R2r2d3/2 log6 d

n
+ R2 log(1/δ)

n
). (16)

More generally, (15) implies an exact oracle inequality (Koltchinskii et al., 2011; Gaiffas and Lecué, 2011):

With probability at least 1 − δ, we have

LD(T̂n) ≤ inf
T ∶∥T ∥ñuc6=τ

{LD(T ) +O(R2r2(T )d3/2 log6 d
n

+ R2 log(1/δ)
n

)}.
Let us compare the result in detail with Barak and Moitra (2016), which is the only other polynomial time

agnostic tensor completion result with sub-O(d2) sample complexity. For general noise distributions, their

6Note that we sample entries with replacement, whereas related works use without-replacement sampling (Barak and Moitra,

2016; Potechin and Steurer, 2017).
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analysis gives an excess risk bound that scales as Õ(√ r2d3/2

n
). The bound in (15) matches this dependence

on all the parameters, but is squared, and is thus always tighter. The result has excess risk against arbitrary

tensors, however, while our bound requires orthogonality of the benchmark. We do not know whether this

restriction can be removed.

Interestingly, while Barak and Moitra (2016) give excess risk bounds against incoherent tensors, we do

not require incoherence. This is because we control the complexity of the benchmark through the ℓ∞
norm of the entries rather than through the Frobenius norm; this parallels the situation in the matrix setting

(Koltchinskii et al., 2011; Gaiffas and Lecué, 2011). Applying the spectral bounds of Barak and Moitra

(2016) without incoherence requires slightly tightening the analysis.

Lastly, we remark that the guarantee (16) requires setting the parameter τ based on the norm of the unknown

benchmark T ⋆. It is likely that this can be relaxed by appealing to penalized empirical risk minimization

rather than empirical risk minimization as in Koltchinskii et al. (2011), but we leave this for future work.

3.2 Tensor sensing

In this setting we give agnostic learning guarantees for a setting we call tensor sensing, which generalizes the

matrix compressed sensing setup studied in Negahban and Wainwright (2011). We assume that observations

X ∈ (Rd)⊗3 have independent entries fromN (0 ;1) and—as in the tensor completion setting—allow Y ∈ R
to be arbitrary. For each tensor T , define R(T ) to be the smallest almost-sure bound on ∣⟨T,X⟩ − Y ∣. As in

the tensor completion setup, the main result is a fast rate with Õ(r2d3/2
n
)-type scaling.

Theorem 6. Let τ > 0 be fixed, and let T̂n be the empirical risk minimizer over the tensor class T ={T ∈ (Rd)⊗3 ∣ ∥T ∥ñuc6 ≤ τ}. Then with probability at least 1 − δ,
LD(T̂n) −LD(T ⋆) ≤ O(R2(T ⋆)r2(T ⋆)d3/2 log3(d/δ)

n
). (17)

for all orthogonal tensors T ⋆ ∈ (Rd)⊗3 for which n = Ω(r2(T ⋆)d3/2 log1/2 d+ log(1/δ)) and ∥T ⋆∥ñuc6 = τ .

Overview of analysis We now sketch how the subgradient theorem can be combined with empirical pro-

cess arguments to prove Theorem 5 and Theorem 6. We follow a generic recipe given in Appendix C.1—

specifically, Theorem 8—which shows that to control the generalization error of empirical risk minimization,

it suffices to bound a certain “offset” or “shifted” empirical process. For any fixed benchmark T ⋆, the excess

risk relative to T ⋆ is bounded as

LD(T̂n) −LD(T ⋆) ≤ sup
∆∈T −T ⋆

{(E−Ên)[2⟨∆,X⟩(⟨T ⋆,X⟩ − Y )] +E⟨∆,X⟩2 − 2Ên⟨∆,X⟩2}. (18)

The offset process on the right-hand side was used to obtain high-probability fast rates for misspecified

models by Liang et al. (2015), and its analysis is closely related to that of Lecué and Mendelson (2013);

Mendelson (2014). To bound the process, it suffices to establish a type of lower isometry/restricted eigen-

value property, which we state here for the case of tensor regression: let Xn ∶ (Rd)⊗3 → R
n be the data

operator, which maps any tensor T to the sequence ⟨T,X1⟩, . . . , ⟨T,Xn⟩, and let Σ = EX[XX⊺] ∈ Rd3×d3

be the covariance matrix for the vectorized measurements. Then it suffices to show that with high probability,

the following restricted eigenvalue bound holds:

1√
n
∥Xn(∆)∥2 ≥ c∥Σ1/2∆∥F ∀∆ ∈ T − T ⋆,

9



where c > 1/√2 is a sufficiently large constant.

Our starting point to establish the guarantee is to borrow a bound from Hopkins et al. (2015), which states

that E∥X∥ ̃inj4 = O(d3/4 log1/4 d) under gaussian measurements, and suffices to bound the Rademacher com-

plexity of our tensor class. Using this bound in conjunction with standard gaussian concentration arguments

and the “peeling” method (e.g. (Negahban and Wainwright, 2011)), we prove Theorem 10, which states that

with high probability,

1√
n
∥Xn(∆)∥2 ≥ 0.79 ⋅ ∥∆∥F − Cd3/4 log1/4 d√

n
⋅ ∥∆∥ñuc4 ∀∆ ∈ (Rd)⊗3.

Combined with Theorem 3, which asserts that all ∆ ∈ T − T ⋆ have ∥∆∥ñuc4 ≤ O(r(T ⋆)) ⋅ ∥∆∥2, we have

the following consequence: once n = Ω(r2(T ⋆)d3/2 log1/2 d), with high probability,

1√
n
∥Xn(∆)∥2 ≥ (0.79 − o(1)) ⋅ ∥∆∥F ∀∆ ∈ T − T ⋆.

To establish the analogous bound in the tensor completion model we use the SoS Rademacher bound from

Barak and Moitra (2016), but utilize somewhat different concentration arguments. Indeed, due to the sparse

nature of the measurement distribution one cannot hope to exactly establish the restricted eigenvalue prop-

erty for Xn, and must instead show that it holds up to a small additive error.

4 Computational lower bounds

In the rank-one case, the excess risk bound of Theorem 5 scales as Õ(d3/2/n), while the excess risk attained

by the natural inefficient algorithm scales as Õ(d/n). It is natural to ask whether this O(d1/2) gap can be

improved or whether it poses a fundamental barrier. In the slow rate regime, Barak and Moitra (2016) gave

a computational lower bound showing that finding efficiently computable classes of tensors for which the

Rademacher complexity grows as o(√d3/2/n) is at least as hard as refuting random instances of 3-XOR

with o(d3/2) clauses. In this section we show that this computational hardness is also present in the fast rate

regime: Under plausible average-case hardness assumptions, no polynomial time algorithm can obtain a fast

rate for square loss scaling as O(d3/2−ε/n) for any ε > 0.

Our improper learning lower bound applies to any algorithm that obtains low excess risk in the sense of (15),

and states that under conjectured hardness of a certain distinguishing problem for 3-XOR it is not possible

to improve the O(d3/2) dependence on dimension.

We reduce from the 3-XOR problem over variables x ∈ {±1}d. A 3-XOR instance consists of a sequence of

m clauses of the form

xi ⋅ xj ⋅ xk = zijk,
where zijk ∈ {±1} is a target. We consider two families of instances:

• Planted. Fix an arbitrary assignment a ∈ {±1}d. Select m triples (i, j, k) uniformly at random with

replacement.7 For each such triple (i, j, k), include a clause

xi ⋅ xj ⋅ xk = zijk ∶= { ai ⋅ aj ⋅ ak, with probability 1 − η−ai ⋅ aj ⋅ ak, with probability η.

7We work in the slightly non-standard with-replacement model to simplify the mapping onto the with-replacement tensor com-

pletion model in Theorem 5.
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Note, we sample the value zi,j,k for a triple (i, j, k) only once: if the triple is sampled multiple times,

the value zijk will be the same.

• Random. Select m triples (i, j, k) uniformly at random with replacement, and take each clause to be

xi ⋅ xj ⋅ xk = zijk, where zijk is drawn from {±1} uniformly at random. Again, we sample the value

zi,j,k for a triple (i, j, k) only once.

An algorithm for the distinguishing problem takes m clauses as input and outputs either “Planted” or “Ran-

dom”. The algorithm is said to succeed if it outputs “Planted” for planted instances and “Random” for

random instances with probability at least 1 − o(1) over the draw of the instance. Note that the problem

becomes easier as η gets smaller, and in particular when η = 0 the problem can be solved in polynomial time

using Gaussian elimination.

Conjecture 1. There is some constant η < 1/4 such that no algorithm that succeeds for the 3-XOR distin-

guishing problem with m = o(d3/2) runs in polynomial time.

All known polynomial time algorithms for distinguishing require m = Ω(d3/2) clauses, and conjectured

hardness of the closely related problem of strong refutation for random 3-XOR for with o(d3/2) clauses has

been used as a basis to establish hardness of other learning problems (Daniely, 2016; Raghavendra et al.,

2017; Kothari et al., 2017; Feldman et al., 2018).

Theorem 7. Let ε > 0 be fixed. Assuming the 3-XOR distinguishing conjecture, there is no polynomial time

algorithm for agnostic tensor completion that guarantees that for any distribution D, with probability at

least 1 − o(1),
LD(T̂n) − inf

T ⋆∶ rank-1
LD(T ⋆) = O(d3/2−ε

n
). (19)

5 Conclusion

Our results demonstrate the power of the sum-of-squares hierarchy for agnostic statistical learning, and show

that sum-of-squares algorithms can obtain fast rates for prediction with the square loss. We hope our work

will serve as a starting point for applying sum-of-squares to obtain polynomial time algorithms with fast

rates in statistical learning for broader classes of models.

A few immediate technical questions emerge. Can the dependence on rank in our results be improved? Can

the subgradient results be extended to the general undercomplete or even overcomplete case? Can similar

agnostic learning results be obtained with a more practical algorithm that does not rely on solving the full

sum-of-squares SDP?
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A Preliminaries

A.1 Sum-of-squares proof system

LetA = {f1 ≥ 0, . . . , fm ≥ 0}∪{g1 = 0, . . . , gm′ = 0} be a system of polynomial constraints. A degree-ℓ sum-

of-squares proof that A implies a constraint {h ≥ 0} is a set of polynomials (qi)i∈[m′] and sum-of-squares

polynomials (pS)S⊆[m] such that

h = ∑
S⊆[m]

pS∏
i∈S
fi + ∑

i∈[m′]
qigi,

14



and where and deg(pS∏i∈S fi) ≤ ℓ for all S and deg(qigi) ≤ ℓ for all i.8 We write A ⊢ℓ {h ≥ 0} whenever

such a proof exists. Our proofs going forward utilize the well-known duality of SoS proofs and pseudodis-

tributions. See O’Donnell and Zhou (2013) and Barak and Steurer (2016) for further discussion, as well as

inference rules for the SoS proof system.

We note the following well-known, but useful lemma:

Lemma 1 (Pseudo-Cauchy Schwarz). Let f and g be polynomials and let ℓ = 2max{deg f,deg g}. Then

for any η > 0,

⊢ℓ {fg ≤ η
2
f2 + 1

2η
g2}. (20)

As a consequence, if µ is a degree-s pseudodistribution with s ≥ ℓ, then

Ẽµ[fg] ≤ √Ẽµ[f2] ⋅ Ẽµ[g2]. (21)

A.2 Basic technical results

A.2.1 Sum-of-squares norms

We state a few lemmas capturing useful properties of the sum-of-squares norms.

Proposition 1. The SoS nuclear norm and SoS injective norm are dual: ∥⋅∥ ̃inj⋆r = ∥⋅∥ñucr and ∥⋅∥ñuc⋆r = ∥⋅∥ ̃injr .

Proof of Proposition 1. It is immediate from the norm definitions that

∥X∥ñuc⋆r = sup
W ∈Kr

⟨W,X⟩ = sup
µ degree-r

Ẽµ∥x∥22=Ẽµ∥y∥22=Ẽµ∥z∥22=1
W=Ẽµ[x⊗y⊗z]

⟨W,X⟩ = ∥X∥
ĩnjr
.

The other direction is a consequence of the standard duality theory for finite-dimensional Banach spaces.

See, e.g., Theorem 15.4 in Rockafellar (1970).

Lemma 2. Let T = ∑r
i=1 λi ⋅ ui ⊗ vi ⊗wi be an orthogonal rank-r tensor. Then for all k ≥ 4.

∥T ∥ñuck = ∥T ∥nuc = r∑
i=1
∣λi∣, and ∥T ∥ ̃injk = ∥T ∥inj =max

i≤r
∣λi∣. (22)

Lemma 2 states that the SoS relaxations of the nuclear norm and injective norm are essentially “integral”

for orthogonal tensors. Note, this should not be a huge surprise since it is well-known that polynomial time

methods such as power iteration succeed at decomposing orthogonal tensors (Kolda and Bader, 2009). We

should mention it doesn’t seem possible to directly apply such results to give agnostic learning guarantees

along the lines of our main theorem. While our benchmark is an orthogonal tensor, the data itself may have

no orthogonal structure, and thus there is no clear object to which one might apply such a decomposition.

Proof of Lemma 2. We may assume λi ≥ 0 without loss of generality. We first prove equality for the

injective norms. Let i⋆ = argmaxi≤r λi. As a starting point, for any k we have ∥T ∥
ĩnjk
≥ ∥T ∥inj ≥ λi⋆ by ex-

hibiting ui⋆ ⊗ vi⋆ ⊗wi⋆ as a feasible solution to the supremum in ∥T ∥inj = sup∥x∥2=∥y∥2=∥z∥2=1⟨T,x⊗ y ⊗ z⟩.
8We use the convention ∏i∈∅ fi = 1, so that if ⊢ℓ h then h itself is a degree-ℓ sum of squares.
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For the upper bound, let x, y, z be indeterminates and—exploiting orthogonality—let us change coordinates

such that ui = vi = wi = ei. Then we have

⟨T,x⊗ y ⊗ z⟩ = r∑
i=1
λixiyizi

From equation (20), we have

⊢4 xiyizi ≤ 1

2
x2i + 1

2
y2i z

2
i .

We also have ⊢4 ∑r
i=1 y

2
i z

2
i ≤ (∑r

i=1 y
2
i )(∑r

i=1 z
2
i ). By the additivity of SoS proofs, and since we have

assumed λi ≥ 0, this implies

⊢4 ⟨T,x⊗ y ⊗ z⟩ ≤ max
i≤r

λi ⋅ (1
2
∥x∥22 + 1

2
∥y∥22∥z∥22).

Now let A = {∥x∥22 = 1, ∥y∥22 = 1, ∥z∥22 = 1}. We claim A ⊢4 ∥y∥22∥z∥22 = 1. To see this, write 1− ∥y∥22∥z∥22 =(1 − ∥y∥22)(1 + ∥z∥22) + (1 − ∥z∥22) + (∥y∥22 − 1) and use that deg((1 − ∥y∥22)(1 + ∥z∥22)) = 4.

Putting everything together, we see that A ⊢4 ⟨T,x⊗ y ⊗ z⟩ ≤ maxi≤r λi. Thus, since the ℓ2 norm is

preserved under change of basis, it follows that if µ is any feasible degree-4 pseudodistribution for the

maximization problem (6), we must have Ẽµ⟨T,x⊗ y ⊗ z⟩ ≤ maxi λi, and so ∥T ∥ ̃injk ≤maxi λi.

We now establish equality for the nuclear norms. We trivially have ∥T ∥ñuck ≤ ∥T ∥nuc ≤ ∑r
i=1 λi by exhibiting

the decomposition T = ∑r
i=1 λi ⋅ ui ⊗ vi ⊗wi as a feasible solution to the minimization problem in (4). For

the other direction, define X⋆ = ∑r
i=1 ui ⊗ vi ⊗wi, and observe that the equality we just established for the

injective norm implies ∥X⋆∥
ĩnjk
≤ 1. Thus, using the duality of the SoS nuclear norm and injective norm

from Proposition 1, we have

∥T ∥ñuck = sup
X∈(Rd)⊗3∶∥X∥

ĩnjk
≤1
⟨X,T ⟩ ≥ ⟨X⋆, T ⟩ = r∑

i=1
λi,

where the last equality uses that {ui}, {vi}, and {wi} are all orthogonal.

Proposition 2. Let k ≥ 4. For any degree-k pseudodistribution µ,

�纀T, Ẽµ[x⊗ y ⊗ z]⟩ ≤ ∥T ∥ĩnjk ⋅
√

Ẽµ∥x∥22 ⋅ Ẽµ∥y∥22 ⋅ Ẽµ∥z∥22. (23)

Furthermore, the following statements hold:

{∥z∥22 ≤ 1} ⊢k ⟨T,x⊗ y ⊗ z⟩ ≤ ∥T ∥ĩnjk ⋅ (12∥x∥22 + 1

2
∥y∥22),

{∥y∥22 ≤ 1} ⊢k ⟨T,x⊗ y ⊗ z⟩ ≤ ∥T ∥ ̃injk ⋅ (12∥x∥22 + 1

2
∥z∥22),

{∥x∥22 ≤ 1} ⊢k ⟨T,x⊗ y ⊗ z⟩ ≤ ∥T ∥ĩnjk ⋅ (12∥y∥22 + 1

2
∥z∥22).

(24)

Proof of Proposition 2. Equation (23) follows by rescaling a given pseudodistribution µ by using x′ =
x/√Ẽµ∥x∥22 and so forth, so that the pseudodistribution is feasible for the maximization problem (6).

For (24), let µ be a degree-k pseudodistribution with µ ⊧ {∥z∥22 ≤ 1}. Then, using (23) and the AM-GM

inequality we get �纀T, Ẽµ[x⊗ y ⊗ z]⟩ ≤ ∥T ∥ĩnjk2
(Ẽµ∥x∥22 + Ẽµ∥y∥22). Using linearity of the pseudoexpectation

operator we have Ẽµ[∥T ∥ĩnjk2
(∥x∥22 + ∥y∥22) − ⟨T,x⊗ y ⊗ z⟩] ≥ 0, and so (24) follows from the duality of

pseudoexpectations and sum-of-squares proofs. The remaining statements follow by symmetry.
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A.2.2 Projections

Here we state some basic results regarding the projection operators defined in Section 2.2.

Proposition 3. Let x, y, z ∈ Rd be given. If at least two of the follow conditions hold:

1) x ∈ U, 2) y ∈ V, 3) z ∈W,

then QT ⊥(x⊗ y ⊗ z) = 0.

Proof of Proposition 3. Suppose that x ∈ U and y ∈ V. Then PU⊥(x) = 0, and so Q0
T ⊥(x ⊗ y ⊗ z) =Q2

T ⊥(x⊗y⊗z) = Q3
T ⊥(x⊗y⊗z) = 0. We also have PV⊥(y) = 0, and soQ1

T ⊥(x⊗y⊗z) = 0. The remaining

cases follow by symmetry.

Lemma 3. Let k ≥ 4. For any tensor X ∈ (Rd)⊗3, and any subspaces U,V,W we have

∥(PU ⊗PV ⊗PW)X∥ĩnjk ≤ ∥X∥ĩnjk ,
and in particular ∥QT ∥(X)∥ ̃injk ≤ 4∥X∥ĩnjk and ∥QT ⊥(X)∥ ̃injk ≤ 4∥X∥ ̃injk .

Proof of Lemma 3. For any degree-4 pseudodistribution µ over indeterminates x, y, z we have

Ẽµ⟨(PU ⊗PV ⊗PW)X,x ⊗ y ⊗ z⟩ = Ẽµ⟨X, (PUx)⊗ (PVy)⊗ (PWz)⟩
≤√Ẽµ∥PUx∥22 ⋅ Ẽµ∥PVy∥22 ⋅ Ẽµ∥PWz∥22
≤√Ẽµ∥x∥22 ⋅ Ẽµ∥y∥22 ⋅ Ẽµ∥z∥22,

where the first inequality uses Proposition 2 and the second uses that ⊢2 ∥PXx∥22 ≤ ∥x∥22 for any subspace X.

This establishes the first result.

Now observe from (11) that ∥QT ∥(T )∥ĩnjk ≤ ∑4
i=1∥Qi

T ∥
(T )∥

ĩnjk
and ∥QT ⊥(T )∥ĩnjk ≤ ∑4

i=1∥Qi
T ⊥(T )∥ĩnjk .

We thus obtain the second result by applying the first to each of the summands.

A.2.3 Flattenings

The multilinear rank of a tensor T ∈ (Rd)⊗3 is the triple (r1, r2, r3), where

r1(T ) = dimspan{T⋅,j,k ∣ j, k ∈ [d]}, (25)

is the dimension of the space spanned by the mode-1 fibers and r2(T ) and r3(T ) are defined likewise for

the second and third mode.

We define the ith flattening map ♭i ∶ (Rd)⊗3 → R
d×d2 via

♭1(T )i,(j,k) = ♭2(T )j,(i,k) = ♭3(T )k,(i,j) = Ti,j,k. (26)

A standard result is that rank(♭i(T )) = ri(T ) (Friedland and Lim, 2018). We also have the following

comparison between the nuclear norm of the tensor and its flattenings.

Lemma 4 (Friedland and Lim (2018), Theorem 9.4). For any tensor T ∈ (Rd)⊗3,

∥T ∥nuc ≤ min{√min{r2, r3}∥♭1(T )∥nuc,√min{r1, r3}∥♭2(T )∥nuc,√min{r1, r2}∥♭3(T )∥nuc}.
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A.2.4 Concentration

Lemma 5 (Talagrand-type concentration for supremum of empirical process). Let F be a class of functions

of the form f ∶ Z → R. Let z1, . . . , zn be sampled i.i.d. from a distribution D over Z that satisfies

E[f(z)] = 0 and has ∣f(z)∣ ≤ c almost surely. Let σ2 = supf∈F E f2(z). Then for any δ > 0, with

probability at least 1 − 2δ over the i.i.d. draw of z1, . . . , zn,

sup
f∈F
∣ 1
n

n∑
t=1
f(zt)∣ ≤ 4Ez1∶n Eǫ sup

f∈F

1

n

n∑
t=1
ǫtf(zt) +

√
2σ2 log(1/δ)

n
+ 2c log(1/δ)

n
.

Proof of Lemma 5. Follows from Theorem A.1 of Bartlett et al. (2005) applied to the classes F and −F
separately, along with the standard in-expectation symmetrization lemma for uniform convergence.

B Proofs from Section 2

The main result in this section is to prove Theorem 4, then use this result to prove Theorem 3. Before

proceeding to the main proofs we state an intermediate result.

Lemma 6 (Potechin and Steurer (2017)). Let x, y, z ∈ Rd be indeterminates. Let A = {∥y∥22 = 1}. Then for

any r ∈ [d],
A ⊢6 r∑

i=1
xiyizi ≤ 1

2
∥x∥22 + 1

2
∥z∥22 − 1

4

d∑
i=r+1

x2i + z2i − 1

8

d∑
i=1
∑
j≠i
y2i (x2j + z2j + y2j (∥x∥22 + ∥z∥22)).

Corollary 1. Let A = {∥x∥22 = 1, ∥z∥22 = 1}. Then for any r ∈ [d],
A ⊢6 r∑

i=1
xiyizi ≤ 1 − 1

4

d∑
i=r+1

x2i + z2i − 1

8

d∑
i=1
∑
j≠i
y2i (x2j + y2j + z2j ).

Proof of Corollary 1. We will show that A ⊢6 −∑d
i=1∑j≠i y

2
i y

2
j ∥x∥22 = −∑d

i=1∑j≠i y
2
i y

2
j ; the term involv-

ing ∥z∥22 follows from the same reasoning. The desired inequality is equivalent to∑d
i=1∑j≠i y

2
i y

2
j (∥x∥22−1) =

0, which is clearly the product of a degree-4 polynomial and the equality constraint {∥x∥22 − 1 = 0}.
Proof of Theorem 4. Preliminaries. We first claim that the following equalities hold:

• Q0
T ∥
(X⋆) =X⋆.

• ∥X⋆∥
ĩnjk
= ∥X⋆∥ ̃injk+2 = ∥X⋆∥inj = 1.

• ⟨X⋆, T ⟩ = ∥T ∥ñuck = ∥T ∥ñuck+2 = ∥T ∥nuc.
Indeed, it is immediate from the definition of X⋆ that Q0

T ∥
(X⋆) = X⋆, and it follows from Lemma 2 that∥X⋆∥

ĩnjk
= 1 and ⟨X⋆, T ⟩ = ∥T ∥ñuck for all k ≥ 4.

Bounding dual norm is sufficient. To establish the inequality (13), we reduce to a simpler problem. The

claim is as follows: Fix a constant α > 0. If for all X ∈ (Rd)⊗3 with ∥X∥
ĩnjk
≤ α, we have

∥X⋆ +QT ⊥(X)∥ ̃injk+2 ≤ 1, (27)
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then (13) holds for all X with ∥X∥
ĩnjk
≤ α. To see that this is the case, observe that for any T ′ and all such

X we have

�纀X⋆ +QT ⊥(X), T ′ − T ⟩ ≤ ∥X⋆ +QT ⊥(X)∥ĩnjk+2∥T ′∥ñuck+2 − ⟨X⋆ +QT ⊥(X), T ⟩
≤ ∥T ′∥

ñuck+2
− ⟨X⋆ +QT ⊥(X), T ⟩

= ∥T ′∥
ñuck+2

− ∥T ∥ñuck+2 ,
where the first inequality uses Proposition 1, the second inequality uses (27), and the final equality uses the

definition of X⋆ and that ⟨QT ⊥(X), T ⟩ = ⟨X,QT ⊥(T )⟩ = 0. Rearranging the inequality yields (13).

Bounding the dual norm. The remainder of the proof establishes that (27) holds for α = 1/64.

Let x, y, z ∈ Rd be indeterminates. We will provide a degree-(k + 2) SoS upper bound on the polynomial⟨X⋆ +QT ⊥(X), x ⊗ y ⊗ z⟩, which will suffice to establish (27).

Let {ui}ri=1, {vi}ri=1, {wi}ri=1 be as in (2). Then, let U = span({ui}ri=1), V = span({vi}ri=1), and W =
span({wi}ri=1), so that {ui}ri=1 is a basis for U, and likewise for the other modes. Let {ui}di=r+1 be an

arbitrary orthonormal basis for U⊥ and likewise with {vi}di=r+1 for V⊥, and {wi}di=r+1 for W⊥.

We perform a change of basis and let ui = vi = wi = ei, where ei is the ith standard basis vector. Then with

x, y, z expressed in the new basis we can write

⟨X⋆ +QT ⊥(X), x ⊗ y ⊗ z⟩ = r∑
i=1
xiyizi + ⟨QT ⊥(X), x ⊗ y ⊗ z⟩. (28)

Let A = {∥x∥22 = 1, ∥y∥22 = 1, ∥z∥22 = 1}. From Corollary 1, we have

A ⊢6 r∑
i=1
xiyizi ≤ 1

2
∥x∥22 + 1

2
∥z∥22 − 1

4

d∑
i=r+1

x2i + z2i − 1

8

d∑
i=1
∑
j≠i
y2i (x2j + z2j + y2j ).

We now handle the second term in (28). We will establish that

A ⊢k+2 ⟨QT ⊥(X), x ⊗ y ⊗ z⟩ ≤ +O(α) ⋅ d∑
i=r+1

x2i + z2i +O(α) ⋅ d∑
i=1
∑
j≠i
y2i (x2j + z2j + y2j ). (29)

under the assumption that ∥X∥
ĩnjk
≤ α. To do this it suffices show that for each i individually,

A ⊢6 y2i ⟨QT ⊥(X), x⊗ y ⊗ z⟩ ≤ O(α) ⋅ y2i ∑
j≠i
(x2j + z2j + y2j ),

with an extra additive factor of O(α) ⋅ y2i (x2i + z2i ) when i > r.

Let 1 ≤ i ≤ d be fixed and let x′ = x − xiei, y′ = y − yiei, and z′ = z − ziei. We write

⟨QT ⊥(X), x ⊗ y ⊗ z⟩ = �纀X,QT ⊥((xiei + x′)⊗ (yiei + y′)⊗ (ziei + z′))⟩. (30)

Case: i ≤ r. Observe that with our change of basis we have ei ∈ U along the first mode, ei ∈ V along the

second mode, and ei ∈W along the third mode. In view of Proposition 3, this means we have

0 = QT ⊥((xiei)⊗ (yiei)⊗ (ziei))= QT ⊥((xiei)⊗ (yiei)⊗ z′)= QT ⊥(x′ ⊗ (yiei)⊗ (ziei))= QT ⊥((xiei)⊗ y′ ⊗ (ziei)).
19



Consequently, using multilinearity we can write

⟨QT ⊥(X), x ⊗ y ⊗ z⟩ = �纀QT ⊥(X), x′ ⊗ y′ ⊗ z′⟩ + �纀QT ⊥(X), x′ ⊗ y′ ⊗ (ziei)⟩
+ �纀QT ⊥(X), (xiei)⊗ y′ ⊗ z′⟩ + �纀QT ⊥(X), x′ ⊗ (yiei)⊗ z′⟩. (31)

In what follows we will repeatedly invoke that A ⊢2 ∥xiei∥22 ≤ ∥x∥22 ≤ 1, A ⊢2 ∥x′∥22 ≤ ∥x∥22 ≤ 1, and so

forth. We will also use that if ∥X∥
ĩnjk
≤ α then—via Proposition 2 and Lemma 3—for any indeterminates

a, b, c,

{∥a∥22 ≤ 1} ⊢k ⟨QT ⊥(X), a ⊗ b⊗ c⟩ ≤ 2α(∥b∥22 + ∥c∥22),{∥b∥22 ≤ 1} ⊢k ⟨QT ⊥(X), a ⊗ b⊗ c⟩ ≤ 2α(∥a∥22 + ∥c∥22),{∥c∥22 ≤ 1} ⊢k ⟨QT ⊥(X), a ⊗ b⊗ c⟩ ≤ 2α(∥b∥22 + ∥b∥22).
These inequalities allow us to bound the terms in (31) as follows:

{∥y∥22 ≤ 1} ⊢k �纀QT ⊥(X), x′ ⊗ y′ ⊗ z′⟩ ≤ 2α(∥x′∥22 + ∥z′∥22).
{∥z∥22 ≤ 1} ⊢k �纀QT ⊥(X), x′ ⊗ y′ ⊗ (ziei)⟩ ≤ 2α(∥x′∥22 + ∥y′∥22).
{∥x∥22 ≤ 1} ⊢k �纀QT ⊥(X), (xiei)⊗ y′ ⊗ z′⟩ ≤ 2α(∥y′∥22 + ∥z′∥22).
{∥y∥22 ≤ 1} ⊢k �纀QT ⊥(X), x′ ⊗ (yiei)⊗ z′⟩ ≤ 2α(∥x′∥22 + ∥z′∥22).

Adding these inequalities, we get

A ⊢k ⟨QT ⊥(X), x ⊗ y ⊗ z⟩ ≤ 6α∑
j≠i
(x2j + y2j + z2j ),

and by the multiplication rule for SoS proofs,

A ⊢k+2 y2i ⟨QT ⊥(X), x ⊗ y ⊗ z⟩ ≤ 6α∑
j≠i
y2i (x2j + y2j + z2j ).

Case: i > r. As in the previous case, we split the expression ⟨QT ⊥(X), (xiei + x′)⊗ (yiei + y′)⊗ (ziei + z′)⟩
in (30) using multilinearity, however we can no longer argue that four of the eight terms vanish. As a starting

point, for the four terms that appeared in the i ≤ r case we can adopt the same upper bound to get

A ⊢k ⟨QT ⊥(X), x ⊗ y ⊗ z⟩ ≤ QT ⊥((xiei)⊗ (yiei)⊗ (ziei)) +QT ⊥((xiei)⊗ y′ ⊗ (ziei))
+QT ⊥((xiei)⊗ (yiei)⊗ z′) +QT ⊥(x′ ⊗ (yiei)⊗ (ziei))
+ 6α∑

j≠i
(x2j + y2j + z2j ).

We bound the four remaining terms as follows:

{∥y∥22 ≤ 1} ⊢k QT ⊥((xiei)⊗ (yiei)⊗ (ziei)) ≤ 2α(x2i + z2i ),
{∥y∥22 ≤ 1} ⊢k QT ⊥((xiei)⊗ (yiei)⊗ z′) ≤ 2α(x2i + ∥z′∥22),{∥y∥22 ≤ 1} ⊢k QT ⊥(x′ ⊗ (yiei)⊗ (ziei)) ≤ 2α(∥x′∥22 + z2i ),{∥y∥22 ≤ 1} ⊢k QT ⊥((xiei)⊗ y′ ⊗ (ziei)) ≤ 2α(x2i + z2i ).
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Adding together all of these inequalities, we get

A ⊢k ⟨QT ⊥(X), x ⊗ y ⊗ z⟩ ≤ 6α(x2i + z2i ) + 8α∑
j≠i
(x2j + y2j + z2j ),

and A ⊢k+2 y2i ⟨QT ⊥(X), x ⊗ y ⊗ z⟩ ≤ 6αy2i (x2i + z2i ) + 8α∑
j≠i
y2i (x2j + y2j + z2j ).

Putting everything together. Taking the inequalities we proved for the individual coordinates i and summing

them up, we have

A ⊢k+2 ∥y∥22 ⋅ ⟨QT ⊥(X), x ⊗ y ⊗ z⟩ ≤ 6α d∑
i=r+1

y2i (x2i + z2i ) + 8α d∑
i=1
∑
j≠i
y2i (x2j + y2j + z2j ).

Since {∥y∥22 = 1} ⊂ A, we get

A ⊢k+2 ⟨QT ⊥(X), x ⊗ y ⊗ z⟩ ≤ 6α d∑
i=r+1
(x2i + z2i ) + 8α d∑

i=1
∑
j≠i
y2i (x2j + y2j + z2j ).

Returning to (28), this inequality plus the earlier bound from Corollary 1 imply

A ⊢k+2 ⟨X⋆ +QT ⊥(X), x ⊗ y ⊗ z⟩
≤ 1 + (6α − 1/4) d∑

i=r+1
(x2i + z2i ) + (8α − 1/8) d∑

i=1
∑
j≠i
y2i (x2j + z2j + y2j ).

≤ 1, for α ≤ 1/64.

By the duality of SoS proofs and pseudodistributions, we have ∥X⋆ +QT ⊥(X)∥ ̃injk+2 ≤ 1 as desired.

Proof of Theorem 3. We first establish equation (14). We combine the assumption that ∥T ′∥ñuck+2 ≤∥T ∥ñuck with equation (13) to get

∥T ∥ñuck+2 ≥ ∥T ′∥ñuck+2 ≥ ∥T ∥ñuck+2 + ⟨X⋆ +QT ⊥(X),∆⟩.
for all X with ∥X∥ ̃injk ≤ 1/64 and X⋆ as in Theorem 4. Rearranging, this yields

⟨X,QT ⊥(∆)⟩ = ⟨QT ⊥(X),∆⟩ ≤ − ⟨X⋆,∆⟩ = −�纀X⋆,Q0
T ∥
(∆)⟩.

We now use that ∥X⋆∥ ̃injk ≤ 1 (from Theorem 4) and choose X to be a point obtaining the supremum in∥QT ⊥(∆)∥ñuck = sup∥X∥ĩnjk≤1⟨X,QT ⊥(∆)⟩, scaled by 1/64. Then the inequality above implies

⟨X,QT ⊥(∆)⟩ = 1

64
⋅ ∥QT ⊥(∆)∥ñuck ≤ ∥Q0

T ∥
(∆)∥

ñuck
.

We now establish equation (9). Observe that we can write

∥∆∥ñuck = ∥QT ∥(∆) +QT ⊥(∆)∥ñuck ≤ ∥QT ∥(∆)∥ñuck + ∥QT ⊥(∆)∥ñuck .
Combining this with (14), we get

∥∆∥ñuck ≤ ∥QT ∥(∆)∥ñuck + 64∥Q0
T ∥
(∆)∥

ñuck
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Using the triangle inequality, we upper bound the first term as

∥QT ∥(∆)∥ñuck ≤ 4∑
i=1
∥Qi

T ∥
(∆)∥

ñuck
≤ 4∑

i=1
∥Qi

T ∥
(∆)∥

nuc
.

To proceed, we flatten each tensor in the summation above into a matrix and use Lemma 4 to show that the

nuclear norm of the flattening leads to an upper bound. Let r1 = dimU, r2 = dimV, and r3 = dimW. Then

the following inequalities hold

∥Q1
T ∥
(∆)∥

nuc
≤√r2∥♭3(Q1

T ∥
(∆))∥

nuc
≤√r2r3∥Q1

T ∥
(∆)∥

F
.

∥Q2
T ∥
(∆)∥

nuc
≤√r3∥♭1(Q2

T ∥
(∆))∥

nuc
≤√r1r3∥Q2

T ∥
(∆)∥

F
.

∥Q3
T ∥
(∆)∥

nuc
≤√r1∥♭2(Q3

T ∥
(∆))∥

nuc
≤√r1r2∥Q3

T ∥
(∆)∥

F
.

The first inequality in each line above follows from Lemma 4 and the definitions in (11). The second follows

from the fact that ∥A∥nuc ≤ √rank(A)∥A∥F for any matrix A, along with the fact that rank(♭i(T )) =
ri(T ) for any tensor, and that flattening does not change the entrywise ℓ2 norm. We have ∥Q0

T ∥
(∆)∥

nuc
≤√

r2r3∥Q0
T ∥
(∆)∥

F
as well by the same argument, though the choice of r1/r2/r3 in this case is arbitrary.

To combine all the bounds, we use that r1, r2, r3 ≤ r and that orthogonal projection decreases the ℓ2 norm,

which yields ∥∆∥ñuck ≤ 68r∥∆∥F .

C Proofs from Section 3

This section of the appendix is structured as follows.

First, in Appendix C.1, we provide we provide a generalization bound for general classes of tensors and

measurement models, from which all of our main statistical results will follow as special cases. This bound

assumes that a restricted eigenvalue-type property holds for the tensor class and measurement model under

consideration.

In Appendix C.2 and Appendix C.3 we establish that this restricted eigenvalue property holds for the mea-

surement models in Section 3.

In Appendix C.4 we combine these results to prove the main results of that section.

C.1 Agnostic generalization bounds for tensor classes

In this section we given generalization guarantees for empirical risk minimization in a general learning setup.

We receive a set of examples S ∶= (X1, Y1), . . . , (Xn, Yn) i.i.d. from a distribution D over (Rd)⊗3 ×R. We

assume that a convex class of tensors eT ⊆ (Rd)⊗3 is given, and that our goal is to achieve excess risk

against an unknown benchmark T ⋆ ∈ T . We analyze the performance of empirical risk minimization overT :

T̂n = argmin
T ∈T

L̂n(T ),
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where L̂n is the empirical square loss. The main result from this section is Theorem 8, which bounds the

performance of ERM under various assumptions on the data distribution, the class T , and the benchmark T ⋆.

To state the result, recall from Section 3 that Σ is the population correlation matrix and Xn is the empirical

design operator.

Theorem 8. Let a benchmark T ⋆ ∈ T be fixed, and let ξt = (Yt − ⟨T ⋆,Xt⟩). Suppose there exist a pair of

dual norms ∥⋅∥ and ∥⋅∥
⋆

for which the following conditions hold:

1. There are constants 0 ≤ c < 2, γn > 0, and δ0 ≥ 0 such that with probability at least 1 − δ0,

∥Σ1/2∆∥F
2
≤ c
n
∥Xn(∆)∥2F + γn ∀∆ ∈ T − T ⋆ (Property 1).

2. There are constants M ≥ 0 and δ1 ≥ 0 such that with probability at least 1 − δ1,

∥ n∑
t=1
ξtXt − E[ξX]∥ ≤M ⋅√n (Property 2).

3. There is a constant κ ≥ 0 such that

∥∆∥2
⋆
≤ κ2 ⋅ ∥Σ1/2∆∥2

F
∀∆ ∈ T − T ⋆ (Property 3).

Then with probability at least 1 − (δ0 + δ1),
LD(T̂n) −LD(T ⋆) ≤ 2κ2M2

c′n
+ 2γn. (32)

Proof of Theorem 8. Since T is convex, and since T̂n minimizes the (strongly convex) empirical risk, we

have

L̂n(T ⋆) − L̂n(T̂n) ≥ �纀∇L̂n(T̂n), T ⋆ − T̂n⟩ + Ên�纀T̂n − T ⋆,X⟩2 ≥ Ên�纀T̂n − T ⋆,X⟩2.
By rearranging and expanding the definition of L̂n, this implies

Ên(⟨T ⋆,X⟩ − Y )2 − Ên(⟨T̂n,X⟩ − Y )2 − Ên�纀T̂n − T ⋆,X⟩2 ≥ 0.
Since the left-hand side is non-negative, we can add it to the population excess risk, which implies

E(⟨T̂n,X⟩ − Y )2 −E(⟨T ⋆,X⟩ − Y )2
≤ E(⟨T̂n,X⟩ − Y )2 −E(⟨T ⋆,X⟩ − Y )2 + Ên(⟨T ⋆,X⟩ − Y )2 − Ên(⟨T̂n,X⟩ − Y )2 − Ên�纀T̂n − T ⋆,X⟩2.

Rearranging, this is equal to

= (E−Ên)[2�纀T̂n − T ⋆,X⟩(⟨T ⋆,X⟩ − Y )] + E�纀T̂n − T ⋆,X⟩2 − 2Ên�纀T̂n − T ⋆,X⟩2.
Since T̂n −T ⋆ is an element of T −T ⋆, we move to an upper bound by taking a supremum over elements of

this set.

≤ sup
∆∈T −T ⋆

{(E−Ên)[2⟨∆,X⟩(⟨T ⋆,X⟩ − Y )] +E⟨∆,X⟩2 − 2Ên⟨∆,X⟩2}.
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This establishes inequality (18). It remains to use the assumptions in the theorem statement to bound the

process. Property 1 states that with probability at least 1 − δ0, E⟨∆,X⟩2 ≤ c ⋅ Ên⟨∆,X⟩2 + γn for all

∆ ∈ T − T ⋆. Define c′ = 2 − c > 0, so that conditioned on this event we have

sup
∆∈T −T ⋆

{(E−Ên)[2⟨∆,X⟩(⟨T ⋆,X⟩ − Y )] +E⟨∆,X⟩2 − 2Ên⟨∆,X⟩2}
≤ sup

∆∈T −T ⋆
{(E−Ên)[2⟨∆,X⟩(⟨T ⋆,X⟩ − Y )] − c′ ⋅ Ên⟨∆,X⟩2} + γn.

We expand the first term in the supremum as

(E−Ên)[2⟨∆,X⟩(⟨T ⋆,X⟩ − Y )] = −2 1
n

n∑
t=1
ξt⟨∆,Xt⟩ −E[ξ⟨∆,X⟩]

= −2⟨ 1
n

n∑
t=1
ξtXt −E[ξX],∆⟩.

It follows from Hölder’s inequality that this expression is bounded as

2∥ 1
n

n∑
t=1
ξtXt −E[ξX]∥ ⋅ ∥∆∥⋆.

Defining ψn = ∥ 1n ∑n
t=1 ξtXt − E[ξX]∥, the development so far states that with probability at least 1 − δ0,

E(⟨T̂n,X⟩ − Y )2 − E(⟨T ⋆,X⟩ − Y )2 ≤ sup
∆∈T −T ⋆

{2ψn ⋅ ∥∆∥⋆ − c′ ⋅ 1n∥Xn(∆)∥22} + γn.
Using Property 3 we upper bound the leading term by

sup
∆∈T −T ⋆

{2κψn ⋅ ∥Σ1/2∆∥
F
− c′ ⋅ 1

n
∥Xn(∆)∥22},

and the event we already conditioned on implies that this is at most

sup
∆∈T −T ⋆

⎧⎪⎪⎨⎪⎪⎩4κψn

√
1

n
∥Xn(∆)∥22 − c′ ⋅ 1n∥Xn(∆)∥22

⎫⎪⎪⎬⎪⎪⎭ + 2κψn
√
γn

≤ κ2ψ2
n

c′
+ 2κψn

√
γn,

where the second inequality follows from AM-GM. Finally, by Property 2 we have that with probability at

least 1 − δ1, ψn ≤M/√n, which leads to the final bound of

κ2M2

c′n
+ 2κM

√
γn

n
+ γn ≤ 2κ2M2

c′n
+ 2γn.

C.2 Restricted eigenvalue for tensor completion

The main result in this section is Theorem 9, which relates the empirical covariance and population covari-

ance for all tensors with bounded entries and bounded SoS nuclear norm under sampling model for tensor

completion. This result is then used in the proof of Theorem 5 to establish a restricted eigenvalue guarantee.

24



Theorem 9. Let d3/2 ≤ n ≤ d3, and let ε ∈ (0,1/2). Suppose observed entries are drawn with replacement.

Then for any δ > 0, with probability at least 1 − δ, all T ∈ (Rd)⊗3 with ∥T ∥
∞
≤ R satisfy

∥Σ1/2T∥2
F
≤ (1 + 2ε)

n
∥Xn(T )∥22 +O⎛⎝R∥T ∥ñuc4

√
log6 d

nd3/2
+ R2 log(log2(d3/2√n)/δ)

εn

⎞⎠.
The proofs in this section pass back and forth between the with-replacement sampling model for tensor

completion used in the main body of the paper and a without-replacement model, in which each entry is

only observed a single time for tensor completion. To distinguish between the models, we use S ∼ Dn
wr to

refer to the draw of the dataset under the with-replacement sampling model and S ∼ Dn
w/o to refer to the

draw under the without-replacement model. Ω ⊆ [d]3 will denote the support of the set of observed entries.

Before proving Theorem 9, we state and prove a number of auxiliary lemmas, from which the main result

will follow.

Proposition 4. Let Nj,k = ∣{t ∈ [n] ∣ jt = j, kt = k}∣. Then

PS∼Dn
w/o
(Nj,k ≥ 2n

d2
+ 10 log(1/δ)

3
) ≤ δ.

Proof of Proposition 4. This is an immediate consequence of Bernstein’s inequality for without-replacement

sampling. See Bardenet et al. (2015), Proposition 1.4.

Lemma 7. The Rademacher complexity of ∥⋅∥ ̃inj4 under without-replacement sampling is bounded as

ES∼Dn
w/o

Eǫ∥ n∑
t=1
ǫtXt∥

ĩnj4

≤ O⎛⎝
√

n log4 d

d3/2
+√log d

⎞⎠. (33)

Additionally, if n ≤ d3, then the Rademacher complexity under with-replacement sampling is bounded as

ES∼Dn
wr
Eǫ∥ n∑

t=1
ǫtXt∥

̃inj4
≤ O⎛⎝

√
n log6 d

d3/2
+√log 3d

⎞⎠. (34)

Proof of Lemma 7. We first bound the Rademacher complexity in the without-replacement sampling case,

then handle the with-replacement case by reduction. This analysis follows Barak and Moitra (2016), except

that we handle certain “diagonal” terms that arise in the analysis slightly more carefully so as to get the right

scaling for our setup, which differs from theirs in that it does not assume incoherence.

Consider a fixed draw of ǫ1∶n and X1∶n, and let Z = ∑n
t=1 ǫtXt. Leting x, y, z be indeterminates, we will give

a degree-four SoS upper bound on the polynomial ⟨Z,x⊗ y ⊗ z⟩. This will imply that the pseudoexpecta-

tion of ⟨Z,x⊗ y ⊗ z⟩ is bounded for any feasible pseudodistribution in the maximization problem defining∥⋅∥
ĩnj4

.

To begin, for any fixed constant η > 0, Lemma 1 implies that

⊢4 ⟨Z,x ⊗ y ⊗ z⟩ = ∑
i,j,k

Zi,j,kxiyjzk ≤ 1

2η

d∑
i=1
x2i + η

2
∑
i

⎛⎝∑j,k Zi,j,kyjzk
⎞⎠
2

,
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and so

{∥x∥22 = 1} ⊢4 ⟨Z,x⊗ y ⊗ z⟩ ≤ 1

2η
+ η
2
∑
i

⎛⎝∑j,k Zi,j,kyjzk
⎞⎠
2

.

Define a matrix A ∈ Rd2×d2 via Aj,k′,j′,k = ∑d
i=1Zi,j,kZi,j′,k′ . Define additional matrices D,B ∈ Rd2×d2 via

Dj,k,j′,k′ =
⎧⎪⎪⎨⎪⎪⎩
Aj,k,j,k, if (j, k) = (j′, k′),
0, otherwise,

and B = A −D. Then we have

∑
i

⎛⎝∑j,k Zi,j,kyjzk
⎞⎠
2

= �纀A, (y ⊗ z)(y ⊗ z)⊺⟩ = �纀B, (y ⊗ z)(y ⊗ z)⊺⟩ + �纀D, (y ⊗ z)(y ⊗ z)⊺⟩.
We bound the first term by the operator norm of B via

{∥y∥22 = 1, ∥z∥22 = 1} ⊢4 �纀B, (y ⊗ z)(y ⊗ z)⊺⟩ ≤ ∥B∥op∥y ⊗ z∥2F = ∥B∥op∥y∥22∥z∥22 ≤ ∥B∥op.
For the second term, define another matrix R ∈ Rd×d via Rj,k = ∑d

i=1Z
2
i,j,k. Then we can write

{∥y∥22 = 1, ∥z∥22 = 1} ⊢4 �纀D, (y ⊗ z)(y ⊗ z)⊺⟩ =∑
j,k

Rj,ky
2
j z

2
k ≤ ∥R∥∞∑

j,k

y2j z
2
k = ∥R∥∞∥y∥22∥z∥22 ≤ ∥R∥∞.

By the duality of sum-of-squares proofs and pseudodistributions, this implies that any degree-four pseu-

dodistribution µ with µ ⊧ {∥x∥22 = 1, ∥y∥22 = 1, ∥z∥22 = 1} has Ẽ⟨Z,x⊗ y ⊗ z⟩ ≤ η
2
(∥B∥op + ∥R∥∞) + 1

2η
.

Optimizing over η, we conclude that

∥Z∥
ĩnj4
≤√∥B∥op + ∥R∥∞.

The bound for the matrix B is taken care of Theorem 4.4 of Barak and Moitra (2016), which implies that√
ES∼Dn

w/o
Eǫ∥B∥2op ≤ O(n log4 d

d3/2
). For the matrix R, observe that under the without-replacement sampling

model, for any j, k we have

Rj,k = d∑
i=1
Z2
i,j,k = d∑

i=1
1{(i, j, k) ∈ Ω} = ∣{t ∈ [n] ∶ jt = j, kt = k}∣.

Proposition 4 thus implies that for any fixed j, k, with probability at least 1 − δ,
Rj,k ≤ O(n/d2 + log(1/δ)),

and so, by taking a union bound and integrating out the tail, we have√
ES∼Dn

w/o
∥R∥2

∞
≤ O(n/d2 + log d).

Combining the bounds on B and R and using Jensen’s inequality yields

ES∼Dn
w/o

Eǫ∥Z∥ĩnj4 ≤
√

ES∼Dn
w/o

Eǫ∥Z∥2ĩnj4 ≤ O⎛⎝
√

n log4 d

d3/2
+√log d

⎞⎠. (35)
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This completes the bound for the without-replacement case. For the with-replacement case we reduce to the

bound on the second moment above. Condition on the draw of S, and let Ti,j,k = {t ∈ [n] ∶ it = i, jt = j, kt = k}.
Then we have

Eǫ∥ n∑
t=1
ǫtXt∥

ĩnj4

= Eǫ

XXXXXXXXXXXX ∑
(i,j,k)∈Ω

⎛⎝ ∑t∈Ti,j,k

ǫt
⎞⎠ei ⊗ ej ⊗ ek

XXXXXXXXXXXX ̃inj4
.

Introduce a new sequence of Rademacher random variables σ ∈ {±1}d3 . Then the right-hand side above is

equal to

EǫEσ

XXXXXXXXXXXX ∑
(i,j,k)∈Ω

⎛⎝ ∑t∈Ti,j,k

ǫt
⎞⎠σi,j,k ⋅ ei ⊗ ej ⊗ ek

XXXXXXXXXXXXĩnj4
≤ Eǫmax

i,j,k

RRRRRRRRRRRR ∑t∈Ti,j,k

ǫt

RRRRRRRRRRRR ⋅Eσ

XXXXXXXXXXXX ∑
(i,j,k)∈Ω

σi,j,k ⋅ ei ⊗ ej ⊗ ek
XXXXXXXXXXXX ̃inj4

,

where the inequality follows from the standard Lipschitz contraction lemma for Rademacher complexity

(Ledoux and Talagrand, 1991). By the Hoeffding bound, we have that for any fixed index (i, j, k) with

probability at least 1 − δ, RRRRRRRRRRRR ∑t∈Ti,j,k

ǫt

RRRRRRRRRRRR ≤ O(max
i,j,k

√∣Ti,j,k∣ log (1/δ)).
Taking a union bound and integrating out the tail, we have

Eǫmax
i,j,k

RRRRRRRRRRRR ∑t∈Ti,j,k

ǫt

RRRRRRRRRRRR ≤ O(max
i,j,k

√∣Ti,j,k∣ log d).
We now move to the final bound by taking the expectation over S. Using Cauchy-Schwarz, the development

above implies

ES∼Dn
wr
Eǫ∥ n∑

t=1
ǫtXt∥

ĩnj4

≤√ES∼Dn
wr
∣Ti,j,k∣ log d ⋅

¿ÁÁÁÁÀES∼Dn
wr
Eσ

XXXXXXXXXXXX ∑
(i,j,k)∈Ω

σi,j,k ⋅ ei ⊗ ej ⊗ ek
XXXXXXXXXXXX
2

ĩnj4

.

Bernstein’s inequality and the union bound imply that√
ES∼Dn

wr
∣Ti,j,k∣ log d ≤ O(√log d(n/d3 + log d)) ≤ O(log d),

where the second inequality uses that n ≤ d3. For the second term, we have

ES∼Dn
wr
Eσ

XXXXXXXXXXXX ∑
(i,j,k)∈Ω

σi,j,k ⋅ ei ⊗ ej ⊗ ek
XXXXXXXXXXXX
2

ĩnj4

= n∑
m=1

PS∼Dn
wr
(∣Ω∣ =m) ⋅ES∼Dn

wr

⎡⎢⎢⎢⎢⎢⎣
Eσ

XXXXXXXXXXXX
∑

(i,j,k)∈Ω
σi,j,k ⋅ ei ⊗ ej ⊗ ek

XXXXXXXXXXXX
2

ĩnj4

∣ ∣Ω∣ =m
⎤⎥⎥⎥⎥⎥⎦

= n∑
m=1

PS∼Dn
wr
(∣Ω∣ =m) ⋅ES∼Dm

w/o
Eσ

XXXXXXXXXXXX ∑
(i,j,k)∈Ω

σi,j,k ⋅ ei ⊗ ej ⊗ ek
XXXXXXXXXXXX
2

̃inj4

≤ n∑
m=1

PS∼Dn
wr
(∣Ω∣ =m) ⋅O(m log4 d

d3/2
+ log d).

≤ O(n log4 d
d3/2

+ log d),
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where the second inequality uses the bound we proved for the without-replacement setting and the second

inequality uses m ≤ n and that the probabilities sum to one. Combining these two bounds completes the

proof.

Lemma 8. Define T = {T ∈ (Rd)⊗3 ∣ ∥T ∥ñuc4 ≤ τ, ∥Σ1/2T ∥
F
≤ β, ∥T ∥

∞
≤ R}. Under the with-replacement

sampling model, when d3/2 ≤ n ≤ d3, we have that for any δ > 0, with probability at least 1 − δ,

∣ 1
n
∥Xn(T )∥2F − ∥Σ1/2T∥2

F
∣ ≤ O⎛⎝Rτ

√
log6 d

nd3/2
+
√

2R2β2 log(1/δ)
n

+ 2R2 log(1/δ)
n

⎞⎠ ∀T ∈ T .
Proof of Lemma 8. To begin, we write

∣ 1
n
∥Xn(T )∥22 − ∥Σ1/2T∥2

F
∣ = ∣Ên⟨T,X⟩2 − E⟨T,X⟩2∣.

Using this representation, since entries are drawn i.i.d. with replacement, we can apply Lemma 5 with the

function class F = {X ↦ ⟨T,X⟩2 −E⟨T,X⟩2 ∣ T ∈ T }. In particular, note that for all T ∈ T we have∣⟨T,Xt⟩∣ = ∣Tit,jt,kt ∣ ≤ R, and furthermore

sup
T ∈T

E(⟨T,X⟩2 − E⟨T,X⟩2)2 ≤ sup
T ∈T

E⟨T,X⟩4 ≤ R2 sup
T ∈T

E⟨T,X⟩2 = R2 sup
T ∈T
∥Σ1/2T∥2

F
≤ R2β2.

Consequently, Lemma 5 implies that with probability at least 1 − δ, for all T ∈ T ,

∣ 1
n
∥Xn(T )∥22 − ∥Σ1/2T∥2

F
∣ ≤ 4ES Eǫ sup

T ∈T

1

n

n∑
t=1
ǫt(⟨T,Xt⟩2−E⟨T,X⟩2)+

√
2R2β2 log(1/δ)

n
+2R2 log(1/δ)

n
.

Using Jensen’s inequality and splitting the supremum, we have

ES Eǫ sup
T ∈T

1

n

n∑
t=1
ǫt(⟨T,Xt⟩2 − E⟨T,X⟩2) ≤ 2ES Eǫ sup

T ∈T

1

n

n∑
t=1
ǫt⟨T,Xt⟩2.

Using the Lipschitz contraction lemma for Rademacher complexity, we remove the square

ES Eǫ sup
T ∈T
[ 1
n

n∑
t=1
ǫt⟨T,Xt⟩2] ≤ 2RES Eǫ sup

T ∈T
[ 1
n

n∑
t=1
ǫt⟨T,Xt⟩] ≤ 2Rτ

n
ES Eǫ∥ 1

n

n∑
t=1
ǫtXt∥

̃inj4
.

Finally, using Lemma 7, we have

ES Eǫ∥ 1
n

n∑
t=1
ǫtXt∥

̃inj4
≤ O⎛⎝

√
log6 d

nd3/2
+ log 3/2d

n

⎞⎠ ≤ O⎛⎝
√

log6 d

nd3/2
+ log 3/2d

n

⎞⎠.
The final bound follows by using n ≥ d3/2 to simplify this expression.
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Proof of Theorem 9. Let T = {T ∈ (Rd)⊗3 ∣ ∥T ∥
∞
≤ R}. Recall that for tensor completion, the population

correlation matrix Σ under with-replacement sampling is equal to 1
d3
I .

Let τmax = Rd3, βmax = Rd3/2, τmin = Rd3/2/√n, βmin = R/√n, and let N = ⌈log(τmax/τmin)⌉ + 1 and

M = ⌈log(βmax/βmin)⌉ + 1. For each i ∈ [N] and j ∈ [M] define τi = τmaxe
1−i and βj = βmaxe

1−j . Define

Ti,j = {T ∈ T ∣ τi+1 ≤ ∥T ∥ñuc4 ≤ τi, βj+1 ≤ ∥Σ1/2T∥
F
≤ βj}.

Using Lemma 8 and a union bound, we get that with probability at least 1− δ, for all i, j simultaneously, for

all T ∈ Ti,j ,

∥Σ1/2T∥2
F
≤ 1

n
∥Xn(T )∥22 +O⎛⎜⎝Rτi

√
log6 d

nd3/2
+
¿ÁÁÀR2β2j log(MN/δ)

n
+ R2 log(MN/δ)

n

⎞⎟⎠.
Now consider a fixed tensor T ∈ T . There are two cases. First, if ∥T ∥ñuc4 ≥ τmin and ∥Σ1/2T ∥

F
≥ βmin,

then there must be indices i and j for which τi+1 ≤ ∥T ∥nuc ≤ τi, βj+1 ≤ ∥Σ1/2T ∥
F
≤ βj . Consequently, the

uniform bound above implies

∥Σ1/2T∥2
F
≤ 1

n
∥Xn(T )∥22 +O⎛⎝R∥T ∥ñuc4

√
log6 d

nd3/2
+ ∥Σ1/2T∥

F

√
R2 log(MN/δ)

n
+ R2 log(MN/δ)

n

⎞⎠.
On the other hand, if either ∥T ∥nuc ≤ τmin or ∥Σ1/2T ∥

F
≤ βmin, we trivially have

∥Σ1/2T∥2
F
≤ R2

n
≤ 1

n
∥Xn(T )∥22 + R2

n
.

Combining these cases, and using the values for N and M , we get that with probability at least 1− δ, for all

T ∈ T ,

∥Σ1/2T∥2
F
≤ 1

n
∥Xn(T )∥22 +O⎛⎝R∥T ∥ñuc4

√
log6 d

nd3/2
+ ∥Σ1/2T∥

F

√
R2 log(log2(d3/2√n)/δ)

n

⎞⎠
+O(R2 log(log2(d3/2√n)/δ)

n
).

Using the AM-GM inequality on the second-to-last term and rearranging, we have that for any ε > 0,

(1 − ε)∥Σ1/2T∥2
F
≤ 1

n
∥Xn(T )∥22 +O⎛⎝R∥T ∥ñuc4

√
log6 d

nd3/2
+ R2 log(log2(d3/2√n)/δ)

εn

⎞⎠.
When ε ∈ (0,1/2), this implies

∥Σ1/2T∥2
F
≤ (1 + 2ε)

n
∥Xn(T )∥22 +O⎛⎝R∥T ∥ñuc4

√
log6 d

nd3/2
+ R2 log(log2(d3/2√n)/δ)

εn

⎞⎠.
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C.3 Restricted eigenvalue for tensor sensing

In this section we prove the main technical result used to establish restricted eigenvalue guarantees for tensor

sensing, which is as follows.

Theorem 10. Suppose X ∼ N (0 ; I). There is some universal constant C > 0 such that for any ε <√2/π,

with probability at least 1 − 2e− n
32 /(1 − e−nε2

8 ),
1√
n
∥Xn(∆)∥2 ≥ (√2/π − ε)∥∆∥F − Cd3/4 log1/4 d√

n
⋅ ∥∆∥ñuc4 ∀∆ ∈ (Rd)⊗3. (36)

To prove Theorem 10 we require two key technical lemmas.

Lemma 9. Let ∥⋅∥ be any norm, let ∥⋅∥
⋆

be the dual. Suppose that the rows of Xn are formed by drawing

X1, . . . ,Xn i.i.d. fromN (0 ; Ip×p), and let EX∼N (0;Ip×p)∥X∥ ≤ ψ. Then for any ε <√2/π, with probability

at least 1 − 2e− n
32 /(1 − e−nε2

8 ),
1√
n
∥Xn(∆)∥2 ≥ (√2/π − ε)∥∆∥F − 4ψ√

n
∥∆∥

⋆
∀∆ ∈ Rp. (37)

Lemma 10 (Corollary of Hopkins et al. (2015), Theorem 3.3). Let X ∈ (Rd)⊗3 have entries drawn i.i.d.

from N (0 ; 1). Then

E∥X∥ ̃inj
4

≤ O(d3/4 log1/4 d). (38)

Proof of Theorem 10. This is an immediate consequence of Lemma 9 and Lemma 10, along with the dual-

ity of ∥⋅∥ ̃inj4 and ∥⋅∥ñuc4 .

In the remainder of the section we prove Lemma 9. The result follows from fairly standard techniques

(e.g. Wainwright (2019)), but we include the proof for completeness. We first restate some basic results on

gaussian concentration.

Lemma 11 (Concentration for Lipschitz functions (Milman and Schechtman, 1986)). Let Z ∈ R
n have

entries drawn i.i.d. from N (0 ; 1), and let f ∶ Rn → R be L-Lipschitz with respect to the ℓ2 norm. Then for

all t ≥ 0,

P(∣f(Z) − E f(Z)∣ ≥ t) ≤ 2e− t2

2L2 .

Lemma 12 (Gordon’s Inequality (Davidson and Szarek, 2001)). Let {Za,b} and {Ya,b} be zero-mean gaus-

sian processes indexed by A ×B. Suppose that

E(Za,b −Za′,b′)2 ≤ E(Ya,b − Ya′,b′)2 for all (a, b), (a′, b′) ∈ A ×B
and

E(Za,b −Za,b′)2 = E(Ya,b − Ya,b′)2 for all a ∈ A, b, b′ ∈ B.
Then

E sup
a∈A

inf
b∈B

Za,b ≤ E sup
a∈A

inf
b∈B

Ya,b.

Proof of Lemma 9. Part 1: Bound at a single scale.

Define B(τ) = {∆ ∈ Rp ∣ ∥∆∥F = 1, ∥∆∥⋆ ≤ τ}. We will prove that with probability at least 1 − 2e−nt2

2 ,

1√
n
∥Xn(∆)∥2 ≥

√
2

π
− ψτ√

n
− t, ∀∆ ∈ B(τ). (39)
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We will prove a lower bound on the random variable min∆∈B(τ)
1√
n
∥Xn(∆)∥2, which is equivalent to pro-

viding an upper bound on the random variable

Sn(τ) = − inf
∆∈B(τ)

1√
n
∥Xn(∆)∥2 = − inf

∆∈B(τ)
sup
∥u∥

2
=1

1√
n
⟨u,Xn(∆)⟩ = sup

∆∈B(τ)
inf
∥u∥

2
=1

1√
n
⟨u,Xn(∆)⟩.

As a starting point, we show how to upper bound the expectation E[Sn(τ)]. Define Z∆,u = 1√
n
⟨u,Xn(∆)⟩,

so that Sn(τ) = sup∆∈B(τ) inf∥u∥
2
=1Z∆,u. Note that Z∆,u is a gaussian process with variance n−1, since∥∆∥F = 1. We now define a new gaussian process that will serve as an upper bound through Gordon’s

inequality. Let g ∈ Rp and h ∈ Rn be standard gaussian random variables, and define

Y∆,u = 1√
n
⟨g,∆⟩ + 1√

n
⟨h,u⟩.

Note that for any (∆, u) and (∆′, u′) we have

E(Y∆,u − Y∆′,u′)2 = 1

n
∥∆ −∆′∥2

F
+ 1

n
∥u − u′∥2

2
.

Interpreting ∆ and ∆′ as vectors in R
d3 , we also have

E(Z∆,u −Z∆′,u′)2 = 1

n
∥u∆⊺ − u′∆′⊺∥2

F

= 1

n
∥∆ −∆′∥2

F
+ 1

n
∥u − u′∥2

2
+ 1

n
�纀(u − u′)∆⊺, u′(∆ −∆′)⊺⟩

= 1

n
∥∆ −∆′∥2

F
+ 1

n
∥u − u′∥2

2
+ 1

n
(⟨u,u′⟩ − 1)(1 − ⟨∆,∆′⟩)

≤ 1

n
∥∆ −∆′∥2

F
+ 1

n
∥u − u′∥2

2
,

where we have used that ∥u∥2 = ∥u′∥2 = ∥∆∥F = ∥∆′∥F = 1. It is also easily seen from the representation

above that for any triple (∆, u, u′) we have equality: E(Z∆,u − Z∆,u′)2 = E(Y∆,u − Y∆,u′)2. This means

that the preconditions of Lemma 12 are satisfied, and so

E[Sn(τ)] ≤ E sup
∆∈B(τ)

inf
∥u∥

2
=1
Y∆,u

= 1√
n
Eg sup

∆∈B(τ)
⟨g,∆⟩ + Eh

1√
n

min
∥u∥

2
=1
⟨h,u⟩

= τ√
n
⋅ Eg∥g∥ − 1√

n
Eh∥h∥2

≤ ψτ√
n
−
√

2

π
.

The provides the desired upper bound in expectation. To establish the high probability result we appeal

to gaussian concentration for Lipschitz functions. Let X ∈ Rn×d3 denote the sequence of measurements

X1, . . . ,Xn, interpreted as a matrix with vectorized measurements as rows. Define f ∶ Rn×d3 → R via

f(X) =min∆∈B(τ)
1√
n
∥X∆∥2. Observe that we have

∣f(X) − f(X′)∣ ≤ sup
∆∈B(τ)

1√
n
∥(X −X′)∆∥

2
≤ 1√

n
∥X −X′∥

op
≤ 1√

n
∥X −X′∥

F
,
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and so f is n−
1

2 -Lipschitz with respect to ℓ2. Lemma 11 therefore implies that

P(∣Sn(τ) −ESn(τ)∣ ≥ t) ≤ 2e−nt2

2 .

In other words, (39) holds.

Part 2: Bound at all scales. We will show that for any ε < √2/π, with probability at least 1 − 2e− n
32 /(1 −

e−
nε2

8 ),
1√
n
∥Xn(∆)∥2 ≥

√
2

π
− ε − 4ψ√

n
∥∆∥

⋆
, ∀∆ ∶ ∥∆∥F = 1. (40)

Define B(τℓ, τu) = {∆ ∈ Rp ∣ ∥∆∥F = 1, τℓ ≤ ψ√
n
∥∆∥ ≤ τu}. Set µ = ε/2 and consider the classes B(0, µ)

and B(2i−1µ,2iµ) for i ∈ N. Note that if equation (40) fails to hold and ∆ ∈ B(0, µ) then

1√
n
∥Xn(∆)∥2 ≤

√
2

π
− ε − 4ψ√

n
∥∆∥

⋆
≤
√

2

π
− ε =

√
2

π
− 2µ.

Furthermore, if equation (40) fails to hold and ∆ ∈ B(2i−1µ,2iµ), then

1√
n
∥Xn(∆)∥2 ≤

√
2

π
− ε − 4ψ√

n
∥∆∥

⋆
≤
√

2

π
− 2 ⋅ 2iµ.

Our development in part 1 of the proof implies that for any fixed τℓ ≤ τu, with probability at least 1 −
2e−

n
32 e−

τ2u
2 ,

1√
n
∥Xn(∆)∥2 ≥

√
2

π
− 2τu, ∀∆ ∈ B(τℓ, τu). (41)

Thus, by a union bound, we get that with probability at least 1 − 2e− n
32 ∑∞i=0 e− 2

2inε2

8 , or conservatively at

least 1 − 2e− n
32 /(1 − e−nε

2

8 ),
1√
n
∥Xn(∆)∥2 ≥

√
2

π
− 2 ⋅ 2iµ, ∀∆ ∈ B(2i−1µ,2iµ), ∀i ∈ N,

and

1√
n
∥Xn(∆)∥2 ≥

√
2

π
− 2µ, ∀∆ ∈ B(0, µ),

or in other words, equation (40) holds.

We extend the guarantee in equation (40) to arbitrary ∆ ∈ R
p by rescaling so that ∥∆∥F = 1 and then

exploiting homogeneity to get

1√
n
∥Xn(∆)∥2 ≥ ⎛⎝

√
2

π
− ε⎞⎠∥∆∥F − 4ψ√

n
∥∆∥

⋆
, ∀∆ ∈ Rp.
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C.4 Proofs of main results

Proof of Theorem 5. We prove the theorem by appealing to the generic result of Theorem 8 using norms∥⋅∥ = ∥⋅∥ ̃inj4 and ∥⋅∥
⋆
= ∥⋅∥ñuc4 . Let T ⋆ be an arbitrary rank-r orthogonal tensor with ∥T ⋆∥ñuc6 = τ and∥T ⋆∥

∞
≤ R.

First, observe that all elements T ∈ T have ∥T ∥ñuc6 ≤ ∥T ⋆∥ñuc6 . Consequently, Theorem 3 implies that all

∆ ∈ T − T ⋆ satisfy ∥∆∥ñuc4 ≤ 68r ⋅ ∥∆∥F , (42)

which establishes Property 3 with κ = O(r ⋅ d3/2).
To establish Property 2 we appeal to Theorem 9, which implies that for any ε < 1/2, with probability at least

1 − δ, all ∆ ∈ T − T ⋆ satisfy

∥Σ1/2∆∥2
F
≤ (1 + 2ε)

n
∥Xn(∆)∥22 +O⎛⎝R∥∆∥ñuc4

√
log6 d

nd3/2
+ R2 log(log2(d3/2√n)/δ)

εn

⎞⎠.
Using equation (42) this is upper bounded by

∥Σ1/2∆∥2
F
≤ (1 + 2ε)

n
∥Xn(∆)∥22 +O⎛⎝R∥∆∥F

√
r2 log6 d

nd3/2
+ R2 log(log2(d3/2√n)/δ)

εn

⎞⎠
= (1 + 2ε)

n
∥Xn(∆)∥22 +O⎛⎝R∥Σ1/2∆∥

F

√
r2d3/2 log6 d

n
+ R2 log(log2(d3/2√n)/δ)

εn

⎞⎠.
Using the AM-GM inequality, this is further upper bounded by

∥Σ1/2∆∥2
F
≤ (1 + 2ε)

n
∥Xn(∆)∥22 + ε∥Σ1/2∆∥2

F
+O(R2 r

2d3/2 log6 d

n
+ R2 log(log2(d3/2√n)/δ)

εn
).

Rearranging, this is equivalent to

(1 − ε)∥Σ1/2∆∥2
F
≤ (1 + 2ε)

n
∥Xn(∆)∥22 +O(R2 r

2d3/2 log6 d

n
+ R2 log(log2(d3/2√n)/δ)

εn
),

and since ε < 1/2 this implies

∥Σ1/2∆∥2
F
≤ (1 + 2ε)2

n
∥Xn(∆)∥22 +O(R2 r

2d3/2 log6 d

n
+ R2 log(log2(d3/2√n)/δ)

εn
).

Making the somewhat arbitrary choice of ε = 1/100, and simplifying the right-hand-side, we get

∥Σ1/2∆∥2
F
≤ 1.1

n
∥Xn(∆)∥22 +O(R2 r

2d3/2 log6 d + log(1/δ)
n

).
So we can take c = 1.1 and γn = O(R2 r2d3/2 log6 d+log(1/δ)

n
).

Finally, we establish Property 1. Lemma 5 establishes that with probability at least 1 − δ,
∥ n∑
t=1
ξtXt − E[ξX]∥

ĩnj4

≤ 4ES Eǫ∥ n∑
t=1
ǫt(⟨T ⋆,Xt⟩ − Yt)Xt∥

̃inj4
+√2σ2n log(1/δ) + 4R log(1/δ),
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where σ2 = sup∥T ∥ñuc4≤1E[⟨T,X⟩2(⟨T ⋆,Xt⟩ − Yt)2] ≤ sup∥T ∥ñuc4≤1
4R2

d3
∥T ∥2F ≤ 4R2

d3
. Using Lemma 7 with

the standard in-expectation Lipschitz contraction lemma (e.g., Ledoux and Talagrand (1991)), we have

4ES Eǫ∥ n∑
t=1
ǫt(⟨T ⋆,Xt⟩ − Yt)Xt∥

̃inj4
≤ 8RES Eǫ∥ n∑

t=1
ǫtXt∥

ĩnj4

≤ O⎛⎝R
√

n log6 d

d3/2
+R√log 3d

⎞⎠.

Since n = Ω(d3/2), these bounds together imply that we can take M = O(R√ log6 d+log(1/δ)
d3/2

).
Theorem 8 now implies the claimed result.

Proof of Theorem 6. As in the tensor completion case, we prove the theorem by appealing to Theorem 8

using norms ∥⋅∥ = ∥⋅∥
ĩnj4

and ∥⋅∥
⋆
= ∥⋅∥ñuc4 .

Let T ⋆ be an arbitrary orthogonal tensor with ∥T ⋆∥ñuc6 = τ ,R(T ⋆) = R, and r(T ⋆) = r. Theorem 3 implies

that all ∆ ∈ T − T ⋆ satisfy ∥∆∥ñuc4 ≤ 68r ⋅ ∥∆∥F (43)

and thus, since Σ = I , we may take κ = 68r to establish Property 3.

To establish Property 2 we appeal to Theorem 10. This implies that for any ε < √2/π, with probability at

least 1 − 2e− n
32 /(1 − e−nε2

8 ),
1√
n
∥Xn(∆)∥2 ≥ (√2/π − ε)∥∆∥F − Cd3/4 log1/4 d√

n
⋅ ∥∆∥ñuck ,

where C > 0 is some absolute constant. Using equation (43), we have that for all ∆ ∈ T − T ⋆, conditioned

on the event above,

1√
n
∥Xn(∆)∥2 ≥ (√2/π − ε)∥∆∥F − C ′rd3/4 log1/4 d√

n
⋅ ∥∆∥F .

This means that when n = Ω(r2(T ⋆)d3/2 log1/2 d/ε), we have

∥∆∥2F ≤ 1

(√2/π − 2ε)2
1

n
∥Xn(∆)∥22.

It suffices to set ε = 1/40 to get

∥∆∥2F ≤ 1.8

n
∥Xn(∆)∥22.

So, simplifying, Property 2 is satisfied with c = 1.8 and γn = 0 with probability at least 1 − e− n
64 when

n = Ω(r2(T ⋆)d3/2 log1/2 d).
To establish Property 1 we use Lemma 10, but some care needs to be taken to establish that this applies with

high probability. Pick a constant τ ≥ 0, and observe via Lemma 11 that

P(∥X∥F ≥ d3/2 + τ) ≤ 2e− τ2

2 .
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Define a truncated sequence X ′t = Xt1{∥Xt∥F ≤ d3/2 + τ}, and set δ0 = 2ne− τ2

2 . Observe that with proba-

bility at least 1 − δ0, Xt =X ′t for all t, and so

∥ n∑
t=1
ξtXt − E[ξX]∥

ĩnj4

≤ ∥ n∑
t=1
ξtX

′
t − E[ξX ′]∥

̃inj4
.

We apply Lemma 5 to the truncated complexity, which implies that with probability at least 1 − (δ + δ0),
∥ n∑
t=1
ξtX

′
t −E[ξX ′]∥

ĩnj4

≤ 4EX1∶n Eǫ∥ n∑
t=1
ǫt(⟨T ⋆,Xt⟩ − Yt)X ′t∥

ĩnj4

+O(√σ2n log(1/δ) +R(d3/2 + τ) ⋅ log(1/δ)),
where σ2 = sup∥T ∥ñuc4≤1

E[⟨T,X ′⟩2(⟨T ⋆,Xt⟩ − Yt)2] ≤ sup∥T ∥ñuc4≤1
∥T ∥2F ⋅ 4R2 ≤ 4R2. We now apply

Lipschitz contraction to bound the in-expectation Rademacher complexity as

4EX1∶n Eǫ∥ n∑
t=1
ǫt(⟨T ⋆,Xt⟩ − Yt)X ′t∥

̃inj4
≤ 8REX′

1∶n
Eǫ∥ n∑

t=1
ǫtX

′
t∥
̃inj4
.

Integrating out the tail, we can bound the error due to truncation as

EX1∶n Eǫ∥ n∑
t=1
ǫtX

′
t∥

ĩnj4

≤ EX1∶n Eǫ∥ n∑
t=1
ǫtXt∥

ĩnj4

+ n ⋅ ∫ ∞

d3/2+τ
P(∥X∥F > t)dt

We have

n ⋅ ∫ ∞

d3/2+τ
P(∥X∥F > t)dt = n ⋅ ∫ ∞

d3/2+τ
e−

t2

2 dt ≤ n ⋅ exp(−C(d3 + τ2)),
for some absolute constant C . We pick τ = (√(d3/2n + log(1/δ))/C), so that the quantity above is o(1)
and δ0 ≤ δ. Lastly, since X1∶n are gaussian, Lemma 10 implies

EX1∶n Eǫ∥ n∑
t=1
ǫtXt∥

̃inj4
= √n ⋅ EX∥X∥ĩnj4 ≤ O(d3/4 log1/4 d√n).

When n ≥ d3/2, we have d3/2 ≤ d3/4√n, and so we conclude that with probability at least 1 − δ,
∥ n∑
t=1
ξtXt − E[ξX]∥

ĩnj4

≤ O(Rd3/4 log3/2(d/δ)√n),
so M = O(Rd3/4 log3/2(d/δ)).

D Proofs from Section 4

Proof of Theorem 7. Let ε > 0 be fixed and let m = d3/2−ε/2.

We will generate an instance of tensor completion from the 3-XOR instance by treating the indices (i, j, k)
in each clause as an observed entry. Precisely, for each clause, we set the corresponding X = ei ⊗ ej ⊗ ek,
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and the corresponding Y = zijk. The induced risk for each tensor T in this setting is simply LDZ
(T ) ∶=

1
d3 ∑i,j,k(Ti,j,k − Zi,j,k)2, where the tensor Z ∈ ({±1}d)⊗3 is defined as follows: in the random case, the

entries of Z are selected uniformly at random from {±1}; in the planted case with planted assignment

a ∈ {±1}d, we start off with the tensor a⊗3, then get Z by flipping each coordinate independently with

probability η.

If we set n = Ω(m), then we are guaranteed to receive Ω̃(m) unique clauses under with-replacement

sampling, since there are at most logarithmically many repeats with inverse polynomial probability for m =
o(d3/2). With this observation, it is clear that any algorithm that takes as input the examples S and outputs

“Planted” with probability at least 1 − o(1) when Z comes from the planted distribution and “Random”

with probability at least 1 − o(1) when Z is from the random distribution is a successful distinguisher for

the planted 3-XOR problem with Θ̃(m) clauses. Going forward we assume n = Ω(d), since this is the

interesting regime for distinguishing and refutation.

Now, suppose we have an algorithm that enjoys the excess risk bound (19) for any n, and let T̂S denote its

output given input dataset S. Since Z ∈ ({±1}d)⊗3 we can take ∥T̂S∥∞ ≤ 1 without loss of generality. We

will turn T̂S into a successful distinguishing algorithm for the planted 3-XOR problem as follows: Define

γ = 1 − 4η, and note the assumption that η < 1/4 implies that γ > 0. Split the sample set S into halves S1
and S2, and let L̂S1

and L̂S2
denote the empirical risk on the respective halves. Let T̂S1

be the output of the

assumed algorithm on S1. If L̂S2
(T̂S1
) ≥ 1 − γ4/2 return “Random”, else return “Planted”.

We will show that the algorithm succeeds in both the planted and random case by analyzing the value of

L̂S2
(T̂S1
) in each case.

Random case. Let S′2 be the result of removing all entries that appear in S1 from S2. The number of repeats

is at most O(n2/d3 + log(1/δ)) with probability at least 1 − δ. It follows that with probability at least, say,

1 −O(d−1), ∣S′2∣∣S2∣ ≥ 1 − o(1), and L̂S2
(T̂S1
) ≥ L̂S′

2
(T̂S1
) − o(1).

Observe that for every remaining example X = ei⊗ej⊗ek in S′2, the value of T̂S1
is statistically independent

of the value of Zi,j,k. Abbreviating T̂S1
to T̂ , this means that we have

EZ[L̂S′
2
(T̂S1
)] = 1∣S′2∣ ∑

X=ei⊗ej⊗ek∈S′2
EZi,j,k∈{±1}(T̂i,j,k −Zi,j,k)2 = 1∣S′2∣ ∑

X=ei⊗ej⊗ek∈S′2
(T̂i,j,k)2 + 1 ≥ 1.

Condition on S′2. Since T̂S1
and Z have bounded entries, it follows from Hoeffding’s inequality that with

probability at least 1 − δ over the choice of Z ,

L̂S′
2
(T̂S1
) ≥ EZ[L̂S′

2
(T̂S1
)] − c

¿ÁÁÀ log(1/δ)∣S′2∣ ,

for absolute constant c > 0. Since ∣S′2∣ = Ω̃(m), we can use the AM-GM inequality to conclude with

probability at least 1 −O(d−1),
L̂S2
(T̂S1
) ≥ L̂S′

2
(T̂S1
) − o(1).

It follows by union bound that

L̂S2
(T̂S1
) ≥ 1 − o(1) ≥ 1 − γ4/100 − o(1).

This proves that our strategy will indeed return “Random” for random instances.
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Planted case. For any Z , the assumed excess risk bound implies that for any rank-1 tensor T ⋆ with bounded

entries, we have

LDZ
(T̂S1
) −LDZ

(T ⋆) ≤ o(1),
when n = ω(d3/2−ε). We choose T ⋆ = a⊗3, where a ∈ {±1}d is the planted assignment. Taking expectation

over the flips in Z , we have

EZ[LDZ
(a⊗3)] = EZ

⎡⎢⎢⎢⎢⎣
4

d3
∑
i,j,k

1
{Zijk flipped}

⎤⎥⎥⎥⎥⎦ = 4η.
Applying Bernstein’s inequality, we have that with probability at least 1 −O(d−1) over the choice of Z ,

LDZ
(a⊗3) ≤ 4(1 + γ)η + o(1) = 1 − γ2 + o(1).

Finally, we use Bernstein once more to show that the empirical loss for S2 converges to the population loss,

leveraging that S2 is an independent hold-out set for T̂S1
. We have that for any choice of S1, with probability

at least 1 − δ over the draw of S2,

L̂S2
(T̂S1
) ≤ LDZ

(T̂S1
) + c1

√
LDZ
(T̂S1
) log(1/δ)
n

+ c2 log(1/δ)
n

,

where c1 and c2 are absolute constants. Applying AM-GM, this implies that L̂S2
(T̂S1
) ≤ (1+γ2)LDZ

(T̂S1
)+

o(1) with probability at least 1−O(d−1), and so by combining this with the excess risk bound and the bound

on LDZ
(a⊗3), we have

L̂S2
(T̂S1
) ≤ 1 − γ4 + o(1).
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