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Abstract

We give nearly matching upper and lower bounds on the oracle complexity of finding e-stationary
points (|VE(z)| <€) in stochastic convex optimization. We jointly analyze the oracle complexity in
both the local stochastic oracle model and the global oracle (or, statistical learning) model. This allows us
to decompose the complexity of finding near-stationary points into optimization complexity and sample
complexity, and reveals some surprising differences between the complexity of stochastic optimization
versus learning. Notably, we show that in the global oracle/statistical learning model, only logarithmic
dependence on smoothness is required to find a near-stationary point, whereas polynomial dependence on
smoothness is necessary in the local stochastic oracle model. In other words, the separation in complexity
between the two models can be exponential, and that the folklore understanding that smoothness is
required to find stationary points is only weakly true for statistical learning.

Our upper bounds are based on extensions of a recent “recursive regularization” technique proposed
by Allen-Zhu (2018). We show how to extend the technique to achieve near-optimal rates, and in partic-
ular show how to leverage the extra information available in the global oracle model. Our algorithm for
the global model can be implemented efficiently through finite sum methods, and suggests an interesting
new computational-statistical tradeoff.

1 Introduction

Success in convex optimization is typically defined as finding a point whose value is close to the minimum
possible value. Information-based complexity of optimization attempts to understand the minimal amount of
effort required to reach a desired level of suboptimality under different oracle models for access to the func-
tion (Nemirovski and Yudin, 1983; Traub et al., 1988). This complexity—for both deterministic and stochas-
tic convex optimization—is tightly understood across a wide variety of settings (Nemirovski and Yudin,
1983; Traub et al., 1988; Agarwal et al., 2009; Braun et al., 2017), and efficient algorithms that achieve op-
timal complexity are well known.
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Table 1: Upper and lower bounds on the complexity of finding = such that | V F'(z)| < € for convex problems
with H-Lipschitz gradients, where 2 is a bound on the variance of gradient estimates.

Recently, there has been a surge of interest in optimization for non-convex functions. In this case, finding a
point with near-optimal function value is typically intractable under standard assumptions—both computa-
tionally and information-theoretically. For this reason, a standard task in non-convex optimization is to find
an e-stationary point, i.e., a point where the gradient is small (|VF (z)]| < ¢).

In stochastic non-convex optimization, there has been a flurry of recent research on algorithms with provable
guarantees for finding near-stationary points (Ghadimi and Lan, 2013, 2016; Reddi et al., 2016; Allen-Zhu,
2017; Lei et al., 2017; Jin et al., 2017; Zhou et al., 2018; Fang et al., 2018). However, the stochastic oracle
complexity of finding near-stationary points is not yet well understood, so we do not know whether existing
algorithms are optimal, or how we hope to improve upon them.

Recent work by Carmon et al. (2017a,b) establishes tight bounds on the deterministic first-order oracle com-
plexity of finding near-stationary points of smooth functions, both convex and non-convex. For convex
problems, they prove that accelerated gradient descent is optimal both for finding approximate minimizers
and approximate stationary points, while for non-convex problems, gradient descent is optimal for finding
approximate stationary points. The picture is simple and complete: the same deterministic first-order meth-
ods that are good at finding approximate minimizers are also good at finding approximate stationary points,
even for non-convex functions.

However, when one turns their attention to the stochastic oracle complexity of finding near-stationary points,
the picture is far from clear. Even for stochastic convex optimization, the oracle complexity is not yet
well understood. This paper takes a first step toward resolving the general case by providing nearly tight
upper and lower bounds on the oracle complexity of finding near-stationary points in stochastic convex
optimization, both for first-order methods and for global (i.e., statistical learning) methods. At first glance,
this might seem trivial, since exact minimizers are equivalent to exact stationary points for convex functions.
When it comes to finding approximate stationary points the situation is considerably more complex, and the
equivalence does not yield optimal quantitative rates. For example, while the stochastic gradient descent
(SGD) is (worst-case) optimal for stochastic convex optimization with a first-order oracle, it appears to be
far from optimal for finding near-stationary points.



1.1 Contributions

We present a nearly tight analysis of the local stochastic oracle complexity and global stochastic oracle com-
plexity (“sample complexity”) of finding approximate stationary points in stochastic convex optimization.
Briefly, the highlights are as follows:

* We give upper and lower bounds on the local and global stochastic oracle complexity that match up
to log factors. In particular, we show that the local stochastic complexity of finding stationary points
is (up to log factors) characterized as the sum of the deterministic oracle complexity and the sample
complexity.

* As a consequence of this two-pronged approach, we show that the gap between local stochastic com-
plexity and sample complexity of finding near-stationary points is at least exponential in the smooth-
ness parameter.

* We obtain the above results through new algorithmic improvements. We show that the recursive reg-
ularization technique introduced by Allen-Zhu (2018) for local stochastic optimization can be com-
bined with empirical risk minimization to obtain logarithmic dependence on smoothness in the global
model, and that the resulting algorithms can be implemented efficiently.

Complexity results are summarized in Table 1. Here we discuss the conceptual contributions in more detail.

Decomposition of stochastic first-order complexity. For stochastic optimization of convex functions,
there is a simple and powerful connection between three oracle complexities: Deterministic, local stochas-
tic, and global stochastic. For many well-known problem classes, the stochastic first-order complexity is
equal to the sum (equivalently, maximum) of the deterministic first-order complexity and the sample com-
plexity. This decomposition of the local stochastic complexity into an “optimization term” plus a “statistical
term” inspires optimization methods, guides analysis, and facilitates comparison of different algorithms. It
indicates that “one pass” stochastic approximation algorithms like SGD are optimal for stochastic optimiza-
tion in certain parameter regimes, so that we do not have to resort to sample average approximation or
methods that require multiple passes over data.

We establish that the same decomposition holds for the task of finding approximate stationary points. Such
a characterization should not be taken for granted, and it is not clear a priori that it should hold for finding
stationary points. Establishing the result requires both developing new algorithms with near-optimal sample
complexity in the global model, and improving previous local stochastic methods (Allen-Zhu, 2018) to
match the optimal deterministic complexity.

Gap between sample complexity and stochastic first-order complexity. For non-smooth convex ob-
jectives, finding an approximate stationary point can require finding an exact minimizer of the function
(consider the absolute value function). Therefore, as one would expect, the deterministic and stochastic first-
order oracle complexities for finding near-stationary points scale polynomially with the smoothness constant,
even in low dimensions. Ensuring an approximate stationary point is impossible for non-smooth instances,
even with an unbounded number of first-order oracle accesses. Surprisingly, we show that the sample com-
plexity depends at most logarithmically on the smoothness. In fact, in one dimension the dependence on
smoothness can be removed entirely.

Improved methods. Our improved sample complexity results for the global stochastic oracle/statistical
learning model are based on a new algorithm which uses the recursive regularization (or, “SGD3”) approach
introduced by Allen-Zhu (2018). The methods iteratively solves a sequence of subproblems via regularized
empirical risk minimization (RERM). Solving subproblems through RERM allows the method to exploit



global access to the stochastic samples. Since the method enjoys only logarithmic dependence on smooth-
ness (as well as initial suboptimality or distance to the optimum), it provides a better alternative to any
stochastic first-order method whenever the smoothness is large relative to the variance in the gradient esti-
mates. Since RERM is a finite-sum optimization problem, standard finite-sum optimization methods can be
used to implement the method efficiently; the result is that we can beat the sample complexity of stochastic
first-order methods with only modest computational overhead.

For the local stochastic model, we improve the SGD3 method of Allen-Zhu (2018) so that the “optimization”
term matches the optimal deterministic oracle complexity. This leads to a quadratic improvement in terms
of the initial distance to the optimum (the “radius” of the problem), |zo — 2. We also extend the analysis
to the setting where initial sub-optimality F'(xo) — F'(z™) is bounded but not the radius—a common setting
in the analysis of non-convex optimization algorithms and a setting in which recursive regularization was
not previously analyzed.

2  Setup

We consider the problem of finding an e—stationary point in the stochastic convex optimization setting. That
is, for a convex function F : R% — R, our goal is to find a point 2 € R? such that

[VE(2)] <e, )]

given access to F' only through an oracle.! Formally, the problem is specified by a class of functions to

which F' belongs, and through the type of oracle through which we access F'. We outline these now.

Function classes. Recall that ' : R? — R is is said to H-smooth if
H 2 d
F(y) <F(z) +(VF(2),y-2)+ S lly -z VYa,yeR% 2)
and is said to be A-strongly-convex if

A
F(y) 2 F(x) +(VF(x),y )+ Sy -a]” Va,yeR" 3)

We focus on two classes of objectives, both of which are defined relative to an arbitrary initial point x
provided to the optimization algorithm.

1. Domain-bounded functions.

F'is H-smooth and A-strongly convex
Fle[H,\R]={F:R*>R | argmin, F(z)* 2 . 4)
Jx* eargmin, F(z) s.t. |[zg— 2| < R

2. Range-bounded functions.

F'is H-smooth and \-strongly convex
FLlH Al ={F:R' >R | argmin, F(z) + @ . ®)
F(zp) —min, F(z) <A

"Here, and for the rest of the paper, || is taken to be the Euclidean norm.




We emphasize that while the classes are defined in terms of a strong convexity parameter, our main com-
plexity results concern the non-strongly convex case where A = 0. The strongly convex classes are used
for intermediate results. We also note that our main results hold in arbitrary dimension, and so we drop the
superscript d except when it is pertinent to discussion.

Oracle classes. An oracle accepts an argument = € R% and provides (possibly noisy/stochastic) information
about the objective F' around the point x. The oracle’s output belongs to an information space . We
consider three distinct types of oracles:

1. Deterministic first-order oracle. Denoted Oy p, with Z ¢ R? x (R?)*. When queried at a point
T € Rd, the oracle returns

Ovr(x) = (F(x), VF(x)). (6)

2. Stochastic first-order oracle. Denoted OF g WithZ ¢ R? x RY. The oracle is specified by a func-
tion f : RY x Z — R and a distribution D over Z with the property that F'(z) = E,.p[f(z;2)]
and sup,[E..p |V f(z;2) - F(m)H2] < 0%. When queried at a point 2 € RY, the oracle draws an

independent z ~ D and returns

03 5(z) = (f(2:2),Vf(2:2)) .- 7

3. Stochastic global oracle. Denoted O%, with Z ¢ (R? + R). The oracle is specified by a function
f:R?¥x Z - R and a distribution D over Z with the property that F(z) = E,.p[f(z;2)] and
sup,[E.p |V f(252) - F (w)HZ] < o®. When queried, the oracle draws an independent z € D and
returns the complete specification of the function f(-, z), specifically,

OF () = (f(2)) .- (8)
For consistency with the other oracles, we say that (’);'c accepts an argument z, even though this
argument is ignored. The global oracle captures the statistical learning problem, in which f(+;2) is
the loss of a model evaluated on an instance z ~ D, and this component function is fully known to the
optimizer. Consequently, we use the terms “global stochastic complexity” and “sample complexity”
interchangeably.

For the stochastic oracles, while F' itself may need to have properties such as convexity or smoothness,
f (- 2) as defined need not have these properties unless stated otherwise.

Minimax oracle complexity. Given a function class F and an oracle O with information space Z, we
define the minimax oracle complexity of finding an e-stationary point as

m(F,0) = inf{m eN

inf sup E||VF(z.,)] < e}, 9)
AU It-RE FeF

where z; € R? is defined recursively as z; = A(O(xg),...,0(x;_1)) and the expectation is over the
stochasticity of the oracle 0.

Recap: Deterministic first-order oracle complexity. To position our new results on stochastic opti-
mization we must first recall what is known about the deterministic first-order oracle complexity of finding
near-stationary pointst. This complexity is tightly understood, with

me(Fos[H,\ = 0; R], Oyr) = O(VHE[\/E), and m(Fes[H,A = 0;A],0vp) = 6 (VHAe),

up to logarithmic factors (Nesterov, 2012; Carmon et al., 2017b). The algorithm that achieves these rates is
accelerated gradient descent (AGD).

?See Section 3 for discussion of randomized algorithms.



3 Stochastic First-Order Complexity of Finding Stationary Points

Interestingly, the usual variants of stochastic gradient descent do not appear to be optimal in the stochastic
model. A first concern is that they do not yield the correct dependence on desired stationarity e.

As an illustrative example, let F' € Fpg[ H, A = 0; R] and let any stochastic first-order oracle 0y 7 be given.
We adopt the naive approach of bounding stationarity by function value suboptimality. In this case the
standard analysis of stochastic gradient descent (e.g., Dekel et al. (2012)) implies that after m iterations,

E|VE ()| < OGNHEF(zm) - F(z*))) <O (\/H(HRZ/m + aR/m)), and thus

2 p2 2p2 2

€2 et

4

The dependence on € * is considerably worse than the ¢ 2 dependence enjoyed for function suboptimality.

In recent work, Allen-Zhu (2018) proposed a new recursive regularization approach and used this in an
algorithm called SGD3 that obtains the correct ¢ 2 dependence.®> For any F' € Fpg[H,\ = 0;R] and

v 7> SGD3 iteratively augments the objective with increasingly strong regularizers, “zooming in” on an
approximate stationary point. Specifically, in the first iteration, SGD is used to find £, an approximate
minimizer of F(©)(2) = F(x). The objective is then augmented with a strongly-convex regularizer so
FO(z) = FO(z) + Az -2 |* In the second round, SGD is initialized at #, and used to find Z, an
approximate minimizer of (1. This process is repeated, with F() (z) := FU=1 () + 2071\ |z — & for
each t € [T']. Allen-Zhu (2018) shows that SGD3 find an e-stationary points using at most

2
mgé(@+a—2) (10)
€ €

local stochastic oracle queries. This oracle complexity has a familiar structure: it resembles the sum of an
“optimization term” (H R/e¢) and a “statistical term” (o2 / ¢%). While we show that the statistical term is tight
up to logarithmic factors (Theorem 2), the optimization term does not match the Q(\/H R/e) lower bound
for the deterministic setting (Carmon et al., 2017b).

Algorithm 1 Recursive Regularization Meta-Algorithm

Input: A function F' € F[H, \], an oracle O and an alloted number of oracle accesses m, an initial point
20, and an optimization sub-routine A, with A = A[O,m/|logy &£ |].
FO) = F o= 20, T < |log, 4.
fort=1to7 do
24 is output of A used to optimize F’ (t-1) intitialized at Ti 1
FO(z) = F(x) + AL}y 267 o — )
end for
return I

Our first result is to close this gap. The key idea is to view SGD3 as a template algorithm, where the inner
loop of SGD used in Allen-Zhu (2018) can be swapped out for an arbitrary optimization method A. This
template, Algorithm 1, forms the basis for all the new methods in this paper.*

? Allen-Zhu (2018) also show that some simple variants of SGD are able to reduce the poor et dependence to, e.g., €02

they fall short of the =% dependence one should hope for. Similar remarks apply for F' € Frg [H,\=0;A].

*The idea of replacing the sub-algorithm in SGD3 was also used by Davis and Drusvyatskiy (2018), who showed that recursive
regularization with a projected subgradient method can be used to find near-stationary points for the Moreau envelope of any
Lipschitz function.

, but



Algorithm 2 AC-SA
Input: A function F' € Fpg[H, A; R], a stochastic first-order oracle OF #> and an alloted number of oracle

accesses m
zg? =z
fort=1,2,..., mdo
2
Ot < 51
4H
Tt t(t+1)
o (-o)Qty) Jag | ar((I-on)A+yr)
! Srr(i- a2))\ L1+ T T dadn Tl
V(@ z) < Og (@ D)
oA ,.md (1- Olt)>\+% _
Ty < A+t Ty A+t - )\+7t Vf(m 32 )
a ag
z¥ « aqwy + (1 - O‘t)intq
end for
return x,J

To obtain optimal complexity for the local stochastic oracle model we use a variant of the accelerated
stochastic approximation method (“AC-SA”) due to Ghadimi and Lan (2012) as the subroutine. Pseudocode
for AC-SA is provided in Algorithm 2. We use a variant called AC-SA?, see Algorithm 3. The AC-SA?
algorithm is equivalent to AC-SA, except the stepsize parameter is reset halfway through. This leads to
slightly different dependence on the smoothness and domain size parameters, which is important to control
the final rate when invoked within Algorithm 1.

Toward proving the tight upper bound in Table 1, we first show that Algorithm 1 with AC-SA? as its subrou-
tine guarantees fast convergence for strongly-convex domain-bounded objectives.

Theorem 1. For any F € Fpp[H, \; R] and any OV P Algorithm 1 using AC-SA? as its subroutine finds a
point & with B |VF(Z)| < € using

m <O \/glog(g)+ glog(H) (\/\/t:)%log(H)+Z—jlog3(§)

total stochastic first-order oracle accesses.

The analysis of this algorithm is detailed in Appendix A and carefully matches the original analysis of
SGD3 (Allen-Zhu, 2018). The essential component of the analysis is Lemma 2, which provides a bound
on |VF(&)| in terms of the optimization error of each invocation of AC-SA? on the increasingly strongly
convex subproblems F®,

Our final result for non-strongly convex objectives uses Algorithm 1 with AC-SA? on the regularized ob-
jective F(z) = F(x) + % |z — x0|?. The performance guarantee is as follows, and concerns both domain-
bounded and range-bounded functions.

Corollary 1. For any I € Fpp[H,\ = 0; R] and any O3, Algorithm 1 with AC-SA? as its subroutine

applied to F(z) + 2 5 @~ zo|? for A\ = © (mln{R, #G(U/e)}) yields a point T such that E||VF ()| < €

2
mSO(\/HRl g(HR)JrU—zlog?’(z))
€ € € €

total stochastic first-order oracle accesses.

For any F' € Frp[H, A = 0; A] and any O3, the same algorithm with A = © (mm{% #‘f;/e)}) yields

using

7



Algorithm 3 AC-SA?
Input: A function F' € Fpg[H, A; R], a stochastic first-order oracle OF #» and an alloted number of oracle
accesses m
z1 < AC-SA(F, z, 2)
zy < AC-SA(F,z1,2)
return s

a point & with E |VF(Z)| < € using

m<O

(\/HA (\/HA) o2 3(0'
log +— log —)
€ € € €
total stochastic first-order oracle accesses.

This follows easily from Theorem 1 and is proven in Appendix A. Intuitively, when A is chosen appropri-
ately, the gradient of the regularized objective £’ does not significantly deviate from the gradient of F', but
the number of iterations required to find an O(¢)-stationary point of F' is still controlled.

We now provide nearly-tight lower bounds for the stochastic first-order oracle complexity. A notable feature
of the lower bound is to show that show some of the logarithmic terms in the upper bound—which are not
present in the optimal oracle complexity for function value suboptimality—are necessary.

Theorem 2. For any H,A,R,o > 0, any ¢ < L& the stochastic first-order oracle complexity for range-

8 )
bounded functions is lower bounded as

2
€ € €

HA ' the stochastic first-order complexity for domain-bounded functions is lower bounded as

For any € </ =g,

HA o2 HA
Gt 105 202 n(2))
€ € €

The proof, detailed in Appendix C, combines the existing lower bound on the deterministic first-order oracle
complexity (Carmon et al., 2017b) with a new lower bound for the statistical term. The approach is to show
that any algorithm for finding near-stationary points can be used to solve noisy binary search (NBS), and
then apply a known lower bound for NBS (Feige et al., 1994; Karp and Kleinberg, 2007). It is possible to
extend the lower bound to randomized algorithms; see discussion in Carmon et al. (2017b).

4 Sample Complexity of Finding Stationary Points

Having tightly bound the stochastic first-order oracle complexity of finding approximate stationary points,
we now turn to sample complexity. If the heuristic reasoning that stochastic first-order complexity should
decompose into sample complexity and deterministic first-order complexity (m.(F, Og f)~ »m(F,Opp)+
me(F, (’);'c)) is correct, then one would expect that the sample complexity should be O(c?/e?) for both
domain-bounded and range-bounded function.

A curious feature of this putative sample complexity is that it does not depend on the smoothness of the
function. This is somewhat surprising since if the function is non-smooth in the vicinity of its minimizer,



there may only be a single e-stationary point, and an algorithm would need to return exactly that point using
only a finite sample. We show that the sample complexity is in fact almost independent of the smoothness
constant, with a mild logarithmic dependence. We also provide nearly tight lower bounds.

For the global setting, a natural algorithm to try is regularized empirical risk minimization (RERM), which
returns & = argmin, = 37 f(z;2;) + 3 | - x9]*.> For any domain-bounded function F' € Fpp[H,\ =
0; R], a standard analysis of ERM based on stability (Shalev-Shwartz et al., 2009) shows that E | VF(z)]| <
E\/2H(F(3&) - F*) + AR < O(y/H3R2/Am + AR). Choosing m = Q((HR)?/€®) and X = O(¢/R) yields
an e-stationary point. This upper bound, however, has two shortcomings. First, it scales with ¢ rather
than €2 that we hoped for and, second, it does not approach 1 as o — 0, which one should expect in the
noise-free case. The stochastic first-order algorithm from the previous section has better sample complexity,
but the number of samples still does not approach one when o — 0.

We fix both issues by combining regularized ERM with the recursive regularization approach, giving an
upper bound that nearly matches the sample complexity lower bound (o / €2). They key tool here is a sharp
analysis of regularized ERM—stated in the appendix as Theorem 7—that obtains the correct dependence on

the variance o2.

As in the previous section, we first prove an intermediate result for the strongly convex case. Unlike
Section 3, where F' was required to be convex but the components f(-;z) were not required to be, we
must assume here either that f(-; z) is convex for all 2.5

Theorem 3. For any F € F[H,\] and any global stochastic oracle OF with the restriction that f(-;z) is
convex for all z, Algorithm 1 with ERM as its subroutine finds & with E |VF(Z)|| < € using at most

2
o s(H

The proof is given in Appendix B. As before, we handle the non-strongly convex case by applying the
algorithm to F'(z) = F(z) + % |z - o] ?.

Corollary 2. For any F' € Fpg[H,\ = 0; R] and any global stochastic oracle (’);‘r with the restriction
that f(;z) is convex for all z, Algorithm 1 with ERM as its subroutine, when applied to F(x) = F(z) +
% |z — xo||* with X = ©(e/R), finds a point & with E |VF(2)| < € using at most

2
m<Q0 (0—2 log® (@))
€ €

total samples.

total samples.
Forany F € Fgrg[H, X = 0; A] and any global stochastic oracle (’)}' with the restriction that f(-; z) is convex

for all z, the same approach with \ = @(62 /A) finds an e-stationary point using at most
2
VHA
m<O (”—210g3 (—))
€ €

total samples.

SWhile it is also tempting to try constrained ERM, this does not succeed even for function value suboptimality
(Shalev-Shwartz et al., 2009).

®We are not aware of any analysis of ERM for strongly convex losses that does not make such an assumption. It is interesting
to see whether this can be removed.



This follows immediately from Theorem 3 by choosing A small enough such that |[VE(z)| ~ |VE(z)|.
Details are deferred to Appendix B.

With this new sample complexity upper bound, we proceed to provide an almost-tight lower bound.

Theorem 4. For any H,A,R,0 >0, € < min{%, \/ HTA, T}, the sample complexity to find a e-stationary

point’ is lower bounded as

2
me(}—DBl:H,/\=0;R]ﬁ}—RB[H,/\=0;A],O;‘c)ZQ( )

a
62

This lower bound is similar to constructions used to prove lower bounds in the case of finding an approximate
minimizer (Nemirovski and Yudin, 1983; Nesterov, 2004; Woodworth and Srebro, 2016). However, our
lower bound applies for functions with simultaneously bounded domain and range, so extra care must be
taken to ensure that these properties hold. The lower bound also ensures that f(+; z) is convex for all z. The
proof is located in Appendix C.

Discussion: Efficient implementation. Corollary 2 provides a bound on the number of samples needed to
find a near-stationary point. However, a convenient property of the method is that the ERM objective F’ ®)
solved in each iteration is convex, (H + 2'\)-smooth, (2'\)-strongly convex, and has finite sum structure

with m/T components. These subproblems can therefore be solved using at most O ((% +1/ %) log @)
gradient computations via a first-order optimization algorithm such as Katyusha (Allen-Zhu, 2017). This im-

plies that the method can be implemented with a total gradient complexity of O ((Z—; + C’Sg/\z/ﬁ) log? (@ ))

over all 7" iterations, and similarly for the bounded-range case. Thus, the algorithm is not just sample-
efficient, but also computationally efficient, albeit slightly less so than the algorithm from Section 3.

Removing smoothness entirely in one dimension. The gap between the upper and lower bounds for the
statistical complexity is quite interesting. We conclude from Corollary 2 that the sample complexity depends
at most logarithmically upon the smoothness constant, which raises the question of whether it must depend
on the smoothness at all. We now show that for the special case of functions in one dimension, smoothness
is not necessary. In other words, all that is required to find an e-stationary point is Lipschitzness.

Theorem 5. Consider any convex, L-Lipschitz function F : R — R that is bounded from below,® and any
global stochastic oracle (9? with the restriction that f(-;z) is convex for all z. There exists an algorithm

2 1 L
which uses m = O (%%(f)) samples and outputs a point T such that E[inf gedF (3) | g|] <e

The algorithm calculates the empirical risk minimizer on several independent samples, and then returns the
point that has the smallest empirical gradient norm on a validation sample. The proof uses the fact that any
function F' as in the theorem statement has a single left-most and a single right-most e-stationary point. As
long as the empirical function’s derivative is close to F’s at those two points, we argue that the ERM lies
between them with constant probability, and is thus an e-stationary point of /. We are able to boost the
confidence by repeating this a logarithmic number of times. A rigorous argument is included in Appendix B.
Unfortunately, arguments of this type does not appear to extend to more than one dimension, as the boundary
of the set of e-stationary points will generally be uncountable, and thus it is not apparent that the empirical
gradient will be uniformly close to the population gradient. It remains open whether smoothness is needed
in two dimensions or more.

"This lower bound applies both to deterministic and randomized optimization algorithms.
8This lower bound does not enter the sample complexity quantitatively.

10



The algorithm succeeds even for non-differentiable functions, and requires neither strong convexity nor
knowledge of a point x for which |z¢ —x*| or F'(zg) — F'* is bounded. In fact, the assumption of Lip-
schitzness (more generally, L-subgaussianity of the gradients) is only required to get an in-expectation
statement. Without this assumption, it can still be shown that ERM finds an e-stationary point with constant

probability using m < O(i—j) samples.

5 Discussion

We have proven nearly tight bounds on the oracle complexity of finding near-stationary points in stochas-
tic convex optimization, both for local stochastic oracles and global stochastic oracles. We hope that the
approach of jointly studying stochastic first-order complexity and sample complexity will find use more
broadly in non-convex optimization. To this end, we close with a few remarks and open questions.

1. Is smoothness necessary for finding e-stationary points? While the logarithmic factor separating the
upper and lower bound we provide for stochastic first-order oracle complexity is fairly inconsequen-
tial, the gap between the upper and lower bound on the sample complexity is quite interesting. In
particular, we show through Theorem 4 and Corollary 2 that

02 02
Q(—) <me (fRBl:Ha/\ =0; A],O?) < O(—10g3

€2 €2 ’

VHA
€
and similarly for the domain-bounded case. Can the polylog(H) factor on the right-hand side be
removed entirely? Or in other words, is it possible to find near-stationary points in the statistical
learning model without smoothness?’ By Theorem 5, we know that this is possible in one dimension.

2. Tradeoff between computational complexity and sample complexity. Suppose our end goal is to find

a near-stationary point in the statistical learning setting, but we wish to do so efficiently. For range-
VHA | o2 )
€

bounded functions, if we use Algorithm 1 with AC-SA? as a subroutine we require O( + %

samples, and the total computational effort (measured by number of gradient operations) is also
O( —Vim + Z—j ) On the other hand, if we use Algorithm 1 with RERM as a subroutine and implement

RERM with Katyusha, then we obtain an improved sample complexity of O(‘;—j), but at the cost of

. . X (o2 3/2 . . .
a larger number of gradient operations: O(i—2 + \/g(/’;/ ) Tightly characterizing such computational-

statistical tradeoffs in this and related settings is an interesting direction for future work.

3. Active stochastic oracle. For certain stochastic first-order optimization algorithms based on variance
reduction (SCSG (Lei et al., 2017), SPIDER (Fang et al., 2018)), a gradient must be computed at
multiple points for the same sample f(+;z). We refer to such algorithms as using an “active query”
first-order stochastic oracle, which is a stronger oracle than the classical first-order stochastic oracle
(see Woodworth et al. (2018) for more discussion). It would be useful to characterize the exact oracle
complexity in this model, and in particular to understand how many active queries are required to
obtain logarithmic dependence on smoothness as in the global case.

4. Complexity of finding stationary points for smooth non-convex functions. An important open problem
is to characterize the minimax oracle complexity of finding near-stationary points for smooth non-
convex functions, both for local and global stochastic oracles. For a deterministic first-order oracle,

°For a general non-smooth function F', a point z is said to be an e-stationary point if there exists v € &F (z) such that [v], < e
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the optimal rate is (:)(Ii—QA) In the stochastic setting, a simple sample complexity lower bound follows
from the convex case, but this is not known to be tight.
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A Proofs from Section 3: Upper Bounds

Theorem 6 (Proposition 9 of Ghadimi and Lan (2012)). Forany I' € Fpg[H, \; R] and any OF 7> the AC-SA
algorithm returns a point T after making 'I" oracle accesses such that

2HR?> 802

E[F(ir)] - F(a") < =5+ 1=

Lemma 1. For any F € Fpp[H, \; R] and any 0y p» the AC-SA? algorithm returns a point & after making
T oracle accesses such that

R .. 128H?R? 256Ho? 1602
E[F(2)] - F(z") < T4 Vi

13



Proof. By Theorem 6, the first instance of AC-SA outputs z; such that

8HR? 160”
E[F(&1)] - F(a") < — 11
[ (.Z'l)] (.Z' )— T2 + Valk (1)
and since F’is A-strongly convex,
A 8HR? 160”
SElé1—a*|* <B[F(21)] - F(2") € =5 + = (12)
Also by Theorem 6, the second instance of AC-SA outputs Z2 such that
E[F(&2) - F(2")] = E[E[F(22) - F(27) | 21]] (13)
Ak 2 2
<E 8H ||z —x*| . 160 (14)
T2 AT
128H?R* 256Ho”  160°
< + + . (15)
AT? A2T3 AT
O

Lemma 2 (Claim 6.2 of Allen-Zhu (2018)). Suppose that for every t = 1,...,T the iterates of Algorithm 1
satisfy E[F(t_l) (ﬁ:t)] — FU D (g5 ) < 6 where ;| = argmin, F1 (), then

. . 112 X . 2 Ot
1. Forallt>1, E[|&; -2/ |]" < E[Hwt -z 4| ] < TSN
1)
2. Foreveryt>1, E[|& —a;[]* < E[||2: —wﬂ|2] < ﬁ

3. Forallt>1, E[XL, 2|4, — 24| ] <451, V2ING,.

Theorem 1. For any F' € Fpp[H, \; R] and any OF f» Algorithm 1 using AC-SA? as its subroutine finds a
point & with B |VF(Z)| < € using

sy i) P () (L22) () 5 v 2)

total stochastic first-order oracle accesses.

Proof. As in Lemma 2, let E[F(tfl)(i"t) - F(tfl)(xf-l)] < O, for each t > 1. The objective in the final
iteration, F(T_l)(x) = F(x) + )\ Zg—:ll 2t—1 H‘T _ -i't 2’ SO

T-1
IVF(ir)| = |[VFT ™D (@) + X Y 28(dy - i) (16)
t=1
T-1
<|vFT @) |+ A Y 2 i - dr (17)
t=1
1 T-1
<|vFT @) | + A Y 2 (a0 - w5y + a7 - 250 ]) (18)
t=1
T-1
<2|VFT D ()| + 2 Y 2" a0 - oy (19)
t=1
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T-1
<2|[VFTD (@p) | +4 Y VX2
t=1
T-1
<AHbp +4 ) /X245,
t=1
4N\ A2tFLE,.
t

=1

!

(20)

1)

(22)

Above, (17) and (18) rely on the triangle inequality; (19) follows from the ()\ Z?;ll 2t)—str0ng convexity of
F (T’l); (20) applies the third conclusion of Lemma 2; (21) uses the fact that F’ =D s H + A ZtTgll 2t <

H + X2 = H + A2l H/A < 9 smooth; and finally (22) uses that H < \27*1,

We chose A(F (-1 #,_1) to be AC-SA? applied to F (t=1) initialized at Z;_, using m/T stochastic gradients.

Therefore,
5 < 128H2E | &1 — 7|2 L 26Ho> 160
2IN(m/T)4 22=202(mT)3 20T (m/T)
Using part two of Lemma 2, for ¢ > 1 we can bound E | &,_; — 2} ,|* < 2,5 >ty » thus
128H?6;_4 256 Ho? 160°

8 < :
t2 5N () 22N (mT)? T 2N (m)T)

We can therefore bound

2 k]2 2 2
82 5Ty 128 H2 |xg — * | . 256H o . 160
(m/T)* A(m/T)3  (m/T)
i 128 H26, 4 256 H o2 1602
+82 +
S IN(m/TYE 2 IA(m/T)? © (m/T)

128H2 |zo — x*|? 256 H o2 1602
<8 48| ————— + 8y | ——
(m/T)* Am/T)? (m/T)

E 128 H26, 4 256 Ho? 1602
82 +
21- 1)\(m/T)4 2-1\(m/T)3 (m/T)

_64V2H |ag - 27| T? N 128V HoT?? L 1
= m2 \/_m3/2 = ot-1

. 320T3/2 128HT2 T Sio1
Jm \/ 202\

64\/_H |zo — x| T? . 512/ HoT3/?
m2 m3/2

. 320T3/2 128HT2 T
Jm \/ 2t 1)\
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(23)

(24)

(25)

(26)

27)

(28)



P 64V2H ||z — x| T? . 512/ HoT53/?

29
m? VAm3/2 29)
320732 128HT? L
VA2E16,.
MRV ki v '

Above, we arrive at (25) by upper bounding each d; via (24); (26) follows from the fact that for a,b > 0,

Va+b < a+Vb; (28) uses the fact that ¥, ——— < 4 and /2%~ > 0; and finally, (29) follows b
o= T-1x y y

multiplying each non-negative term in the sum by 2-!. Rearranging inequality (29) and combining with
(22) yields

1 64V2H |wg - 2| T? 512/ HoT??  320T%?
E|VEF(ir)| < ( e ) ( V2 ”“g il Kt V_Z — . (30)
1 ~ Tam? m \/Xm / \/ﬁ
Choosing m > 8T'y/ % ensures that the first term is at most 2, and then solving for m such that the second
term is O(e) completes the proof. O
Lemma 3. For any F, define F(x) = F(x) + % |z —x¢|. Then
1. FeFpp[HA=0;R] = FeFpp[H+ N R]and ¥z |[VF(z)| <2|VF(2)| + AR
2. FeFrp[H,A=0;A] = .
F e Fpp[H + A\ X R =\2A[\] and Yz |VF(z)| < 2| VE(z)| + V2)AA.
Proof. Let #* € argmin, F'(x). Since VF(x) = VF(x) + A(x - x0),
[VF ()] < [VE@)[ + Xz - ol (31)
<|VE@)|| + Xwo =& + Mz - 2| (32)
<2|VE(@)| + Azo -2, (33)

where we used the A-strong convexity of F for the last inequality. Similarly, 0 = VF(z*) = VF(&*) +
A(Z* = xg). Therefore,

Ao - & = (VF (&), 20 - 7°) (34)
=(VF(Z"),zg —a™) +(VEF(Z"),z" - T") (35)
<(VF(&"),mo—x™) (36)
=(AMzo—2"), 20— 2") (37)
<Azo =2 wo — 27 - (38)

The first inequality follows from the convexity of F' and the second from the Cauchy-Schwarz inequality.
When F' € Fpg[H, A = 0; R], then |z¢ — Z*|| < R, which, combined with (33) proves the first claim.

Alternatively, when F' € Frg[H, A = 0; A]

o Y~k ~ % )‘ ~ %
F(x) = F(wo) 2 F(F") = F(&") + |0 - | (39)
Rearranging,
2(F - F(z* 2(F - F(z* 2A
—— S\/ (F(x0) - F(i7)) S\/ (F(x0) ~F()) _ [28 “0)
A A A
This, combined with (33), completes the proof. O
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Corollary 1. For any I’ € Fpp[H,\ = 0; R] and any O3, Algorithm 1 with AC-SA? as its subroutine

applied to F(x) + % |z = zo|? for A = © (min{%, #‘f?g/e)}) yields a point T such that B |VF ()| < €

2
mgo(, /@log(@)+ 0_210g3(z))
€ € € €

total stochastic first-order oracle accesses.

For any F € Frg[H, )\ = 0; A] and any (’)%f, the same algorithm with A = © (min{%, #ZEU/E)}) vields

using

a point T with E |VF(2)| < € using

m<O

[0 ) )

total stochastic first-order oracle accesses.

Proof. We use Algorithm 1 with AC-SA? as its subroutine to optimize F'(z) = F(z) + % |z — x0]?. Our

. _ 256H log?(m?) . .
choice of A = =———3—— < O(H) ensures that F'is H + A\ < O(H )-smooth and \-strongly convex; that
2( H+)
16(HM;11:§ (=) < %; and finally that % < m?2. Therefore, by Theorem 1, in particular, (30), the output
satisfies
- H |zg - *|log? (H/\)  Halog®? (H]\)  olog®? (H/A
vy < o Pz~ g GIY)  VTolo (1Y) 1o (N )
m? JamP? NG
o 2 3/2
SO(Haco T llog (m) . olog (m))’ 42)
m vm
where #* = argmin, F(z). For F € Fpg[H, A = 0; R], by part one of Lemma 3, |zo — #*| < R and
H Rlog? log®/?
E|VF(2)] <O o (m) , olog™ (m)} 43)
vm
Solving for m such that this expression is O(€) completes the first part of the proof. For this m,
H 4
A=0(min{ =, ——— 1. (44)
R o*log™ (a/e)
For F' € Frg[H, A = 0; A], by part two of Lemma 3, |z¢ - 2*| <+/2A/\ and
VHAL log®/?
E|VF(2)| < o( o8 (m)  clog " (m) ) (45)
m vm
Solving for m such that this expression is O(€) completes the the proof. For this m,
2 4
H
A=0(min{ S, ———1]. (46)
A otlog” (o/e)
O
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B Proofs from Section 4: Upper Bounds

Theorem 7. For any F € F[H,\| and any (’)j'c with the restriction that f(x;z) is A-strongly convex with
respect to x for all z, define the empirical risk minimizer via

1 m
& =argmin — > f(z;2).
m i3

zeRd

Then the empirical risk minimizer enjoys the guarantee

402

El|é-a*|* < —.
|- 2" < o

(47)

Proof. Let I, (z) = % > f(x; 2) be the empirical objective. Since f(z;z;) is A-strongly convex for

—

each z;, Fp, is itself A-strongly convex, and so we have
il x\ A * A 2 T /a4 Il *
(VE(2*), 8- )+§||:L'—l’ |© < Fon(2) = Erp (7).

Since, Z is the empirical risk minimizer, we have F;, (&) — F,,(z*) < 0, and so, rearranging,

A

Pl o |? < (VE(2*), 2~ 2*) < |[VE,(z)

|2 - a7
If £ — =¥ =0, then we are done. Otherwise,
[Z - 2" < %HVﬁm(x*)H
Now square both sides and take the expectation, which gives
B -0 3 < S E| VP

The final result follows by observing that EHVFm(x*) H2 < %2 O

Theorem 3. For any F' € F[H, \] and any global stochastic oracle O% with the restriction that f(-;z) is
convex for all z, Algorithm 1 with ERM as its subroutine finds & with B |V F(Z)|| < € using at most

o2 H
<0|=1 3(—)

total samples.

Proof. Consider the function F(7) () = F(z) + A\X L, 20! |z — &,?. Then

T
IVEG@r)| = |[VED (@7) + A Y 2 (&0 - 1) (48)
t=1
T-1
<|[vED (@r)| + 2 Y 2" a0 - i (49)
t=1
- T-1
< |VFD )|+ A% 2 (Jd - o3 + lér - 23]) (50)
t=1
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<2 HVF<T>(92T)H + Aizll 9t |2 — 2| (51)

T-1
<6H a7 —2p| + X Y 2" |2 - 27 (52)
t=1
T
<122 2" |2y - 27| - (53)
t=1

Above, (49) and (50) rely on the triangle inequality; (51) follows from the ()\ Zle 2t)—str0ng convexity of
F(); (52) uses the fact that F(T) is H + AYT 2t < H + \27+1 = H + 222 H/A] < 3H-smooth.

Define P, = Zle 2t Hﬁ:t - 3:,’2” for 1 < k < T with Py = 0. Note that our upper bound (53) is equal to
12APr = 12X Zgzl P, — P._1, so we will estimate the terms of this sum.

k-1
Py~ Pioy = 2% & -2 + 3 20 (J2e - al = |2 — 24 (54)
t=1
k tS g
<27 &g - i + 30 2" ok -z | (55)
t=1
k S * * *
< 2% (|2k = 2| + g =g ) (56)
<2°(2 )&k — 2l + & - 2 ). (57)

Above, we used the reverse triangle inequality to derive (55). By optimality of z;_, and x;,

FO (g ) - FO @) + PED (@) - PED (g )

. £ 12 s |2
|26 = @i |” = |2k —2p]” = 1) (58)
Thus Hik - J:ZH < H:i"k -T; 4 H and, combining (53) and (57) yields
g
IVE(@r)] <3673 2" 40— x4 (59)
t=1

Since &, is the output of ERM on the 2/~ \-strongly convex function F*~! using m /T samples, by Theorem 7,
E |z —x; 4] < _20VT_ 4pq

21\ /m
T
E|VF (@) <3673 2'E |2 - 27 (60)
t=1
T JT
<36AY 20—V 61
22505y D)
144073/
= U—. (62)
vm
Solving for m such that the expression is less than € completes the proof. U

Corollary 2. For any ' € Fpg[H,\ = 0; R] and any global stochastic oracle (’);‘r with the restriction

that f(-;z) is convex for all z, Algorithm 1 with ERM as its subroutine, when applied to F(x) = F(z) +
% |z — xo||* with X = ©(e/R), finds a point & with E |VF(2)| < € using at most

2
m< O (0—2 log® (@))
€ €
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total samples.
Forany F € Fgp[H, X = 0; A] and any global stochastic oracle (9? with the restriction that f(-; z) is convex

for all z, the same approach with \ = ©(€? /A) finds an e-stationary point using at most

= (57)

m < O(J—2log3
€

€

total samples.

Proof. The objective function F(z) = F(x) + % |z — x| ? is (H + \)-smooth and A-strongly convex. Thus
by Theorem 3, in particular (62), the output of the algorithm satisfies

1440 log™? (£:2)

Vm '
For F' € Fpg[H,\ = 0; R], with A\ = ©(¢/R) and m = Q (i—jlogg (@)) and using part one of Lemma 3
we conclude

E|VF ()

| <

(63)

E|VF(#)] < O(e + AR) < O(e), (64)

which completes the first part of the proof.

€

Similarly, for F' € Fgg[H,\ = 0;A], with A = ©(e?/A) and m = Q(i—jlog?’ ( Y HA)), by part two of
Lemma 3 we conclude

E|VE(2)] <O (e + m) <0(e), (65)
which completes the proof. O

Theorem 5. Consider any convex, L-Lipschitz function F : R — R that is bounded from below,'° and any
global stochastic oracle (’)j'c with the restriction that f(-;z) is convex for all z. There exists an algorithm

2] L
which uses m = O (%%(f)) samples and outputs a point  such that E[inf gedF (3) | g|] <e

Proof. Our algorithm involves calculating the ERM on several independent samples, evaluating the gradient
norm at these ERMs on a held-out sample, and returning the point with the smallest gradient norm.

Let V_F'(x) denote the left-derivative of F' at x, and let V. F'(x) denote the right-derivative. Since F
is bounded from below, lim,_,_o, V_F(x) < 0 and lim,_ . V. F () > 0, thus there exists at least one
e-stationary point for F'. Consequently, there is a unique a € R U {-oo0} for which V,F'(a) > —e and
Vr < a ViF(x) < —e. The point a is the left-most e-stationary point. It is possible that a = —oo, in
which case there are no = < a. Similarly, there is a unique b € R U {oo} for which V_F'(b) < € and
Va > b V_F(x) > e. The point b is the right-most e-stationary point. It is possible that b = oo, in which case
there are no = > b.

By convexity, Vo <y V_F'(z) < V. F(z) < V_F(y) < V4 F(y). Therefore, z < a == infyepp(y) |9/ 2
[ViF(z)] >eand x > b = infyepp(yylgl 2 [V-F(x)| > e. Therefore, [a,b] = {x : inf cpp(ylg| < €}.
Consequently, all that we need to show is that our algorithm returns a point within the interval [a, b].

Let ['(x) = % ™ f(z;2) be the empirical objective function and let 4 be any minimizer of F'. Con-

sider first the case that a > —oo, we will argue that & > a. Observe that if V_F(a) < 0, then since

'%This lower bound does not enter the sample complexity quantitatively.
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F'is convex, it is decreasing on [—co,a] and thus & > a. Since a > —oo, V_F(a) < —e¢, so the value
V_F(a) = % > V-f(a; z) is the sum of i.i.d. random variables that have mean V_F'(a) < —e and vari-

ance o2. By Chebyshev’s inequality, the random variable V_F (a) will not deviate too far from its mean:

2

P[V_F(a) >0] < . (66)
me
Similarly,
2
P[v.F(b) <0] < ~. (67)
me

Therefore, with probability at least 1 — —2, the minimum of F lies in the range [a,b] and thus the ERM &
is an e-stationary point of F'.

Consider calculating £ ERMs 21, ..., 2% on k independent samples of size m. Then with probability at least

2\k o . .
1- (%) , at least one of these points is an e-stationary point of F'.

Now, suppose we have km additional heldout samples which constitute an empirical objective F'. Since the
ERMs z; are independent of these samples,
k 2 2
2 L A 21 kot o
Condition on the event that at least one of the ERMS is an e-stationary point of F' and denote one of
those ERMs as Z;+. Denote this event £. Let 7 € argmin, HVF (@)H where we abuse notation and say

HVF(@) | = infgeaﬁ‘(fi)|g| for cases where F' is not differentiable at #;. Then

E[[vF(,)||E] < E[|vE ()] [E] + E[max V0 () - V()| E] 69)
<B[|vE @]+ % (70)
[ ] % (71)

] \/0—2 (72)
m
2
e+ /T (73)
m

The event that one of the ERMs is an e-stationary point happens with probability at least 1 — (m ) Choos-

E[|VF ()] E] E[m [VE (@) - VF @)

ingm = Q( ) and k = Q (10g ) ensures 1 — (2L)k > 1 - 1. Therefore,

me?
E[[vF(@;)]] = PLEIE[|VF (@) ][] + PLEJE[| v F ()| 2] (74)
3(1_5)(e+2 02) ( )(L) (75)
L m
<0(e). (76)
This entire algorithm required O(km) = O (Lg()) samples in total, completing the proof. U
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C Proofs of the Lower Bounds

Theorem 4. For any H,A,R,0 >0, € < min{%, \/ HTA, T}, the sample complexity to find a e-stationary

point'! is lower bounded as
o2
me(]:'DBl:I{vA = OaR] ﬁ‘7:'RB'|:I{7A = 0) A],O}‘) > () (_2) :
€
Proof. For a constant b € R to be chosen later, let
b 2
flasz) =0 (z,2)+ 5 [2]” (77

The distribution D of the random variable z is the uniform distribution over {z1, ..., z,, } where the vectors
2; € R% are orthonormal (d > m). Therefore,

F(z)=E[f(x;2)] = < Zzl>+— ||;U|| (78)

This function is clearly convex, b-smooth, and attains its unique minimum at z* = —;>- " 2z; which
* |2 * |2 2 *\ _ o2
has norm ||z*|“ = 73—, so choosing b > R\/_ ensures |2 |” < R®. Furthermore, F'(0) - F'(z*) = 57—, s0

R\U/m, %} ensures both simultaneously.
Finally, E |V f(z;2) - VF(z)| = L 37 |0z - 2 P sz =o?(1-1) <o

Therefore, F' € Fpg[H, A = 0; R] n Frg[H, A = 0; A] and f, D properly define a OZ¢

choosing b > 2A ensures F'(0)—F(x*) < A. Choosing b = max{

Suppose, for now, that z is a point such that (z,v;) > —g7— for all i > m/2. Then

IVF@I? = T+ 82 ol + 222 3" (2,01 (79)
m m
o 9 20b o?
>—+b° > (zv) +— ) (z,v)-— (80)
m i<m/2 m i<m/2 4m
30'2 2m 2
> +min — 1
_4m+111/1€%11£1 5 Yy~ +oby (81)
2
o
=—. 82
T (82)
Therefore, for all such vectors z, [VF(z)| > 5 \/_ This holds for any b > 0 and set {z1,..., 2y, }. From

here, we will argue that any randomized algorithm with access to less than m/2 samples from D is likely
to output such an x. We consider a random function instance determined by drawing the orthonormal set
{21,...,%n} uniformly at random from the set of orthonormal vectors in R?. We will argue that with
moderate probability over the randomness in the algorithm and in the draw of zq,..., z,,, the output of
the algorithm has small inner product with 2,2, ..., zm,. This approach closely resembles previous work
(Woodworth and Srebro, 2016, Lemma 7).

Less than m/2 samples fix less than m/2 of the vectors z;; assume w.l.o.g. that the algorithm’s sample
S={z1,.--,2m /2,1}. The vectors z; are a uniformly random orthonormal set, therefore for any i > m/2,

""This lower bound applies both to deterministic and randomized optimization algorithms.
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z;|S is distributed uniformly on the (d — m/2 + 1)-dimensional unit sphere in the subspace orthogonal to

span (21, ..., 2, /2_1). Let & be the output of any randomized algorithm whose input is S. If ||z > b?)‘m
then it is easily confirmed that |V F'(&)| > 2 Otherwise, we analyze
]P’[(x vi) < ‘ s, ac] (&, v:)| > % ‘ S,@] (83)
<P 20 || @ > 2 |83 (84)
< )| >=— 19,2
ENEE 8bm
1
=P S,z|. 85
()2 e |54 )

This probability only increases if we assume that & is orthogonal to span(z1,..., 2y, 2-1), in which case
we are considering the inner product between a fixed unit vector and a uniformly random unit vector. The
probability of the inner product being large is proportional to the surface area of the “cap” of a unit sphere

in (d - m/2 + 1)-dimensions lying above and below circles of radius /1 - 256m These end caps, in total,
have surface area less than that of a sphere with that same radius. Therefore,
o 1 d-13
Pl(z,v;) < ——— S,A]s (1——) 86
[<w vil 8bm‘ ! \J 256m (56)
d 1 \5%
_ 512 1024
- (1 - Z”_—m) &7
27 1
1 d
<ex (— - —) (88)
1024 512m

This did not require anything but the norm of Z being small, so for d > Zt + 512m log(2m), this ensures that

o 20 1
Pl(Z,v;) <——— | S, 2| < —=| < — 89
(o) <5 | silol < | < o )
A union bound ensures that either |z > b\27_ r (2, v;) > —g2— for all i > m /2 with probability at least 1/2
over the randomness in the algorithm and draw of ..., z,,, and consequently, that E; | VF(2)|* > <
Setting m = lS 2J ensures this is at least e. For this m, b = max{ NG 222m} < % + % which must be less

than H, consequently, this lower bound applies for € < min{ %, \/ HTA }. O

Theorem 8. For any H,R,0 > 0 and any € € (0,0/2), there exists a F : R - R € Fpg[H, X = 0; R] and
a 07 P such that for any algorithm interacting with the stochastic first-order oracle, and returning an e-
approximate stationary point with some fixed constant probability, the expected number of queries is at least
Q (Z—; -log (@)) Moreover, a similar lower bound of ) ( -log ( )) holds if the radius constraint R
is replaced by a suboptimality constraint A.

Proof. We prove the lower bound by reduction from the noisy binary search (NBS) problem: In this classical
problem, we have N sorted elements {aj,...,ay}, and we wish to insert a new element e using only
queries of the form “is e > a;7” for some j. Rather than getting the true answer, an independent coin is
flipped and we get the correct answer only with probability % + p for some fixed parameter p. Moreover,
let 7* be the unique index such that aj+ < e < aj»«+112. It is well-known (see for example Feige et al.

"This is w.l.o.g., since if e < a1 or e > ax, we can just add two dummy elements smaller and larger than all other elements and
e, increasing N by at most 2, hence not affecting the lower bound.
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(1994); Karp and Kleinberg (2007)) that in order to identify j* with any fixed constant probability, at least
Q(log(N)/p?) queries are required.

Let us first consider the case where the radius constraint R is fixed. We will construct a convex stochastic
optimization problem with the given parameters, such that if there is an algorithm solving it (with constant
probability) after T" local stochastic oracle queries, then it can be used to solve an NBS problem (with the
same probability) using 27" queries, where p = ¢/o and'®> N = HR/4¢. Employing the lower bound above

for NBS, this immediately implies the €2 (Z—; -log (@)) lower bound in our theorem.

To describe the reduction, let us first restate the NBS problem in a slightly different manner. For a fixed
query budget 7', let Z be a T' x N matrix, with entries in {—1,+1} drawn independently according to the
following distribution:

-p j<j”
+p j>j>e'

DN N[

Pr(Zi;=1) = {

Each Z; ; can be considered as the noisy answer provided in the NBS problem to the ¢-th query, of the form
“is e > a;” (where —1 corresponds to “true” and 1 corresponds to “false”). Thus, an algorithm for the NBS
problem can be seen as an algorithm which can query 7' entries from the matrix Z (one query from each
row), and needs to find j* based on this information. Moreover, it is easy to see that the NBS lower bound
also holds for an algorithm which can query any " entries from the matrix: Since the entries are independent,
this does not provide additional information, and can only “waste” queries if the algorithm queries the same
entry twice.

We now turn to the reduction. Given an NBS problem on N = HR/4e elements with p = ¢/o and a
randomly-drawn matrix Z, we first divide the interval [0, R] into N equal sub-intervals of length R/N each,
and w.Lo.g. identify each element a; with the smallest point in the interval. Then, for every (statistically
independent) row Z; of Z, we define a function f(x,Z;) on R by f(0,Z;) = 0, and the rest is defined via
its derivative as follows:

—2¢ r<0
(2, 2;) =12 r2 R

%UZMH + (1 - %) 0Z; x€laj,aj.1) forsome j <N
Note that by construction % € [0,1] and Z;; € {-1,+1}, so |f'(z,Z;)| < max{2¢,0} < 0. Moreover,
since the expected value of 0Z; j is o - (=2p) = —2¢if j < j*, and o - 2p = 2eif j > j7, it is easily verified
that

—2e x < aj
Ez.[f' (2, Z¢)] =4 2¢ T2 ap
“2e+deqry v efaj,a500)
Noting that 46% = H(xz - aj) € [0,4€] in the above, we get that F'(z) := Ey,[f(x,Z;)] is a convex

function with H-Lipschitz gradients, with a unique minimum at some z : |z| < R, and with |F”’(x)| < € only
when x € [a;+,a;++1). Overall, we get a valid convex stochastic optimization problem (with parameters
H, R, o as required), such that if we can identify x such that |F’(x)| < €, then we can uniquely identify

YFor simplicity we assume that H R/4e is a whole number — otherwise, it can be rounded and this will only affect constant
factors in the lower bound.
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j*. Moreover, given an algorithm to the optimization problem, we can simulate a query to a local stochastic
oracle (specifying an iterate ¢ and a point x) by returning f'(z, Z;) as defined above, which requires querying
at most 2 entries Z; ; and Z; ;.1 from the matrix Z. So, given an oracle query budget 7" to the stochastic
problem, we can simulate it with at most 27" queries to the matrix Z in the NBS problem.

To complete the proof of the theorem, it remains to handle the case where there is a suboptimality constraint
A rather than a radius constraint R. To that end, we simply use the same construction as above, with R = %.
Since the derivative of F' has magnitude at most 2¢, and its global minimum satisfies |2*| < R, it follows
that F'(0) - F(z*) <2eR = A. Plugging in R = % in the lower bound, the result follows. O

Theorem 2. For any H,A,R,0 > 0, any € < %, the stochastic first-order oracle complexity for range-
bounded functions is lower bounded as

[H 2 H
me(Fpp[H, A = 0; R],0%;) 2 Q( R + %log(—R)).
€ € €

For any e </ HTA, the stochastic first-order complexity for domain-bounded functions is lower bounded as

/ 2
me(]:RB[H,)\ = 0; A],O%f) > Q(LA + %lOg(H_QA)) .
€ € €

Proof. By Theorem 8, Q2(o?/e?)log (H R/e) and (02 /e?) log (H A/€?) oracle calls (samples) are needed
to find an e-stationary point. Furthermore, a deterministic first-order oracle is a special case of a stochastic
first-order oracle (corresponding to the case o = 0). Therefore, lower bounds for deterministic first-order
optimization apply also to stochastic first-order optimization. Therefore, the lower bound of (Carmon et al.,
2017b, Theorem 1) completes the proof. O
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