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Abstract

In distributed statistical learning, N samples are split across m machines and a learner wishes to use
minimal communication to learn as well as if the examples were on a single machine. This model has
received substantial interest in machine learning due to its scalability and potential for parallel speedup.
However, in high-dimensional settings, where the number examples is smaller than the number of fea-
tures (“dimension”), the speedup afforded by distributed learning may be overshadowed by the cost of
communicating a single example. This paper investigates the following question: When is it possible to
learn a d-dimensional model in the distributed setting with total communication sublinear in d?

Starting with a negative result, we observe that for learning ¢, -bounded or sparse linear models, no al-
gorithm can obtain optimal error until communication is linear in dimension. Our main result is that that
by slightly relaxing the standard boundedness assumptions for linear models, we can obtain distributed
algorithms that enjoy optimal error with communication logarithmic in dimension. This result is based
on a family of algorithms that combine mirror descent with randomized sparsification/quantization of
iterates, and extends to the general stochastic convex optimization model.

1 Introduction

In statistical learning, a learner receives examples 21, ..., zy i.i.d. from an unknown distribution D. Their
goal is to output a hypothesis h € H that minimizes the prediction error Lp(h) := E,.p¢(h,z), and in
particular to guarantee that excess risk of the learner is small, i.e.

Lp(h) - inf Lp(h) <e(H,N), (1)

where e(#H, N) is a decreasing function of N. This paper focuses on distributed statistical learning. Here,
the IV examples are split evenly across m machines, with n := N /m examples per machine, and the learner
wishes to achieve an excess risk guarantee such as (1) with minimal overhead in computation or communi-
cation.

Distributed learning has been the subject of extensive investigation due to its scalability for processing
massive data: We may wish to efficiently process datasets that are spread across multiple data-centers, or we
may want to distribute data across multiple machines to allow for parallelization of learning procedures. The
question of parallelizing computation via distributed learning is a well-explored problem (Bekkerman et al.,
2011; Recht et al., 2011; Dekel et al., 2012; Chaturapruek et al., 2015). However, one drawback that limits
the practical viability of these approaches is that the communication cost amongst machines may overshadow
gains in parallel speedup (Bijral et al., 2016). Indeed, for high-dimensional statistical inference tasks where
N could be much smaller than the dimension d, or in modern deep learning models where the number of
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model parameters exceeds the number of examples (e.g. He et al. (2016)), communicating a single gradient
or sending the raw model parameters between machines constitutes a significant overhead.

Algorithms with reduced communication complexity in distributed learning have received significant recent
development (Seide et al., 2014; Alistarh et al., 2017; Zhang et al., 2017; Suresh et al., 2017; Bernstein et al.,
2018; Tang et al., 2018), but typical results here take as a given that when gradients or examples live in d
dimensions, communication will scale as 2(d). Our goal is to revisit this tacit assumption and understand
when it can be relaxed. We explore the question of sublinear communication:

Suppose a hypothesis class H has d parameters. When is it possible to achieve optimal excess risk for H in
the distributed setting using o(d) communication?

1.1 Sublinear Communication for Linear Models?

In this paper we focus on linear models, which are a special case of the general learning setup (1). We
restrict to linear hypotheses of the form h,, () = (w, z) where w, = € R? and write £(hy, 2) = ¢({(w,z),y),
where ¢(+,y) is a fixed link function and z = (z,y). We overload notation slightly and write

LD(w) = Il'--1:’(:(:,y)~'1.) ¢(<ZU,ZL'>,Z/) 2

The formulation captures standard learning tasks such as square loss regression, where ¢({(w,x),y) =
(w,z) - y)?, logistic regression, where o((w,z),y) = log(l + e*y(w,w)), and classification with surrogate
losses such as the hinge loss, where ¢({w, z),y) = max{1 - (w,z) - y,0}.

Our results concern the communication complexity of learning for linear models in the ¢,,/{,-bounded setup:
weights belong to W), := {w e R | |w], < B, } and feature vectors belong to X, := {z ¢ R? | |, < Ry}t
This setting is a natural starting point to investigate sublinear-communication distributed learning because
learning is possible even when N << d.

Consider the case where p and ¢ are dual, i.e. £ + 1 = 1, and where ¢ is 1-Lipschitz. Here it is well known

(Zhang, 2002; Kakade et al., 2009) that whenever ¢ > 2, the optimal sample complexity for learning, which
is achieved by choosing the learner’s weights @ using empirical risk minimization (ERM), is

Lp(®) - inf L —@\/B?’R‘Z]Cq
D(w)_wlenwp p(w) = —~ ) 3)

where C;; = g — 1 for finite ¢ and C = logd, or in other words

| B?R2 logd
LD(’L’J) - wleni/{;l L'D(’w) = @( 1Tg) (4)

We see that when ¢ < oo the excess risk for the dual ¢,,/¢, setting is independent of dimension so long as the
norm bounds B, and R, are held constant, and that even in the ¢;//., case there is only a mild logarithmic
dependence. Hence, we can get nontrivial excess risk even when the number of examples N is arbitrarily
small compared to the dimension d. This raises the intriguing question: Given that we can obtain nontrivial
excess risk when N <« d, can we obtain nontrivial excess risk when communication is sublinear in d?

To be precise, we would like to develop algorithms that achieve (3)/(4) with total bits of communication
poly(N,m,log d), permitting also poly(B,, R,) dependence. The prospect of such a guarantee is exciting
because—in light of the discussion above—as this would imply that we can obtain nontrivial excess risk
with fewer bits of total communication than are required to naively send a single feature vector.

"Recall the definition of the £, norm: |wl, = (Z,‘f:1|wi|p)1/p.



1.2 Contributions

We provide new communication-efficient distributed learning algorithms and lower bounds for ¢,,/¢,-bounded
linear models, and more broadly, stochastic convex optimization. We make the following observations:

* For /5/¢5-bounded linear models, sublinear communication is achievable, and is obtained by using a
derandomized Johnson-Lindenstrauss transform to compress examples and weights.

* For /1 /{--bounded linear models, no distributed algorithm can obtain optimal excess risk until com-
munication is linear in dimension.

These observations lead to our main result. We show that by relaxing the ¢; /{-boundedness assumption
and instead learning ¢; /¢,-bounded models for a constant ¢ < oo, one unlocks a plethora of new algorithmic
tools for sublinear distributed learning:

1. We give an algorithm with optimal rates matching (3), with communication poly (NN, m?,logd).

2. We extend the sublinear-communication algorithm to give refined guarantees, including instance-
dependent small loss bounds for smooth losses, fast rates for strongly convex losses, and optimal
rates for matrix learning problems.

Our main algorithm is a distributed version of mirror descent that uses randomized sparsification of weight
vectors to reduce communication. Beyond learning in linear models, the algorithm enjoys guarantees for the
more general distributed stochastic convex optimization model.

To elaborate on the fast rates mentioned above, another important case where learning is possible when
N <« d is the sparse high-dimensional linear model setup central to compressed sensing and statistics. Here,
the standard result is that when ¢ is strongly convex and the benchmark class consists of k-sparse linear
predictors, i.e. Wy = {w e R?| |w|, < k}, one can guarantee

klog (d/k) )

~ (&)

LD('{J) — inf Lp(w) = @(
weWp
With /. -bounded features, no algorithm can obtain optimal excess risk for this setting until communication
is linear in dimension, even under compressed sensing-style assumptions. When features are ¢,-bounded
however, our general machinery gives optimal fast rates matching (5) under Lasso-style assumptions, with
communication poly (N9, log d).

The remainder of the paper is organized as follows. In Section 2 we develop basic upper and lower bounds
for the ¢5/¢ and {1 /{.-bounded settings. Then in Section 3 we shift to the ¢;/¢,-bounded setting, where
we introduce the family of sparsified mirror descent algorithms that leads to our main results and sketch the
analysis.

1.3 Related Work

Much of the work in algorithm design for distributed learning and optimization does not explicitly consider
the number of bits used in communication per messages, and instead tries to make communication efficient
via other means, such as decreasing the communication frequency or making learning robust to network dis-
ruptions (Duchi et al., 2012; Zhang et al., 2012). Other work reduces the number of bits of communication,
but still requires that this number be linear in the dimension d. One particularly successful line of work in this
vein is low-precision training, which represents the numbers used for communication and elsewhere within



the algorithm using few bits (Alistarh et al., 2017; Zhang et al., 2017; Seide et al., 2014; Bernstein et al.,
2018; Tang et al., 2018; Stich et al., 2018; Alistarh et al., 2018). Although low-precision methods have seen
great success and adoption in neural network training and inference, low-precision methods are fundamen-
tally limited to use bits proportional to d; once they go down to one bit per number there is no additional
benefit from decreasing the precision. Some work in this space tries to use sparsification to further decrease
the communication cost of learning, either on its own or in combination with a low-precision representa-
tion for numbers (Alistarh et al., 2017; Wangni et al., 2018; Wang et al., 2018). While the majority of these
works apply low-precision and sparsification to gradients, a number of recent works apply sparsification to
model parameters (Tang et al., 2018; Stich et al., 2018; Alistarh et al., 2018); We also adopt this approach.
The idea of sparsifying weights is not new (Shalev-Shwartz et al., 2010), but our work is the first to provably
give communication logarithmic in dimension. To achieve this, our assumptions and analysis are quite a bit
different from the results mentioned above, and we crucially use mirror descent, departing from the gradient
descent approaches in Tang et al. (2018); Stich et al. (2018); Alistarh et al. (2018).

Lower bounds on the accuracy of learning procedures with limited memory and communication have been
explored in several settings, including mean estimation, sparse regression, learning parities, detecting corre-
lations, and independence testing (Shamir, 2014; Duchi et al., 2014; Garg et al., 2014; Steinhardt and Duchi,
2015; Braverman et al., 2016; Steinhardt et al., 2016; Acharya et al., 2018a,b; Raz, 2018; Han et al., 2018;
Sahasranand and Tyagi, 2018; Dagan and Shamir, 2018; Dagan et al., 2019). In particular, the results of
Steinhardt and Duchi (2015) and Braverman et al. (2016) imply that optimal algorithms for distributed sparse
regression need communication much larger than the sparsity level under various assumptions on the number
of machines and communication protocol.

2 Linear Models: Basic Results

In this section we develop basic upper and lower bounds for communication in ¢5/¢5- and ¢1 /{,-bounded
linear models. Our goal is to highlight some of the counterintuitive ways in which the interaction between the
geometry of the weight vectors and feature vectors influences the communication required for distributed
learning. In particular, we wish to underscore that the communication complexity of distributed learning
and the statistical complexity of centralized learning do not in general coincide, and to motivate the ¢; /¢,-
boundedness assumption under which we derive communication-efficient algorithms in Section 3.

2.1 Preliminaries

We formulate our results in a distributed communication model following Shamir (2014). Recalling that
n = N /m, the model is as follows.

* For machine ¢ =1,...,m:
. .. e ) 7
— Receive n i.i.d. examples S; = 27,...,2,,.

— Compute message W; = f;(S;; W1,...,W;_1), where W} is at most b; bits.
e Return W = f(W1,...,Wp).

We refer to Y, b; as the rotal communication, and we refer to any protocol with b; < b Vi as a (b,n,m)
protocol. As a special case, this model captures a serial distributed learning setting where machines proceed
one after another: Each machine does some computation on their data z{, ..., 72, and previous messages
Wi, ..., W;_1, then broadcasts their own message W; to all subsequent machines, and the final model in



(1) is computed from W, either on machine m or on a central server. The model also captures protocols
in which each machine independently computes a local estimator and sends it to a central server, which
aggregates the local estimators to produce a final estimator (Zhang et al., 2012). All of our upper bounds
have the serial structure above, and our lower bounds apply to any (b, n,m) protocol.

2.2 (/l(;-Bounded Models

In the ¢5/¢2-bounded setting, we can achieve sample optimal learning with sublinear communication by
using dimensionality reduction. The idea is to project examples into k = O(N ) dimensions using the
Johnson-Lindenstrauss transform, then perform a naive distributed implementation of any standard learning
algorithm in the projected space. Here we implement the approach using stochastic gradient descent.

The first machine picks a JL matrix A € R¥*¢ and communicates the identity of the matrix to the other m — 1
machines. The JL matrix is chosen using the derandomized sparse JL transform of Kane and Nelson (2010),
and its identity can be communicated by sending the random seed, which takes O(log(k/d) - log d) bits for
confidence parameter . The dimension k and parameter § are chosen as a function of V.

Now, each machine uses the matrix A to project its features down to k dimensions. Letting z; = Ax; denote
the projected features, the first machine starts with a k-dimensional weight vector u; = 0 and performs
the online gradient descent update (Zinkevich, 2003; Cesa-Bianchi and Lugosi, 2006) over its n projected
samples as:

Ut <= Ut-1 — 77V¢(<Ut,33£>,yt),

where 1 > 0 is the learning rate. Once the first machine has passed over all its samples, it broadcasts the
last iterate u,,.1 as well the average Y ._; us, which takes O(k:) communication. The next machine machine
performs the same sequence of gradient updates on its own data using u,,+1 as the initialization, then passes
its final iterate and the updated average to the next machine. This repeats until we arrive at the mth machine.
The mth machine computes the k-dimensional vector @ := % YN, uy, and returns @ = AT as the solution.

Theorem 1. When ¢ is L-Lipschitz and k = Q(N log(dN)), the strategy above guarantees that

_ , | L?B2R3
EgE4 [LD(U))] - wleny{;2 LD(w) < O( T 5

where Eg denotes expectation over samples and E 4 denotes expectation over the algorithm’s randomness.
The total communication is O(mN log(dN)log(LBsRsN) + mlog(dN)logd) bits.

23 /(;/{.-Bounded Models: Model Compression

While the results for the ¢2/¢2-bounded setting are encouraging, they are not useful in the common situation
where features are dense. When features are {..-bounded, Equation (4) shows that one can obtain nearly
dimension-independent excess risk so long as they restrict to ¢1-bounded weights. This ¢;/{.-bounded
setting is particularly important because it captures the fundamental problem of learning from a finite hy-
pothesis class, or aggregation (Tsybakov, 2003): Given a class H of {+1}-valued predictors with |H| < oo
we can set 2 = (h(2))pen € R, in which case (4) turns into the familiar finite class bound +/log|H|/N
(Shalev-Shwartz and Ben-David, 2014). Thus, algorithms with communication sublinear in dimension for
the /1 /(o setting would lead to positive results in the general setting (1).



As first positive result in this direction, we observe that by using the well-known technique of randomized
sparsification or Maurey sparsification, we can compress models to require only logarithmic communication
while preserving excess risk.” The method is simple: Suppose we have a weight vector w that lies on the
simplex A,. We sample s elements of [d] i.i.d. according to w and return the empirical distribution, which
we will denote Q®(w). The empirical distribution is always s-sparse and can be communicated using at
most O(slog (ed/s)) bits when s < d,® and it follows from standard concentration tools that by taking s
large enough the empirical distribution will approximate the true vector w arbitrarily well.

The following lemma shows that Maurey sparsification indeed provides a dimension-independent approxi-
mation to the excess risk in the ¢ /{+-bounded setting. It applies to a version of the Maurey technique for
general vectors, which is given in Algorithm 1.

Lemma 1. Let w € R? be fixed and suppose features belong to X,. When ¢ is L-Lipschitz, Algorithm 1
guarantees that
1/2

E Lp(Q°(w)) < Lp(w) + , (6)

2
2L R, |wly
s
where the expectation is with respect to the algorithm’s randomness. Furthermore, when ¢ is S-smooth*

Algorithm 1 guarantees:

E Lp(Q°(w)) < Lp(w) + (7N

BRE |l
. .
The number of bits required to communicate (Q°(w), including sending the scalar ||w|, up to numerical pre-
cision, is at most O(slog (ed/s) +log(LB1Rss)). Thus, if any single machine is able to find an estimator
0 with good excess risk, they can communicate it to any other machine while preserving the excess risk with
sublinear communication. In particular, to preserve the optimal excess risk guarantee in (4) for a Lipschitz
loss such as absolute or hinge, the total bits of communication required is only O(N + log (LB1RsN)),
which is indeed sublinear in dimension! For smooth losses (square, logistic), this improves further to only

O(y/Nlog (ed/N) +log (LB1RxN)) bits.

Algorithm 1 (Maurey Sparsification).
Input: Weight vector w € RY. Sparsity level s.
* Define p € Ay via p; o< |w;|.
e Fort=1,...,s:
— Sample index i, ~ p.
* Return Q°(w) := @ Yoy sgn(w;. )e;, .

2.4 /(,/l{-Bounded Models: Impossibility

Alas, we have only shown that if we happen to find a good solution, we can send it using sublinear commu-
nication. If we have to start from scratch, is it possible to use Maurey sparsification to coordinate between

*We refer to the method as Maurey sparsification in reference to Maurey’s early use of the technique in Banach spaces (Pisier,
1980), which predates its long history in learning theory (Jones, 1992; Barron, 1993; Zhang, 2002).

*That O(slog (ed/s)) bits rather than, e.g., O(slogd) bits suffice is a consequence of the usual “stars and bars” counting
argument. We expect one can bring the expected communication down further using an adaptive scheme such as Elias coding, as
in Alistarh et al. (2017).

*A scalar function is said to be S-smooth if it has 3-Lipschitz first derivative.



all machines to find a good solution?

Unfortunately, the answer is no: For the ¢; /¢, bounded setting, in the extreme case where each machine
has a single example, no algorithm can obtain a risk bound matching (4) until the number of bits b allowed
per machine is (nearly) linear in d.

Theorem 2. Consider the problem of learning with the linear loss in the (b,1, N) model, where risk is
Lp(w) = E ) .p[-y{w,x)]. Let the benchmark class be the {1 ball Wy, where By = 1. For any algorithm
W there exists a distribution D with |z| ., <1 and |y| < 1 such that

Pr(LD(z’u‘) - wie%l Lp(w) > /4 L A %) > 1.

The lower bound also extends to the case of multiple examples per machine, albeit with a less sharp tradeoff.

Proposition 1. Let m, n, and € > 0 be fixed. In the setting of Theorem 2, any algorithm in the (b,n,m)
protocol with b < O(d*5/?|\/N) has excess risk at least Q(+/d¢ | N) with constant probability.

This lower bound follows almost immediately from reduction to the “hide-and-seek” problem of Shamir
(2014). The weaker guarantee from Proposition 1 is a consequence of the fact that the lower bound for the
hide-and-seek problem from Shamir (2014) is weaker in the multi-machine case.

The value of Theorem 2 and Proposition 1 is to rule out the possibility of obtaining optimal excess risk with
communication polylogarithmic in d in the ¢; /¢ setting, even when there are many examples per machine.
This motivates the results of the next section, which show that for ¢; /¢,-bounded models it is indeed possible
to get polylogarithmic communication for any value of m.

One might hope that it is possible to circumvent Theorem 2 by making compressed sensing-type assump-
tions, e.g. assuming that the vector w* is sparse and that restricted eigenvalue or a similar property is
satisfied. Unfortunately, this is not the case.

Proposition 2. Consider square loss regression in the (b,1, N) model. For any algorithm @ there exists a
distribution D with the following properties:

* |zl <1and|y| <1 with probability 1.

o ¥ := E[zz"] = I, so that the population risk is 1-strongly convex, and in particular has restricted
strong convexity constant 1.

© w” = argming, |, | < Lo(w) is 1-sparse.

* Until b=Q(d), Pr(Lp(@) - Lp(w*) > 555($- %) A 1) 2 3.

Moreover, any algorithm in the (b,n,m) protocol with b < O(d*~¢/?|\/N) has excess risk at least Q(d°|N)
with constant probability.

That Q(d) communication is required to obtain optimal excess risk for m = N was proven in Steinhardt and Duchi
(2015). The lower bound for general m is important here because it serves as a converse to the algorithmic
results we develop for sparse regression in Section 3. It follows by reduction to hide-and-seek.’

The lower bound for sparse linear models does not rule out that sublinear learning is possible using additional
statistical assumptions, e.g. that there are many examples on each machine and support recovery is possible.
See Appendix B.2 for detailed discussion.

SBraverman et al. (2016) also prove a communication lower bound for sparse regression. Their lower bound applies for all values
of m and for more sophisticated interactive protocols, but does not rule out the possibility of poly (N, m,log d) communication.



3 Sparsified Mirror Descent

We now deliver on the promise outlined in the introduction and give new algorithms with logarithmic com-
munication under an assumption we call ¢;/{,-boundness. The model for which we derive algorithms in
this section is more general than the linear model setup (2) to which our lower bounds apply. We consider
problems of the form

minimize Lp(w) = E,.pl(w,z), (8)

wew

where ((-,z) is convex, W ¢ W; = {we R | |w]|; < By} is a convex constraint set, and subgradients
dl(w, z) are assumed to belong to Xy = {z eR? | |z| 4 S R,}. This setting captures linear models with
¢1-bounded weights and /,-bounded features as a special case, but is considerably more general, since the
loss can be any Lipschitz function of w.

We have already shown that one cannot expect sublinear-communication algorithms for ¢ /¢.,-bounded
models, and so the /,-boundedness of subgradients in (8) may be thought of as strengthening our assumption
on the data generating process. That this is stronger follows from the elementary fact that |z|| q2 || for
all q.

Statistical complexity and nontriviality. For the dual ¢; /¢, setup in (2) the optimal rate is O (y/log d/N).
While our goal is to find minimal assumptions that allow for distributed learning with sublinear communica-
tion, the reader may wonder at this point whether we have made the problem easier statistically by moving
to the ¢ /¢, assumption. The answer is “yes, but only slightly” When ¢ is constant the optimal rate for
¢1/¢,-bounded models is ©(/1/N),® and so the effect of this assumption is to shave off the log d factor
that was present in (4).

3.1 Lipschitz Losses

Our main algorithm is called sparsified mirror descent (Algorithm 2). The idea behind the algorithm is to
run the online mirror descent algorithm (Ben-Tal and Nemirovski, 2001; Hazan, 2016) in serial across the
machines and sparsify the iterates whenever we move from one machine to the next.

In a bit more detail, Algorithm 2 proceeds from machine to machine sequentially. On each machine, the
algorithm generates a sequence of iterates wj, . .. ,w,, by doing a single pass over the machine’s n examples
23,..., 7, using the mirror descent update with regularizer R(w) = %HwH;, where % + % = 1, and using
stochastic gradients V} € 9¢(wi, z;). After the last example is processed on machine i, we compress the
last iterate using Maurey sparsification (Algorithm 1) and send it to the next machine, where the process is
repeated.

To formally describe the algorithm, we recall the definition of the Bregman divergence. Given a convex
regularization function R : R? — R, the Bregman divergence with respect to R is defined as

Dr(w|w') = R(w) - R(w") = (VR(w'),w - w').

For the ¢; /{, setting we exclusively use the regularizer R(w) = %Hw”i, where % + % =1.

The main guarantee for Algorithm 2 is as follows.

®The upper bound follows from (3) and the lower bound follows by reduction to the one-dimensional case.



Algorithm 2 (Sparsified Mirror Descent).
Input:
Constraint set YW with |w], < By.
Gradient norm parameter ¢ € [2,00).
Gradient £, norm bound R,.
Learning rate 7, Initial point w, Sparsity s, sg € N.

- _1 )
Define p = -4 and R(w) = 5w - 1w,
For machine i =1,...,m:
* Receive @' ' from machine i — 1 and set w} = @' (if machine 1 set w] = ).

e Fort= 1, ...,N: // Mirror descent step.
- Get gradient Vj € 00(wy ; 27).

- VR(6}11) < VR(wf) - V.
- wi+1 < argmin,,qyy DR(MH%H)
e Let @i <~ Qs(wfwl). // Sparsification.

 Send @' to machine i + 1.

Sample i € [m], t € [n] uniformly at random and return @ := Q*° (w}).

Theorem 3. Let q > 2 be fixed. Suppose that subgradients belong to X, and that VW € W,. If we run

Algorithm 2 with n) = % L and initial point @ = 0, then whenever s = Q(m* @Y and sy = Q(N?)

CyN
_ \ | BIRIC,
E[LD(U))] - LD('(U ) < O T s

where Cy = q — 1 is a constant depending only on q.

the algorithm guarantees

The total number of bits sent by each machine—besides communicating the final iterate W—is at most
O(m*@Vlog(d/m) +log(B1R,N)), and so the total number of bits communicated globally is at most

O(N%1og(d/N) +m? " log(d/m) + mlog(Bi ByN)).

In the linear model setting (2) with 1-Lipschitz loss ¢ it suffices to set sg = Q(IN), so that the total bits of
communication is

O(Nlog(d/N) +m?**  log(d/m) + mlog(BiR,N)).

We see that the communication required by sparsified mirror descent is exponential in the norm parameter
q. This means that whenever ¢ is constant, the overall communication is polylogarithmic in dimension. It
is helpful to interpret the bound when ¢ is allowed to grow with dimension. An elementary property of ¢,
norms is that for ¢ = logd, |z|, ~ |z[,, up to a multiplicative constant. In this case the communication
from Theorem 3 becomes polynomial in dimension, which we know from Section 2.4 is necessary.

The guarantee of Algorithm 2 extends beyond the statistical learning model to the first-order stochastic
convex optimization model, as well as the online convex optimization model.

Proof sketch. They basic premise behind the algorithm and analysis is that by using the same learning
rate across all machines, we can pretend as though we are running a single instance of mirror descent on a



centralized machine. The key difference from the usual analysis is that we need to bound the error incurred
by sparsification between successive machines. Here, the choice of the regularizer is crucial. A fundamental
property used in the analysis of mirror descent is strong convexity of the regularizer. In particular, to give
convergence rates that do not depend on dimension (such as (3)) it is essential that the regularizer be Q(1)-
strongly convex. Our regularizer R indeed has this property.

Proposition 3 (Ball et al. (1994)). For p € (1,2], R is (p — 1)-strongly convex with respect to |-|,,. Equiva-
lently, D (wlw') > 5% - Jw-w'|2  Vw,w' e RL
On the other hand, to argue that sparsification has negligible impact on convergence, our analysis leverages
smoothness of the regularizer. Strong convexity and smoothness are at odds with each other: It is well
known that in infinite dimension, any norm that is both strongly convex and smooth is isomorphic to a
Hilbert space (Pisier, 2011). What makes our analysis work is that while the regularizer R is not smooth,
it is Holder-smooth for any finite ¢q. This is sufficient to bound the approximation error from sparsification.
To argue that the excess risk achieved by mirror descent with the £, regularizer R is optimal, however, it is

essential that the gradients are /,-bounded rather than /..-bounded.
In more detail, the proof can be broken into three components:

» Telescoping. Mirror descent gives a regret bound that telescopes across all m machines up to the error
introduced by sparsification. To argue that we match the optimal centralized regret, all that is required
is to bound m error terms of the form

Dr(w*|Q*(wyi1)) = Dr(w" ;7).
* Holder-smoothness. We prove (Theorem 7) that the difference above is of order

By HQS(U’;H) — W Hp + Bi)ipHQS(wiHl) ~ Wy H:l'

* Maurey for £, norms. We prove (Theorem 6) that HQS(wiLH) —w! Hp S (%)1_1/17 and likewise that
@2 (i) a5 (D)

With a bit more work these inequalities yield Theorem 3. We close this section with a few more notes about
Algorithm 2 and its performance.

Remark 1. We can modify Algorithm 2 so that it enjoys a high-probability excess risk bound by changing
the final step slightly. Instead of subsampling (i,t) randomly and returning Q*(w?), have each machine i
average all its iterates w’i, ... W' then sparsify the average and send it to the final machine, which averages
the averaged iterates from all machines and returns W as the result.

There appears to be a tradeoff here: The communication of the high probability algorithm is O(m2q_1 +
mN?), while Algorithm 2 has communication O(m??~! + N?). We leave a comprehensive exploration of
this tradeoff for future work.

Remark 2. For the special case of {1 [{s-bounded linear models, it is not hard to show that the following
strategy also leads to sublinear communication: Truncate each feature vector to the top O (N al 2) coordi-
nates, then send all the truncated examples to a central server, which returns the empirical risk minimizer.
This strategy matches the risk of Theorem 3 with total communication O(NY?*1), but has two deficiencies.
First, it scales as N O(q), which is always worse than mO @), Second, it does not appear to extend to the
general optimization setting.

10



3.2 Smooth Losses

We can improve the statistical guarantee and total communication further in the case where Lp is smooth
with respect to £, rather than just Lipschitz. We assume that ¢ has 3,-Lipschitz gradients, in the sense that
for all w,w’ € Wy for all z,

)

|Ve(w, ) - ve(uw', z)”q < By|w -’

p

where p is such that % + %.

Theorem 4. Suppose in addition to the assumptions of Theorem 3 that {(-, z) is non-negative and has [4-
Lipschitz gradients with respect to {,. Let L* = inf, ey Lp(w). If we run Algorithm 2 with learning rate

2 2
n=1/ Cqﬁfﬁ/\m and @ = 0 then, if s = Q(m> V) and s¢ = \/ %f;ifv/\cﬂq, the algorithm guarantees
C,B3,B*L* C,B,B?
E[Lp(@)] - L" < 0(\/ qﬁ‘le + qf\q[ ! )

The total number of bits sent by each machine—besides communicating the final iterate W—is at most
O(m?@ D log(d/m)), and so the total number of bits communicated globally is at most

B?N
@) BN A N log(d/N) +m* 1 log(d/m) + mlog(8,B1N) |.
Colx  Cy

Compared to the previous theorem, this result provides a so-called “small-loss bound” (Srebro et al., 2010),
with the main term scaling with the optimal loss L*. The dependence on N in the communication cost can
be as low as O(v/N') depending on the value of L*.

3.3 Fast Rates under Restricted Strong Convexity

So far all of the algorithmic results we have present scale as O(N -1 2). While this is optimal for generic
Lipschitz losses, we mentioned in Section 2 that for strongly convex losses the rate can be improved in a
nearly-dimension independent fashion to O(N~!) for sparse high-dimensional linear models. As in the
generic lipschitz loss setting, we show that making the assumption of ¢ /{,-boundness is sufficient to get
statistically optimal distributed algorithms with sublinear communication, thus providing a way around the
lower bounds for fast rates in Section 2.4.

The key assumption for the results in this section is that the population risk satisfies a form of restricted
strong convexity over WW:

Assumption 1. There is some constant 7y, such that

YweW, Lp(w) - Lop(w) = (VIp(w*),w=u") > Ljw-w[}.

In a moment we will show how to relate this property to the standard restricted eigenvalue property in
high-dimensional statistics (Negahban et al., 2012) and apply it to sparse regression.

Our main algorithm for strongly convex losses is Algorithm 3. The algorithm does not introduce any new
tricks for distributed learning over Algorithm 2; rather, it invokes Algorithm 2 repeatedly in an inner loop,

11



Algorithm 3 (Sparsified Mirror Descent for Fast Rates).
Input:

Constraint set YW with |w]|, < By.

Gradient norm parameter g € [2, 00).

Gradient £, norm bound R,.

RSC constant ~y,. Constant ¢ > 0.

2
Let @ = 0, By = 22 B and Nyy = Cy - (562 )"
Let T = max{T | ¥}_, Ny < N}.

Let examples have order: z%, ezt LA A

Forround k=1,...,T"

Let Wy, be the result of running Algorithm 2 on Ny, consecutive examples in the ordering above,
with the following configuration:

1. The algorithm begins on the example immediately after the last one processed at round k — 1.

2. The algorithm uses parameters By, Rg, s, so, and 1) as prescribed in Proposition 8, with initial-
ization W = Wy_1 and radius B = By_1.

Return wy.

relying on these invocations to take care of communication. This reduction is based on techniques developed
in Juditsky and Nesterov (2014), whereby restricted strong convexity is used to establish that error decreases
geometrically as a function of the number of invocations to the sub-algorithm. We refer the reader to
Appendix C for additional details.

The main guarantee for Algorithm 3 is as follows.

Theorem 5. Suppose Assumption 1 holds, that subgradients belong to X for q > 2, and that VW c W;.
When the parameter c > 0 is a sufficiently large absolute constant, Algorithm 3 guarantees that

_ o < of Gl
E[LD(wT)] - Lp(w ) < O(%—N)

The total numbers of bits communicated is

2 2\ 2(g-1) q
_ (7B YeB1
ol | n2(a-1),,2a 1(&) +N‘1(q—) logd + mlog(B1R,N) |.
C,R? CyR, !

Treating scale parameters as constant, the total communication simplifies to O(N 2a=2mp2a-11og d).
Note that the communication in this theorem depends polynomially on the various scale parameters, which

was not the case for Theorem 3.

Application: Sparse Regression. As an application of Algorithm 3, we consider the sparse regression set-
ting (5), where Lp(w) = E, ,((w, x) - y)?. We assume |z, < Rgand |y| < 1. Weletw” = argmin, ey, Lp(w),
so |w* | < By. We assume w” is k-sparse, with support set S c [d].

We invoke Algorithm 3 constraint set W := {w e R? | |w][; < |w*|,} and let & = E[z2"]. Our bound

2
depends on the restricted eigenvalue parameter: 7 := inf ey _y+ {0} HEl/ 21/H2 / HV||§

12



Proposition 4. Algorithm 3, with constraint set VV and appropriate choice of parameters, guarantees:

E[Lp ()] - Lp(w") < o(ch%Rg - %)

Suppressing problem-dependent constants, total communication is of order O((N*~2m?1~11og d)/k*7*).

3.4 Extension: Matrix Learning and Beyond

The basic idea behind sparsified mirror descent—that by assuming /,-boundedness one can get away with
using a Holder-smooth regularizer that behaves well under sparsification—is not limited to the ¢; /¢, setting.
To extend the algorithm to more general geometry, all that is required is the following:

» The constraint set WV can be written as the convex hull of a set of atoms .4 that has sublinear bit
complexity.

* The data should be bounded in some norm |-|| such that the dual |-||, admits a regularizer R that is
strongly convex and Holder-smooth with respect to ||,

* ||I-||, is preserved under sparsification. We remark in passing that this property and the previous one
are closely related to the notions of type and cotype in Banach spaces (Pisier, 2011).

Here we deliver on this potential and sketch how to extend the results so far to matrix learning problems
where W ¢ R%? is a convex set of matrices. As in Section 3.1 we work with a generic Lipschitz loss
Lp(W) =E. (W, z). Letting [W|g = tr((WWT)%) denote the Schatten p-norm, we make the following

spectral analogue of the ¢;/¢,-boundedness assumption: W € Wg, := {W ¢ R4 | |W|| 5, < By} and sub-
gradients 0/(-, z) belong to Xg, := {X e R4 | X1, < Rq}, where ¢ > 2. Recall that S; and S, are the
nuclear norm and spectral norm. The S;1/S. setup has many applications in learning (Hazan et al., 2012).

We make the following key changes to Algorithm 2:
* Use the Schatten regularizer R(W) = %HWH%})

¢ Use the following spectral version of the Maurey operator Q®(W): Let W have singular value de-
composition W = Zle O'Z'UZ'U; with o; > 0 and define P € Ay via P; o< ;.” Sample 71, ...,1s i.1.d.

W
from P and return Q*(W) = % YU, v]

irt
* Encode and transmit Q°(W) as the sequence (u;,,v;, ), - .., (ui,,vi,), plus the scalar [WW| g . This
takes O(sd) bits.

Proposition 5. Let q > 2 be fixed, and suppose that subgradients belong to Xs, and that VW ¢ Wg,. If we

B T L R S
R\ TN and initial point W = 0,

then whenever s = Q(m* @)Y and sy = Q(N?), the algorithm guarantees

w i B%Rng
E[Lo(W)] - inf Lo(W) <O|\/ —<— |

where Cy = q — 1. The total number of bits communicated globally is at most ON(m2q’1d +N %d).

run the variant of Algorithm 2 described above with learning rate n =

"We may assume o; > 0 without loss of generality.
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In the matrix setting, the number of bits required to naively send weights W e R%>? or subgradients
oU(W,z) € R™ is O(d?). The communication required by our algorithm scales only as O(d), so it is
indeed sublinear.

The proof of Proposition 5 is sketched in Appendix C. The key idea is that because the Maurey operator
Q*(W) is defined in the same basis as W, we can directly apply approximation bounds from the vector
setting.

4 Discussion

We hope our work will lead to further development of algorithms with sublinear communication. A few
immediate questions:

» Can we get matching upper and lower bounds for communication in terms of m, N, log d, and ¢?
 Currently all of our algorithms work serially. Can we extend the techniques to give parallel speedup?

* Returning to the general setting (1), what abstract properties of the hypothesis class H are required to
guarantee that learning with sublinear communication is possible?
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A Basic Results

A.1 Sparsification

In this section we provide approximation guarantees for the Maurey sparsification operator (Q° defined in
Algorithm 1.

Theorem 6. Let p ¢ [1,2] be fixed. Then for any w € R%, with probability at least 1 - 6,

1-1 o 1 o 1-1
1 p+le(81 gil/é)) Skul(241 g(1/5)) .

@) - wl, < 4wl (; ) ©)
S S
Moreover, the following in-expectation guarantee holds:
S S p 1/p 1 1_%
E|Q*(w) ~wl, < (E|Q*(w) —w[}) ™ < 4]w], 5 (10)
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Proof of Theorem 6. Let B = |wl||;, and let Z; = |w|,sgn(w;, )e;, —w, and observe that E[Z.] = 0
and Q°(w) —w = %Zizl Z;. Since |w|, < B, we have | Z;|, < 2B, and so Lemma 2 implies that with
probability at least 1 — 9,

1/p
2 - 8log(1/6
||Qs(w)—wpﬁ—-EZ(Zth) + py /Bloe/8)
5 =1 S
< 431 B 8log(1/5)'
s 7P S

Lemma 2. Let p € [1,2]. Let Z,..., Zs be a sequence of independent R?valued random variables with
| Zt[,, < B almost surely and E[Z;] = 0. Then with probability at least 1 -,

1/p
2 3 2log(1/6
3—'EZ(ZZt§) +B\/7g( %)
S t=1 S

Furthermore, a sharper guarantee holds in expectation:

< (EZ
p

Proof of Lemma 2. To obtain the high-probability statement, the first step is to apply the standard Mcdiarmid-
type high-probability uniform convergence bound for Rademacher complexity (e.g. Shalev-Shwartz and Ben-David

(2014)), which states that with probability at least 1 — 4,
+B [2log(1/9) ’
S

‘ p

where € € {+1}" are Rademacher random variables. Conditioning on 71, ..., Z,, we have

p 1/p
g@e ) |
P P

On the other hand, for the in-expectation results, Jensen’s inequality and the standard in-expectation sym-
metrization argument for Rademacher complexity directly yield

p)l/p

P

P 1/p
< (EZ ) < Q(EzEe
p

P
From here the proof proceeds in the same fashion for both cases. Let Z;[] denote the ith coordinate of Z;
and let z; = (Z1[i],..., Zs[i]) € R®. We have

"L ilE(é ietZt[i])p < dl(Ee(é Z EtZt[i])2)p/27

p t=1 i= t=1

O

18
—ZZt

S =1

p

2.2

t=1

1
Ez||—
S

p 1/]7 2 S 1/p
) S—-EZ(ZZti) :
S t=1

p

1 S
Rl

<2EZ E,.
p

1 S
L

1 S
- ZEtZt
S =1

Ec

1 S
LSraz
S =1

1 S
LSraz
S =1

Ez

13 13
g;Zt ;;Zt

1 S
- ZetZt
S =1

Ee

18
- Z EtZt
S ¢=1
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where the inequality follows from Jensen’s inequality since p < 2. We now use that cross terms in the square
vanish, as well as the standard inequality ||, < [, for p < 2:

S LA\ )\ PE o1& o 1 18
- ) = — . _ NP — p
S(e s naat) | =3 (ga)" -5 Dlalts 5 Slalg - 5 Y1zl

i=1 =1 i=1
O

Proof of Lemma 1. We first prove the result for the smooth case. Let  and y be fixed. Let B = |w];,
and let us abbreviate R := R.. Let Z, = (|w|sgn(w;, )e;, —w,x), and observe that E[Z;] = 0 and
(Q°(w) —w,z) = %Zf—:l Z-. Since we have ||w|, < B and |z|,, < R almost surely, one has |Z.| < 2BR
almost surely. We can write

o4Q(),2)) = o+ L 3 2]

Using smoothness, we can write

S s—1 s—1
( Z T,y)<¢(w:p +12Z7,y)+¢((w:p +EZZT,y) Z?+E(Z)

T=1 T=1 =1
Since E[Zs | Z1,...,Zs-1] =0, and since Z, is bounded, taking expectation gives

Cnl)—‘

s s5-1
oo+ 2 32200} 1 210 2| <o)+ 5 2+ i,
=1

Proceeding backwards in the, fashion, we arrive at the inequality
B3B?
Ez ¢\ (w,x) + - Z Zry | < o(({w,x),y) + —— Hw\l
T=1
The final result follows by taking expectation over x and y.

For Lipschitz losses, we use Lipschitzness and Jensen’s inequality to write

E Lp(Q*(w)) - Lp(w) < L\/EE(Q*(w) - w, z)°.

The result now follows by appealing to the result for the smooth case to bound E,(Q*(w) - w, )%, since
we can interpret this as the expectation of new linear model loss E, , ({w', ),y) = E, ((w', z) — (w, z))?,
where y = (w, x). This loss is 2-smooth with respect to the first argument, which leads to the final bound. [

Lemma 3. Let w € RY be fixed and let F : R? - R have B4-Lipschitz gradient with respect to ¢,, where
q > 2. Then Algorithm 1 guarantees that

ﬁqllel

EF(Q*(w)) < F(w) + ——— (11)

Proof of Lemma 3. The assumed gradient Lipschitzness implies that for any w, w’

2

F(w) < F(w") + (VF(w'),w —w’) + %Hw—w’ )

)
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where % + % = 1. As in the other Maurey lemmas, we write Z; = (||w|,sgn(w;, )e;, —w), so that E[Z;] =0

and Q*(w) —w = % >7_1 Z-. We can now write

E F(Q* (w)) = EF(w . é > ZT)

T=5

Using smoothness, we have

18 1 s—1 1 s—1 Zs /Bq 9
By, Flw+ =Y Z | <Flw+=)> Z | +Ez (VF|w+ =) Z.|,=2) + == Ez, | Z|
s = s = s 252 P
1 s—1 /8
< F(w - ZT) + ],
5 = s
Proceeding backwards in the same fashion, we get

s 2
EF(Q°(s)) =Kz, ..z F(w + 1 Z ZT) < Bqllwly

5 1% 5

A.2 Approximation for /, Norms

In this section we work with the regularizer R(6) = %HHH?,, where p € [1,2], and we let ¢ be such that

1 11 _ 1. The main structural result we establish is a form of Holder smoothness of R, which implies

that /; bounded vectors can be sparsified while preserving Bregman divergences for R, with the quality
degrading as p — 1.

Theorem 7. Suppose that a,b,c € R? have |a|, v |b|, v |c|, < B. Then it holds that

Dr(cla) = Dr(c|b) <5B[a- b, + 4B3P|a - bHi’;l.

The remainder of this section is dedicated to proving Theorem 7.

We use the following generic fact about norms; all other results in this section are specific to the £, norm
regularizer. For any norm and any z, y with ||z| v ||y| < B, we have

2 2 2
l1” = lyl™ < llz =yl + 2|z - yly] < 4B]z - y|. (12)

To begin, we need some basic approximation properties. We have the following expression:
VR(0) = 101, (101" sgn(01), .. 104" szn(6a))- (13)

Proposition 6. For any vector 0,
IVR®), = 161,-

Proof of Proposition 6. Expanding the expression in (13), we have

d l/q
[VR®)], = 612 (zwq“’”) .
=1
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Using that g = this simplifies to

p

p-1’
2-p p-1 _

0177 - 1015~ = 191,

O
Lemma 4. Suppose that |a[, v [b],, < B. Then
Dr(alb) <3B|a-b],.
Proof of Lemma 4. We write
Dr(alb) =R(a) -R(b) - (VR(b),a - b).
Using (12) and the expression for R, it follows that
Dr(a|b) <2Bla-b], - {VR(b),a-Db).
This is further upper bounded by
Dr(alb) <2Bla-b[, +[VR()],]a- 0],
The result follows by using that [VR(b)], = [b],, < B, by Proposition 6.
O

Lemma 5. Let p ¢ [1,2] and let 2(z) = |z[P"*sgn(x). Then h is Hélder-continuous:
|h(z) = h(y)| <20z -yl Va,yeR.
Proof of Lemma 5. Fix any z,y € R and assume |z| > |y| without loss of generality. We have two cases.
First, when sgn(z) = sgn(y) we have
Ih(@) = h(y)| = [l =y = e =y < (el =y <z -y,

where we have used that p — 1 € [0, 1] and subadditivity of x > 2P~ over R, as well as triangle inequality.
On the other hand if sgn(x) # sgn(y), we have

-1 -1 -1 -1 - -1
(h(@) = ()] = el + " = el + < 227l + Jyl
Now, using that sgn(z) # sgn(y), we have
-1 -1 -1 -1
[+ 1yl = llz] - sgn(@) + [y| - sgn(@)[" = [|z] - sgn(z) ~ [y| - sgn()I"" = |z —yI"".
Putting everything together, this establishes that

[h(a) = h(y)| < 2°Pla -y <20z -y

U
Lemma 6. Suppose that |a[, v [|b], < B. Then it holds that
IVR(a) = VR(b) ] < 2B*Plla=b|2" + |a-b],, (14)
and
IVR(a) - VR(b)|, < 2B*P|a bl + a-b],. (15)
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Proof of Lemma 6. Let h(z) = [z’ 'sgn(x), so that
VR(0) = |01, (h(61). .. h(6a))-

Fix vectors a,b € R%. Assume without loss of generality that lall, > [o], > 05 if |b], = O the result
follows immediately from Proposition 6. We work with the following normalized vectors: a := a/||b[, and

b= b/[b],,- Our assumptions on the norms imply |a|, > Hl_)Hp =1.
Fix a coordinate i € [d]. We establish the following chain of elementary inequalities:
[VR(@); - VR()| = lal; i) - o] h(bi)
=l n(as) - lal; P n(b:) + Jal2 ") - [b] " h(b:)

Using the triangle inequality:
< [al2 - [n(ai) - n ()| + b < [lal2™ - o 7|

Using the Holder-continuity of h established in Lemma 5:

<2fal2?-fa - b + - [lalZ e - B2

Using that ||a], > Hl_)Hp =1:

<2lally ™ Jai - b+ il - (Ll - 1),
Finally, since |a| p2land 2-p <1, we can drop the exponent:

<2aly? Jai - 5"+ il - (lal, - 1)

To finish the proof, we rescale both sides of the inequality by [b]|,,. Observe that VR(6) is homogeneous in
the following sense: For any 7 > 0,
VR(r0) =r-VR(H).

Along with this observation, the inequality we just established implies
_12-p |- _z [Pl gz -1
[VR(a)i = VR(b)| < 2|l Jall, - |a: = b:” " + b - (lall, - [01],)
_ 12— _ + p—-1 - 1p—1
<20l lal, ™ - fai = b + bl - a0,
_ 2-p |_ - p—-1 + p—1
=2(llall Iol,)" " - [@lbll, = bsllbll, [~ + b - a0,
- -1 7 -1
= 2]aly - Jai = b~ + [bif - la =] -

For the ¢, bound, the result follows immediately by using that |l_)l‘ < Hl_)Hp < 1. For the £, bound, we use that

for any vector z, (zf_l)igqu = HZHi_l, and that HBHP <L

O

Proof of Theorem 7. Throughout this proof we use that ||z, < ||z, for all p > 1. To start, expanding the
definition of the Bregman divergence we have

Dr(cla) - Dr(c[b) = Dr(bla) + (VR(a) - VR(D),b - c).
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Using Lemma 4, this is at most
=3Bla-b|,+(VR(a) - VR(b),b - c).
Now, applying Holder’s inequality, this is upper bounded by
<3Bla-b[,+[VR(a) - VR(b)| b - ¢l
<3Bla-b|,+2B|VR(a) - VR(D)|

To conclude, we plug in the bound from Lemma 6. O

B Proofs from Section 2

B.1 Proofs from Section 2.2
Proof of Theorem 1. Let A ¢ R¥* be the derandomized JL matrix constructed according to Kane and Nelson
(2010), Theorem 2. Let = = Az, denote the projected feature vector and w* = arg ML <1 Lp(w).

We first bound the regret of gradient descent in the projected space in terms of certain quantities that depend
on A, then show how the JL matrix construction guarantees that these quantities are appropriately bounded.

Since ¢ is L-Lipschitz, we have the preliminary error estimate
o((Az, Aw™),y) - o((z,w”),y) < L |[(Az, Aw”) = (z,w")|,
and so
Lp(ATAw™) - Lp(w™) < L-E, |(Az, Aw*) - (z,w")]. (16)

Now recall that the m machines are simply running online gradient descent in serial over the k-dimensional
projected space, and the update has the form u; < w1 — Vo({us, x}),y:), where 7 is the learning rate
parameter. The standard online gradient descent regret guarantee (Hazan, 2016) implies that for any vector
ueRF:

N
2ot af)v) - 1 3ol ah) < o lulf + 2 S el
t=1

Equivalently, we have

1
N ;

M=

N
P((ATug, 1), yt)——ZQS( (ATu,2¢),y1) < . ||U||2 IN Z;HA%H%
t=

Since the pairs (xy,y;) are drawn i.i.d., the standard online-to-batch conversion lemma for online convex
optimization (Cesa-Bianchi and Lugosi, 2000) yields the following guarantee for any vector u:

1 N
S Bs[Lo(A"u)] - Lo(An) € g ful + L S Bl An
1 nL
- ool + sl dal
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Applying Jensen’s inequality to the left-hand side and choosing u = u* := Aw™*, we conclude that
1 & oo 1 o2, e
or in other words,
~ T * 1 * |12 77L2 2
Es[Lp ()] - Lp(A Aw™) < %—N\\Aw Iz + ——Eo| Az

2

We now relate this bound to the risk relative to the benchmark Lp(w*). Using (16) we have
~ * 1 * 12 77L2 2 * *
Es[Lp (w)] - Lp(w™) < %—N\\Aw I5 + TEmHAx\b + LE, |[(Az, Aw™) - (x,w")|.
Taking expectation with respect to the draw A, we get that
A * 1 * 12 77L2 2 * *
EsE4 [Lp (0)] - Lp(w”™) <E, |Ex %—N\\Aw I3 + THAQZ‘HQ + L|(Az, Aw™) = (z,w™)|[|. (17)
It remains to bound the right-hand side of this expression. To begin, we condition on the vector x with respect
to which the outer expectation in (17) is taken. The derandomized JL transform guarantees (Kane and Nelson

(2010), Theorem 2) that for any § > 0 and any fixed vectors z, w*, if we pick k = O (log(1/5)/e?), then we
are guaranteed that with probability at least 1 — 4,

* * * * 6 *
|Az]2 < (A +e)lzlz, [Aw 2 <M +e)fw [z and  [{Az, Aw") - (2, w")] < 7 |z]s]w” ],
We conclude that by picking € = O(l/ VN ) with probability 1 -6,
[Az]s <O(Ry), [|Aw*|s<O(By), and |{Az, Aw*) - (z,w")| < O(B2R2)
2> 2 ) 2> 2 ) 9 ) > \/N .

To convert this into an in-expectation guarantee, note that since entries in A belong to {-1,0,+1}, the
quantities |Ax|2, |Aw*|2, and (Az, Aw™) all have magnitude O(poly(d)) with probability 1 (up to scale
factors By and R»). Hence,

B | w12+ P22 A2 4 LA, Aw®) — (,00°)|
A 2?’]N 2 2 2 ) )

B2 nL?R? LBsR, B2  1nL*R2
<(1-9)-0=2 2 §-O[poly(d) - | =2 + =2+ LByRy | |.
( ) (277]\,"r 5 ~ + poly(d) 277N+ g Thb2e

2
Picking ¢ = 1/y/poly(d)N and using the step size n =  / Liﬁ, we get the desired bound:
2
1 * 12 77L2 2 * *
E4 277—NHAw |5 + THAJCHQ + L|(Az, Aw™) - (z,w”)|| < O(LB2R2/V N).
Since this in-expectation guarantee holds for any fixed x, it also holds in expectation over x:

1 . L? . .
ExEA[Qn—NHAw H§+777HA96H§+LI<A%Aw )= (z,w )I] <O(L/VN).

Using this inequality to bound the right-hand side in (17) yields the claimed excess risk bound. Recall that
we have k = O (log(1/6)/e?) = O (Nlog(Nd)), and so the communication cost to send a single iterate
(taking into account numerical precision) is upper bounded by O (N log(Nd) -log(LB2RaN)). O
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B.2 Proofs from Section 2.4

Our lower bounds are based on reduction to the so-called “hide-and-seek” problem introduced by Shamir
(2014).

Definition 1 (Hide-and-seek problem). Ler {IP; };l:l be a set of product distributions over {+1}? defined via
Ep,[2i] = 2p1{j = i}. Given N i.i.d. instances from P+, where j* is unknown, detect j*.

Theorem 8 (Shamir (2014)). Let W € [d] be the output of a (b,1,N) protocol for the hide-and-seek
problem. Then there exists some j* € [d] such that

Nbp?
T

PI‘j*(WZj*) < % +

Proof of Theorem 2. Recall that W, = {w eRY | Jw], < 1}. We create a family of d statistical learning
instances as follows. Let the hide-and seek parameter p € [0,1/2] be fixed. Let D; have features drawn
from the be the jth hide-and-seek distribution P; and have y = 1, and set ¢({w, x),y) = —(w, z)y, so that
Lp,;(w) = —2pw;. Then we have minyew, Lp,; (w) = —2p. Consequently, for any predictor weight vector
w we have

Lp,(w) = Lp,;(w") = 2p(1 - wy).

If Lp, (@) - Lp,(w*) < p, this implies (by rearranging) that @; > % Since @ € Wi and thus Y%, |@;| < 1,
this implies j = argmax; @;. Thus, if we define W = argmax; @ as our decision for the hide-and-seek
problem, we have

Pr;(Lp,(@) - Lp,(w") < p) < Prj(W = ).

Appealing to Theorem 8, this means that for every algorithm @ there exists an index j for which

] * 3 Nbp?
Prj(LDj('IU)—LDj('w )<p)§a+ dp .

To conclude the result we choose p = 1—16 % A %

O

Proof of Proposition 1. This result is an immediate consequence of the reductions to the hide-and-seek
problem established in Theorem 2. All that changes is which lower bound for the hide-and-seek problem
d

we invoke. We set p o< 7 in the construction in Theorem 2, then appeal to Theorem 3 in Shamir (2014). U

Proof of Proposition 2. We create a family of d statistical learning instances as follows. Let the hide-and
seek parameter p € [0,1/2] be fixed. Let P; be the jth hide-and-seek distribution. We create distribution
Dj via: 1) Draw z ~ IP; 2) set y = 1. Observe that E[z;x] = 0 for all ¢ # k and E[:L’?] =1,s0X% = 1.
Consequently, we have

Lp,(w) =Epp, ({w, ) - y)i=w Sw- dpwj+1= Hng - 4pw; + 1.

Letw” = arg MmN, <1 LD; (w). It is clear from the expression above w; = 0 for all ¢ # j. For coordinate

7 we have w]*- = arg min_lgagl{a2 - 4pa}. Whenever p < 1/2 the solution is 2p, so we can write w* = 2pe;,
which is clearly 1-sparse.
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We can now write the excess risk for a predictor w as
* 2 2 2 2
Lp,(w) - Lp, (w*) = |w|3 - 4pw; + 4p° = > wi + (w; — 2p)*.
i#]

Now suppose that the excess risk for w is at most p?. Dropping the sum term in the excess risk, this implies

(wj —2p)* < p.

It follows that w; € (p, 3p). On the other hand, we also have

>wi<p?

1#]

and so any 4 # j must have |w;| < p. Together, these facts imply that if the excess risk for w is less than p?,
then j = arg max; w;.

Thus, for any algorithm output @, if we define W = argmax, @; as our decision for the hide-and-seek
problem, we have
Prj(Lp, (W) - Lp,(w*) < p*) < Pr;(W = j).

The result follows by appealing to Theorem 2 and Theorem 3 in Shamir (2014). O

B.3 Discussion: Support Recovery

Our lower bound for the sparse regression setting (5) does not rule out the possibility of sublinear-communication
distributed algorithms for well-specified models. Here we sketch a strategy that works for this setting if we
significantly strengthen the statistical assumptions.

Suppose that we work with the square loss and labels are realized as y = (w*, x) + ¢, where ¢ is conditionally
mean-zero and w” is k-sparse. Suppose in addition that the population covariance Y has the restricted
eigenvalue property, and that w* satisfies the so-called “-min” assumption: All non-zero coordinates of w*
have magnitude bounded below.

In this case, if N/m = Q(klogd) and the smallest non-zero coefficients of w* are at least Q(y/m/N) the
following strategy works: For each machine, run Lasso on the first half of the examples to exactly recover the
support of w* (e.g. Loh et al. (2017)). On the second half of examples, restrict to the recovered support and
use the strategy from Zhang et al. (2012): run ridge regression on each machine locally with an appropriate
choice of regularization parameter, then send all ridge regression estimators to a central server that averages
them and returns this as the final estimator.

This strategy has O(mk) communication by definition, but the assumptions on sparsity and $-min depend
on the number of machines. How far can these assumptions be weakened?

C Proofs from Section 3

Throughout this section of the appendix we adopt the shorthand B := By and R := R,. Recall that % + % =1
To simplify expressions throughout the proofs in this section we use the convention @° := @ and @' := wh .

We begin the section by stating a few preliminary results used to analyze the performance of Algorithm 2
and Algorithm 3. We then proceed to prove the main theorems.
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For the results on fast rates we need the following intermediate fact, which states that centering the regular-
izer R at w does not change the strong convexity from Proposition 3 or smoothness properties established
in Appendix A.2.

Proposition 7. Let R(w) = 1| 2 where |w|, < B. Then Dr(a|b) > 25t |a - b]5 and if |al, v [b], v

lclly < B it holds that

Dg(c|a) - Dr(c|b) < 10Ba - b, + 16B%7P|a - b|" .

Proof of Proposition 7. Let Ro(w) = %HwHi The result follows from Proposition 3 and Theorem 7 by
simply observing that VR (w) = VRo(w — w) so that Dr(w|w’) = Dr,(w — @w|w" — @). To invoke
Theorem 7 we use that |a — w|, < 2B, and likewise for b and c. O

Lemma 7. Algorithm 2 guarantees that for any adaptively selected sequence Vi and all w* € W, any
individual machine i € [m] deterministically satisfies the following guarantee:

(V5w —w >”CqZHth (D [u}) - Dr(u u})

M=

t=1

Proof of Lemma 7. This is a standard argument. Let w™ € WV be fixed. The standard Bregman divergence
inequality for mirror descent (Ben-Tal and Nemirovski, 2001) implies that for every time ¢, we have

o . o 1 o o o
(Vi wp —w*) < (Vi wj - §+1)+5(Dn(w |w;) = Dr(w*[wp1) = Dr(wi]6.1))-
Using Proposition 7, we have an upper bound of
i i pi 1
(Vi wi—0p.1) + ; D (w* |w}) - Dr(w” wi,;) - Hwt 9t+1”

Using Holder’s inequality and AM-GM:

n 2 p-1 =1y 5 o2
< - 1vill, + =5, 2 Jui .11+ (Dt o) = D 1) = i =0 )
= 2( Hth - (DR(w |w;) = Dr(w* |wi,y)).
The result follows by summing across time and observing that the Bregman divergences telescope. O

Proof of Theorem 3. To begin, the guarantee from Lemma 7 implies that for any fixed machine 7, deter-
ministically,

L ) 3 * L 1 1 * 7 * 1
D(viwi - w) < SN+ (DR ful) - Dr(w’ i),

We now use the usual reduction from regret to stochastic optimization: since w; does not depend on V', we
can take expectation over V} to get

n o n . 1 e o
E| 2:{VLp(w)), w - ') snTZ;EHWHj+EE[DR(w [wh) - Dr(w" |w},.1)]
t= t=
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and furthermore, Lp is convex, this implies
S i * nCq & a2 1 - *|[.d
E\ Y Lo(wp) - Lo(w) | < 5% L E[Vi, + - E[Dr(w”uy) - Dr(w’ fun,)]
t=1 t=1

While the regret guarantee implies that this holds for each machine ¢ conditioned on the history up until the
machine begins working, it suffices for our purposes to interpret the expectation above as with respect to all
randomness in the algorithm’s execution except for the randomness in sparsification for the final iterate .

We now sum this guarantee across all machines, which gives
m n ) m n 9 1 m ) )
[ > Lo(w}) - Lp(w >] 3 S EIVily 1 DE[DR (" ) - D))
i=1t=1 i=1t=1 i=1

Rewriting in terms of @' and its sparsified version @° and using that w% = 1, this is upper bounded by

> Bl + 2212 %mzl E[Dr (w* @) - D (w* |@)].

'MS

~
1l
—_

1%
2
We now bound the approximation error in the final term. Using Proposition 7, we get

m-1 . . . -
> E[Dr(w @) - Dr(w’ W>]<0(ZBEle—WHﬁB?’pEH@Z—WHil)-
1=1

Theorem 6 implies that EHZ’J’ - H < O( (l) _%) and EHTJ’ - WHZl < O(Bp_l(%)p_;l).8 In particular,
we get

-

p—

Sstoncwier-oxrelsof 3 (l) F oo o () oE ()7

i=1 i=1 S

p-1
Since p < 2, the second summand dominates, leading to a final bound of O(Bzm(%) 2 ) To summarize,

our developments so far (after normalizing by V) imply

mo : + Dele o) Bm (1Y%
ZZLD(wt)—LD(w )]< ZZEHWH = O( Y (5) )

T 21421 i=1t=1

Let @ denote w! for the index (i,t) selected uniformly at random in the final line of Algorithm 2. Interpret-
ing the left-hand-side of this expression as a conditional expectation over @, we get

. Dr(w*|@ B*m(1\’7
E[Lp(@)] - Lp(w* )<77 ;;EHW‘ %Jro( 77N( ) ) (18)

Note that our boundedness assumptions imply Hth < R? and Dy (w*|w) = Dr(w*|0) < 2 , so when

s = Q(mpfl ) this is bounded by

E[Lp(@)] - Lp(w” )<7702R2 (f—;)sou/cqmm/zv),

$The second bound follows by appealing to the /2 case in Theorem 6 and using that ||z < |z[,.
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where the second inequality uses the choice of learning rate.

From here we split into two cases. In the general loss case, since Lp is R-Lipschitz with respect to £,
(implied by the assumption that subgradients lie in &, via duality), we get

Lp(@) - Lp(w") < Lp(®) - Lp(w") + R|@ - @,

We now invoke Theorem 6 once more, which implies that

1\ %
E|@-@],<0 B(—) .
50

—p . .
We see that it suffices to take sg = Q((N/Cy) 2D ) to ensure that this error term is of the same order as the
original excess risk bound.

In the linear model case, Lemma 1 directly implies that
E Lp(@) < Lp(@) + O(\/ B2R2/sy),
and so sg = Q(N/C,;) suffices.
O

2
Proof of Theorem 4. We begin from (18) in the proof of Theorem 3 which, once s = Q(m»-1), implies

~ . T]C mon 2 B2
Bl (7)) - L) < 0 325 il - o 5 )

where @ is the iterate w; selected uniformly at random at the final step and the expectation is over all
randomness except the final sparsification step. Since the loss /(-, z) is smooth, convex, and non-negative,
we can appeal to Lemma 3.1 from Srebro et al. (2010), which implies that

|93 = [veCwh, 2D, < 46,¢(wf, 20).

Using this bound we have

BlLo(®)] - o) < 0 S5 B ut, o)+ O 2 ) =200y, BlLo(@) - o 2 )
Let ¢ := 2nC, 3,. Rearranging, we write
B2
(1-2)Blo(®)] - Lo(w") <O 3o ).

When ¢ < 1/2, this implies E[Lp(@)] - (1 + 2¢) Lp(w*) < 0(2?—]2\,), and so, by rearranging,

~ * * B2

The choice 1 =/ & Bfi*N A 4015(1 ensures that € < 1/2, and that
q q

. B[ [CBBL* C,p,B?
T]CquL +277—N_O( N + N .
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2
Now, Lemma 3 implies B qgf . The choice sy =

2 . . . . .
\/ BgB—LfV A Cﬂ guarantees that this approximation term is on the same order as the excess risk bound of
q q
0. O
Proposition 8. Suppose we run Algorithm 2 with initial point w that is chosen by some randomized pro-

cedure independent of the data or randomness used by Algorithm 2. Suppose that we are promised that
this selection procedure satisfies E|w — w*Hi < B2 Suppose that subgradients belong to X, for q > 2,

and that W © Wy. Then, using learning rate n = g quN, s = Q( 2(a- 1)(B/B)4(q 1)), and sy =

Q((N/Cq)% -(B/B)?), the algorithm guarantees

E[Lp(@)] - Lp(w*) < O(BR\/%).

Proof of Proposition 8. We proceed exactly as in the proof of Theorem 3, which establishes that condi-
tioned on w0,

_ <M B gy, Daterla) o m (1) (L)
E[L -L N E A AT P '
[ ’D(’LU)] D(w ) 2N ;; HthqJ’_ 77N +0 77N S +o R S0

We now take the expectation over @. We have that E Dg (w* @) = 3 E|w - w* Hi < B?/2. Tt is straightfor-
ward to verify from here that the prescribed sparsity levels and learning rate give the desired bound. U
Proof of Theorem 5. Let @y = 0, and let us use the shorthand 7y := .

We will show inductively that E| @y —w H < 27*B% = B2. Clearly this is true for @y. Now assume the

statement is true for @g. Then, since E| @y, — w H » < B} i.» Proposition 8 guarantees that

Cy
Nk+1

E[Lp(@Wy+1)] - Lp(w™) <c-ByR

where ¢ > 0 is some absolute constant. Since the objective satisfies the restricted strong convexity condition
(Assumption 1), and since Lp is convex and W is also convex, we have (VLp(w*),w —w*) > 0 and so

2c¢-ByR | (4
y N1

E[ @41 - 0™, <

2
Consequently, choosing Ny = Cy - (f/CB}:) guarantees that

o~ * 12 1 2
B| @ -0’ < 5B,
so the recurrence indeed holds. In particular, this implies that

-T "YB2

E[Lp(@r)] - Lp(w*) < %B%,l =9 >

N (~+B
Iz 1°g2(320 (Rc) )
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and so

B? CyR?
E[Lp(@wr)] - Lp(w™) <27 7 SO( 1 )
2 yYN
This proves the optimization guarantee.

To prove the communication guarantee, let mj denote the number of consecutive machines used at round k.
The total number of bits broadcasted—summing the sparsity levels from Proposition 8 over 7' rounds—is at

most
st S () () ()
ogd- m —_— +=] - :
s ;;1 g Bi1 Cy By

plus an additive O(mlog(BRN)) term to send the scalar norm for each sparsified iterate @;. Note that we
have my, = % v 1, so this is at most

T 2¢-1 4(q-1) 3 q
log d - Z(&) (i) +(%) (i) .
s\ n By Cy By

2q-1
The first term in this sum simplifies to O(log d- (75/‘12—%22) ) . Zle 2(44=3)k ' \while the second simplifies

to O(logd- (%)qu) . Z;}le 29k We use that Zle Bt < BT+ for B > 2 to upper bound by

c,R? \27! R \4
1 . q 94 | . 9(4¢=-3)T (1 (_) Qq) .9dT"
O( ogd (n’yzB2) ) +Ollogd B

Substituting in the value of 1" and simplifying leads to a final bound of

22\ 2(¢-1) q
O(logd- (Z’—g) m2 I N2 4 1ogd - (WCBg) ) (19)
q q

O

Proof of Proposition 4. It immediately follows from the definitions in the proposition that Algorithm 3
guarantees

E[Lp(@r)] - Lp(w™) < O(CqB—ZRZ),

Yq N

where v, is as in Assumption 1. We now relate -, and . From the optimality of w* and strong convexity
of the square loss with respect to predictions it holds that for all w € W,

E[Lp(w)] - Lp(w*) = (VLp(w*),w - w*) > E{z,w - w*)>.
Our assumption on y implies

2
E(z,w-w")? = HEl/z(w -w") ,2 vllw —w*Hg.

Using Proposition 9, we have
Jw =w |, < Jw=w"]; <2 (w-w)s], <2VE|(w-w")s], < 2VE|w-w"],

Thus, it suffices to take v, = Z—k.
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The following proposition is a standard result in high-dimensional statistics. For a given vector w € R?, let
wg € R? denote the same vector with all coordinates outside S C [d] set to zero.

Proposition 9. Let W, w*, and S be as in Proposition 4. All w € W satisfy the inequality ||(w — w*)ge|; <
[ (w=w*)s ;-

Proof of Proposition 9. Let v = w — w”. From the definition of VW, we have that for all w € W,
[w*lly 2 wly = [w® +v],.
Applying triangle inequality and using that the /; norm decomposes coordinate-wise:

[w” + vy = w* +vs +vse|, =

w* +ws|y + [vsely 2wy = |vsly + [vse],-

Rearranging, we get |vge |, < |vs|;. O

Proof of Proposition 5. To begin, we recall from Kakade et al. (2012) that the regularizer R(W) = 1| W H%p
is (p — 1)-strongly convex for p < 2. This is enough to show under our assumptions that the centralized ver-

. . . . . . CqB?R2 . .
sion of mirror descent (without sparsification) guarantees excess risk O(\ / %), with C; = ¢—1, which

matches the /; //, setting.

What remains is to show that the new form of sparsification indeed preserves Bregman divergences as in the
£1/£, setting. We now show that when W and W* have [W g, v [W*|g, < B,

. . 17
E[DR(W[Q*(W)) - Dr(W* [ W) sO(BQ(;) )
To begin, let U € R%™? be the left singular vectors of W and V' € R% be the right singular vectors. We

[Wls, >3 _y €., so that we can write W = Udiag(o) V" and Q*(W) = Udiag(c)V".

S

define 7 =

Now note that since the Schatten norms are unitarily invariant, we have

W -Q*(W)ls, = [Udiag(c -5)V" |5, = |0 -7l

for any p. Note that our assumptions imply that ||, < B, and that 7 is simply the vector Maurey operator
applied to o, so it follows immediately from Theorem 6 that

1 171/7’ 2 1 1/2
Elo-7|,6 <48 d Elo-7|. <4B| - . 20
lo-5l,<4(5)  and Elo-5lZ <a5(5) 20)

S
Returning to the Bregman divergence, we write

Dr(WQ*(W)) = Dr(W*[W) = Dr(W[Q*(W)) + (VR(Q*(W)) - VR(W),W - W)
< Dr(W[Q*(W)) + [VR(Q*(W)) = VR(W) s [W - W7 |,
< Dr(W[Q*(W)) + 2B[VR(Q*(W)) - VR(W)]s.. -

It follows immediately using Lemma 4 that

Dr(W|Q*(W)) <3B|W - Q*(W)|s, =3B|o -7,
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To make progress from here we use a useful representation for the gradient of R. Define
(o) = lo[5 77 (lo1[" sgn(o1), ..., loal” ' sgn(aa))-
Then using Theorem 30 from Kakade et al. (2012) along with (13), we have
VR(W) = Udiag(g(c))V", and VR(Q*(W))=Udiag(g(7))V".
For the gradient error term, unitary invariance again implies that
[VR(Q* (W) - VR(W) 5., = [Udiag(g(0) - 9@V 5_ = l9(0) ~ 9(5)] -

Lemma 6 states that
—~ - —~p-1 —~
lg(0) = 9(B)| o < 2B* o 5|2 + |0 -5,

Putting everything together, we get
Dr(W*|Q*(W)) - Dr(W*|W) < 5B -5, +4B**|o - 5|2 ".

The desired result follows by plugging in the bounds in (20).

33



	1 Introduction
	1.1 Sublinear Communication for Linear Models?
	1.2 Contributions
	1.3 Related Work

	2 Linear Models: Basic Results
	2.1 Preliminaries
	2.2 2/2-Bounded Models
	2.3 1/-Bounded Models: Model Compression
	2.4 1/-Bounded Models: Impossibility

	3 Sparsified Mirror Descent
	3.1 Lipschitz Losses
	3.2 Smooth Losses
	3.3 Fast Rates under Restricted Strong Convexity
	3.4 Extension: Matrix Learning and Beyond

	4 Discussion
	A Basic Results
	A.1 Sparsification
	A.2 Approximation for p Norms

	B Proofs from Section ??
	B.1 Proofs from Section ??
	B.2 Proofs from Section ??
	B.3 Discussion: Support Recovery

	C Proofs from Section ??

