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1 Computing Choice

We discuss the question of learning distribution over permutations of a given set

of choices, options or items based on partial observations. This is central to cap-

turing the so called “choice” in a variety of contexts: understanding preferences of

consumers over a collection of products based on purchasing and browsing data

in the setting of retail and e-commerce, learning public opinion amongst a col-

lection of socio-economic issues based on sparse polling data, deciding a ranking

of teams or players based on outcomes of games, electing leaders based on votes,

and more generally collaborative decision making based on collective judgement

such as accepting paper(s) in a competitive academic conference. The question

of learning distribution over permutations arises beyond capturing “choice” as

well. For example, tracking a collection of objects using noisy cameras, or ag-

gregating ranking of web-pages using outcomes of multiple search engines. It is

only natural that such a topic has been extensively studied in Economics, Po-

litical Science and Psychology for more than a century, and more so recently in

Computer Science, Electrical Engineering, Statistics and Operations Research.

Here we shall focus on the task of learning distribution over permutations

from its marginal distributions of two types: first-order marginals and pair-wise

comparisons. There has been a lot of progress made on this topic in the last

decade. The ideal goal is to provide a comprehensive overview of the state-of-art

on this topic. We shall provide detailed overview of selective aspects, biased by

author’s perspective of the topic. And provide sufficient pointers to aspects not

covered here. We shall emphasize on ability to identify the entire distribution

over permutation as well as “best ranking”.

1.1 Background

1.1.1 Learning from comparisons

Consider a grocery store around the corner from your home. The owner of the

store would like to have the ability to identify exactly what every customer would

purchase (or not) given the options available in the store. If such an ability exists,

then for example, optimal stocking decisions can be made by the store operator

or the net worth of the store can be evaluated. This ability is what one would

call as the “choice model” of consumers of the store. Precisely, such a “choice
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model” can be viewed as a black-box that spits out the probability of purchase

of a particular option when presented with a collection of options.

A canonical fine-grained representation for such a “choice model” is the dis-

tribution over permutations of all the possible options (including no-purchase

option). Then, probability of purchasing a particular option when presented with

a collection of options is simply the probability that this particular option has

the highest (relative) order or rank amongst all the presented options (including

no-purchase option).

Therefore, one way to operationalize such a “choice model” is to learn the

distribution over permutations of all options that a store owner can stock in

the store. Clearly, such a distribution needs to be learnt from the observations

or data. The data available to the store owner is the historical transactions as

well as what was stocked in the store when each transaction happened. Such

data effectively provides a bag of pair-wise comparisons between options: con-

sumer exercises or purchases option A over option B corresponds to a pair-wise

comparison A > B or “A is preferred to B”.

In summary, to model consumer choice, we wish to learn distribution over

permutations of all possible options using observations in terms of a collection

of pair-wise comparisons that are consistent with the learnt distribution.

In the context of sports, we wish to go a step further: obtain ranking of sports

teams or players based on outcome of games which are simply pair-wise com-

parisons (between teams or players). Similarly, for the purpose of data-driven

policy making, we wish to aggregate people’s opinion about socio-economic is-

sues such as modes of transportation based on survey data; for designing online

recommendation systems based on historical online activity of individuals, we

wish to recommend top few options; or to sort objects based on noisy outcomes

of pair-wise comparisons.

1.1.2 Learning from first-order marginals

The task of learning distribution over permutations of options, using different

type of partial information comes up in other scenarios. To that end, now suppose

the store owner wants to track each consumer’s journey in store with the help of

cameras. The consumers constantly move within the store as they search through

aisles. Naturally, when multiple consumers are in the store, their paths are likely

to cross. When paths of two(or more) consumers cross and subsequently follow

different trajectories, confusion can arise in the sense that which of the multiple

trajectories map to which of the consumers. That is, at each instance of time we

need to continue mapping physical locations of consumers observed by cameras

with the trajectories of consumers that are being tracked. Equivalently, it’s about

keeping track of a ‘matching’ between locations and individuals in a bipartite

graph or keeping track of permutations!

In (Huang, Guestrin & Guibas 2009), authors proposed distribution over per-

mutations as the canonical model where a permutation corresponds to “match-
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ing” of consumers or trajectories to locations. In such a scenario, due to various

constraints and tractability reasons, the information that is available is the like-

lihoods of each consumer or trajectory to be in a specific location. In the context

of distribution over permutation, this corresponds to knowing the “first-order”

marginal distribution information that states the probability of a given option

being in certain position in the permutation. Therefore, to track consumers in the

store, we wish to learn distribution over consumer trajectories that is consistent

with this first-order marginal information over time.

In summary, the model to track trajectories of individuals boils down to con-

tinually learning distribution over permutations that is consistent with the first-

order marginal information and subsequently finding the most likely ranking or

permutation as per the learnt distribution. It is the very same question that

arises in the context of aggregating web-page rankings obtained through result

of search from multiple search engines in a computationally efficient manner.

1.1.3 Historical remarks

This fine-grained representation for choice, distribution over permutations, is

ancient. Here, we provide a brief historical overview of the use of distribution

over permutations as a model for choice and other applications. We also refer to

the monograph by (Diaconis 1988, Chapter 9) for a nice historical overview from

a Statistician’s perspective.

One of the earliest references to model and learn choice using, potentially

inconsistent, comparisons is the seminal work by Thurstone (Thurstone 1927). It

presents “a law of comparative judgement” or more precisely a simple parametric

model to capture the outcomes of a collection of pair-wise comparisons between

given options (or stimuli in the language of (Thurstone 1927)). This model can

be rephrased as an instance of Random Utility Model (RUM) as follows (also

see (Marschak 1959) and (Marschak & Radner 1972)): given N options, let each

option, say i, have inherent utility ui associated with it; when two options i and

j are compared, random variables Yi, Yj are sampled and the i is preferred over

j iff Yi > Yj ; here Yi = ui + εi, Yj = uj + εj with εi, εj are independent random

variables with identical mean.

A specialization of the above model when the εis are assumed to be Gaussian

with mean 0 and variance 1 for all i is known as the Thurstone-Mosteller model.

It is also known as the probit model. Another specialization of the Thurstone

model is realized when εis are assumed to have Gumbel distribution (one of

the extreme value distribution). This model has been credited differently across

communities. Holman and Marley established that this model is equivalent (see

(Yellott 1977) for details) to a generative model described in detail in Section

1.3.2. It is known as the Luce model (Luce 1959) and the Plackett model (Plackett

1975). In the context when the partial observations are choice observations (i.e.,

the observation that an item is chosen from an offered subset of items), this

model is called the Multinomial Logit Model (MNL) after (McFadden 1973)
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called it conditional logit; also see (Debreu 1960). It is worth remarking that when

restricted to pair-wise comparisons only, this model matches the Bradley-Terry

(Bradley 1953) model, but Bradley-Terry model did not consider the requirement

that the pair-wise comparison marginals need to be consistent with an underlying

distribution over permutations.

The MNL model is of central importance for various reasons. It was introduced

by Luce to be consistent with the axiom of independence from irrelevant alterna-

tives (IIA). The model was shown to be consistent with the induced preferences

assuming a form of random utility maximization framework whose inquiry was

started by (Marschak 1959) and (Marschak & Radner 1972). Very early on, sim-

ple statistical tests as well as simple estimation procedures were developed to fit

such a model to observed data (McFadden 1973). Now the IIA property possessed

by the MNL model is not necessarily desirable as evidenced in many empirical

scenarios. Despite such structural limitations, the MNL model has been widely

utilized across application areas primarily due to the ability to learn the model

parameters easily from observed data. For example, see (McFadden 1981, Ben-

Akiva & Lerman 1985, McFadden 2001) for application in transportation and

(Guadagni & Little 1983, Mahajan & van Ryzin 1999) for applications in oper-

ations management and marketing.

With the view to addressing the structural limitations of the MNL model, a

number of generalizations to this model have been proposed over the years. No-

table among these are the so-called ‘nested’ MNL model, as well as mixtures of

MNL models (or MMNL models). These generalizations avoid the IIA property

and continue to be consistent with the random utility maximization framework

at the expense of increased model complexity; see (Ben-Akiva 1973, Ben-Akiva

& Lerman 1985, Boyd & Mellman 1980, Cardell & Dunbar 1980, McFadden &

Train 2000) for example. The interested reader is also referred to an overview

article on this line of research by (McFadden 2001). While generalized mod-

els of this sort are in principle attractive, their complexity makes them diffi-

cult to learn while avoiding the risk of over-fitting. More generally, specifying

an appropriate parametric model is a difficult task, and the risks associated

with mis-specification are costly in practice. For an applied view of these issues,

see (Bartels, Boztug & Muller 1999, Horowitz 1993, Debreu 1960).

As an alternative to the MNL model (and its extensions), one might also con-

sider the parametric family of choice models induced by the exponential family

of distributions over permutations. These may be viewed as the models that have

maximum entropy among those models that satisfy the constraints imposed by

the observed data. The number of parameters in such a model is equal to the

number of constraints in the maximum entropy optimization formulation, or

equivalently the effective dimension of the underlying data, see (Koopman 1936,

Koopman-Pitman-Darmois Theorem). This scaling of the number of parameters

with the effective data dimension makes the exponential family obtained via the

maximum entropy principle very attractive. Philosophically, this approach im-

poses on the model, only those constraints implied by the observed data. On
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the flip side, learning the parameters of an exponential family model is a com-

putationally challenging task (see (Crain 1976), (Beran 1979) and (Wainwright

& Jordan 2008)) as it requires computing a “partition function” possibly over a

complex state space.

Very recently, (Jagabathula & Shah 2009, Jagabathula & Shah 2011) intro-

duced non-parametric sparse model. Here the distribution over permutations is

assumed to have sparse (or small) support. While this may not be exactly true,

it can be an excellent approximation for the reality and can provide computa-

tionally efficient ways to both infer the model (Jagabathula & Shah 2009, Jaga-

bathula & Shah 2011) consistent with observations as well as utilize it for effec-

tive decision making (Farias, Jagabathula & Shah 2009, Farias, Jagabathula &

Shah 2013).

1.2 Setup

Given N objects or items denoted as [N ] = {1, . . . , N}, we are interested in

distribution over permutations of these N items. A permutation σ : [N ] → [N ]

is one-to-one and onto mapping with σ(i) denoting the position or ordering of

element i ∈ [N ].

Let SN denote the space of N ! permutations of these N items. The set of

distribution over SN , denoted asM(SN ) = {λ : SN → [0, 1] :
∑
σ∈SN

λ(σ) = 1}.
Given λ ∈M(SN ), the first-order marginal information, M(λ) = [Mij(λ)], is an

N ×N doubly stochastic matrix with non-negative entries defined as

Mij(λ) =
∑
σ∈SN

λ(σ)1{σ(i)=j}, (1.1)

where for σ ∈ SN , σ(i) denotes the rank of item i under permutation σ, and

1{x} is the standard indicator with 1{true} = 1 and 1{false} = 0. The comparison

marginal information, C(λ) = [Cij(λ)], is an N × N matrix with non-negative

entries defined as

Cij(λ) =
∑
σ∈SN

λ(σ)1{σ(i)>σ(j)}. (1.2)

By definition, diagonal entries of C(λ) are all 0s and Cij(λ) + Cji(λ) = 1 for all

1 ≤ i 6= j ≤ N . We shall abuse notation by using M(σ) and C(σ) to denote the

matrices obtained by applying them to distribution with σ having probability 1.

Throughout, we assume that there is a ground-truth model λ. We observe

marginal information M(λ) or C(λ), or their noisy versions.

1.2.1 Questions of interest

We are primarily interested in two questions: recovering distribution and pro-

ducing the ranking, based on the distribution.
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Question 1. Recover distribution. The primary goal is to recover λ from obser-

vations. Precisely, we observe D = P (λ) + η where P (λ) ∈ {M(λ), C(λ)} and

potentially noisy perturbation η. The noisy perturbation may representation the

finite sample error introduced due to forming empirical estimation of P (λ) or

inability to observe data associated with certain components.

A generic λ has N !−1 unknowns while dimension of D is at most N2. Learning

λ from D boils down to finding solution to a set of linear equations where there

are at most N2 linear equations involving N ! − 1 unknowns. This is highly

under-determined system of equations and hence without imposing structural

conditions on λ, it is unlikely for us to be able to recover λ faithfully. Therefore,

the basic “information” question would be to understand under what structural

assumption on λ, is it feasible to recover it from P (λ) (i.e. when η = 0). The next

question is to understand the “robustness” of such a recovery condition when we

have non-trivial noise, η. And finally, we would like answer the “computational”

question associated with it which asks whether such recovery is possible using

computation that scales polynomially in N .

Question 2. Produce ranking. An important associated decision question is that

of finding the “ranking” or most “relevant” permutation for the underlying λ.

To begin with, what is the most “relevant” permutation assuming we know the λ

perfectly. This, in a sense, is ill-defined due to the impossibility result of Arrow

(Arrow 1950): there is no ranking algorithm that works for all λ and satisfies

certain basic hypothesis expected from any ranking algorithm even when N = 3.

For this reason, like in the context of recovering λ, we will have to impose

structure on λ. In particular, the structure that we shall impose seem to suggest

a natural answer for ranking or most “relevant” permutation: find σ that has

maximal probability, i.e. find σ∗(λ) where

σ∗(λ) ∈ arg max
σ∈SN

λ(σ). (1.3)

Again, the goals would include ability to recover σ∗(λ) (exactly or approxi-

mately) using observations when (a) η = 0, (b) non-trivial η and (c) computa-

tionally efficiently.

1.3 Models

We shall consider two types of model here: non-parametric sparse model and

parametric random utility model. These models effectively impose constraint on

λ that allows for ability to recover them as well as find ranking from the partial

information of the form D. As mentioned earlier, there are a large number of

models that are studied in literature and not discussed in detail here. We shall

provide a brief overview of such result in Section 1.6.
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1.3.1 Sparse Model

The support of distribution λ, denoted as supp (λ) is defined as

supp (λ)
4
= {σ ∈ SN : λ(σ) > 0}. (1.4)

The `0 norm of λ, denoted as ‖λ‖0, is defined as

‖λ‖0
4
=
∣∣supp (λ)

∣∣. (1.5)

We call λ having sparsity K if K = ‖λ‖0. Naturally, by varying K, all possible

λ ∈M(SN ) can be captured. In that sense, this is a non-parametric model. This

model was introduced in (Jagabathula & Shah 2009, Jagabathula & Shah 2011).

The goal would be to learn a sparsest possible λ that is consistent with obser-

vations. Formally, this corresponds to solving

minimize ‖µ‖0 over µ ∈M(SN ) (1.6)

such that P (µ) ≈ D,

where P (µ) ∈ {D(µ), C(µ)} depending upon the type of information considered.

We discuss known results about recovering sparse model in Section 1.4.

1.3.2 Random Utility Model (RUM)

We consider the random utility model (RUM) that in effect was considered in

the “law of comparative judgement” by Thurstone (Thurstone 1927). Formally,

each option i ∈ [N ] has a deterministic utility ui associated with it. The random

utility, Yi associated with option i ∈ [N ] obeys the form

Yi = ui + εi, (1.7)

where εi are independent random variables across all i ∈ [N ] – they represent

“random perturbation” of the “inherent utility” ui. We assume that all εi have

identical mean across all i ∈ [N ], but can have varying distribution. The specific

form of distribution gives rise to different types of models. We shall describe few

popular examples of this in what shall follow. Before we do that, we explain how

this setup gives rise to distribution over permutation by describing generative

form of the distribution. Specifically, to generate a random permutation over the

N options, we first sample random variable Yi, i ∈ [N ] independently. Then, we

sort Y1, . . . , YN in decreasing order1 and this sorted order of indices [N ] provides

the permutation. Now we describe two popular examples of this model.

Probit Model. Let εi have Gaussian distribution with mean 0 and variance σ2
i

for i ∈ [N ]. Then, the resulting model is known as the Probit Model. In the

homogenous setting, we shall assume that σ2
i = σ2 for all i ∈ [N ].

1 We shall assume that the distribution of εi, i ∈ [N ] have densities and hence ties never
happen between Yi, Yj for any i 6= j ∈ [N ].
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Multinomial Logit (MNL) Model. Let εi have Gumbel distribution with mode

µi and scaling parameter βi > 0, i.e. the PDF of εi is given by

f(x) =
1

βi
exp(−(z + exp(−z))), where z =

x− µi
βi

, for x ∈ R. (1.8)

In the homogenous setting, µi = µ and βi = β for all i ∈ [N ]. In this scenario,

the resulting distribution over permutation turns out to be equivalent to the

following generative model.

Let wi > 0 be parameter associated with i ∈ [N ]. Then the probability of

permutation σ ∈ SN is given by (for example, see (Marden 1995))

P(σ) =

N∏
j=1

wσ−1(j)

wσ−1(j) + wσ−1(j+1) + · · ·+ wσ−1(N)
. (1.9)

Above, σ−1(j) = i iff σ(i) = j. Specifically, for i 6= j ∈ [N ],

P(σ(i) > σ(j)) =
wi

wi + wj
. (1.10)

We provide a simple explanation of the above, seemingly mysterious, relationship

between two very different descriptions of the MNL model.

lemma 1.1 Let εi, εj be independent random variables with Gumbel distribution

with mode µi, µj respectively with scaling parameters βi = βj = β > 0. Then,

∆ij = εi − εj has Logistic distribution with parameters µi − µj (location) and β

(scale).

The proof of Lemma 1.1 follows by, for example, using the characteristic func-

tion associated with Gumbel distribution along with property of Gamma function

(Γ(1 + z)Γ(1− z) = zπ/sin(πz)) and then identifying characteristic function of

Logistic distribution.

Back to our model, when we compare the random utilities associated with

options i and j, Yi and Yj respectively, we assume the corresponding random

perturbation to be homogenous, i.e. µi = µj = µ and βi = βj = β > 0. Therefore,

Lemma 1.1 suggests that

P
(
Yi > Yj

)
= P

(
εi − εj > uj − ui

)
= P

(
Logistic(0, β) > uj − ui

)
= 1− P

(
Logistic(0, β) < uj − ui

)
= 1− 1

1 + exp
(
− uj−ui

β

)
=

exp
(
ui

β

)
exp

(
ui

β

)
+ exp

(uj

β

)
=

wi
wi + wj

, (1.11)

where wi = exp
(
ui

β

)
, wj = exp

(uj

β

)
.
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Learning the model and ranking. For random utility model, the question of

learning model from data effectively boils down to learning the model parameters

from observations. In the context of homogenous model, i.e. εi in (1.7) have

identical distribution across all i ∈ [N ], the primary interest is in learning the

inherent utility parameters ui, for i ∈ [N ]. The question of recovering ranking,

on the other hand, is about recovering σ ∈ SN which is the sorted (decreasing)

order of the inherent utilities ui, i ∈ [N ]: for example, if u1 ≥ u2 ≥ · · · ≥ uN ,

then the ranking is the identity permutation.

1.4 Sparse Model

In this section, we describe the conditions under which we can learn the un-

derlying sparse distribution using first-order marginal and comparison marginal

information. We divide the presentation into two parts: first, we consider ac-

cess to exact or noise-less marginals for exact recovery; and then, we discuss its

robustness.

We can recover ranking in terms of the most-likely permutation once we have

recovered the sparse model by simply sorting the likelihoods of the permutations

in the support of the distribution, which require time O(K logK) where K is

the sparsity of the model. Therefore, the key question in the context of sparse

model is recovery of distribution, which we shall focus in the remainder of this

section.

1.4.1 Exact marginals: infinite samples

We are interested in understanding when is it feasible to recover underlying

distribution λ given access to its marginal information M(λ) or C(λ). As men-

tioned earlier, one way to recover such a distribution using exactly marginal

information is to solve (1.6) with equality constraint of P (λ) = D where P (λ) ∈
{M(λ), C(λ)} depending upon the type of marginal information.

We can view the unknown λ as a high-dimensional vector in RN ! which is

sparse. That is, ‖λ‖0 � N !. The observations are marginals of λ, either first-

order marginals M(λ) or comparison marginals C(λ). They can be viewed as

linear projections of the λ vector of dimension N2 or N(N − 1). Therefore,

recovering sparse model from marginal information boils down to recovering a

sparse vector in high-dimensional space (here N ! dimensional) based on a small

number of linear measurements of the sparse vector. That is, we wish to recover

x ∈ Rn from observation y = Ax where y ∈ Rm, A ∈ Rm×n with m� n. In the

best case, one can hope to recover x uniquely as long as m ∼ ‖x‖0.

Such a question has been well studied in the context of sparse model learn-

ing from linear measurements of the signal in the signal processing and it has

been popularized under the umbrella term of compressed sensing, see for example

(Candes & Tao 2005, Candes, Romberg & Tao 2006a, Candes & Romberg 2006,
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Candes, Romberg & Tao 2006b, Donoho 2006). It has been argued that such re-

covery is possible as long as A satisfies certain conditions, for example Restricted

Isoperimetric Property (RIP) (see (Candes et al. 2006a, Berinde, Gilbert, Indyk,

Karloff & Strauss 2008)) with m ∼ K log n/K, then the `0 optimization problem,

min
z
‖z‖0 over y = Az,

recovers the true signal x as long as the sparsity of x, ‖x‖0 is at most K. The

remarkable fact about an RIP-like condition is that it not only recovers the

sparse signal using the `0 optimization, but it can be done using computationally

efficient procedure, a linear program.

Impossibility of recovering distribution even for N = 4. Back to our setting,

n = N !, m = N2 and we wish to understand up to what level of sparsity

of λ can we recover it. The key difference here is in the fact that A is not

designed but given. Therefore, the question is whether A has nice property such

as RIP that can allow for sparse recovery. To that end, consider the following

simple counter example that shows that it is impossible to recover a sparse

model uniquely even with support size 3 using the `0 optimization (Jagabathula

& Shah 2009, Jagabathula & Shah 2011).

Example 1.4.1.1 (Impossibility) For N = 4, consider the four permutations

σ1 = [1 → 2, 2 → 1, 3 → 3, 4 → 4], σ2 = [1 → 1, 2 → 2, 3 → 4, 4 → 3],

σ3 = [1 → 2, 2 → 1, 3 → 4, 4 → 3] and σ4 = id = [1 → 1, 2 → 2, 3 → 3, 4 → 4],

i.e. the identity permutation. It is easy to check that

M(σ1) +M(σ2) = M(σ3) +M(σ4).

Now suppose that λ(σi) = pi, where pi ∈ [0, 1] for 1 ≤ i ≤ 3, and λ(σ) = 0 for

all other σ ∈ SN . Without loss of generality, let p1 ≤ p2. Then,

p1M(σ1) + p2M(σ2) + p3M(σ3) = (p2 − p1)M(σ2) + (p3 + p1)M(σ3) + p1M(σ4).

Here, note that {M(σ1),M(σ2),M(σ3)} are linearly independent, yet the spars-

est solution is not unique. Therefore, it is not feasible to recover sparse model

uniquely.

Note that the above example, can be extended for any N ≥ 4 by simply

having identity permutation for all elements larger than 4 in the above exam-

ple. Therefore, for any N with support size 3, we can not always recover them

uniquely.

Signature condition for recovery. The example 1.4.1.1 suggests that it is not

feasible to expect RIP-like condition for the ‘projection matrix’ corresponding to

the first-order marginals or comparison marginals so that any sparse probability

distribution can be recovered. The next best thing we can hope for is the ability

to recover almost all of the sparse probability distributions. This leads us to

the signature condition of the matrix for a given sparse vector which, as we

shall see, allows for recovery of the particular sparse vector (Jagabathula &

Shah 2009, Jagabathula & Shah 2011).
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condition 1.2 (Signature Conditions) Given matrix A ∈ Rm×n is said to

satisfy signature codition with respect to index set S ⊂ {1, . . . , n} if for each

i ∈ S, there exists j(i) ∈ [m] such that Aj(i)i 6= 0 and Aj(i)i′ = 0 for all

i′ 6= i, i′ ∈ S.

The signature condition allows for recovery of sparse vector using a simple

‘peeling’ algorithm. We summarize the recovery result followed by algorithm

that will imply the result.

theorem 1.3 Let A ∈ {0, 1}m×n with all of its columns being distinct. Let

x ∈ Rn≥0 be such that A satisfies signature condition with respect to the set

supp (x). Let the non-zero components of x, i.e. {xi : i ∈ supp (x)} be such that

for any two distinct S1, S2 ⊂ supp (x),
∑
i∈S1

xi 6=
∑
i′∈S2

xi′ . Then, x can be

recovered from y where y = Ax.

Proof. To establish Theorem 1.3, we shall describe the algorithm that recovers

x under conditions of the theorem and simultaneously argue its correctness. To

that end, the algorithm starts by sorting components of y. Since A ∈ {0, 1}m×n,

for each j ∈ [m], yj =
∑
i∈Sj

xi, with Sj ⊆ supp (x). Due to signature condition,

for each i ∈ supp (x), there exists j(i) ∈ [m] such that yj(i) = xi. If we can identify

j(i) for each i, we recover the values xi, but not necessarily the position i. To

identify position, we identify the ith column of matrix A, and since columns of

matrix A are all distinct, this will help us identify the position. This will require

use of property that for any S1 6= S2 ⊂ supp (x),
∑
i∈S1

xi 6=
∑
i′∈S2

xi′ . This

implies, to begin with, all non-zero elements of x are distinct. Without loss of

generality, let the non-zero elements of x be x1, . . . , xK with K = |supp (x) | such

that 0 < x1 < · · · < xK .

Now consider the smallest, non-zero element of y. Let it be yj1 . From property

of x, it follows that yj1 must be the smallest non-zero element of x, x1. The

second smallest component of y that is distinct from x1, let it be yj2 , must be

x2. The third distinct smallest component, yj3 however could be x1 + x2 or x3.

Since we know x1, x2, and due to property of x, we can identify whether yj3
is x3 or not. Iteratively, we consider the kth distinct smallest value of y, say

yjk . Then, it either equals sum of subset of already identified components of

x or the next smallest unidentified component of x due to signature property

and non-negativity of x. In summary, by the time we are done going through

all non-zero components of y in the increasing order as described above, we will

recover all the non-zero elements of x in the increasing order as well as the

corresponding columns of A. This is because iteratively we identify for each yj
the set Sj ⊂ supp (x) such that yj =

∑
i∈Sj

xi. That is, Aji = 1 for all i ∈ Sj
and 0 otherwise. This completes the proof.

Now we remark on the computation complexity of ‘peeling’ algorithm de-

scribed above. It runs in at most m iterations. In each iteration, it tries to

effectively solve a subset sum problem whose computation cost is at most O(2K)
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where K = ‖x‖0 is the sparsity of x. In addition, the additional step for sort-

ing components of y costs O(m logm). In summary, the computation cost is

O(2K + m logm). Notice that, somewhat surprisingly this does not depend on

n at all. In contrast, the linear programing based approach used for sparse sig-

nal recovery in the context of compressed sensing literature, the computational

complexity scales, at least linearly in n, the ambient dimension of the signal.

For example, if this were applicable to our setting, it would scale as N ! which is

simply prohibitive.

Recovering distribution using first-order marginals via signature condition. We

shall utilize the signature condition 1.2 in the context of recovering distribution

over permutations from its first-order marginals. Again, given the counter ex-

ample 1.4.1.1, it is not feasible to recover all sparse models even with sparsity

3 from first-order marginals uniquely. However, with aid of signature condition,

we will argue that it is feasible to recover most sparse models with reasonably

large sparsity.

To that end, let Af ∈ {0, 1}N2×N ! denote the first-order marginal matrix that

maps the N ! dimensional vector corresponding to distribution over permuta-

tions to N2 dimensional vector corresponding to the first-order marginals of the

distribution. We state the signature property of Af next.

lemma 1.4 Let S be a randomly chosen subset of {1, . . . , N !} of size K. Then

the first-order marginal matrix Af satisfies signature condition with respect to S

with probability 1− o(1) as long as K ≤ (1− ε)N logN for any ε > 0.

The proof of the above Lemma can be found in (Jagabathula & Shah 2009,

Jagabathula & Shah 2011). The Lemma 1.4 and Theorem 1.3 immediately imply

the following result.

theorem 1.5 Let S ⊂ SN be a randomly chosen subset of SN of size K,

denoted as S = {σ1, . . . , σK}. Let p1, . . . , pK be chosen from a joint distribution

with a continuous density over subspace of [0, 1]K corresponding to p1+· · ·+pK =

1 . Let λ be distribution over SN such that

λ(σ) =

{
pk if σ = σk, k ∈ [K]

0 otherwise.
(1.12)

Then, λ can be recovered from its first-order marginal distribution with probability

1− o(1) as long as K ≤ (1− ε)N logN for a fixed ε > 0.

The proof of Theorem 1.5 can be found in (Jagabathula & Shah 2009, Jaga-

bathula & Shah 2011). In a nutshell, it states that most sparse distribution over

permutations with sparsity up to N logN can be recovered from its first-order

marginals. This is in sharp contrast with counter example 1.4.1.1 which states

that for any N , distribution with sparsity 3 can not be recovered uniquely.

Recovering distribution using comparison marginals via signature condition. Next,

we utilize the signature condition 1.2 in the context of recovering distribution
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over permutations from its comparison marginals. Let Ac ∈ {0, 1}N(N−1)×N !

denote the comparison marginal matrix that maps the N ! dimensional vector

corresponding to distribution over permutations to N2 dimensional vector corre-

sponding to the comparison marginals of the distribution. We state the signature

property of Ac next.

lemma 1.6 Let S be a randomly chosen subset of {1, . . . , N !} of size K. Then

the comparison marginal matrix Ac satisfies signature condition with respect to

S with probability 1− o(1) as long as K = o(logN).

The proof of the above Lemma can be found in (Farias et al. 2009, Farias

et al. 2013). The Lemma 1.6 and Theorem 1.3 immediately imply the following

result.

theorem 1.7 Let S ⊂ SN be a randomly chosen subset of SN of size K,

denoted as S = {σ1, . . . , σK}. Let p1, . . . , pK be chosen from a joint distribution

with a continuous density over subspace of [0, 1]K corresponding to p1+· · ·+pK =

1 . Let λ be distribution over SN such that

λ(σ) =

{
pk if σ = σk, k ∈ [K]

0 otherwise.
(1.13)

Then, λ can be recovered from its first-order marginal distribution with probability

1− o(1) as long as K = o(logN).

The proof of Theorem 1.7 can be found in (Farias et al. 2009, Farias et al. 2013).

It suggests that it is feasible to recover sparse model with growing support size

with N as long as it is o(logN). However, it is exponentially smaller than re-

coverable support size compared to first-order marginal. This seem to be related

to the fact that first-order marginal relatively information rich compared to the

comparison marginal.

1.4.2 Noisy marginals: finite samples

Thus far, we have considered setup where we had access to exact marginal dis-

tribution information. Instead, suppose we have access to marginal distributions

formed based on empirical distribution of finite samples from the underlying dis-

tribution. This can be viewed as access to “noisy” marginal distribution. Specifi-

cally, given distribution λ, we observe D = P (λ)+η where P (λ) ∈ {M(λ), C(λ)}
depending upon the type of marginal information and η being noise such that

some norm of η, e.g. ‖η‖2 or ‖η‖∞ is bounded above by δ, with δ > 0 being

small if we have access to enough samples. The δ represents the error observed

due to access to finitely many samples and is assumed to known.

For example, if we have access to n independent samples for each marginal

entry (e.g. i ranked in position j for first-order marginal or i compared better

than j for comparison marginal) as per λ, and we create empirical estimation of

each entry in M(λ) or C(λ), then using Chernoff Bound for Binomial distribution
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and Union bound over a collection of event, it can be argued that ‖η‖∞ ≤ δ

with probability 1 − δ as long as n ∼ 1
δ2 log 4N

δ for each entry. Using more

sophisticated method from Matrix Estimation literature, it is feasible to obtain

better estimation of M(λ) or C(λ) from fewer samples of entries and even when

some of the entries are entirely unobserved as long as M(λ) or C(λ) has structure.

This is beyond the scope of this exposition, however we refer an interested reader

to see (Chatterjee et al. 2015, Song, Lee, Li & Shah 2016, Borgs, Chayes, Lee

& Shah 2017, Shah, Balakrishnan, Guntuboyina & Wainwright 2016) as well as

discussion in Section 1.6.4.

Given this, the goal is to recover sparse distribution whose marginals are close

to the observations. Precisely, we wish to find distribution λ̂ such that ‖P (λ̂)−
D‖2 ≤ f(δ) and ‖λ̂‖0 is small. Here, ideally we would like f(δ) = δ but we may

settle for any f such that f(δ)→ 0 as δ → 0.

Following the line of reasoning in Section 1.4.1, we shall assume that there is

a sparse model λs with respect to which the marginal matrix satisfies signature

condition 1.2 and ‖P (λs) −D‖2 ≤ δ. The goal would be produce estimate λ̂ so

that ‖λ̂‖0 = ‖λ‖0 and ‖P (λ̂)−D‖2 ≤ f(δ).

This is the exact analog of the robust recovery of sparse signal in the context

of compressed sensing where the RIP-like condition allowed recovery of sparse

approximation to the original signal from linear projections through linear op-

timization. The computational complexity of such an algorithm scales, at least

linearly in n, the ambient dimension of the signal. As discussed earlier, in our

context this would lead to computation cost scaling as N !, which is prohibitive.

The exact recovery algorithm discussed in Section 1.4.1 has computation cost

O(2K + N2 logN) in the context of recovering sparse model satisfying signa-

ture condition. The brute force search for sparse model will lead to cost at least(
N !
K

)
≈ (N !)K or exp(Θ(KN logN)) for K � N !. The question is, if it is possible

to get rid of dependence on N !, and ideally scaling of O(2K + N2 logN) as in

the case of exact model recovery.

In what follows, we describe conditions on noise under which the algorithm

described in Section 1.4.1 is robust. This requires assumption that underlying

ground truth distribution is sparse and satisfies signature condition. This recov-

ery result requires noise to be small. Such a recovery in a higher noise regime

remains broadly remains open; initial progress towards it is made in (Farias,

Jagabathula & Shah 2012).

Robust recovery under signature condition: low noise regime. Recall that the

‘peeling’ algorithm recovers the sparse model when signature condition is satisfied

using exact marginals. Here, we discuss robustness of the ‘peeling’ algorithm

under noise. Specifically, we argue that ‘peeling’ algorithm as described is robust

as long as noise is ‘low’. We formalize this in the statement below.

theorem 1.8 Let A ∈ {0, 1}m×n with all of its columns being distinct. Let

x ∈ Rn≥0 be such that A satisfies signature condition with respect to the set

supp (x). Let the non-zero components of x, i.e. {xi : i ∈ supp (x)} be such that
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for any S1 6= S2 ⊂ supp (x),

∣∣ ∑
i∈S1

xi −
∑
i′∈S2

xi′
∣∣ > 2δK, (1.14)

for some δ > 0. Then, given y = Ax + η with ‖η‖∞ < δ, it is feasible to find x̂

so that ‖x̂− x‖∞ ≤ δ.

Proof To establish Theorem 1.8, we shall utilize effectively the same algorithm

as that utilized for establishing Theorem 1.3 in the proof of Theorem 1.3. How-

ever, we will have to deal with the ‘error’ in measurement y delicately.

To begin with, following arguments in the proof of Theorem 1.3, it follows

that all non-zero elements of x are distinct. Without loss of generality, let the

non-zero elements of x be x1, . . . , xK with K = |supp (x) | ≥ 2 such that 0 <

x1 < · · · < xK ; xi = 0 for K + 1 ≤ i ≤ n. From (1.14), it follows for that

xi+1 ≥ xi + 4δ for 1 ≤ i < K and x1 ≥ 2δ. Therefore,

xk ≥ (k − 1)4δ + 2δ, (1.15)

for 1 ≤ k ≤ K. Next, we shall argue that, inductively, it is feasible to find

x̂i, 1 ≤ i ≤ n so that |x̂i − xi| ≤ δ for 1 ≤ i ≤ K and x̂i = 0 for K + 1 ≤ i ≤ n.

Now since A ∈ {0, 1}m×n, for each j ∈ [m], yj =
∑
i∈Sj

xi + ηj , with Sj ⊆
supp (x) and |ηj | ≤ δ. From (1.14), it follows for x1 > 2δ. Therefore, if Sj 6= ∅ then

yj > δ. That is, we will start by restricting to indices J1 = {j ∈ [m] : yj > δ}.
Let j1 be index in J such that yj1 ∈ arg minj∈J1 yj . We set x̂1 = yj1 and

Aj11 = 1. To justify this, we next argue that yj1 = x1+ηj1 and hence |x̂1−x1| < δ.

By signature condition, for each i ∈ supp (x), there exists j(i) ∈ [m] such that

|yj(i)− xi| ≤ δ and hence j(i) ∈ J1 since yj(i) ≥ xi− δ > δ. Let J(1) = {j ∈ J1 :

yj = x1 + ηj}. Clearly, J(1) 6= ∅. Effectively, we want to argue that j1 ∈ J(1).

To that end, suppose not. Then, there exists S ⊂ supp (x), such that S 6= ∅,
S 6= {1} and yj1 =

∑
i∈S xi + ηj1 . Then

yj1 >
∑
i∈S

xi − δ, since |ηj1 | < δ,

> x1 + 2Kδ − δ, by (1.14),

≥ x1 + δ, since K ≥ 1, (1.16)

≥ yj , (1.17)

for any j ∈ J(1) ⊂ J1. But this is a contradiction since yj1 ≤ yj for all j ∈ J .

That is, S = {1} or yj1 = x1 + ηj1 . Thus, we have found x̂1 = yj1 such that

|x̂1 − x1| < δ.

Now for any j ∈ J1 with yj =
∑
i∈S xi + ηj with S ∩ {2, . . . ,K} 6= ∅, we have
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with notation x(S) =
∑
i∈S xi

|x̂1 − yj | = |x1 − yj + x̂1 − x1|
= |x1 − x(S)− ηj + x̂1 − x1|
≥ |x1 − x(S)| − |ηj | − |x̂1 − x1|
> 2Kδ − δ − δ
≥ 2δ. (1.18)

And if S = {1}, then |x̂1 − yj | < 2δ. Therefore, we set

Aj1 = 1 if |x̂1 − yj | < 2δ, for j ∈ J1,

and

J2 ← J1\{j ∈ J1 : |yj − x̂1| < 2δ}.

Clearly,

j ∈ J2 ⇔ j ∈ [m], yj = x(S) + ηj , such that S ∩ {2, . . . ,K} 6= ∅.

Now suppose, inductively we have found x̂1, . . . , x̂k, 1 ≤ k < K so that |x̂i −
xi| < δ for 1 ≤ i ≤ k and

j ∈ Jk+1 ⇔ j ∈ [m], yj = x(S) + ηj , such that S ∩ {k + 1, . . . ,K} 6= ∅.

To establish inductive step, we suggest to set jk+1 ∈ arg minj∈Jk+1{yj}, x̂k+1 =

yjk+1
and

Jk+2 ← Jk+1\{j ∈ Jk+1 : |yj − x̂1| < (k + 1)δ}.

We shall argue that |x̂k+1−xk+1| < δ by showing that yjk+1
= xk+1 + ηjk+1

and

establishing

j ∈ Jk+2 ⇔ j ∈ [m], yj = x(S) + ηj , such that S ∩ {k + 2, . . . ,K} 6= ∅.

To that end, let yjk+1
= x(S) + ηjk+1

. By inductive hypothesis, S ⊂ supp (x) and

S ∩ {k + 1, . . . ,K} 6= ∅. Suppose S 6= {k + 1}. Then,

yjk+1
> x(S)− δ
= (x(S)− xk+1) + xk+1 − δ
≥ 2δ + xk+1 − δ
= δ + xk+1,

> yj ,

for any j ∈ J(k + 1) ≡ {j ∈ Jk+1 : yj = xk+1 + ηj}. In above, we have

used the fact that since S ∩ {k + 1, . . . ,K} 6= ∅ and S 6= {k + 1}, it must

be that x(S) ≥ min{x1 + xk+1, xk+2}. In either case, using (1.15), it follows

that x(S) − xk+1 ≥ 2δ. We note that due to signature condition and inductive

hypothesis about Jk+1, it follows that J(k + 1) 6= ∅. But yjk+1
is the minimal

value of yj for j ∈ Jk+1. This is a contradiction. Therefore, S = {k + 1}. That

is, x̂k+1 = yjk+1
satisfies |x̂k+1 − xk+1| < δ.
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Now, consider any set S ⊂ {1, . . . , k + 1} and any j ∈ Jk+2 such that yj =∑
i∈S′ xi + ηj with S′ ∩ {k + 2, . . . ,K} 6= ∅. Using notation x̂(S) =

∑
i∈S x̂i, we

have

|x̂(S)− yj | = |x(S)− yj + x̂(S)− x(S)|
= |x(S)− x(S′)− ηj + x̂(S)− x(S)|
≥ |x(S)− x(S′)| − |ηj | − |x̂(S)− x(S)|
> 2Kδ − (1 + |S|)δ
≥ (|S|+ 1)δ, (1.19)

where we used the fact that |S|+ 1 ≤ K. Therefore, if we set

Jk+2 ← Jk+1\{j ∈ Jk+1 : |yj − x̂(S)| ≤ (|S|+ 1)δ, for some S ⊂ {1, . . . , k+ 1}},

it follows that

j ∈ Jk+2 ⇔ j ∈ [m], yj = x(S) + ηj , such that S ∩ {k + 2, . . . ,K} 6= ∅.

This completes the induction step. And establishes the desired result that we

can recover x̂ so that ‖x̂− x‖∞ ≤ δ.

Naturally, as before, Theorem 1.8 implies robust versions of Theorems 1.5 and

1.7. In particular, if we are forming empirical estimation of M(λ) or C(λ) based

on independently drawn samples, then by simple application of Chernoff bound

along with a union bound will imply that it may be sufficient to have samples

that scale as δ−2 logN to have M̂(λ) or Ĉ(λ) so that ‖M̂(λ)−M(λ)‖∞ < δ or

‖Ĉ(λ) − C(λ)‖∞ < δ with high probability (i.e. 1 − oN (1)). Then, as long as λ

satisfies condition (1.14) in addition to the signature condition, then Theorem

1.8 guarantees approximate recovery as discussed above.

Robust recovery under signature condition: high noise regime. Theorem 1.8 pro-

vides conditions under which ‘peeling’ algorithm manages to recover the distri-

bution as long as the element in the support are far enough. Put it other way,

for a given x, the error tolerance needs to be small enough compared to the gap

that is implicitly defined by (1.14) for recovery to be feasible.

Here, we make an attempt to go beyond such restrictions. In particular, as-

suming that the noisy observations come from a signature family, we will be

satisfied if we recover any signature family that is consistent with observations.

For this, we shall assume the knowledge of sparsity K.

Now, we need to learn supp (x), i.e. positions of x that are non-zero and the

non-zero values in those positions. The determination of supp (x) corresponds to

selecting the columns of A. Now if A satisfies signature condition with respect to

supp (x), then we can simply choose the entries in the positions of y corresponding

to the signature component. If the choice of supp (x) is correct then this will

provide estimate x̂ so that ‖x̂ − x‖2 ≤ δ. In general, if we assume that there

exists x such that A satisfies signature condition with respect to supp (x) with
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K = ‖x‖0 and ‖y−Ax‖2 ≤ δ, then an approach is to find x̂ such that ‖x̂‖0 = K,A

satisfies signature condition with respect to supp (x̂) and it minimizes ‖y−Ax̂‖2.

In summary, we are solving a combinatorial optimization problem over the

space of columns of A that collectively satisfy the signature condition. Formally,

the space of subsets of columns of A of size K can be encoded through a binary

valued matrix Z ∈ {0, 1}m×m as follows: all but K columns of Z are zero, and

the non-zero columns of Z are distinct columns of A collectively satisfying the

signature condition. Precisely, for any 1 ≤ i1 < i2 < · · · < iK ≤ m, representing

as the signature columns, the variable Z should satisfy

Zijij = 1, for 1 ≤ j ≤ K (1.20)

Zijik = 0, for 1 ≤ j 6= k ≤ K (1.21)

[Zaij ]a∈[m] ∈ col(A), for 1 ≤ j ≤ K (1.22)

Zab = 0, for a ∈ [m], b /∈ {i1, . . . , iK}. (1.23)

In above, col(A) = {[Aij ]i∈[m] : 1 ≤ j ≤ n} represents the set of columns of

matrix A. Then, the optimization problem of interest is

minimize ‖y − Zy‖2 over Z ∈ {0, 1}m×m

such that Z satisfies constraints (1.20)− (1.23). (1.24)

The constraint set (1.20)-(1.23) can be viewed as disjoint union of
(
m
K

)
sets each

one corresponding to choice of 1 ≤ i1 < · · · < iK ≤ m. For each such choice, we

can solve the optimization (1.24) and choose the best solution across all of them.

That is, the computation cost is O(mK) times the cost of solving the optimization

problem (1.24). The complexity of solving (1.24) fundamentally depends on the

constraint (1.22) – it captures the structural complexity of describing the column

set of matrix A.

A natural convex relaxation of the optimization problem (1.24) involves re-

placing (1.22) and Z ∈ {0, 1}m×m by

[Zaij ]a∈[m] ∈ convex-hull(col(A)), for 1 ≤ j ≤ K; Z ∈ [0, 1]m×m. (1.25)

In above, for any set S,

convex-hull(S) ≡
{ Q∑
`=1

a`x` : a` ≥ 0, x` ∈ S for ` ∈ [Q],
∑
`

a` = 1, for Q ≥ 2.
}
.

In the best case, it may be feasible to solve the optimization with the con-

vex relaxation efficiently. However, the relaxation may not yield solution that is

achieved at the extreme points of the convex-hull(col(A)) which is what we desire.

This is due to the fact that the objective, `2 norm of error, we are considering

is strictly convex. To overcome this challenge, we can replace `2 by `1. And the



1.4 Sparse Model 19

constraints of interest are, for a given ε > 0 of

Zijij = 1, for 1 ≤ j ≤ K (1.26)

Zijik = 0, for 1 ≤ j 6= k ≤ K (1.27)

yi − (Zy)i ≤ ε, for 1 ≤ i ≤ m (1.28)

yi − (Zy)i ≥ −ε, for 1 ≤ i ≤ m (1.29)

[Zaij ]a∈[m] ∈ convex-hull(col(A)), for 1 ≤ j ≤ K (1.30)

Zab = 0, for a ∈ [m], b /∈ {i1, . . . , iK}. (1.31)

This results in the Linear Program

minimize
m∑

i,j=1

ζijZij over Z ∈ [0, 1]m×m

such that Z satisfies constraints (1.26)− (1.31), (1.32)

In above, ζ = [ζij ] ∈ [0, 1]m×m is a random vector with each of its component

chosen by drawing a number from [0, 1] uniformly at random. The purpose of

choosing ζ is to obtain unique solution, if it is feasible. Note that, when feasible,

the solution is achieved at the extreme point which happens to be the valid

solution of interest. We can solve (1.32) iteratively for choice of ε = 2−q for

q ≥ 0 till we fail to find a feasible solution. The value of ε before that will be the

smallest (within factor 2) error tolerance that can is feasible within signature

family. Therefore, the cost of finding such solution is within O(log 1/ε) times the

cost of solving the Linear Program (1.32). The cost of Linear Program (1.32)

depends on the complexity of the convex relaxation of the set col(A). If it is

indeed simple enough, then we can solve the (1.32) efficiently.

As it turns out, for the case of first-order marginals, the convex hull of col(A)

is succinct due to the classical result by Birkhoff and Von Neumann which char-

acterizes the convex relaxation of permutation matrices though linear number of

equalities in the size of permutation, here N . Each of the element in col(A) cor-

responds to (flattened) permutation matrix. Therefore, its convex hull is simply

that of (flattened) permutation matrices and thus leading to succinct descrip-

tion. This results in polynomial time algorithm for solving (1.32). In summary,

we conclude the following (see (Farias et al. 2012) for details).

theorem 1.9 For given observation vector y ∈ [0, 1]m, if there exists a dis-

tribution µ in signature familty of support size K such that the corresponding

projection is within ε ∈ (0, 1] of y in terms of `∞ norm, then it can be found

through an algorithm with computation cost O(NΘ(K) log 1/ε).

Open Question. The efficient computation (or inability to do so) for finding

approximate distribution in the signature family for the pair-wise comparison

marginals, equivalent to Theorem 1.9, is not known.

On Universality of Signature Family. Thus far, we have focused on developing
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algorithms for learning sparse model with signature condition. The sparse model

is a natural approximation for generic distribution over permutation. In Theo-

rems 1.5 and 1.7, we effectively argued that a model with randomly chosen sparse

support satisfies signature condition as long as sparsity is not too large. However,

it is not clear if sparse model with signature condition is a good approximation

beyond such setting. For example, is there a sparse model with signature con-

dition that has approximates the marginal information of the simple parametric

model such as the Multinomial Logit Model (MNL) well?

To that end, recently (Farias et al. 2012) have established the following rep-

resentation result which we state without proof here.

theorem 1.10 Let λ be a MNL model with parameters w1, . . . , wN (and with-

out loss of generality, let 0 < w1 < · · · < wN ) such that

wN∑N−L
k=1 wk

≤
√

logN

N
, (1.33)

for some L = N δ for some δ ∈ (0, 1). Then there exists λ̂ such that |supp
(
λ̂
)
| =

O(N/ε2), λ̂ satisfies signature condition with respect to the first-order marginals

and ‖M(λ)−M(λ̂)‖2 ≤ ε.

1.5 Random Utility Model (RUM)

We discuss recovery of exact model for MNL model and recovery of ranking for

generic random utility model with homogenous random perturbation.

1.5.1 Exact marginals: infinite samples

Given the exact marginal information M(λ) or C(λ) for λ, we wish to recover the

parameters of the model when λ is MNL, and we wish to recover ranking when λ

is generic random utility model. We first discuss recovery of MNL for both types

of marginal information and then discuss recovery of ranking for generic model.

Recovering MNL: first-order marginals. Without loss of generality, let us assume

that the parameters w1, . . . , wN are normalized so that
∑
i wi = 1. Then, under

the MNL model per (1.9),

P
(
σ(i) = 1

)
= wi. (1.34)

That is, the first row of the first-order marginal matrix M(λ) = [Mij(λ)] precisely

provides the parameters of the MNL model!

Recovering MNL: comparison marginals. Under the MNL model, as per (1.11),

for any i 6= j ∈ [N ],

P
(
σ(i) > σ(j)

)
=

wi
wi + wj

. (1.35)
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The comparison marginals, C(λ) provides access to P
(
σ(i) > σ(j)

)
for all i 6=

j ∈ [N ]. Using these, we wish to recover parameters w1, . . . , wN .

Next, we describe a reversible Markov chain over N states whose stationary

distribution is precisely the parameters of our interest and its transition Kernel

utilizes the C(λ). This alternative representation provides an intuitive algorithm

for recovering the MNL parameters, and more generally what is known as the

Rank Centrality (Negahban, Oh & Shah 2012, Negahban, Oh & Shah 2016).

To that end, the Markov chain of interest has N states. The transition Kernel

or transition probability matrix Q = [Qij ] ∈ [0, 1]N×N of the Markov chain is

defined using comparison marginals C = C(λ) as follows:

Qij =

{
Cji

2N , if i 6= j

1−
∑
j 6=i

Cji

2N , if i = j.
(1.36)

The Markov chain has unique stationary distribution because (a) Q is irreducible,

since Cij , Cji > 0 for all i 6= j as long as wi > 0 for all i ∈ [N ], and (b) Qii > 0 by

definition for all i ∈ [N ] and hence it is aperiodic. Further w = [wi]i∈[N ] ∈ [0, 1]N

is a stationary distribution since it satisfies the detailed balanced condition, i.e.

for any i 6= j ∈ [N ]

wiQij = wi
Cji
2N

= wi
wj

2N(wi + wj)

= wj
wi

2N(wi + wj)
= wj

Cij
2N

= wjQji. (1.37)

Thus, by finding the stationary distribution of Markov chain as defined above,

we can find parameters of the MNL. And this boils down to finding the largest

eigenvector of Q which can be done using various efficient algorithms including

the standard power-iteration method.

We note that the algorithm to finding parameters of MNL does not need

to have access to all entries of C. Suppose, E ⊂ {(i, j) : i 6= j ∈ [N ]} be a

subset of all possible
(
N
2

)
pairs for which we have access to C. Let us define

Markov chain with Q such that for i 6= j ∈ [N ], Qij is defined as per (1.36)

if (i, j) ∈ E (we assume (i, j) ∈ E then (j, i) ∈ E because Cji = 1 − Cij
by definition), else Qij = 0; and Qii = 1 −

∑
j 6=iQij . The resulting Markov

chain is aperiodic since by definition Qii > 0. Therefore, as long as the resulting

Markov chain is irreducible, then it has unique stationary distribution. Now

the Markov chain is irreducible if effectively all N states are reachable from

each other via transitions {(i, j), (j, i) : (i, j) ∈ E}. That is, there is data that

compares any two i 6= j ∈ [N ] through potentially chain of comparisons. Which,

in a sense, is a minimal requirement to have consistent ranking across all i ∈ [N ].

Once we have this, again it follows that the stationary distribution is given by

w = [wi]i∈[N ] ∈ [0, 1]N since the detailed balanced equation (1.37) holds for all

i 6= j ∈ [N ] with (i, j) ∈ E.
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Recovering ranking for homogenous RUM. As mentioned in Section 1.3.2, we

wish to recover ranking or ordering of inherent utilities for homogenous random

utility model. That is, if u1 ≥ · · · ≥ uN , then the ranking of interest is identity,

i.e. σ ∈ SN such that σ(i) = i for all i ∈ [N ]. Recall that, in the homogenous

RUM random perturbation εi in (1.7) have identical distribution for all i ∈ [N ].

We shall assume that the distribution of the random perturbation is absolutely

continuous with respect to the Lebesgue measure on R. Operationally, for any

t1 < t2 ∈ R,

P
(
ε1 ∈ (t1, t2)

)
> 0. (1.38)

The following is the key characterization of homogenous RUM with (1.38) that

will enable recovery of ranking from marginal data (both comparison and first-

order); also see (Ammar & Shah 2011, Ammar & Shah 2012).

lemma 1.11 Consider homogenous RUM with property (1.38). Then, for i 6=
j ∈ [N ],

ui > uj ⇔ P
(
Yi > Yj

)
>

1

2
. (1.39)

Further, for any k 6= i, j ∈ [N ],

ui > uj ⇔ P
(
Yi > Yk

)
> P

(
Yj > Yk

)
. (1.40)

Proof. By definition,

P
(
Yi > Yj

)
= P

(
εi − εj > uj − ui

)
. (1.41)

Since εi, εj are independent and identically distribution with property (1.38),

their difference random variable εi−εj has 0 mean, symmetric and with property

(1.38). That is, 0 is its unique median as well. That is, for any t > 0,

P
(
εi − εj > t) = P

(
εi − εj < −t) <

1

2
. (1.42)

This concludes that

ui > uj ⇔ P
(
Yi > Yj

)
>

1

2
.

Similarly,

P
(
Yi > Yk

)
= P

(
εi − εk > uk − ui

)
, (1.43)

P
(
Yj > Yk

)
= P

(
εj − εk > uk − uj

)
. (1.44)

Now εi− εk and εj − εk are identically distributed with property (1.38). That is,

it has strictly monotonically increasing cumulative distribution function (CDF).

Therefore, (1.40) follows immediately.

Recovering ranking: comparison marginals. From (1.39) of Lemma 1.11, using

comparison marginals C(λ), we can recover ranking of [N ] that corresponds to
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the ranking of their inherent utility for generic homogenous RUM as follows. For

each i ∈ [N ], assign rank as

rank(i) = N −
∣∣∣{j ∈ [N ] : j 6= i, Cij >

1

2

}∣∣∣. (1.45)

From Lemma 1.11, it immediately follows that the rank provides the ranking of

[N ] as desired.

We also take a note that (1.40) of Lemma 1.11 suggests an alternative way

(which will turn out to be robust and more useful) to find the same ranking. To

that end, for each i ∈ [N ], define score as

score(i) =
1

N − 1

∑
k 6=i

Cik. (1.46)

From (1.40) of Lemma 1.11, it follows that for any i 6= j ∈ [N ],

score(i) > score(j)⇔ ui > uj . (1.47)

That is, by ordering [N ] in decreasing order of score values, we obtain the desired

ranking.

Recovering ranking: first-order marginals. We are given first-order marginal data

matrix, M = M(λ) ∈ [0, 1]N×N where the Mij represents P(σ(i) = j) under λ

for i, j ∈ [N ]. To recover ranking under generic homogenous RUM using M , we

shall introduce the notion of Borda count, cf. see (Emerson 2013). Precisely, for

any i ∈ [N ]

borda(i) = E[σ(i)] =
∑
j∈[N ]

P(σ(i) = j)j =
∑
j∈[N ]

jMij . (1.48)

That is, borda(i) can be computed using M for any i ∈ [N ]. Recall that, we

argued earlier that the score(·) (in decreasing order) provides desired order-

ing or ranking of [N ]. However, computing score required access to comparison

marginals C. And it’s not feasible to recover C from M .

On the other hand, intuitively it seems that borda (in increasing order) provides

ordering over [N ] that might be what we want. Next, we state a simple invariant

that ties score(i) and borda(i), which will lead to the conclusion that we can

recover desired ranking by sorting [N ] in increasing order of borda count (Ammar

& Shah 2011, Ammar & Shah 2012).

lemma 1.12 For any i ∈ [N ] and any distribution over permutations,

borda(i) + (N − 1)score(i) = N. (1.49)

Proof Consider any permutation σ ∈ SN . For any i ∈ [N ], σ(i) denotes the

position in [N ] that i is ranked to. That is, N − σ(i) is precisely the number of

elements in [N ] (and not equal to i) that are ranked below i. Formally,

N − σ(i) =
∑
j 6=i

1(σ(i) > σ(j)). (1.50)
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Taking expectation on both sides with respect to the underlying distribution

over permutations and re-arranging terms, we obtain

N = E[σ(i)] +
∑
j 6=i

P(σ(i) > σ(j)). (1.51)

Using definitions from (1.46) and (1.48), we have

N = borda(i) + (N − 1)score(i). (1.52)

This completes the proof.

1.5.2 Noisy marginals: finite samples

Now we consider setup where we have access to marginal distributions formed

based on empirical distribution of finite samples from the underlying distribution.

This can be viewed as access to “noisy” marginal distribution. Specifically, given

distribution λ, we observe D = P (λ) + η where P (λ) ∈ {M(λ), C(λ)} depending

upon the type of marginal information and η being noise such that ‖η‖2 ≤ δ,

with δ > 0 being small if we have access to enough samples. The δ represents

the error observed due to access to finitely many samples and is assumed to be

known.

As before, we wish to recover the parameters of the model when λ is MNL,

and we wish to recover ranking when λ is generic random utility model. We first

discuss recovery of MNL for both types of marginal information and then discuss

recovery of ranking for generic model.

Recovering MNL: first-order marginals. As discussed in Section 1.5.1, we can

recover parameters of MNL, w = [wi]i∈[N ], using the first row of first-order

marginal matrix, M = M(λ) by simply setting wi = M1i. Since we have access

to Mi1 + ηi1, a simple estimator is to set ŵi = M1i + η1i. Then, it follows that

‖ŵ −w‖2 = ‖η1·‖2 ≤ ‖η‖2 ≤ δ. (1.53)

That is, using the same algorithm for estimating parameter as in the case of

access to the exact marginals, we obtain an estimator which seem to have rea-

sonably good property.

Recovering MNL: comparison marginals. We shall utilize the noisy comparison

data to create a Markov chain as in Section 1.5.1. The stationary distribution

of this noisy or perturbed Markov chain, will be a good approximation of the

original Markov chain, i.e. the true MNL parameters. This will lead to a good

estimator of MNL model using noisy comparison data.

To that end, we have access to noisy comparison marginals Ĉ = C+η. To keep

things generic, we shall assume that we have access to comparison for subset of

pairs. Let E ⊂ {(i, j) : i 6= j ∈ [N ]} denote the subset of all possible
(
N
2

)
pairs

for which we have access to noisy comparison marginals and we shall assume
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that (i, j) ∈ E iff (j, i) ∈ E. Define di = |{j ∈ [N ] : j 6= i, (i, j) ∈ E} and

dmax = maxi di. Define noisy Markov chain with transition matrix Q̂ as

Q̂ij =


Ĉji

2dmax
if i 6= j, (i, j) ∈ E,

1− 1
2dmax

∑
j:(i,j)∈E Ĉji if i = j,

0, if (i, j) /∈ E.
(1.54)

We shall assume that E is such that the resulting Markov chain with transition

matrix Q̂ is irreducible; it is aperiodic since Q̂ii > 0 for all i ∈ [N ] by definition

(1.54). As before, it can be verified that this noisy Markov chain is reversible and

has unique stationary distribution that satisfies the detailed balanced condition.

Let π̂ denote this stationary distribution. The corresponding ideal Markov chain

has transition matrix Q defined as

Qij =


Cji

2dmax
if i 6= j, (i, j) ∈ E,

1− 1
2dmax

∑
j:(i,j)∈E Cji if i = j,

0, if (i, j) /∈ E.
(1.55)

It is reversible and has unique stationary distribution π = w. We want to bound

‖π̂ − π‖.
By definition of π̂ being stationary distribution of Q̂, we have that

π̂T Q̂ = π̂T . (1.56)

We can find π̂ using power-iteration algorithm. Precisely, let ν0 ∈ [0, 1]N be a

probability distribution as our initial guess. Iteratively, for iteration t ≥ 0

νTt+1 = νTt Q̂. (1.57)

We make the following claim, cf. (Negahban et al. 2012, Negahban et al. 2016).

lemma 1.13 For any t ≥ 1,

‖νt − π‖
‖π‖

≤
(
ρt
‖ν0 − π‖
‖π‖

+
1

1− ρ
‖∆‖2

)√πmax

πmin
. (1.58)

Here ∆ = Q̂−Q, πmax = maxi πi, πmin = mini πi; λmax(Q) be the second largest

(in norm) eigenvalue of Q; ρ = λmax(Q) + ‖∆‖2
√
πmax/πmin and it is assumed

that ρ < 1.

Before we provide the proof of this Lemma, let us consider its implications. It

is quantifying the robustness of the our approach for identifying the parameters

of MNL using comparison data. Specifically, since limt→∞ νt → π̂, (1.58) implies

‖π̂ − π‖
‖π‖

≤ 1

1− ρ
‖∆‖2

√
πmax

πmin
. (1.59)

Thus, the operator or spectral norm of perturbation matrix ∆ = Q̂ − Q deter-

mines the error in our ability to learn parameters using the above mentioned,
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Rank Centrality, algorithm. By definition

|Q̂ij −Qij | ≤


∣∣Ĉij−Cji

∣∣
2dmax

if i 6= j, (i, j) ∈ E,
1

2dmax

∣∣∑
j:(i,j)∈E(Ĉij − Cji)

∣∣ if i = j,

0 if (i, j) /∈ E.

(1.60)

Therefore, it follows that

‖∆‖2F =
∑
i,j

∆2
ij =

∑
i,j

(Q̂ij −Qij)2

=
1

4d2
max

∑
i6=j

(Ĉij − Cji)2 +
1

4d2
max

∑
i

∣∣ ∑
j:(i,j)∈E

(Ĉij − Cji)
∣∣2

≤ 1

4d2
max

∑
i,j

(Ĉij − Cji)2 +
1

4d2
max

∑
i

dmax

∑
j:(i,j)∈E

(Ĉij − Cji)2

≤ dmax + 1

4d2
max

∑
i,j

(Ĉij − Cji)2

=
dmax + 1

4d2
max

‖η‖2F ≤
1

2dmax
‖η‖2F , (1.61)

where η is the error in comparison marginals, i.e. η = Ĉ−C. Thus, if ‖η‖2F ≤ δ2,

then since ‖∆‖2 ≤ ‖∆‖F , we have that

‖π̂ − π‖
‖π‖

≤ 1

1− ρ
δ

2dmax

√
πmax

πmin
, (1.62)

with

|ρ− λmax(Q)| ≤ δ

2dmax

√
πmax/πmin. (1.63)

Therefore, if Q has a good spectral gap, i.e. 1−λmax(Q) is large enough, and δ is

small enough, then the estimate π̂ is a good proxy of π, the true parameters. The

precisely role of “graph structure” induced by observed entries, E, comes in play

in determining λmax(Q). This, along with implications on sample complexity

for random sampling model is discussed in details in (Negahban et al. 2012,

Negahban et al. 2016).

Proof of Lemma 1.13. Define inner product space induced by π. For any u, v ∈
RN , define inner product 〈·, ·〉π as

〈u, v〉π =
∑
i

uiviπi. (1.64)

This defines norm ‖u‖π =
√
〈u, u〉π for all u ∈ R. Let L2(π) denote the space of

all vectors with finite ‖ · ‖π norm endowed with inner product 〈·, ·〉π. Then, for
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any u, v ∈ L2(π)

〈u,Qv〉π =
∑
i

ui
(∑

j

Qijvj
)
πi

=
∑
i,j

uivjπiQij =
∑
i,j

uivjπjQji

=
∑
j

πjvj
(∑

i

Qjiui
)

= 〈Qu, v〉π. (1.65)

That is, Q is self-adjoint over L2(π). For a self-adjoint matrix Q over L2(π),

define norm

‖Q‖2,π = max
u

‖Qu‖π
‖u‖π

. (1.66)

It can be verified that for any u ∈ RN and Q,

√
πmin‖u‖2 ≤ ‖u‖π ≤

√
πmax‖u‖2 (1.67)√

πmin

πmax
‖Q‖2 ≤ ‖Q‖π ≤

√
πmax

πmin
‖Q‖2. (1.68)

Consider a symmetrized version of Q as S = Π
1
2QΠ−

1
2 , where Π±

1
2 is theN×N

diagonal matrix with ith entry on the diagonal being π
± 1

2
i . The symmetry of S

follows due to detailed balance property of Q, i.e. πiQij = πjQji for all i, j. Since

Q is probability transition matrix, by Perron-Frobenius theorem we have that

its eigenvalues are in [−1, 1] with top eigenvalue being 1 and unique. Let they be

1 = λ1 > λ2 ≥ . . . λN > −1. Let the corresponding (left) eigenvectors of Q be

v1, . . . , vN . By definition v1 = π. Therefore, ui = Π−
1
2 vi are (left) eigenvectors

of S with eigenvalue λi for 1 ≤ i ≤ N , since

uTi S = (Π−
1
2 vi)

TΠ
1
2QΠ−

1
2 = vTi QΠ−

1
2

= λiv
T
i Π−

1
2 = λi(Π

− 1
2 vi)

T = λiui. (1.69)

That is, u1 = π
1
2 or Π−

1
2u1 = 1. By singular value decomposition, we can write

S = S1 + S\1 where S1 = λ1u1u
T
1 and S\1 =

∑N
i=2 λiuiu

T
i . That is,

Q = Π−
1
2SΠ

1
2 = Π−

1
2S1Π

1
2 + Π−

1
2S\1Π

1
2 = 1πT + Π−

1
2S\1Π

1
2 . (1.70)

Recalling notation ∆ = Q̂−Q, we can write (1.57) as

νTt+1 − πT = νTt Q̂− πTQ = (νt − π)T (Q+ ∆) + πT∆

= (νt − π)T (1πT + Π−
1
2S\1Π

1
2 ) + (νt − π)T∆ + πT∆

= (νt − π)TΠ−
1
2S\1Π

1
2 + (νt − π)T∆ + πT∆, (1.71)

where we used the fact that (νt − π)T1 = 0 since both νt and π are probability

vector. Now, for any matrix M , ‖Π− 1
2MΠ

1
2 ‖π,2 = ‖M‖2. Therefore,

‖νTt+1 − πT ‖π,2 ≤ ‖νt − π‖π,2
(
‖S\1‖2 + ‖∆‖π,2

)
+ ‖πT∆‖π,2. (1.72)



28 Computing Choice

By definition ‖S\1‖2 = max
(
λ2, |λN |

)
= λmax(Q). Let γ =

(
λmax(Q)+‖∆‖π,2

)
.

Then

‖νTt − πT ‖π,2 ≤ γt‖ν0 − π‖π,2 +
( t−1∑
s=0

γs
)
‖πT∆‖π,2. (1.73)

Using bounds in (1.67)-(1.68), we have

γ ≤ λmax(Q) + ‖∆‖2
√
πmax

πmin
≡ ρ (1.74)

‖νTt − πT ‖2 ≤
1

√
πmin

‖νTt − πT ‖π,2 (1.75)

‖ν0 − π‖π,2 ≤
√
πmax‖ν0 − π‖2 (1.76)

‖πT∆‖π,2 ≤ ‖π‖2‖∆‖2
√
πmax. (1.77)

Therefore, we conclude

‖νTt − πT ‖
‖π‖

≤
[
ρt
‖ν0 − π‖
‖π‖

+
( t−1∑
s=0

ρs
)
‖∆‖2

]√πmax

πmin
. (1.78)

This completes the proof by bounding
∑t−1
s=0 ρ

s = 1−ρt
1−ρ ≤

1
1−ρ for ρ < 1.

Recovering ranking: comparison marginals. We will consider recovering ranking

from noisy comparison marginals, Ĉ = C+η using the scores as in (1.46) defined

using noisy marginals. That is, for i ∈ [N ] define

ŝcore(i) =
1

N − 1

∑
k 6=i

Ĉik. (1.79)

Then error in score for i is

error(i) = |ŝcore(i)− score(i)| =
1

N − 1

∣∣∣∑
k 6=i

Ĉik − Cik
∣∣∣

≤ 1

N − 1

∑
k 6=i

|Ĉik − Cik| ≤
1

N − 1
‖ηi·‖1, (1.80)

where ηi· = [ηik]k∈[N ]. Therefore, the relative order of any pair of i, j ∈ [N ] is

preserved under noisy score as long as

error(i) + error(j) < |score(i)− score(j)|. (1.81)

That is,

‖ηi·‖1 + ‖ηj·‖1 < (N − 1)|score(i)− score(j)|. (1.82)

In summary, (1.82) provides robustness property of ranking algorithm based on

noisy comparison to be able to recover true relative order for each pair of i, j;

and subsequently entire ranking.

Recovering ranking: first-order marginals. We consider using Borda count for
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finding ranking using noisy first-order marginals. Precisely, given noisy first-order

marginals M̂ = M + η, we define noisy Borda count for i ∈ [N ] as

b̂orda(i) =
∑
k∈[N ]

kM̂ik. (1.83)

Then, error in Borda count for i is

error(i) = |b̂orda(i)− borda(i)| ≤
∑
k∈[N ]

k|M̂ik −Mik|

=
∑
k∈[N ]

k|ηik| = bordaη
+

(i). (1.84)

That is, error(i) is like computing Borda count for i using η+ ≡ [|ηik|], which

we define as bordaη
+

(i). Then, the relative order of any pair i, j ∈ [N ] per noisy

Borda count is preserved if

bordaη
+

(i) + bordaη
+

(j) < |borda(i)− borda(j)|. (1.85)

In summary, (1.85) provides robustness property of ranking algorithm based on

noisy first-order marginal to be able to recover the relative order for a given pair

i, j; and subsequently for the entire ranking.

1.6 Discussion

We discussed learning distribution over permutations from marginal informa-

tion. In particular, we focussed on marginal information of two types: first-order

marginals, and pair-wise marginals. We discussed the conditions for recovering

distribution as well as ranking associated with the distribution under two model

classes: sparse models and random utility models (RUM). For all of these settings,

we discussed the settings where we had access to exact marginal information as

well as noisy marginals. There has been a lot of progress made, especially in the

past decade on this topic in various directions. Here, we point out some of the

prominent directions and provide associated references.

1.6.1 Beyond first-order and pair-wise marginals

To start with, learning distribution for different types of marginal information

has been discussed in (Jagabathula & Shah 2011) where authors discuss relation-

ship between the level of sparsity and the type of marginal information avail-

able. Specifically, through connecting marginal information with the spectral

representation of the permutation group, authors find that as the higher order

marginal information is made available, the distribution with larger support size

can be recovered with tantalizingly similar relationship between dimensionality

of the higher order information and the recoverability of support size just like

in the first-order marginal information. A reader is referred to (Jagabathula &



30 Computing Choice

Shah 2011) for more details and some of the open questions. We note that this

collection of results utilize the signature condition discussed in Section 1.4.1.

1.6.2 Learning MNL beyond Rank Centrality

The work in (Negahban et al. 2012, Negahban et al. 2016) for recovering param-

eters of MNL from noisy observations has led to exciting subsequent works in

the recent years. In particular, in (Hajek, Oh & Xu 2014) authors argue that the

Maximum Likelihood Estimation has similar performance as the Rank Centrality

that we discussed in Section 1.5.2. There has been work to find refined estima-

tion of parameters, for example, restricting to top few parameters, see (Chen &

Suh 2015, Chen, Fan, Ma & Wang 2017, Jang, Kim, Suh & Oh 2016). We also

note interesting algorithmic generalization of Rank Centrality that has been dis-

cussed in (Maystre & Grossglauser 2015) through connection to continuous time

representation of the reversible Markov chain considered in Rank Centrality.

1.6.3 Mixture of MNL

The RUM discussed in detail here has weakness that all options are param-

eterized by one parameter. This does not allow for heterogeneity in options in

terms of multiple “modes” of preferences or rankings. Putting it other way, RUM

captures a sliver of the space of all possible distributions over permutations. A

natural way to generalize such a model is to consider mixture of RUM models.

Specific instance is mixture of MNL models, which is known as Mixture MNL

or Mixed MNL model. It can be argued that such a mixed MNL can approxi-

mate any distribution over permutations with enough number of mixture com-

ponents. This is because we can approximate a distribution with unit mass on

a permutation by an MNL model by choosing parameters appropriately. There-

fore, it makes sense to understand when can we learn Mixed MNL model from

pair-wise ranking or more generally partial rankings. In (Ammar, Oh, Shah &

Voloch 2014), authors considered this question and effectively identified impos-

sibility result that suggests that pair-wise information is not sufficient to learn

mixtures in general. They provided lower bounds that related the number of

mixture components, number of choices (here N) and the length of partial rank-

ings observed. For separable mixture MNL model, they provide natural clustering

based solution for recovery. Such a recovery approach has been further refined

in the context of collaborative ranking (Oh, Thekumparampil & Xu 2015, Lu

& Negahban 2015) through use of convex optimization based methods and im-

posing “low-rank” structure on the model parameter matrix to enable recovery.

In another line of work, using higher moment information for separable mixture

model, (Oh & Shah 2014) provided a tensor decomposition based approach for

recovering the mixture MNL model.
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1.6.4 Matrix Estimation for De-noising Noisy Marginals

In a very different view, the first-order marginal and pair-wise marginal infor-

mation considered here can be viewed as matrix of observations with an under-

lying structure. Or more generally, we have access to noisy observation of an

underlying ground matrix with structure. The structure is implied by the un-

derlying distribution over permutation generating it. Therefore recovering exact

marginal information from noisy marginal information can be viewed as recover-

ing a matrix, with structure, based on its noisy and potentially partial view. In

(Chatterjee et al. 2015), this view was considered for de-noising pair-wise com-

parison marginal data. In (Chatterjee et al. 2015), it was argued that when the

ground-truth comparison marginal matrix satisfies certain stochastic transitiv-

ity condition, for example implied by MNL model, the true pair-wise marginal

matrix can be recovered from noisy, partial observations. This work has been

further studied in a sequence of recent works including (Shah, Balakrishnan,

Guntuboyina & Wainwright 2016, Shah, Balakrishnan & Wainwright 2016).

1.6.5 Active learning and noisy sorting

Active learning view to ranking using pair-wise comparisons with noisy obser-

vations has been well studied for a long time. For example, (Adler, Gemmell,

Harchol-Balter, Karp & Kenyon 1994) considered design of “tournament” in

presence noisy pair-wise outcomes in the adaptive settings assuming the noisy

comparisons satisfied the MNL model. When there is “geometry” imposed on

the space of preferences, very efficient adaptive algorithms can be designed for

searching using comparisons, for example (Jamieson & Nowak 2011, Karbasi,

Ioannidis & Massoulié 2015). Another associated line of works is that of noisy

sorting. For example, see (Braverman & Mossel 2008).

It is worth noting that the variation of online learning in the context of

“bandit” setting is known as “dueling bandits” wherein comparisons between

pair of arms is provided and one is to use this to find the top arm. This,

again can be viewed as finding top element from pair-wise comparisons in an

online setting with the goal to minimize “regret”. For example, see (Yue &

Joachims 2009, Jamieson, Katariya, Deshpande & Nowak 2015, Dudk, Hofmann,

Schapire, Slivkins & Zoghi 2015).

In our view, dueling bandit modeled using distribution over permutations, i.e.

the outcome of pair-wise comparisons of arms are consistent with underlying dis-

tribution over permutations, provides an exciting direction for making progress

towards online matrix estimation.

1.6.6 And it continues...

There is a lot more that is tangentially related to this topic. For example, the

question related to ranking or selecting winner in an election is fundamental
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to so many disciplines and each (sub-)discipline brings different perspective to

the question that makes this topic rich and exciting. The statistical challenges

related to learning the distribution over permutations is very recent as clear

from exposition provided here. The scale and complexity of the distribution

over permutations (N ! for N options) makes it challenging from computational

view point and thus providing a fertile ground for emerging interaction between

statistics and computation. The rich group structure embedded within permu-

tation group makes it an exciting arena for development of algebraic statistics,

cf. (Kondor, Howard & Jebara 2007).

The statistical philosophy of max-entropy model learning leads to learning

parametric distribution from an exponential family. This brings in rich connec-

tions to the recent advances in learning and inference on graphical models. For

example, fitting such a model using first-order marginals boils down to comput-

ing partition function over the space of matchings or permutations; which can be

computationally efficiently solved due to somewhat recent progress in computing

permanent (Jerrum, Sinclair & Vigoda 2004). In contrast, learning such a model

efficiently in the context of pair-wise marginal is not easy due to connection to

feedback arc set problem.

We make note of an interesting connection: a mode computation heuristic

based on maximum weight matching in bipartite graph using first-order marginal

turns out to be a “first-order” approximation of the mode of such a distribu-

tion, see (Ammar & Shah 2012). On the other hand, using pair-wise comparison

marginals, there is a large number of heuristics to compute ranking including the

Rank Centrality algorithm discussed in detail or more generally variety of spec-

tral methods considered for ranking including (Saaty & Hu 1998, Dwork, Kumar,

Naor & Sivakumar 2001), and more recently (Rajkumar & Agarwal 2014, Azari,

Parks & Xia 2012).

And this exciting list of work continues to grow even as author completes these

final keystrokes and as you get inspired to immerse yourselves in this

fascinating topic of Computing Choice.
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