Journal of Computer Security 0 (2019) 1-0 1
I0OS Press

PILOT: Password and PIN Information
Leakage from Obfuscated Typing Videos *

Kiran Balagani ®!, Matteo Cardaioli ®¢, Mauro Conti °,
Paolo Gasti #, Martin Georgiev ©?, Tristan Gurtler **, Daniele Lain ®*, Charissa Miller &,
Kendall Molas ?, Nikita Samarin %, Eugen Saraci®, Gene Tsudik ¢, and Lynn Wu &’

4 New York Institute of Technology
b University of Padua

¢ University of California, Irvine

4 GFT Italy

Abstract. This paper studies leakage of user passwords and PINs based on observations of typing feedback on screens or from
projectors in the form of masked characters (x or @) that indicate keystrokes. To this end, we developed an attack called Password
and Pin Information Leakage from Obfuscated Typing Videos (PILOT). Our attack extracts inter-keystroke timing information
from videos of password masking characters displayed when users type their password on a computer, or their PIN at an ATM.
We conducted several experiments in various attack scenarios. Results indicate that, while in some cases leakage is minor, it
is quite substantial in others. By leveraging inter-keystroke timings, PILOT recovers 8-character alphanumeric passwords in
as little as 19 attempts. When guessing PINs, PILOT significantly improved on both random guessing and the attack strategy
adopted in our prior work [4]. In particular, we were able to guess about 3% of the PINs within 10 attempts. This corresponds
to a 26-fold improvement compared to random guessing. Our results strongly indicate that secure password masking GUIs must
consider the information leakage identified in this paper.

Keywords: Authentication, Information leakage, Shoulder-surfing attacks, PIN inference, Password inference

1. Introduction

Passwords and PINs are susceptible to shoulder surfing attacks [26] of which there are two main
types: (1) input-based and (2) output-based. The former is more common; in it, the adversary observes an
input device (keyboard or keypad) as the user enters a secret (password or PIN) and learns the key-presses.
The latter involves the adversary observing an output device (screen or projector) while the user enters
a secret which is displayed in cleartext. The principal distinction between the two types is the adversary’s

“Submitted to the ESORICS 2018 special issue.

! Authors are listed in alphabetical order.

2Current affiliation: University of Oxford.

3Current affiliation: University of Illinois at Urbana-Champaign.
4Current affiliation: ETH Zurich.

>Current affiliation: Rochester Institute of Technology.

SCurrent affiliation: University of California, Berkeley.

"Current affiliation: Bryn Mawr College.

0926-227X/19/$35.00 (©) 2019 — 1I0S Press and the authors. All rights reserved

2 K. Balagani et al. / PILOT: Password and Pin Information Leakage from Obfuscated Typing Videos

proximity: observing input devices requires the adversary to be closer to the victim than observing output
devices, which tend to have larger form factors, i.e., physical dimensions.

Completely disabling on-screen feedback during password/PIN entry (as in, e.g., the Unix sudo
command) mitigates output-based shoulder-surfing attacks. Unfortunately, it also impacts usability: when
deprived of visual feedback, users cannot determine whether a given key-press was registered and are
thus more likely to make mistakes. In order to balance security and usability, user interfaces typically
implement password masking by displaying a generic symbol (e.g., “®” or “x”) after each keystroke. This
technique is commonly used on desktops, laptops and smartphones as well as on public devices, such
as Automated Teller Machines (ATMs) or Point-of-Sale (PoS) terminals at shops or gas stations.

Despite the popularity of password masking, little has been done to quantify how visual keystroke
feedback impacts security. In particular, masking assumes that showing generic symbols does not re-
veal any information about the corresponding secret. This assumption seems reasonable, since visual
representation of a generic symbol is independent of the key-press. However, in this paper we show
that this assumption is incorrect. By leveraging precise inter-keystroke timing information leaked by
the appearance of each masking symbol, we show that the adversary can significantly narrow down the
password/PIN’s search space. Put another way, the number of attempts required to brute-force decreases
appreciably when the adversary has access to inter-keystroke timing information.

There are many realistic settings where visual inter-keystroke timing information (leaked via appear-
ance of masking symbols) is readily available while the input information is not, i.e., the input device
is not easily observable. For example, in a typical lecture or classroom scenario, the presenter’s keyboard
is usually out of sight, while the external projector display is wide-open for recording. Similarly, in a
multi-person office scenario, an adversarial co-worker can surreptitiously record the victim’s screen. The
same holds in public scenarios, such as PoS terminals and ATMs, where displays (though smaller) tend
to be easier to observe and record than entry keypads.

In this paper we consider two representative scenarios: (1) a presenter enters a password into a computer
connected to an external projector; (2) a user enters a PIN at an ATM in a public location. The adversary
is assumed to record keystroke feedback from the projector display or an ATM screen using a dedicated
video camera or a smartphone. We note that a human adversary does not need to be present during the
attack: recording might be done via an existing camera either pre-installed or pre-compromised by the
adversary, possibly remotely, e.g., as in the infamous Mirai botnet [17].

Contributions. The main goal of this paper is to quantify the amount of information leaked through
video recordings of on-screen keystroke feedback. To this end, we conducted extensive data collection
experiments that involved 84 subjects.! Each subject was asked to type passwords or PINs while the
screen or projector was video-recorded using either a commodity video camera and a smartphone camera.
Based on this, we determined the key statistical properties of the resulting data, and set up an attack called
PILOT: Password and Pin Information Leakage from Obfuscated Typing Videos. It allows us to quantify
reduction in brute-force search space due to timing information. PILOT leverages multiple publicly
available typing datasets to extract population timings, and applies this information to inter-keystroke
timings extracted from videos.

Our results show that video recordings can be effective in extracting precise inter-keystroke timing
information. Experiments show that PILOT substantially reduces the search space for each password,
even when the adversary has no access to user-specific keystroke templates. When run on passwords,

'Where required, IRB approvals were duly obtained prior to the experiments.

K. Balagani et al. / PILOT: Password and Pin Information Leakage from Obfuscated Typing Videos 3

PILOT performed better than random guessing between 87% and 100% of the time, depending on the
password and the machine learning technique used to instantiate the attack. The resulting average speedup
is between 25% and 385% (depending on the password), compared to random dictionary-based guessing;
some passwords were correctly guessed in as few as 68 attempts. A single password timing disclosure
is enough for PILOT to successfully achieve these results. However, when the adversary observes the
user entering the password three times, PILOT can crack the password in as few as 19 attempts. Clearly,
PILOT ’s capabilities depend in part on the strength of a specific password. With very common passwords,
benefits of PILOT are limited. Meanwhile, we show that PILOT substantially outperforms random guessing
with less common passwords. With PINs, disclosure of timing poses an effective risk. The PIN guessing
algorithm can reduce the number of attempts by up to 26 times compared to random guessing.

Paper Organization. Section 2 reviews the state-of-the-art in password guessing based on timing at-
tacks. Section 3 presents PILOT and the adversary model. Section 4 discusses our data collection and
experiments. We then present the results on password guessing using P/LOT in Section 5, and on PIN
guessing in Section 6. The paper concludes with the summary and future work directions in Section 7.

2. Related Work

There is a large body of prior work on timing attacks in the context of keyboard-based password
entry. Song et al. [24] demonstrated a weakness that allows the adversary to extract information about
passwords typed during SSH sessions. The attack relies on the fact that, to minimize latency, SSH
transmits each keystroke immediately after entry, in a separate IP packet. By eavesdropping on such
packets, the adversary can collect accurate inter-keystroke timing information. Song et al. [24] showed
that this information can be used to restrict the search space of passwords. The impact of this work is
significant, because it shows the power of timing attacks on cracking passwords.

There are several studies of keystroke inference from analysis of video recordings. Balzarotti et al. [5]
addressed the typical shoulder-surfing scenario, where a camera tracks hand and finger movements on the
keyboard. Text was automatically reconstructed from resulting videos. Similarly, Xu et al. [33] recorded
user’s finger movements on mobile devices to infer keystroke information. Unfortunately, neither attack
applies to our sample scenarios, where the keyboard is invisible to the adversary.

Shukla et al. [23] showed that text can be inferred even from videos where the keyboard/keypad is
not visible. This attack involved analyzing video recordings of the back of the user’s hand holding a
smartphone in order to infer which location on the screen is tapped. By observing the motion of the
user’s hand, the path of the finger across the screen can be reconstructed, which yields the typed text. In a
similar attack, Sun et al. [25] successfully reconstructed text typed on tablets by recording and analyzing
the tablet’s movements, rather than movements of the user’s hands.

The closest work to the paper is our prior work [4], in which we show that passwords can be inferred at
a higher probability than random guesses using the timing information from onscreen keystroke feedback.
However, in [4] we concluded that the timing information is not helpful in inferring PINs. In this paper,
we revisit our earlier conclusion on inferring PINs and show that it is incorrect. In fact, the attack strategy
employed in this paper yielded a 26-fold improvement in inferring PINs over random guesses and
significantly outperforms [4] in terms of number of PINs recovered within a small number of attempts.

Another line of work aimed to quantify keystroke information inadvertently leaked by motion sensors.
Owusu et al. [19] studied this in the context of a smartphone’s inertial sensors while the user types using

4 K. Balagani et al. / PILOT: Password and Pin Information Leakage from Obfuscated Typing Videos

the on-screen keyboard. The application used to implement this attack does not require special privileges,
since modern smartphone operating systems do not require explicit authorization to access inertial sensors
data. Similarly, Wang et al. [30] explored keystroke information leakage from inertial sensors on wearable
devices, e.g., smartwatches and fitness trackers. By estimating the motion of a wearable device placed on
the wrist of the user, movements of the user’s hand over a keyboard can be inferred. This allows learning
which keys were pressed during the hand’s path. Compared to our work, both [19] and [30] require a
substantially higher level of access to the user’s device. To collect data from inertial sensors the adversary
must have previously succeeded in deceiving the user into installing a malicious application, or otherwise
compromised the user’s device. In contrast, PILOT is a fully passive attack.

Acoustic emanations represent another effective side-channel for keystroke inference. This class of
attacks is based on the observation that different keyboard keys emit subtly different sounds when pressed.
This information can be captured (1) locally, using microphones placed near the keyboard [3, 35], or (2)
remotely, via Voice-over-IP [10]. Also, acoustic emanations captured using multiple microphones can
be used to extract the locations of keys on a keyboard. As shown by Zhou et al. [34], recordings from
multiple microphones can be used to accurately quantify the time difference of arrival (TDoA), and thus
triangulate the positions of pressed keys.

3. System and Adversary Model

We now present the system and adversary model used in the rest of the paper.

We model a user logging in (authenticating) to a computer system or an ATM using a PIN or a password
(secret) entered via a keyboard or keypad (input device). The user receives immediate feedback about
each key-press from a screen, a projector, or both (output device) in the form of dots or asterisks (masking
symbols). The shape and/or location of each masking symbol does not depend on which key is pressed.
The adversary can observe and record the output device(s), though not the input device or the user’s
hands. An example of this scenario is shown in Figure 1. The adversary’s goal is to learn the user’s secret.

The envisaged attack setting is representative of many real-world scenarios that involve low-privilege
adversaries, including:

(1) A presenter in a lecture or conference who types a password while the screen is displayed on
a projector. The entire audience can see the timing of appearance of masking symbols, and the
adversary can be anyone in the audience.

(2) An ATM customer typing a PIN. The adversary who stands in line behind the user might have an
unobstructed view of the screen, and the timing of appearance of masking symbols (see Figure 2).

(3) A customer enters her debit card PIN at a self-service gas-station pump. In this case, the adversary
can be anyone in the surroundings with a clear view of the pump’s screen.

Although these scenarios seem to imply that adversary is located near the user, proximity is not a
requirement for our attack. For instance, the adversary could watch a prior recording of the lecture in
scenario (1); or, could be monitoring the ATM machine using a CCTV camera in (2); or, remotely view
the screen in (3) through a compromised IoT camera.

Also, we assume that, in many cases, the attack involves multiple observations. For example, in sce-
nario (1), the adversary could observe the presenter during multiple talks, without the presenter changing
passwords between talks. Similarly, in scenario (2), customers often return to the same ATM.

K. Balagani et al. / PILOT: Password and Pin Information Leakage from Obfuscated Typing Videos 5

Fig. 2. Attack example — ATM setting. (a) Adversary’s

Fig. 1. Example attack scenario. perspective. (b) Outsider’s perspective.
4. Overview and Data Collection

We assume that the adversary can capture only inter-keystroke timings leaked by the output device
while the user types a secret. The goal is to analyze differences between the distribution of inter-keystroke
timings and infer corresponding keypairs. This data is used to identify the passwords that are most
likely to be correct, thus restricting the brute-force search space of the secret. To accurately extract
inter-keystroke timing information, we analyze video feeds of masking symbols, and identify the frame
where each masking symbol first appears. In this setting, the accuracy and resolution of inter-keystroke
timings depends on two key factors: the refresh frequency of the output device, and the frame rate of the
video camera. Inter-keystroke timings are then fed to a classifier, where classes of interest are keypairs.
Since we assume that the adversary has no access to user-specific keystroke information, the classifier
is trained on population data, rather than on user-specific timings.

In the rest of this section, we detail the data collection process. We collected password data from two
types of output devices: a VGA-based external projector, and LCD screens of several laptop computers.
See Section 4.1 for details of these devices and corresponding procedures. For PIN data, we video-
recorded the screen of a simulated ATM. Details can be found in Section 4.2. The dataset is published
at https://lamp.soecs.nyit.edu/datasets/silk-tv/

4.1. Passwords

We collected data using an EPSON EMP-765 projector, and using the LCD screens of the subjects’
laptops computers. In the projector setting, we asked the subjects to connect their own laptop so they
would be using a familiar keyboard. The refresh rate of both laptop and projector screens were set to 60
Hz — the default setting for most systems. This setting introduces quantization errors of up to about 1/60
s ~ 16.7 ms. Thus, events happening within the same refresh window of 16.7ms are indistinguishable.
We recorded videos of the screen and the projector using the rear-facing camera of two smartphones:
a Samsung Galaxy S5 and an iPhone 7 Plus. With both phones, we recorded videos at 120 frames per
second, i.e., 1 frame every 8.3 ms. To ease data collection, we placed the smartphones on a tripod. When
recording the projector, the tripod was placed on a table, filming from a height of about 165 cm, to be
horizontally aligned with respect to the projected image. When recording laptop screens, we placed the
smartphone above and to the side of the subject, in order to mimic the adversary sitting behind the subject.

All experiments took place indoors, in labs and lecture halls at the authors’ institutions. We recruited
a total of 62 subjects, primarily from the student population of two large universities. Most participants

6 K. Balagani et al. / PILOT: Password and Pin Information Leakage from Obfuscated Typing Videos

were males in their 20s, with a technical background and good typing skills. We briefed each subject
on the nature of the experiment, and asked them to type four alphanumerical passwords: “jil11ie02”,
“williaml”, “123brian”, and “lamondre”.We selected these passwords uniformly at random from
the RockYou dataset [1] in order to simulate realistic passwords. The subjects typed each password
three times, while our data collection software recorded ground-truth keystroke timings of correctly
typed passwords with millisecond accuracy. Timings from passwords that were typed incorrectly were
discarded, and subjects were prompted to re-type the password whenever a mistake was made. The typing
procedure lasted between 1 and 2 minutes, depending on the subject’s typing skills. All subjects typed
with the “touch typing” technique, i.e., using fingers from both hands.

4.2. PINs

We recorded subjects entering 4-digit PINs on a simulated ATM, shown in Figure 3. Our dataset was
based on experiments with 22 participants; 19 subjects completed three data collection sessions, while 4
subjects completed only one session, resulting in a total of 61 sessions. At the beginning of each session,
the subject was given 45 seconds to get accustomed with the keypad of the ATM simulator. During this
time, they were free to type as they pleased. Next, a subject was shown a PIN on the screen for ten
seconds (Figure 4a), and, once it disappeared from the screen, asked to enter it four times (Figure 4b).
Subjects were advised not to read the PINs out loud. This process was repeated for 15 consecutive PINs.
During each session, subjects were presented with the same 15-PIN sequence 3 times. Subjects were
given a 30-second break at the end of each sequence.

Videocamera

Simulated ATM

Laptop running
ATM simulator

Fig. 4. ATM Simulator during a data collection session.
(a) The simulator displays the next PIN. (b) A subject

. . . . types the PIN from memory.
Fig. 3. Setup used in PIN inference experiments.

Specific 4-digit PINs were selected to test whether: (1) inter-keypress time is proportional to Euclidean
Distance between keys on the keypad; and (2) the direction of movement (up, down, left, or right) between
consecutive keys in a keypair impacts the corresponding inter-key time. We show an example of these two
situations on the ATM keypad in Figure 5. We chose a set of PINs that allowed collection of a significant
number of key combinations appropriate for testing both hypotheses. For instance, PIN 3179 tested
horizontal and vertical distance two, while 1112 tested distance 0 and horizontal distance 1.

K. Balagani et al. / PILOT: Password and Pin Information Leakage from Obfuscated Typing Videos 7

Sessions were recorded using a Sony FDR-AXS53 camera, at a pixel resolution of 1,920x 1,080 pixels,
and 120 frames per second. At the same time, ATM simulation software collected millisecond-accurate
inter-key distance ground truth by logging each keypress. PIN feedback was shown on a DELL 17" LCD
screen with a refresh rate of 60 Hz, which resulted in each frame being shown for 16.7 ms.

4.3. Timing Extraction from Video

We developed software that analyzes video recordings to automatically detect the appearance of mask-
ing symbols and log corresponding timestamps. This software uses OpenCV [20] to infer the number
of symbols present in each image. All frames are first converted to grayscale, and then processed through
a bilateral filter [28] to reduce noise arising from the camera’s sensor. The resulting images are analyzed
using Canny Edge detection [11] to capture the edges of the masking symbol. External contours are
compared with the expected shape of the masking symbol. When a masking symbol is detected, software
logs the corresponding frame number.

Our experiments show that this technique leads to fairly accurate inter-keystroke timing information. We
observed average discrepancy of 8.7 ms (stdev of 26.6 ms) between the inter-keystroke timings extracted
from the video and ground truth recorded by the ATM simulator. Furthermore, 75% of inter-keystroke
timings extracted by the software had errors under 10 ms, and 97% had errors under 20 ms. Similar
statistics hold for data recorded on keyboards for the passwords setting. Figure 6 shows the distribution
of error discrepancies.

5. Password Guessing

PILOT treats identifying digraphs from keystroke timings as a multi-class classification problem, where
each class represents one digraph, and input to the classifier is a set of inter-keystroke times. Without loss
of generality, in this section, we assume that the user’s password is a sequence of lowercase alphanumeric
characters typed on a keyboard with a standard layout.

To reconstruct passwords, we compared two classifiers: Random Forest (RF) [16] and Neural Networks
(NN) [22]. RF is a well-known classification technique that performs well for authentication based on

1.0

otz 3 & (T2 3) (=]
Heee| [eees
LELE L
HUUE BEUE

(b)

Fig. 5. ATM keypad in our experiments. (a) To type keypairs
1-2 and 1-4, the typing finger travels the same distance in
different directions. (b) Keypairs 1-2 and 1-3 require the
typing finger to travel different distances in the same direction.

Frequency of occurrences

—— ATM keypad data
----- Keyboard data

0.0

0 20 40 60 80
Inter-key timing extraction error (ms)

Fig. 6. CDF showing error distribution of inter-keystroke
timings extracted from videos.

8 K. Balagani et al. / PILOT: Password and Pin Information Leakage from Obfuscated Typing Videos

keystroke timings [7]. Input to RF is one inter-keystroke timing, and its output is a list of N digraphs
ranked based on the probability of corresponding to input timing. NN is a more complex architecture
designed to automatically determine and extract complex features from the input distribution. In our
experiments, the input to NN is a list of inter-keystroke timings corresponding to a password. This enables
NN to extract features, such as arbitrary n-grams, or timings corresponding to non-consecutive characters.
NN’s output is a guess for the entire password.
We instantiated NN using the following parameters:
e number of units in the hidden layer — 128 (with ReL.U activation functions);
e inclusion probability of the dropout layer — 0.2;
e number of input neurons — 25;
e number of output layers — 25 which represents one character in one-hot encoding. Output layers
use softmax activation function;
e training was performed using batch sizes of 40 and 100 epochs. We used the Adam optimizer with
a learning rate of 0.001.

Classifier Training. We trained P/LOT on three public datasets [6, 21, 29] that contain keystroke timing
information collected from English free-text. Using these datasets for training, we modeled an attack that
relies exclusively on population data. Without loss of generality, we filtered the datasets to remove all tim-
ings that do not correspond to digraphs composed of alphanumeric lowercase characters. This is motivated
by the datasets’ limited availability of digraph samples that contain special characters. In practice, the ad-
versary could collect these timings using, for instance, crowdsourcing tools such as Amazon Mechanical
Turk. To take care of uneven frequencies of digraphs, we under-represented the most frequent digraphs
in the dataset. Data in public datasets was often gathered from free-text typing of volunteers. Therefore,
more frequent digraphs in English were represented more than rarer ones. For example, considering
lamondre, digraph re appears 43,606 times in the population dataset, while am has only 6,841. Sim-
ilarly, in 123brian, digraph ri occurs 19,782 times, while 3b has only 138 occurences. We therefore
under-sampled each digraph appearing more than 1,000 times to 1,000 randomly selected occurrences.
Similarly, we excluded infrequent digraphs that appeared under 100 times in the whole dataset.

5.1. Attack Process.

To infer the user’s secret from inter-keystroke timings, PILOT leverages a dictionary of passwords (e.g.,
a list of passwords leaked by online services [1, 2, 12, 27]), possibly expanded using techniques such
as probabilistic context-free grammars [32] and generative adversarial networks [15]. When evaluating
PILOT, we assume that the user’s secret is in the dictionary. In practice, this is often the case, as many
users use the same weak passwords (e.g., only 36% of the password of RockYou is unique [18]), and reuse
them across many different services [14, 31]. Given that the size of a reasonable password dictionary
is on the order of billions of entries,? the goal of PILOT is to narrow down the possible passwords to a
small(er) list, e.g., to perform online attacks. This list is then ranked by the probability associated with
each entry, computed from inter-keystroke timing data.

2See for example the lists maintained by https://haveibeenpwned.com/.

K. Balagani et al. / PILOT: Password and Pin Information Leakage from Obfuscated Typing Videos 9
Specifically:

(1) Using RE, for each inter-key time extracted from video (corresponding to a digraph), PILOT returns

a list of N possible guesses, sorted by the classifier’s confidence. Next, PILOT ranks the passwords
in the dictionary by resulting probabilities as follows: for each password, PILOT identifies the
position in the ranked list of predictions for the first digraph of the password being guessed, and
assigns that position as a “penalty” to the password. By performing these steps for each digraph,
PILOT obtains a total penalty score for each password, i.e., a score that indicates the probability
of the password given the output of the RF.
For example, to rank the password jil1lie02, PILOT first considers the digraph ji, and the list of
predictions of RF for the first digraph. It notes that ji appears in such list as the X-th most probable;
therefore, it assigns X as the penalty for ji11ie02. Then, it considers i1, which appears in Y-th
position in the list of predictions for the second digraph. The penalty for ji11ie02 is thus updated
to X + Y. This operation is repeated for all the 7 digraphs, thus obtaining the final penalty score.

(2) Using NN, PILOT computes a list of N possible guesses, sorted by the classifier’s confidence of
each guess. In this case, the PILOT processes the entire list of flight times at once, rather than
refining its guess with each digraph.

We considered the following attack settings: single-shot, and multiple recordings. With the former, the
adversary trains PILOT with inter-keystroke timings from population data, i.e., from users other than the
target, e.g., from publicly available datasets, or by recruiting users and asking them to type passwords.
In this scenario, the adversary has access to the video recording of a single password entry session.
With multiple recordings, the adversary trains PILOT as before, and additionally, has access to videos
of multiple login instances by the same user.

Training PILOT exclusively with population data leads to more realistic attack scenarios than training
it with user-specific data, because usually the adversary has limited access to keystrokes samples from
the target user. Further, access to user-specific data will likely improve the success rate of PILOT.

5.2. Results

In this section, we report on PILOT efficacy in reducing search time on the RockYou [1] password
dataset compared to random choice, weighted by probability. We restricted experiments to the subset
of 8-character passwords from RockYou, since the adversary can always determine password length by
counting the number of masking symbols shown on the screen. This resulted in 6,514,177 passwords,
of which 2,967,116 were unique.

Attack Baseline. To establish the attack baseline, we consider an adversary that outputs password guesses
from a leaked dataset in descending order of frequency. (Ties are broken using random selection from
the candidate passwords.) Because password probabilities are far from uniform (e.g., in RockYou, the top
200 8-character passwords account for over 10% of the entire dataset), this is the best adversarial strategy
given no additional information on the target user.

Passwords selected for our evaluation represent a mix of common and rare passwords. Thus, they have
widely varying frequencies of occurrence in RockYou and the expected number of attempts needed to
guess each password using the baseline attack varies significantly. For example, the expected number
of attempts for:

e 123brian (appears 6 times) is 93,874;

10 K. Balagani et al. / PILOT: Password and Pin Information Leakage from Obfuscated Typing Videos

L —
801
e
g
()
>
S 60
v
(2]
_E
S 401
=
&
(g
o
201
; —— PILOT - RF
)
JL e PILOT - NN
0 500000 1000000 1500000 2000000 2500000

Number of guesses

Fig. 7. CDF of the amount of passwords recovered by PILOT—Population Data attack scenario.

e jillieO02 (appears only once) is 1,753,571;
e lamondre (appears twice) is 397,213;
e williaml (appears 1,164 times) is only 187.

Single-shot. Results in the single-shot setting are summarized in Table 1. The cumulative Distribution
Function (CDF) of successfully recovered passwords is reflected in Figure 7, and the breakdown of results
(by target password) is shown in Figure 8.

Results show that, for uncommon passwords (ji11ie02 and 1amondre), PILOT consistently outper-
forms random guessing. In particular, for 71111ie02 both RF and NN greatly exceed random guessing,
since both their curves in Figure 8 are above the random guess baseline. For 1amondre, RF shows an
advantage over random guess in 76% of the instances, while NN never beats the baseline.

For common passwords, sorted random guess wins over PILOT. In particular, 123brian is both
popular (i.e., the 93,874-th most popular password of the set, corresponding to the top 3% of the RockYou
dataset) and very hard to recover with PILOT. This can be observed from Figure 8, where the curves cor-
responding to 123brian are least steep. Finally, williaml, being the 187-th most popular password,
is always recovered early in our baseline attack, with the notable exception of one instance by RF.

In general, PILOT wins over the sorted random guess on infrequent passwords, such as j111ie02
and lamondre, that appear only once or twice, respectively. Such infrequent passwords exhibit the
same random guess baseline curve and average, reported in Table 1 and shown in Figure 8. Given the
similar steepness of CDF curves in Figure 8, which hint that PILOT ’s performance might be similar for
many other passwords, PILOT can probably outperform the baseline for uncommon passwords. We also
note that uncommon passwords represent the vast majority of user-chosen passwords: 90% of RockYou
passwords appear at most twice, and 80% exactly once. We expect that a realistic adversary would first
generate password guesses based on their frequency alone (as in our baseline attack), and then switch
to PILOT once these frequencies drop below some threshold.

Finally, we highlight that random guess baseline is computed on the distribution of passwords in
RockYou. Other datasets might have different distributions: for example, in the /0 million password list

K. Balagani et al. / PILOT: Password and Pin Information Leakage from Obfuscated Typing Videos 11

Table 1

PILOT—Single-shot setting. Avg: average number of attempts to guess a password; Stdev: standard deviation; Rnd: number
of guesses for the baseline adversary; <Rnd: how often PILOT outperforms random guessing; Best: number of attempts of
the best guess; < n: how many passwords are successfully guessed within first n = 20,000/100,000 attempts.

Avg Stdev Med Rnd <Rnd Best <20k <100k

Random Forest

123brian 581,743 414,761 508,332 93,874 8.7% 5,535 1.1% 9.3%
jillieO2 749,718 448,319 656,754 1,753,571 97.8% 28,962 0.0% 2.7%
lamondre 301,906 334,681 199,344 397,213 75.0% 145 13.0% 33.7%
williaml 246,437 264,090 145,966 187 0.5% 68 10.9% 39.9%

Neural Network

123brian 923,534 165,454 886,802 93,874 0.0% 577,139 0.0% 0.0%
jillie02 456,811 210,512 383,230 1,753,571 100.0% 164,754 0.0% 0.0%
lamondre 517,472 189,355 493,713 397,213 28.8% 148,403 0.0% 0.0%
williaml 265,813 140,753 215,840 187 0.0% 45,176 0.0% 3.8%

dataset [9], 111ie02, lamondre, and 123brian appear only once, while williaml appears 176
times.

We believe that the discrepancy between the performance of PILOT on various passwords is due
to how frequently the digraphs in each password appear in training data. Specifically, even with our
under-representation, all digraphs in williaml, with the exception of m1, are far more frequent in the
training data than 12, 23, 3b, or 02.

Regarding specific classifiers, RF overtakes NN in most instances. For example, when guessing
123brian (Figure 8a), NN performs worse than random guessing for the first 800,000 attempts. Af-
terwards, NN outperforms both random guessing and RF. Furthermore, while RF can guess a substantial
percentage of passwords within 20,000, 50,000 and 100,000 attempts, NN cannot achieve the same result.

In terms of minimum number of guesses per password, RF recovered williaml in 68, lamondre
in 145, 123brian in 5,535, and ji11ie02 in 28,962 attempts. NN required a consistently higher
minimum number of attempts for each password.

Multiple Recordings. Information from three login instances was used as follows. We averaged clas-
sifiers’ predictions over three login instances for a given user, and ranked passwords accordingly.

The results are summarized in Table 2 and Figure 9. Although PILOT still consistently outperforms
random guessing, using data from multiple authentication recordings leads to mostly identical results
overall with both RF and NN. PILOT ’s guessing success rate for 123brianand jillie02 is slightly
improved compared to the previous setting and minimum number of attempts to recover each password
diminished slightly. We recovered williaml in 19, lamondre in 404, 123brian in 13,931, and
jillie02 in 67,875 attempts. Overall, the results show that there are no substantial benefits in using
timing data from three recordings from the same user.

12 K. Balagani et al. / PILOT: Password and Pin Information Leakage from Obfuscated Typing Videos

100 [y 1004 =000 pmeememmmmmmmmooeoooooooo
i
|
804 | 80
el . o
[| o
> [>
3 601 I S 601
L i 1]
%) | %)
S 40{ | S 401
2 I H
wn 1 wn
T I T
o o0 i —— PILOT - RF a o0 —— PILOT - RF
i/ e PILOT - NN 0 PILOT - NN
,." —-—:- Baseline il ——-- Baseline
0] Lo 0 :
0 500000 1000000 1500000 2000000 2500000 0 500000 1000000 1500000 2000000 2500000
Number of guesses Number of guesses
(a) 123brian (183 auth. attempts). (b) 3i11ie02 (186 auth. attempts).
1001 100
80 80
e o
v [
[(0]
> >
3 601 S 604
[o
3 5
S - S -
S 40 g 40
w0 w0
& &
a . —— PILOT - RF a % —— PILOT - RF
————— PILOT - NN ~-==- PILOT - NN
—-—-- Baseline ——-- Baseline
0 0
0 500000 1000000 1500000 2000000 2500000 0 500000 1000000 1500000 2000000 2500000

Number of guesses Number of guesses

(c) lamondre (184 auth. attempts). (d)williaml (183 auth. attempts).

Fig. 8. CDF for the number of passwords recovered by PILOT, for each target password. Plots also show the baseline attack
for the corresponding password.

6. PIN Guessing

In this section, we present our results on PIN-guessing. First, we analyze the relationship between
inter-keystroke timings and Euclidean Distance between consecutive keys, and between inter-keystroke
timings and direction of movement on the keypad. We then show how the adversary can use timing
information to infer key distances, and therefore to predict PINs.

We are not aware of any publicly-available PIN timing datasets that can be used to train PILOT. To
address this issue, we collected data from 22 users. To compute the attack baseline, we considered all
PINs to be equally likely, i.e., we are modeling PINs as random four-digit strings. This is consistent
with how many European banks assign PINs to bank cards [13], and with the work of Bonneau et al. [8],
which showed that users are reluctant to change the random PIN provided by their bank.

K. Balagani et al. / PILOT: Password and Pin Information Leakage from Obfuscated Typing Videos 13

Table 2

PILOT—Multiple recordings setting. Avg: average number of attempts to guess a password; Stdev: standard deviation; Rnd:
number of guesses for the baseline adversary; <Rnd: how often PILOT outperforms random guessing; Best: number of attempts
of the best guess; < n: how many passwords are successfully guessed within first n = 20,000/100,000 attempts.

Avg Stdev Med Rnd <Rnd Best <20k <100k

Random Forest

123brian 552,574 468,539 402,166 93,874 14.1% 13,931 4.7% 14.1%
jillieO02 713,895 410,225 606,403 1,753,571 100.0% 67,875 0.0% 1.6%
lamondre 398,186 425,811 236,905 397,213 65.6% 404 6.2% 25.0%
williaml 370,933 602,654 148,405 187 1.6% 19 17.2% 42.2%

Neural Network

123brian 922,655 129,927 889,406 93,874 00% 676,418 0.0% 0.0%
§i11ie02 439414 155385 402332 1,753,571 100.0% 205,645 0.0% 0.0%
lamondre 503248 137276 504,493 397,213 213% 182,123 0.0% 0.0%
williaml 248,769 103,240 216,630 187 0.0% 86,213 0.0% 1.6%
1001
801
]
Qv
()
>
S 601
v
[%2]
°
o -
S 40
a
(3]
[a
201 ;
i —— PILOT - RF
LS PILOT - NN
0 500000 1000000 1500000 2000000 2500000

Number of guesses

Fig. 9. CDF showing number of passwords recovered by PILOT in the Multiple recordings scenario.

Distance. Across all subjects, we observed that distributions of inter-keystroke latencies were distinct in
all cases (for p-value < 5- 1075), with the following exceptions: (1) latencies for distance 2 (e.g., keypair
1-3) were close to latencies for distance 3 (keypair 2-0); (2) latencies for distance 2 were close to latencies
for diagonal 1x1 (e.g., keypair 4-8); latencies for distance 3 were close to latencies for 2x 1 diagonal (i.e.
“2”t0 “9”, “1” to “6”, etc.), and diagonal 2x2 (e.g., keypair 7-3), and diagonal 3x2 (e.g., keypair 3-0).
Figure 10a shows the various probability distributions, while Figure 10b models these different probability

14 K. Balagani et al. / PILOT: Password and Pin Information Leakage from Obfuscated Typing Videos

__ dist_zero '— dist zero
0.7% n =1975 — dist_one
dist_one 0.7% sy
. ~—— nh=5859 — dist_two
0.6% ___ dist_two 0.6% — dist_three
. n =4095 : — dist_diagonal_one]
> 0.5% _— glif‘itg;%e oo — d?st_diagonal_twoi
% 0.4% ___ dist_diagonal_one | & dist_dogleg
5 e n=2279 5 dist_long_dogleg
o __ dist_diagonal_two | 3 0-4%f 1
Y 0.3% n=1373 g
L dist_dogleg T 0.3%
0.2% n=4522 T
i \ dist_long_dogleg
~\ n=1689 0.2%}
0.1%
0.0% ad N 0.1%}
0 100 200 300 400 500 600 700 0.0% e
Interkey Time (ms) Interkey Time (ms)
(a) From raw data. (b) Modeled as gamma distributions.

Fig. 10. Inter-keystroke timings of all possible distances for ATM keypad typing.

distribution functions as gamma distributions. In Figure 10a, dist_zero indicate keypairs composed of the
same two digits. dist_one, dist_two, and dist_three shows timings distributions for keypairs with horizontal
or vertical distance one (e.g., keypair 2-5), two (e.g., 2-8), and three (2-0), respectively. dist_diagonal_one
and dist_diagonal_two indicates keypairs with diagonal distance one (e.g., 2-4) and distance two (e.g., 1-9),
respectively. dist_dogleg and dist_long_dogleg show timing distributions of keypairs such as 1-8 and 0-3.
In Figure 10b, dist_one_horizontal and dist_one_vertical indicate Euclidean Distance right in the left/right
directions, and up/down directions, respectively, while dist_one_up, dist_one_down, dist_one_left, and
dist_one_right indicate distances one in the up, down, left, and right directions.

Direction. The relative orientation of keypairs characterized by the same Euclidean distance (e.g., 2-3
vs. 2-5) has a negligible impact on the corresponding inter-key latency. We observed that the distributions
of keypress latencies observed from each possible direction between keys were not significantly different
(for p-value < 10~*). Figure 11 shows different probability distributions relative to various directions
for Euclidean distance 1.

PIN Inference Using the data we collected, we mapped the distribution of inter-keypress latencies,
and used the resulting probabilities to test the effectiveness of PINs prediction from inter-key latencies.
Our PIN guessing algorithm is composed of two parts: (1) an algorithm that estimates distances from
keystroke timings; and (2) an algorithm that ranks PINs based on the estimated distances. The source
code of the alorithm can be found at https://spritz.math.unipd.it/datasets/PILOT/ The core idea is to
consider the PIN pad as a weighed multigraph. The graph nodes represent the keys, and are labeled 0-9.
Keys are connected by weighted edges. The weight of an edge corresponds to the Euclidean distance
between the corresponding keys, using the distance between two adjacent keys (e.g., 1 and 2) as unit.
We identified 8 possible distances: zero distance (e.g., key 3 followed by key 3, weight = 0); horizontal
or vertical distance one (e.g. keys 1-2, weight = 1); horizontal or vertical distance two (e.g., keys 1-3,
weight = 2); vertical distance three (e.g., keys 2-0, weight = 3); diagonal distance one (e.g., keys 1-5,
weight = /12 + 12); diagonal distance two (e.g., keys 1-9, weight = /22 + 22); short diagonal distance
(e.g., keys 1-8, weight = \/12 + 22) and long diagonal distance (e.g. keys 1-0, weight = v/12 + 32).
For each PIN, we created three sets a subgraphs, indicated as S 1, S2, and S 3, composed only of the
nodes connected by edges with the same weight as the estimated distance. Specifically, S; contains all

K. Balagani et al. / PILOT: Password and Pin Information Leakage from Obfuscated Typing Videos 15

0o/ 4
0.7% dist_one
n = 5859
dist_one_horizontal
n = 2627
dist_one_vertical
n = 3232
dist_one_up
n=1734
dist_one_right
n =899
dist_one_down
n = 1498

0.6%

0.5% 1

Frequency
o o
S
2 R

dist_one_left

0.2% 1 T n=1728

0.1%

0.0% 1
0 100 200 300 400 500 600 700
Interkey Time (ms)

Fig. 11. Frequency of inter-keystroke timings for Euclidean
Distance of one. dist_one indicates latency distribution for
distance one in any direction.

the two-nodes subgraphs such that their edges have weight equal to the estimated distance between the
keys in the i-th PIN digraph.

We combined the subgraphs in these sets by ensuring that, for i = 1 and i = 2, the second node of a
graph from §; is the same as the first node of a graph from S, ;. For instance, given estimated distances
3, 0, and /2, our algorithm extracts the subgraphs shown in Figure 12. It then refines these choices by
removing all subgraphs from S'2 which do not have nodes 2 and 0 as their first node. The same rule is
applied to S 3. The two resulting graphs are shown in Figure 13.

Not all estimated distances correspond to possible PINs. For instance, estimated distances 3, 0, and
/8 do not match any PIN that can be typed on the pad used for the experiments: distance 3 indicates
that the second PIN digit must be either O or 2; as a consequence, distance 0 associated to the second
PIN digraph restricts the third PIN digit to O or 2; however, the set of keypairs with a relative distance
of V8 (i.e., {(1,9),(7,3),(9,1),(3,7)}) does not include keys 0 or 2. Therefore, estimated distances 3,
0, and v/8 do not lead to any valid PIN. Figure 14 shows a visual representation of this example.

For each triplet of estimated distances, the number of associated PINs may differ. For example, 58
triplets have no associated PIN (e.g., distances 3, 0, and \/8). The remaining 454 combinations vary from
a minimum of 2 associated PINs (57 combinations; e.g., distances 3, 3, and 3 correspond only to PINs
2020 and 0202) to a maximum of 216 PINs (distances 1, 1, and 1).

If the adversary is able to reconstruct the distances between digraphs without errors, this process drasti-
cally reduces the number of attempts needed to guess the PIN compared to a random guessing. Figure 15
shows the benefit of this approach in terms of percentage of PINs guessed within a fixed number of
attempts. However, due to the overlapping between timing distributions shown in figures 10 and 11, the ad-
versary cannot always estimate distances correctly. To evaluate the impact of distance evaluation errors on
PIN guessing, we split our keystroke dataset in two sets. The first (training set) consists of 5195 PIN, typed
by 11 participants. The second (testing set) consists of 5135 PIN, typed by a distinct set of 11 participants.

For each PIN in the testing set, we associated a list of triplets of distances sorted by their probability as
determined using the gamma distributions. Figure 16 shows the effectiveness of this algorithm compared
to random guessing, and compared to the technique used in [4]. Our results show that our technique
significantly improves on both random guessing and [4] (see Table 3). In particular, we were able to

16 K. Balagani et al. / PILOT: Password and Pin Information Leakage from Obfuscated Typing Videos

weight =3 weight = V2
A
()
N
S1 S2 S3
o1 02 3 Y Y Y o1 .2 3
o4 o5 6 4) 5) 5) % =5 6
I . >
7 .8 9 7) 8 y 9 J «7 8 *9
Y
‘0 0 “0

Fig. 12. Full graph, and subgraphs h; € S1 (weight = 3), ha € So (weight = 0), and h3 € S3 (weight = \/5).

guess about 3% of the PINs within 10 attempts. This corresponds to a 26-fold improvement compared
to random guessing. Moreover, we were able to significantly outperform [4] in terms of number of PINs
recovered within a small number of attempts. Specifically, we were able to recover more than 1% of the
PINs within 5 attempts, while [4] could guess only 0.32% of the PINs within the same number of attempts.
In summary, our technique demonstrates that inter-keystroke timings contain considerable information
about the physical distance between consecutive keys in a PIN, and thus they can substantially reduce
the number of attempts required to guess a PIN.

7. Conclusion

In this paper, we have shown that the inter-key timing information disclosed by showing password
masking symbols can be effectively used to reduce the cost of password guessing attacks. To determine
the impact of this side channel, we recorded videos from 84 subjects, typing several passwords and
PINs under different conditions: in a lecture hall, while their laptop was collected to a projector; in a
classroom setting; and using a simulated ATM machine. Our results show that: (1) it is possible to infer
very accurate timing information from videos of LCD screens and projectors (the average error was
8.7ms, which corresponds to the duration of a frame when the refresh rate of a display is set to 60 Hz);
(2) inter-keystroke timings reduce the number of attempts to recover a password by 25% and 385%,
with some passwords guessed within 19 attempts. We consider this a substantial reduction in the cost
of password guessing attacks, to the point that we believe that masking symbols should not be publicly
displayed when typing passwords; and (3) disclosing inter-keystroke timings have a significant impact
on PIN guessing attacks. In particular, we were able to predict about 1 in 14 PINs within 40 attempts,

K. Balagani et al. / PILOT: Password and Pin Information Leakage from Obfuscated Typing Videos 17

Fig. 13. Nodes sequences for input distances 3, 0, /2.

Table 3

Percentage of PIN guessed using our technique, Random Guessing (RG), PIN guessing with exact distance (Exact), and [4]

Improvement of our

Attempts Our work RG Exact SILK-TV [4] work compared to RG
5 1.09% 0.05% 13.05% 0.32% 21.81x
10 2.65% 0.10% 26.37% 0.47% 26.48 x
20 3.93% 020% 45.57% 0.79% 19.67x
40 7.05% 0.40% 67.37% 1.31% 17.62%
80 9.41% 0.80% 88.85% 2.28% 11.76x
160 12.89% 1.60% 98.34% 3.82% 8.06x
320 19.69% 3.20% 100.00% 6.34% 6.15x%
640 28.33% 6.40% 100.00% 10.05% 4.43%x
1280 42.30% 12.80% 100.00% 16.34% 3.30x%
2560 59.39% 25.60% 100.00% 27.81% 2.32x
5120 78.53% 52.20% 100.00% 51.84% 1.50%

compared to one in 250 with no timing information. While this result is not as dramatic as the one with

passwords, it suggests that keystroke timing information should be carefully concealed by ATMs.
Clearly, the benefits of PILOT compared to our baseline attack vary depending on how common the

user’s password is. For very common (and therefore very easy to guess) passwords, our results show

18 K. Balagani et al. / PILOT: Password and Pin Information Leakage from Obfuscated Typing Videos

weight =3 weight = V8
S1 52 S3
1 02 3 .1 v oz . » y LX] 2 »3
4 o5 6 o4 Y o5 o6 4 5 6
.7 .8 g 7 -8 *9 o7 .8 *g
0 «a) °0
(@)
S1 S2 S3
20— 1-1 1-9 o o3
02— 3-7
3-3 7-3
4-4 9-1 o = - e
5-5
6-6 o7 99
7-7
8-8
9-9
(b)

Fig. 14. (a) Subgraphs corresponding to distances 3, 0, and v/22 + 22. (b) Nodes connected by vertices weights 3, 0, and
v/22 + 22, No common nodes are in S 3 and S 3, and therefore this combination of distances does not correspond to any PIN.

that PILOT might not be needed. On the other hand, the speedup offered by PILOT when guessing rare
passwords is substantial. Given the effectiveness of this attack on password guessing, we think that future
work should consider countermeasures that strike the right balance between usability and security when
displaying masking symbols. For instance, GUIs may not display masking symbols on a secondary screen
(e.g., projectors), or may display new masking symbols at fixed intervals (say, every 250ms). Clearly, both
countermeasures have usability implications, and we leave the quantification of this impact to future work.

K. Balagani et al. / PILOT: Password and Pin Information Leakage from Obfuscated Typing Videos 19

60%

a
3
B

40%

PINs Recovered

w
=1
R

20%

10%

—PILOT
Random Guess

0%

L . . .
10 15 20 25 30 35 40 45 50 55
Number of Guesses

Fig. 15. CDF showing the number of PINs recovered under the assumption that distances are recovered without error.

100% -

90%

80%

70%

60%

50%

PINs Recovered

40%

30%

20%

10%

0%

0

——PILOT

Random Guess

SILK-TV [4]

I L I L ! 1 L)

I
1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Number of Guesses

Fig. 16. CDF showing the number of PINs recovered on our dataset, compared to the baseline and the algorithm of [4].

Acknowledgements

Kiran Balagani and Paolo Gasti were supported by the National Science Foundation under Grant No. CNS-
1619023. Tristan Gurtler, Charissa Miller, Kendall Molas, and Lynn Wu were supported by the National Science
Foundation under Grant No. CNS-1559652. This work is partially supported by the EU TagltSmart! Project
(agreement H2020-ICT30-2015-688061), and the EU-India REACH Project (agreement ICI+/2014/342-896).

20

K. Balagani et al. / PILOT: Password and Pin Information Leakage from Obfuscated Typing Videos

References

(1]
(2]
(3]

(4]

(3]
(6]

(7]
(8]
(9]
(10]

[11]
[12]

Rockyou password leak (2010), http://downloads.skullsecurity.org/passwords/rockyou.txt.bz2

Linkedin password leak (2016), https://hashes.org/leaks.php

Asonov, D., Agrawal, R.: Keyboard acoustic emanations. In: IEEE Symposium on Security and Privacy, 2004. Proceedings.
2004. pp. 3-11. IEEE (2004)

Balagani, K.S., Conti, M., Gasti, P., Georgiev, M., Gurtler, T., Lain, D., Miller, C., Molas, K., Samarin, N., Saraci, E., et al.:
Silk-tv: Secret information leakage from keystroke timing videos. In: European Symposium on Research in Computer
Security. pp. 263-280. Springer (2018)

Balzarotti, D., Cova, M., Vigna, G.: Clearshot: Eavesdropping on keyboard input from video. In: 2008 IEEE Symposium
on Security and Privacy (sp 2008). pp. 170-183. IEEE (2008)

Banerjee, R., Feng, S., Kang, J.S., Choi, Y.: Keystroke patterns as prosody in digital writings: A case study with deceptive
reviews and essays. In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing
(EMNLP). pp. 1469-1473 (2014)

Bartlow, N., Cukic, B.: Evaluating the reliability of credential hardening through keystroke dynamics. In: 2006 17th
International Symposium on Software Reliability Engineering. pp. 117-126. IEEE (2006)

Bonneau, J., Preibusch, S., De Andeson, R.: A birthday present every eleven wallets? the security of customer-chosen
banking pins. In: International Conference on Financial Cryptography and Data Security. pp. 25-40. Springer (2012)
Burnett, M.: Today i am releasing 10 million passwords (2015), https://xato.net/
today-i-am-releasing-ten-million- passwords-b6278bbe7495

Compagno, A., Conti, M., Lain, D., Tsudik, G.: Don’t skype & type!: Acoustic eavesdropping in voice-over-ip. In:
Proceedings of the 2017 ACM on Asia Conference on Computer and Communications Security. pp. 703-715. ACM (2017)
Ding, L., Goshtasby, A.: On the canny edge detector. Pattern Recognition 34(3), 721-725 (2001)

Fiegerman, S.: Yahoo says 500 million accounts stolen (2017), http://money.cnn.com/2016/09/22/technology/
yahoo-data-breach/index.html

FINECO: Le carte fineco (2019), https://help.finecobank.com/it/conto-e-carte/le-carte- fineco.html#nuove-commissioni
Florencio, D., Herley, C.: A large-scale study of web password habits. In: Proceedings of the 16th international conference
on World Wide Web. pp. 657-666. ACM (2007)

Hitaj, B., Gasti, P., Ateniese, G., Perez-Cruz, F.: Passgan: A deep learning approach for password guessing. arXiv preprint
arXiv:1709.00440 (2017)

Ho, T.K.: Random decision forests. In: Proceedings of 3rd international conference on document analysis and recognition.
vol. 1, pp. 278-282. IEEE (1995)

Kolias, C., Kambourakis, G., Stavrou, A., Voas, J.: Ddos in the iot: Mirai and other botnets. Computer 50(7), 80-84 (2017)
Ma, J., Yang, W., Luo, M., Li, N.: A study of probabilistic password models. In: 2014 IEEE Symposium on Security and
Privacy. pp. 689-704. IEEE (2014)

Owusu, E., Han, J., Das, S., Perrig, A., Zhang, J.: Accessory: password inference using accelerometers on smartphones.
In: Proceedings of the Twelfth Workshop on Mobile Computing Systems & Applications. p. 9. ACM (2012)

Pulli, K., Baksheev, A., Kornyakov, K., Eruhimov, V.: Real-time computer vision with opencv. Communications of the
ACM 55(6), 61-69 (2012)

Roth, J., Liu, X., Metaxas, D.: On continuous user authentication via typing behavior. IEEE Transactions on Image
Processing 23(10), 4611-4624 (2014)

Schalkoff, R.J.: Artificial neural networks, vol. 1. McGraw-Hill New York (1997)

Shukla, D., Kumar, R., Serwadda, A., Phoha, V.V.: Beware, your hands reveal your secrets! In: Proceedings of the 2014
ACM SIGSAC Conference on Computer and Communications Security. pp. 904-917. ACM (2014)

Song, D.X., Wagner, D.A., Tian, X.: Timing analysis of keystrokes and timing attacks on ssh. In: USENIX Security
Symposium. vol. 2001 (2001)

Sun, J., Jin, X., Chen, Y., Zhang, J., Zhang, Y., Zhang, R.: Visible: Video-assisted keystroke inference from tablet backside
motion. In: NDSS (2016)

Tari, F., Ozok, A., Holden, S.H.: A comparison of perceived and real shoulder-surfing risks between alphanumeric and
graphical passwords. In: Proceedings of the second symposium on Usable privacy and security. pp. 56-66. ACM (2006)
The Password Project: (2017), http://thepasswordproject.com/leaked_password_lists_and_dictionaries

Tomasi, C., Manduchi, R.: Bilateral filtering for gray and color images. In: Iccv. vol. 98, p. 2 (1998)

Vural, E., Huang, J., Hou, D., Schuckers, S.: Shared research dataset to support development of keystroke authentication.
In: IEEE International Joint Conference on Biometrics. pp. 1-8. IEEE (2014)

Wang, C., Guo, X., Wang, Y., Chen, Y., Liu, B.: Friend or foe?: Your wearable devices reveal your personal pin. In:
Proceedings of the 11th ACM on Asia Conference on Computer and Communications Security. pp. 189-200. ACM (2016)

K. Balagani et al. / PILOT: Password and Pin Information Leakage from Obfuscated Typing Videos 21

[31] Wang, C., Jan, S.T., Hu, H., Bossart, D., Wang, G.: The next domino to fall: Empirical analysis of user passwords across
online services. In: Proceedings of the Eighth ACM Conference on Data and Apllication Security and Privacy. pp. 196-203.
ACM (2018)

[32] Weir, M., Aggarwal, S., De Medeiros, B., Glodek, B.: Password cracking using probabilistic context-free grammars. In:
2009 30th IEEE Symposium on Security and Privacy. pp. 391-405. IEEE (2009)

[33] Xu, Y., Heinly, J., White, A.M., Monrose, F., Frahm, J.M.: Seeing double: Reconstructing obscured typed input from
repeated compromising reflections. In: Proceedings of the 2013 ACM SIGSAC conference on Computer & communications
security. pp. 1063-1074. ACM (2013)

[34] Zhu, T., Ma, Q., Zhang, S., Liu, Y.: Context-free attacks using keyboard acoustic emanations. In: Proceedings of the 2014
ACM SIGSAC Conference on Computer and Communications Security. pp. 453-464. ACM (2014)

[35] Zhuang, L., Zhou, F., Tygar, J.D.: Keyboard acoustic emanations revisited. ACM Transactions on Information and System
Security (TISSEC) 13(1), 3 (2009)

	Introduction
	Related Work
	System and Adversary Model
	Overview and Data Collection
	Passwords
	PINs
	Timing Extraction from Video

	Password Guessing
	Attack Process.
	Results

	PIN Guessing
	Conclusion
	Acknowledgements

	References

