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Abstract. This paper studies leakage of user passwords and PINs based on observations of typing feedback on screens or from
projectors in the form of masked characters (∗ or •) that indicate keystrokes. To this end, we developed an attack called Password
and Pin Information Leakage from Obfuscated Typing Videos (PILOT). Our attack extracts inter-keystroke timing information
from videos of password masking characters displayed when users type their password on a computer, or their PIN at an ATM.
We conducted several experiments in various attack scenarios. Results indicate that, while in some cases leakage is minor, it
is quite substantial in others. By leveraging inter-keystroke timings, PILOT recovers 8-character alphanumeric passwords in
as little as 19 attempts. When guessing PINs, PILOT significantly improved on both random guessing and the attack strategy
adopted in our prior work [4]. In particular, we were able to guess about 3% of the PINs within 10 attempts. This corresponds
to a 26-fold improvement compared to random guessing. Our results strongly indicate that secure password masking GUIs must
consider the information leakage identified in this paper.
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1. Introduction

Passwords and PINs are susceptible to shoulder surfing attacks [26] of which there are two main

types: (1) input-based and (2) output-based. The former is more common; in it, the adversary observes an

input device (keyboard or keypad) as the user enters a secret (password or PIN) and learns the key-presses.

The latter involves the adversary observing an output device (screen or projector) while the user enters

a secret which is displayed in cleartext. The principal distinction between the two types is the adversary’s
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proximity: observing input devices requires the adversary to be closer to the victim than observing output

devices, which tend to have larger form factors, i.e., physical dimensions.

Completely disabling on-screen feedback during password/PIN entry (as in, e.g., the Unix sudo

command) mitigates output-based shoulder-surfing attacks. Unfortunately, it also impacts usability: when

deprived of visual feedback, users cannot determine whether a given key-press was registered and are

thus more likely to make mistakes. In order to balance security and usability, user interfaces typically

implement password masking by displaying a generic symbol (e.g., “•” or “∗”) after each keystroke. This

technique is commonly used on desktops, laptops and smartphones as well as on public devices, such

as Automated Teller Machines (ATMs) or Point-of-Sale (PoS) terminals at shops or gas stations.

Despite the popularity of password masking, little has been done to quantify how visual keystroke

feedback impacts security. In particular, masking assumes that showing generic symbols does not re-

veal any information about the corresponding secret. This assumption seems reasonable, since visual

representation of a generic symbol is independent of the key-press. However, in this paper we show

that this assumption is incorrect. By leveraging precise inter-keystroke timing information leaked by

the appearance of each masking symbol, we show that the adversary can significantly narrow down the

password/PIN’s search space. Put another way, the number of attempts required to brute-force decreases

appreciably when the adversary has access to inter-keystroke timing information.

There are many realistic settings where visual inter-keystroke timing information (leaked via appear-

ance of masking symbols) is readily available while the input information is not, i.e., the input device

is not easily observable. For example, in a typical lecture or classroom scenario, the presenter’s keyboard

is usually out of sight, while the external projector display is wide-open for recording. Similarly, in a

multi-person office scenario, an adversarial co-worker can surreptitiously record the victim’s screen. The

same holds in public scenarios, such as PoS terminals and ATMs, where displays (though smaller) tend

to be easier to observe and record than entry keypads.

In this paper we consider two representative scenarios: (1) a presenter enters a password into a computer

connected to an external projector; (2) a user enters a PIN at an ATM in a public location. The adversary

is assumed to record keystroke feedback from the projector display or an ATM screen using a dedicated

video camera or a smartphone. We note that a human adversary does not need to be present during the

attack: recording might be done via an existing camera either pre-installed or pre-compromised by the

adversary, possibly remotely, e.g., as in the infamous Mirai botnet [17].

Contributions. The main goal of this paper is to quantify the amount of information leaked through

video recordings of on-screen keystroke feedback. To this end, we conducted extensive data collection

experiments that involved 84 subjects.1 Each subject was asked to type passwords or PINs while the

screen or projector was video-recorded using either a commodity video camera and a smartphone camera.

Based on this, we determined the key statistical properties of the resulting data, and set up an attack called

PILOT: Password and Pin Information Leakage from Obfuscated Typing Videos. It allows us to quantify

reduction in brute-force search space due to timing information. PILOT leverages multiple publicly

available typing datasets to extract population timings, and applies this information to inter-keystroke

timings extracted from videos.

Our results show that video recordings can be effective in extracting precise inter-keystroke timing

information. Experiments show that PILOT substantially reduces the search space for each password,

even when the adversary has no access to user-specific keystroke templates. When run on passwords,

1Where required, IRB approvals were duly obtained prior to the experiments.
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PILOT performed better than random guessing between 87% and 100% of the time, depending on the

password and the machine learning technique used to instantiate the attack. The resulting average speedup

is between 25% and 385% (depending on the password), compared to random dictionary-based guessing;

some passwords were correctly guessed in as few as 68 attempts. A single password timing disclosure

is enough for PILOT to successfully achieve these results. However, when the adversary observes the

user entering the password three times, PILOT can crack the password in as few as 19 attempts. Clearly,

PILOT ’s capabilities depend in part on the strength of a specific password. With very common passwords,

benefits of PILOT are limited. Meanwhile, we show that PILOT substantially outperforms random guessing

with less common passwords. With PINs, disclosure of timing poses an effective risk. The PIN guessing

algorithm can reduce the number of attempts by up to 26 times compared to random guessing.

Paper Organization. Section 2 reviews the state-of-the-art in password guessing based on timing at-

tacks. Section 3 presents PILOT and the adversary model. Section 4 discusses our data collection and

experiments. We then present the results on password guessing using PILOT in Section 5, and on PIN

guessing in Section 6. The paper concludes with the summary and future work directions in Section 7.

2. Related Work

There is a large body of prior work on timing attacks in the context of keyboard-based password

entry. Song et al. [24] demonstrated a weakness that allows the adversary to extract information about

passwords typed during SSH sessions. The attack relies on the fact that, to minimize latency, SSH

transmits each keystroke immediately after entry, in a separate IP packet. By eavesdropping on such

packets, the adversary can collect accurate inter-keystroke timing information. Song et al. [24] showed

that this information can be used to restrict the search space of passwords. The impact of this work is

significant, because it shows the power of timing attacks on cracking passwords.

There are several studies of keystroke inference from analysis of video recordings. Balzarotti et al. [5]

addressed the typical shoulder-surfing scenario, where a camera tracks hand and finger movements on the

keyboard. Text was automatically reconstructed from resulting videos. Similarly, Xu et al. [33] recorded

user’s finger movements on mobile devices to infer keystroke information. Unfortunately, neither attack

applies to our sample scenarios, where the keyboard is invisible to the adversary.

Shukla et al. [23] showed that text can be inferred even from videos where the keyboard/keypad is

not visible. This attack involved analyzing video recordings of the back of the user’s hand holding a

smartphone in order to infer which location on the screen is tapped. By observing the motion of the

user’s hand, the path of the finger across the screen can be reconstructed, which yields the typed text. In a

similar attack, Sun et al. [25] successfully reconstructed text typed on tablets by recording and analyzing

the tablet’s movements, rather than movements of the user’s hands.

The closest work to the paper is our prior work [4], in which we show that passwords can be inferred at

a higher probability than random guesses using the timing information from onscreen keystroke feedback.

However, in [4] we concluded that the timing information is not helpful in inferring PINs. In this paper,

we revisit our earlier conclusion on inferring PINs and show that it is incorrect. In fact, the attack strategy

employed in this paper yielded a 26-fold improvement in inferring PINs over random guesses and

significantly outperforms [4] in terms of number of PINs recovered within a small number of attempts.

Another line of work aimed to quantify keystroke information inadvertently leaked by motion sensors.

Owusu et al. [19] studied this in the context of a smartphone’s inertial sensors while the user types using
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the on-screen keyboard. The application used to implement this attack does not require special privileges,

since modern smartphone operating systems do not require explicit authorization to access inertial sensors

data. Similarly, Wang et al. [30] explored keystroke information leakage from inertial sensors on wearable

devices, e.g., smartwatches and fitness trackers. By estimating the motion of a wearable device placed on

the wrist of the user, movements of the user’s hand over a keyboard can be inferred. This allows learning

which keys were pressed during the hand’s path. Compared to our work, both [19] and [30] require a

substantially higher level of access to the user’s device. To collect data from inertial sensors the adversary

must have previously succeeded in deceiving the user into installing a malicious application, or otherwise

compromised the user’s device. In contrast, PILOT is a fully passive attack.

Acoustic emanations represent another effective side-channel for keystroke inference. This class of

attacks is based on the observation that different keyboard keys emit subtly different sounds when pressed.

This information can be captured (1) locally, using microphones placed near the keyboard [3, 35], or (2)

remotely, via Voice-over-IP [10]. Also, acoustic emanations captured using multiple microphones can

be used to extract the locations of keys on a keyboard. As shown by Zhou et al. [34], recordings from

multiple microphones can be used to accurately quantify the time difference of arrival (TDoA), and thus

triangulate the positions of pressed keys.

3. System and Adversary Model

We now present the system and adversary model used in the rest of the paper.

We model a user logging in (authenticating) to a computer system or an ATM using a PIN or a password

(secret) entered via a keyboard or keypad (input device). The user receives immediate feedback about

each key-press from a screen, a projector, or both (output device) in the form of dots or asterisks (masking

symbols). The shape and/or location of each masking symbol does not depend on which key is pressed.

The adversary can observe and record the output device(s), though not the input device or the user’s

hands. An example of this scenario is shown in Figure 1. The adversary’s goal is to learn the user’s secret.

The envisaged attack setting is representative of many real-world scenarios that involve low-privilege

adversaries, including:

(1) A presenter in a lecture or conference who types a password while the screen is displayed on

a projector. The entire audience can see the timing of appearance of masking symbols, and the

adversary can be anyone in the audience.

(2) An ATM customer typing a PIN. The adversary who stands in line behind the user might have an

unobstructed view of the screen, and the timing of appearance of masking symbols (see Figure 2).

(3) A customer enters her debit card PIN at a self-service gas-station pump. In this case, the adversary

can be anyone in the surroundings with a clear view of the pump’s screen.

Although these scenarios seem to imply that adversary is located near the user, proximity is not a

requirement for our attack. For instance, the adversary could watch a prior recording of the lecture in

scenario (1); or, could be monitoring the ATM machine using a CCTV camera in (2); or, remotely view

the screen in (3) through a compromised IoT camera.

Also, we assume that, in many cases, the attack involves multiple observations. For example, in sce-

nario (1), the adversary could observe the presenter during multiple talks, without the presenter changing

passwords between talks. Similarly, in scenario (2), customers often return to the same ATM.
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were males in their 20s, with a technical background and good typing skills. We briefed each subject

on the nature of the experiment, and asked them to type four alphanumerical passwords: “jillie02”,

“william1”, “123brian”, and “lamondre”.We selected these passwords uniformly at random from

the RockYou dataset [1] in order to simulate realistic passwords. The subjects typed each password

three times, while our data collection software recorded ground-truth keystroke timings of correctly

typed passwords with millisecond accuracy. Timings from passwords that were typed incorrectly were

discarded, and subjects were prompted to re-type the password whenever a mistake was made. The typing

procedure lasted between 1 and 2 minutes, depending on the subject’s typing skills. All subjects typed

with the “touch typing” technique, i.e., using fingers from both hands.

4.2. PINs

We recorded subjects entering 4-digit PINs on a simulated ATM, shown in Figure 3. Our dataset was

based on experiments with 22 participants; 19 subjects completed three data collection sessions, while 4

subjects completed only one session, resulting in a total of 61 sessions. At the beginning of each session,

the subject was given 45 seconds to get accustomed with the keypad of the ATM simulator. During this

time, they were free to type as they pleased. Next, a subject was shown a PIN on the screen for ten

seconds (Figure 4a), and, once it disappeared from the screen, asked to enter it four times (Figure 4b).

Subjects were advised not to read the PINs out loud. This process was repeated for 15 consecutive PINs.

During each session, subjects were presented with the same 15-PIN sequence 3 times. Subjects were

given a 30-second break at the end of each sequence.

Fig. 3. Setup used in PIN inference experiments.

(a) (b)

Fig. 4. ATM Simulator during a data collection session.
(a) The simulator displays the next PIN. (b) A subject
types the PIN from memory.

Specific 4-digit PINs were selected to test whether: (1) inter-keypress time is proportional to Euclidean

Distance between keys on the keypad; and (2) the direction of movement (up, down, left, or right) between

consecutive keys in a keypair impacts the corresponding inter-key time. We show an example of these two

situations on the ATM keypad in Figure 5. We chose a set of PINs that allowed collection of a significant

number of key combinations appropriate for testing both hypotheses. For instance, PIN 3179 tested

horizontal and vertical distance two, while 1112 tested distance 0 and horizontal distance 1.
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keystroke timings [7]. Input to RF is one inter-keystroke timing, and its output is a list of N digraphs

ranked based on the probability of corresponding to input timing. NN is a more complex architecture

designed to automatically determine and extract complex features from the input distribution. In our

experiments, the input to NN is a list of inter-keystroke timings corresponding to a password. This enables

NN to extract features, such as arbitrary n-grams, or timings corresponding to non-consecutive characters.

NN’s output is a guess for the entire password.

We instantiated NN using the following parameters:

• number of units in the hidden layer – 128 (with ReLU activation functions);

• inclusion probability of the dropout layer – 0.2;

• number of input neurons – 25;

• number of output layers – 25 which represents one character in one-hot encoding. Output layers

use softmax activation function;

• training was performed using batch sizes of 40 and 100 epochs. We used the Adam optimizer with

a learning rate of 0.001.

Classifier Training. We trained PILOT on three public datasets [6, 21, 29] that contain keystroke timing

information collected from English free-text. Using these datasets for training, we modeled an attack that

relies exclusively on population data. Without loss of generality, we filtered the datasets to remove all tim-

ings that do not correspond to digraphs composed of alphanumeric lowercase characters. This is motivated

by the datasets’ limited availability of digraph samples that contain special characters. In practice, the ad-

versary could collect these timings using, for instance, crowdsourcing tools such as Amazon Mechanical

Turk. To take care of uneven frequencies of digraphs, we under-represented the most frequent digraphs

in the dataset. Data in public datasets was often gathered from free-text typing of volunteers. Therefore,

more frequent digraphs in English were represented more than rarer ones. For example, considering

lamondre, digraph re appears 43,606 times in the population dataset, while am has only 6,841. Sim-

ilarly, in 123brian, digraph ri occurs 19,782 times, while 3b has only 138 occurences. We therefore

under-sampled each digraph appearing more than 1,000 times to 1,000 randomly selected occurrences.

Similarly, we excluded infrequent digraphs that appeared under 100 times in the whole dataset.

5.1. Attack Process.

To infer the user’s secret from inter-keystroke timings, PILOT leverages a dictionary of passwords (e.g.,

a list of passwords leaked by online services [1, 2, 12, 27]), possibly expanded using techniques such

as probabilistic context-free grammars [32] and generative adversarial networks [15]. When evaluating

PILOT, we assume that the user’s secret is in the dictionary. In practice, this is often the case, as many

users use the same weak passwords (e.g., only 36% of the password of RockYou is unique [18]), and reuse

them across many different services [14, 31]. Given that the size of a reasonable password dictionary

is on the order of billions of entries,2 the goal of PILOT is to narrow down the possible passwords to a

small(er) list, e.g., to perform online attacks. This list is then ranked by the probability associated with

each entry, computed from inter-keystroke timing data.

2See for example the lists maintained by https://haveibeenpwned.com/.
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Specifically:

(1) Using RF, for each inter-key time extracted from video (corresponding to a digraph), PILOT returns

a list of N possible guesses, sorted by the classifier’s confidence. Next, PILOT ranks the passwords

in the dictionary by resulting probabilities as follows: for each password, PILOT identifies the

position in the ranked list of predictions for the first digraph of the password being guessed, and

assigns that position as a “penalty” to the password. By performing these steps for each digraph,

PILOT obtains a total penalty score for each password, i.e., a score that indicates the probability

of the password given the output of the RF.

For example, to rank the password jillie02, PILOT first considers the digraph ji, and the list of

predictions of RF for the first digraph. It notes that ji appears in such list as the X-th most probable;

therefore, it assigns X as the penalty for jillie02. Then, it considers il, which appears in Y-th

position in the list of predictions for the second digraph. The penalty for jillie02 is thus updated

to X + Y . This operation is repeated for all the 7 digraphs, thus obtaining the final penalty score.

(2) Using NN, PILOT computes a list of N possible guesses, sorted by the classifier’s confidence of

each guess. In this case, the PILOT processes the entire list of flight times at once, rather than

refining its guess with each digraph.

We considered the following attack settings: single-shot, and multiple recordings. With the former, the

adversary trains PILOT with inter-keystroke timings from population data, i.e., from users other than the

target, e.g., from publicly available datasets, or by recruiting users and asking them to type passwords.

In this scenario, the adversary has access to the video recording of a single password entry session.

With multiple recordings, the adversary trains PILOT as before, and additionally, has access to videos

of multiple login instances by the same user.

Training PILOT exclusively with population data leads to more realistic attack scenarios than training

it with user-specific data, because usually the adversary has limited access to keystrokes samples from

the target user. Further, access to user-specific data will likely improve the success rate of PILOT.

5.2. Results

In this section, we report on PILOT efficacy in reducing search time on the RockYou [1] password

dataset compared to random choice, weighted by probability. We restricted experiments to the subset

of 8-character passwords from RockYou, since the adversary can always determine password length by

counting the number of masking symbols shown on the screen. This resulted in 6,514,177 passwords,

of which 2,967,116 were unique.

Attack Baseline. To establish the attack baseline, we consider an adversary that outputs password guesses

from a leaked dataset in descending order of frequency. (Ties are broken using random selection from

the candidate passwords.) Because password probabilities are far from uniform (e.g., in RockYou, the top

200 8-character passwords account for over 10% of the entire dataset), this is the best adversarial strategy

given no additional information on the target user.

Passwords selected for our evaluation represent a mix of common and rare passwords. Thus, they have

widely varying frequencies of occurrence in RockYou and the expected number of attempts needed to

guess each password using the baseline attack varies significantly. For example, the expected number

of attempts for:

• 123brian (appears 6 times) is 93,874;
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Table 1

PILOT—Single-shot setting. Avg: average number of attempts to guess a password; Stdev: standard deviation; Rnd: number
of guesses for the baseline adversary; <Rnd: how often PILOT outperforms random guessing; Best: number of attempts of
the best guess; < n: how many passwords are successfully guessed within first n = 20,000/100,000 attempts.

Avg Stdev Med Rnd <Rnd Best <20k <100k

Random Forest

123brian 581,743 414,761 508,332 93,874 8.7% 5,535 1.1% 9.3%

jillie02 749,718 448,319 656,754 1,753,571 97.8% 28,962 0.0% 2.7%

lamondre 301,906 334,681 199,344 397,213 75.0% 145 13.0% 33.7%

william1 246,437 264,090 145,966 187 0.5% 68 10.9% 39.9%

Neural Network

123brian 923,534 165,454 886,802 93,874 0.0% 577,739 0.0% 0.0%

jillie02 456,811 210,512 383,230 1,753,571 100.0% 164,754 0.0% 0.0%

lamondre 517,472 189,355 493,713 397,213 28.8% 148,403 0.0% 0.0%

william1 265,813 140,753 215,840 187 0.0% 45,176 0.0% 3.8%

dataset [9], jillie02, lamondre, and 123brian appear only once, while william1 appears 176

times.

We believe that the discrepancy between the performance of PILOT on various passwords is due

to how frequently the digraphs in each password appear in training data. Specifically, even with our

under-representation, all digraphs in william1, with the exception of m1, are far more frequent in the

training data than 12, 23, 3b, or 02.

Regarding specific classifiers, RF overtakes NN in most instances. For example, when guessing

123brian (Figure 8a), NN performs worse than random guessing for the first 800,000 attempts. Af-

terwards, NN outperforms both random guessing and RF. Furthermore, while RF can guess a substantial

percentage of passwords within 20,000, 50,000 and 100,000 attempts, NN cannot achieve the same result.

In terms of minimum number of guesses per password, RF recovered william1 in 68, lamondre

in 145, 123brian in 5,535, and jillie02 in 28,962 attempts. NN required a consistently higher

minimum number of attempts for each password.

Multiple Recordings. Information from three login instances was used as follows. We averaged clas-

sifiers’ predictions over three login instances for a given user, and ranked passwords accordingly.

The results are summarized in Table 2 and Figure 9. Although PILOT still consistently outperforms

random guessing, using data from multiple authentication recordings leads to mostly identical results

overall with both RF and NN. PILOT ’s guessing success rate for 123brian and jillie02 is slightly

improved compared to the previous setting and minimum number of attempts to recover each password

diminished slightly. We recovered william1 in 19, lamondre in 404, 123brian in 13,931, and

jillie02 in 67,875 attempts. Overall, the results show that there are no substantial benefits in using

timing data from three recordings from the same user.
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S1 S2 S3 

2 - 0 1 - 1 1 - 5 

0 - 2 2 - 2 2 - 4 

3 - 3 2 - 6 

4 - 4 3 - 5 

5 - 5 4 - 2 

6 - 6 4 - 8 

7 - 7 … 

8 - 8 7 - 0 

9 - 9 8 - 4 

0 - 0 8 - 6 

9 - 0 

0 - 7 

0 - 9 

Fig. 13. Nodes sequences for input distances 3, 0,
√
2.

Table 3

Percentage of PIN guessed using our technique, Random Guessing (RG), PIN guessing with exact distance (Exact), and [4]

Improvement of our

Attempts Our work RG Exact SILK-TV [4] work compared to RG

5 1.09% 0.05% 13.05% 0.32% 21.81×

10 2.65% 0.10% 26.37% 0.47% 26.48×

20 3.93% 0.20% 45.57% 0.79% 19.67×

40 7.05% 0.40% 67.37% 1.31% 17.62×

80 9.41% 0.80% 88.85% 2.28% 11.76×

160 12.89% 1.60% 98.34% 3.82% 8.06×

320 19.69% 3.20% 100.00% 6.34% 6.15×

640 28.33% 6.40% 100.00% 10.05% 4.43×

1280 42.30% 12.80% 100.00% 16.34% 3.30×

2560 59.39% 25.60% 100.00% 27.81% 2.32×

5120 78.53% 52.20% 100.00% 51.84% 1.50×

compared to one in 250 with no timing information. While this result is not as dramatic as the one with

passwords, it suggests that keystroke timing information should be carefully concealed by ATMs.

Clearly, the benefits of PILOT compared to our baseline attack vary depending on how common the

user’s password is. For very common (and therefore very easy to guess) passwords, our results show
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