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ABSTRACT

Training activation quantized neural networks involves minimizing a piecewise
constant function whose gradient vanishes almost everywhere, which is undesir-
able for the standard back-propagation or chain rule. An empirical way around
this issue is to use a straight-through estimator (STE) (Bengio et al., 2013) in
the backward pass only, so that the “gradient” through the modified chain rule
becomes non-trivial. Since this unusual “gradient” is certainly not the gradient of
loss function, the following question arises: why searching in its negative direction
minimizes the training loss? In this paper, we provide the theoretical justification
of the concept of STE by answering this question. We consider the problem of
learning a two-linear-layer network with binarized ReLU activation and Gaussian
input data. We shall refer to the unusual “gradient” given by the STE-modifed
chain rule as coarse gradient. The choice of STE is not unique. We prove that
if the STE is properly chosen, the expected coarse gradient correlates positively
with the population gradient (not available for the training), and its negation is a
descent direction for minimizing the population loss. We further show the asso-
ciated coarse gradient descent algorithm converges to a critical point of the popu-
lation loss minimization problem. Moreover, we show that a poor choice of STE
leads to instability of the training algorithm near certain local minima, which is
verified with CIFAR-10 experiments.

1 INTRODUCTION

Deep neural networks (DNN) have achieved the remarkable success in many machine learning ap-
plications such as computer vision (Krizhevsky et al., 2012; Ren et al., 2015), natural language
processing (Collobert & Weston, 2008) and reinforcement learning (Mnih et al., 2015; Silver et al.,
2016). However, the deployment of DNN typically require hundreds of megabytes of memory
storage for the trainable full-precision floating-point parameters, and billions of floating-point op-
erations to make a single inference. To achieve substantial memory savings and energy efficiency
at inference time, many recent efforts have been made to the training of coarsely quantized DNN,
meanwhile maintaining the performance of their float counterparts (Courbariaux et al., 2015; Raste-
gari et al., 2016; Cai et al., 2017; Hubara et al., 2018; Yin et al., 2018b).

Training fully quantized DNN amounts to solving a very challenging optimization problem. It calls
for minimizing a piecewise constant and highly nonconvex empirical risk function f(w) subject
to a discrete set-constraint w € Q that characterizes the quantized weights. In particular, weight
quantization of DNN have been extensively studied in the literature; see for examples (Li et al., 2016;
Zhu et al., 2016; Li et al., 2017; Yin et al., 2016; 2018a; Hou & Kwok, 2018; He et al., 2018; Li &
Hao, 2018). On the other hand, the gradient V f(w) in training activation quantized DNN is almost
everywhere (a.e.) zero, which makes the standard back-propagation inapplicable. The arguably
most effective way around this issue is nothing but to construct a non-trivial search direction by
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properly modifying the chain rule. Specifically, one can replace the a.e. zero derivative of quantized
activation function composited in the chain rule with a related surrogate. This proxy derivative used
in the backward pass only is referred as the straight-through estimator (STE) (Bengio et al., 2013). In
the same paper, Bengio et al. (2013) proposed an alternative approach based on stochastic neurons.
In addition, Friesen & Domingos (2017) proposed the feasible target propagation algorithm for
learning hard-threshold (or binary activated) networks (Lee et al., 2015) via convex combinatorial
optimization.

1.1 RELATED WORKS

The idea of STE originates to the celebrated perceptron algorithm (Rosenblatt, 1957; 1962) in 1950s
for learning single-layer perceptrons. The perceptron algorithm essentially does not calculate the
“gradient” through the standard chain rule, but instead through a modified chain rule in which the
derivative of identity function serves as the proxy of the original derivative of binary output function
1{z>0}- Its convergence has been extensive discussed in the literature; see for examples, (Widrow
& Lehr, 1990; Freund & Schapire, 1999) and the references therein. Hinton (2012) extended this
idea to train multi-layer networks with binary activations (a.k.a. binary neuron), namely, to back-
propagate as if the activation had been the identity function. Bengio et al. (2013) proposed a STE
variant which uses the derivative of the sigmoid function instead. In the training of DNN with
weights and activations constrained to +1, (Hubara et al., 2016) substituted the derivative of the
signum activation function with 1;),|<1y in the backward pass, known as the saturated STE. Later the
idea of STE was readily employed to the training of DNN with general quantized ReLU activations
(Hubara et al., 2018; Zhou et al., 2016; Cai et al., 2017; Choi et al., 2018; Yin et al., 2018b), where
some other proxies took place including the derivatives of vanilla ReLU and clipped ReLU. Despite
all the empirical success of STE, there is very limited theoretical understanding of it in training DNN
with stair-case activations.

Goel et al. (2018) considers leaky ReL.U activation of a one-hidden-layer network. They showed
the convergence of the so-called Convertron algorithm, which uses the identity STE in the backward
pass through the leaky ReL.U layer. Other similar scenarios, where certain layers are not desirable for
back-propagation, have been brought up recently by (Wang et al., 2018) and (Athalye et al., 2018).
The former proposed an implicit weighted nonlocal Laplacian layer as the classifier to improve
the generalization accuracy of DNN. In the backward pass, the derivative of a pre-trained fully-
connected layer was used as a surrogate. To circumvent adversarial defense (Szegedy et al., 2013),
(Athalye et al., 2018) introduced the backward pass differentiable approximation, which shares the
same spirit as STE, and successfully broke defenses at ICLR 2018 that rely on obfuscated gradients.

1.2 MAIN CONTRIBUTIONS

Throughout this paper, we shall refer to the “gradient” of loss function w.r.t. the weight variables
through the STE-modified chain rule as coarse gradient. Since the backward and forward passes do
not match, the coarse gradient is certainly not the gradient of loss function, and it is generally not the
gradient of any function. Why searching in its negative direction minimizes the training loss, as this
is not the standard gradient descent algorithm? Apparently, the choice of STE is non-unique, then
what makes a good STE? From the optimization perspective, we take a step towards understanding
STE in training quantized ReLU nets by attempting these questions.

On the theoretical side, we consider three representative STEs for learning a two-linear-layer net-
work with binary activation and Gaussian data: the derivatives of the identity function (Rosenblatt,
1957; Hinton, 2012; Goel et al., 2018), vanilla ReLU and the clipped ReL.Us (Cai et al., 2017;
Hubara et al., 2016). We adopt the model of population loss minimization (Brutzkus & Globerson,
2017; Tian, 2017; Li & Yuan, 2017; Du et al., 2018). For the first time, we prove that proper choices
of STE give rise to training algorithms that are descent. Specifically, the negative expected coarse
gradients based on STEs of the vanilla and clipped ReLUs are provably descent directions for the
minimizing the population loss, which yield monotonically decreasing energy in the training. In
contrast, this is not true for the identity STE. We further prove that the corresponding training algo-
rithm can be unstable near certain local minima, because the coarse gradient may simply not vanish
there.
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Complementary to the analysis, we examine the empirical performances of the three STEs on
MNIST and CIFAR-10 classifications with general quantized ReLLU. While both vanilla and clipped
ReLUs work very well on the relatively shallow LeNet-5, clipped ReLU STE is arguably the best
for the deeper VGG-11 and ResNet-20. In our CIFAR experiments in section 4.2, we observe that
the training using identity or ReLU STE can be unstable at good minima and repelled to an inferior
one with substantially higher training loss and decreased generalization accuracy. This is an impli-
cation that poor STEs generate coarse gradients incompatible with the energy landscape, which is
consistent with our theoretical finding about the identity STE.

To our knowledge, convergence guarantees of perceptron algorithm (Rosenblatt, 1957; 1962) and
Convertron algorithm (Goel et al., 2018) were proved for the identity STE. It is worth noting that
Convertron (Goel et al., 2018) makes weaker assumptions than in this paper. These results, however,
do not generalize to the network with two trainable layers studied here. As aforementioned, the
identity STE is actually a poor choice in our case. Moreover, it is not clear if their analyses can
be extended to other STEs. Similar to Convertron with leaky ReL.U, the monotonicity of quantized
activation function plays a role in coarse gradient descent. Indeed, all three STEs considered here
exploit this property. But this is not the whole story. A great STE like the clipped ReLU matches
quantized ReLU at the extrema, otherwise the instability/incompatibility issue may arise.

Organization. In section 2, we study the energy landscape of a two-linear-layer network with binary
activation and Gaussian data. We present the main results and sketch the mathematical analysis for
STE in section 3. In section 4, we compare the empirical performances of different STEs in 2-
bit and 4-bit activation quantization, and report the instability phenomena of the training algorithms
associated with poor STEs observed in CIFAR experiments. Due to space limitation, all the technical
proofs as well as some figures are deferred to the appendix.

Notations. || - || denotes the Euclidean norm of a vector or the spectral norm of a matrix. 0,, € R"
represents the vector of all zeros, whereas 1,, € R” the vector of all ones. I, is the identity matrix
of order n. For any w, z € R", w'z = (w,z) = Y, w;2; is their inner product. w ® z denotes
the Hadamard product whose i entry is given by (w © z); = w; ;.

2 LEARNING TWO-LINEAR-LAYER CNN WITH BINARY ACTIVATION

We consider a model similar to (Du et al., 2018) that outputs the prediction
y(Z,v,w) := Zvia(ZiTw) =v'o(Zw)
i=1

for some input Z € R™*". Here w € R™ and v € R™ are the trainable weights in the first and
second linear layer, respectively; Z, denotes the ith row vector of Z; the activation function o acts
component-wise on the vector Zw, i.e., 0(Zw); = o((Zw);) = o(Z, w). The first layer serves
as a convolutional layer, where each row Z/ can be viewed as a patch sampled from Z and the
weight filter w is shared among all patches, and the second linear layer is the classifier. The label
is generated according to y*(Z) = (v*) " o(Zw*) for some true (non-zero) parameters v* and w*.
Moreover, we use the following squared sample loss

1 “ 1 * 2
tv,w;Z):= 5 (y(Z,v,w) —y (2))* = 5 (v o(Zw) —y*(Z))". (1
Unlike in (Du et al., 2018), the activation function ¢ here is not ReLU, but the binary function
0’(3’,‘) = 1{J.">0}-
We assume that the entries of Z € R™*"™ are i.i.d. sampled from the Gaussian distribution A/(0, 1)
(Zhong et al., 2017; Brutzkus & Globerson, 2017). Since ¢(v, w;Z) = {(v,w/c; Z) for any scalar
¢ > 0, without loss of generality, we take ||w*|| = 1 and cast the learning task as the following
population loss minimization problem:
min_ f(v,w) == Eg [((v,w; Z)], @)

vER™ weR”

where the sample loss £(v, w; Z) is given by (1).
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2.1 BACK-PROPAGATION AND COARSE GRADIENT DESCENT

With the Gaussian assumption on Z, as will be shown in section 2.2, it is possible to find the analytic
expressions of f(v,w) and its gradient

The gradient of objective function, however, is not available for the network training. In fact, we
can only access the expected sample gradient, namely,

ol ol
Eg {%(v,w,Z)} and Ez [&w(v,w,Z)} .

We remark that Ez [ (v, w; Z)] is not the same as %(v7 w) = W. By the standard
back-propagation or chain rule we readily check that
o .
oo (v, wi Z) = o(Zw) (UTJ(Z'w) —y (Z)) 3)
and Y
(v, wiZ) = 27 (o' (Zw) ©v) (’UTO'(ZU)) —y*(Z)). )

Note that ¢’ is zero a.e., which makes (4) inapplicable to the training. The idea of STE is to simply
replace the a.e. zero component ¢’ in (4) with a related non-trivial function p’ (Hinton, 2012; Bengio
et al., 2013; Hubara et al., 2016; Cai et al., 2017), which is the derivative of some (sub)differentiable
function u More premsely, back-propagation using the STE p’ gives the following non-trivial sur-
rogate of —Z -5 (v, w; Z), to which we refer as the coarse (partial) gradient

g.(v,w;Z) =Z" () (Zw) © v) (vTa(Z'w) — y*(Z)) (5)

Using the STE y’ to train the two-linear-layer convolutional neural network (CNN) with binary
activation gives rise to the (full-batch) coarse gradient descent described in Algorithm 1.

Algorithm 1 Coarse gradient descent for learning two-linear-layer CNN with STE 1/,

Input: initialization v? e R™, w’ € R, learning rate 7).
fort=0,1,... do

0 23y [0t 0, 2)
witl = w' — nEz [g, (v, w'; Z)]

end for

2.2  PRELIMINARIES

Let us present some preliminaries about the landscape of the population loss function flv,w).

HHw*H
w # 0,. Recall that the label is given by y*(Z) = (v*)Zw* from (1), we elaborate on the
analytic expressions of f(v,w) and V f (v, w).

To this end, we define the angle between w and w* as 6(w,w™*) := arccos (H ) for any

Lemma 1. If w # 0, the population loss f(v,w) is given by

1 2
A vl (Im + lmli)v — 20T (<1 - 9(w,w*)) I, + lmljn> v+ (v*)T(Im + lmlL)v*l .
T

In addition, f(v,w) = (v*)T ( m + 11,0 )v* forw = 0,,.

Lemma 2. [fw # 0,, and 0(w,w*) € (0,7), the partial gradients of f (v, w) w.rt. v and w are
of 1 - 1 2 . -\ .
3 (v, w) = Z(Im + 1,1, v — 1 ((1 — ;G(w,w )) I,+1,1) |v (6)

4
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and
I 'wa w*
o Toy* ( n 2)
7f<v’w) __vw [[w] 7 7
ow 27er|| H (In _ T\D'«::’H;)w*
respectively.

For any v € R™, (v, 0,,) is impossible to be a local minimizer. The only possible (local) minimizers
of the model (2) are located at

1. Stationary points where the gradients given by (6) and (7) vanish simultaneously (which
may not be possible), i.e.,

- 2
v v*=0and v = (Im + ]-m]-;;) 1 <<1 - 9(w7w*)> I, + ]-m]-;) v*. (8)
T
2. Non-differentiable points where f(w,w*) = 0 and v = v*, or f(w, w*) = 7w and v =
(Lo 4+ 1n17) " (L], = Lo,
Among them, {(v,w) : v = v*, O(w,w*) = 0} are obviously the global minimizers of (2). We
show that the stationary points, if exist, can only be saddle points, and {(v,w) : (w,w*) =

-1
T v=(In+1,1}) (1,1,

m — Im)v*} are the only potential spurious local minimizers.

Proposition 1. If the true parameter v* satisfies (1,,v*)* < ZFL||v* |2, then

(’U w) P (I'rn + 1m1T)_1 _(]—T—;’U*)Q I, + 1m1T v*
’ n N\ T D A m) v

m

7T (m+1)[lv*]?
4 ) = — 9
() = S T Do P — (o) ©
give the saddle points obeying (8), and {(v,w) : f(w,w*) =7, v = (Im + lml;rn)_l(lml,l —
I,,))v*} are the spurious local minimizers. Otherwise, the model (2) has no saddle points or spurious
local minimizers.

We further prove that the population gradient V f (v, w) given by (6) and (7), is Lipschitz continuous
when restricted to bounded domains.

Lemma 3. For any differentiable points (v, w) and (0, w) with min{||w||, |@]|} = cw > 0 and
max{||v||, ||9||} = C., there exists a Lipschitz constant L > 0 depending on Cy, and c.,, such that

IVf(v,w) = Vf(@,w)| < L(v,w) - (0, w)].

3 MAIN RESULTS

We are most interested in the complex case where both the saddle points and spurious local mini-
mizers are present. Our main results are concerned with the behaviors of the coarse gradient descent
summarized in Algorithm 1 when the derivatives of the vanilla and clipped ReLUs as well as the
identity function serve as the STE, respectively. We shall prove that Algorithm 1 using the derivative
of vanilla or clipped ReLLU converges to a critical point, whereas that with the identity STE does not.

Theorem 1 (Convergence). Let {(v', w')} be the sequence generated by Algorithm 1 with ReLU
wu(z) = max{z,0} or clipped ReLU p(x) = min {max{z,0},1}. Suppose |[w’| > cy for all
t with some c,, > 0. Then if the learning rate n > 0 is sufficiently small, for any initialization
(00, wP), the objective sequence {f(v',w')} is monotonically decreasing, and {(vt,w")} con-
verges to a saddle point or a (local) minimizer of the population loss minimization (2). In addi-
tion, if 1.} v* # 0 and m > 1, the descent and convergence properties do not hold for Algorithm
1 with the identity function u(x) = x near the local minimizers satisfying 6(w,w*) = 7 and
v= (I, +1,11)" (1,1, — I,)v"

Remark 1. The convergence guarantee for the coarse gradient descent is established under the
assumption that there are infinite training samples. When there are only a few data, in a coarse scale,
the empirical loss roughly descends along the direction of negative coarse gradient, as illustrated
by Figure 1. As the sample size increases, the empirical loss gains monotonicity and smoothness.
This explains why (proper) STE works so well with massive amounts of data as in deep learning.
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Remark 2. The same results hold, if the Gaussian assumption on the input data is weakened to that
their rows i.i.d. follow some rotation-invariant distribution. The proof will be substantially similar.

In the rest of this section, we sketch the mathematical analysis for the main results.

sample size = 10 sample size = 50 sample size = 1000

2 2. 2
%] %] I []
%) ] @,
o151 o151 o151\
T L e © ®
o 1 L 1 o 1\
= = =
o o} \ [o% N
£05 - £0.5 ja c05 N
o) ) ~ [0}

0 0 0

0 005 01 015 02 0 005 01 015 02 0 005 01 015 02
learning rate n learning rate n learning rate n

Figure 1: The plots of the empirical loss moving by one step in the direction of negative coarse
gradient v.s. the learning rate (step size) n for different sample sizes.

3.1 DERIVATIVE OF THE VANILLA RELU As STE

If we choose the derivative of ReLU p(z) = max{z,0} as the STE in (5), it is easy to see
i (z) = o(z), and we have the following expressions of Eg, [ (v,w;Z)] and E [grelu(v, w; Z)}
for Algorithm 1.

Lemma 4. The expected partial gradient of (v, w;Z) w.rt. v is

v of

x| e (vw0:2)] = L (0.0). (10)

Let p(x) = max{x,0} in (5). The expected coarse gradient w.r.t. w is

h(v,v*) w (9(w7w*)> vTv* e TW
Ez|gre(v,w;Z)| = —— — cos , 11
Z |:g 1 ( )] 2N/ 21 H’U]” 2 2T Hﬁ + w* ( )

where h(v,v*) = ||v||*> + (1,Lv)? — (1} v)(1] v*) + v o™

’HL ’HL m L

As stated in Lemma 5 below, the key observation is that the coarse partial gradient

Ez [grelu(v, w; Z)} has non-negative correlation with the population partial gradient 3 ar (v, w),

and —Ez {grelu(v, w; Z)} together with —Ez [ - (v, w; Z)] form a descent direction for minimiz-
ing the population loss.

Lemma 5. Ifw # 0,, and 0(w,w*) € (0, ), then the inner product between the expected coarse
and population gradients w.r.t. w is

<]EZ [grelu(v,w; Z)} , gl{}('u,w)> = W(UTU*)z >0

Moreover, if further ||v|| < Cy and ||w|| > ¢4, there exists a constant A,ely > 0 depending on C,,
and ¢, such that

HEZ [grelu(v,w;z)} H2 < Avelu (Hgi(v,w) ’ + <EZ {grelu(v,w; Z)} , gq{)(v,w)>> . (12)

Clearly, when <Ez [grelu(v w; Z)], Fu (0, 'w)> > 0, Ez [grelu(’v 'w'Z)] is roughly in the same

direction as gf (v, w). Moreover, since by Lemma 4, E [ (v,w;Z)] = gf (v, w), we expect

"We redefine the second term as 0., in the case O(w,w™) = 7, or equivalently, ﬁ +w* = 0,.
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that the coarse gradient descent behaves like the gradient descent directly on f(v,w). Here we
would like to highlight the significance of the estimate (12) in guaranteeing the descent property of
Algorithm 1. By the Lipschitz continuity of V f specified in Lemma 3, it holds that

f(UH_l,’wH_l) _ f(’Ut,’wt) < <gi('vt,wt),'vt+1 _ ,Ut> + <681J;(Ut,wt)7wt+1 _ wt>

L
+ 5 ([0 = o' + w0 —w|]?)

2 2
- (=5 |t

a .
- <81J;(vta wt)v IEZ [grelu(vtv wt; Z)_ >

Lip? 2
+ 777 IEZ [grclu(vtv wt; Z)i| H

2

INE

2
- (= 0+ a5 ) | St

AreluL772 of t oot t ot
- (77_ 2) <(9’UJ(U , W )7EZ |:grelu(v , W 7Z):| )

13)

where a) is due to (12). Therefore, if 7 is small enough, we have monotonically decreasing energy
until convergence.
Lemma 6. When Algorithm 1 converges, Bz {g—ﬁ(v, w; Z)} and Eg, [grelu(v, w; Z)} vanish simul-

taneously, which only occurs at the

1. Saddle points where (8) is satisfied according to Proposition 1.

2. Minimizers of (2) where v = v*, §(w, w*) = 0, orv = (I, +1,,1,} )~ 1(1,,1,}, — I,,,)v*,
0w, w*) = .

Lemma 6 states that when Algorithm 1 using ReLU STE converges, it can only converge to a critical
point of the population loss function.

3.2 DERIVATIVE OF THE CLIPPED RELU AS STE

For the STE using clipped ReLU, y(z) = min {max{z,0},1} and p'(z) = loco<1y(z). We
have results similar to Lemmas 5 and 6. That is, the coarse partial gradient using clipped ReLU
STE Ez [gcrelu(v, w; Z)] generally has positive correlation with the true partial gradient of the
population loss %(v, w) (Lemma 7)). Moreover, the coarse gradient vanishes and only vanishes at
the critical points (Lemma 8).

Lemma 7. If w # 0,, and 0(w,w*) € (0,7), then

p(0,w)h(v,v*) w
2 |wl|

Ez [gerelu (v, w; Z)] = —( T'u*) csc(6/2) - q(0, w)

w
[w]’

where h(v,v*) = ||v||? + (1] v)? — (1L v)(1,} v*) + v T v* same as in Lemma 5, and

— (v70") (p(8, w) — cot(8/2) - q(6,w))

™ ™

p(6,w) := %/: cos(p)¢ (Sec(¢>) d¢, (6, w) := % /_E sin(6)¢ (SQC(¢)> d

40 [[wll 540 [[wll

with&(z) == [, F 2 exp(fg)dr. The inner product between the expected coarse and true gradients

w.r.t. w 0
<EZ [gcrelu(’v7 w; Z)] , %(U, ,w)> B q(6,w)

27w

(v v*)2>0.
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Moreover, if further ||v|| < C, and ||w|| > ¢4, there exists a constant Acyely > 0 depending on C,,

and ¢, such that
2
0
+ <EZ [gcrelu('ua w;y Z):| ) 61{1 (’U, w)>> .

Lemma 8. When Algorithm 1 converges, Ez {g— (v, w; Z)} and Eg [gcrelu(v, w; Z)} vanish simul-

HEZ [gcrelu(v,uﬁz)] H2 < Acrelu (Hgi(v’w)

taneously, which only occurs at the

1. Saddle points where (8) is satisfied according to Proposition 1.

2. Minimizers of (2) where v = v*, f(w, w*) = 0, orv = (I, +1,1] )1 (1,1}

m —Im)’l)*,
O(w,w*) = .

3.3 DERIVATIVE OF THE IDENTITY FUNCTION AS STE

Now we consider the derivative of identity function. Similar results to Lemmas 5 and 6 are not valid
anymore. It happens that the coarse gradient derived from the identity STE does not vanish at local
minima, and Algorithm 1 may never converge there.

Lemma 9. Ler u(x) = x in (5). Then the expected coarse partial gradient w.r.t. w is

Ez[gid(v,w;Z)]:\lﬁ( |\2” | (v%*)w*). (14)

If0(w,w*) =mand v = (I, + lmljn)_ (1,1) — I,,)v*,

2(m—1)
V2m(m +1)2

(1] v*)? >0

[ g0, s 2] | =

)

i.e, Ez {gid(v, w; Z)] does not vanish at the local minimizers if 1,) v* # 0 and m > 1.

Lemma 10. Ifw # 0,, and O(w, w*) € (0, ), then the inner product between the expected coarse
and true gradients w.r.t. w is

<Ez [Qid(v,w;Z)},;{}(v,w)> — sin (0(w, w*))

(V2m)? ]|
When 0(w,w*) = 7, v — (I, + 1m1;;)_1(1m1;',; — I,))v*, if 1) v* # 0 and m > 1, we have

(vTv*)? > 0. (15)

[ez[oato. )]

%('u,'w)H2 <Ez [gld('u w: Z)}, aw(” w)>

— +o00. (16)

Lemma 9 suggests that if 1, v* # 0, the coarse gradient descent will never converge near the

spurious minimizers with 6(w,w*) = 7 and v = (I, + 1m1,Tn)_1(1m1; — I,,,)v*, because

Ez {gid(v, w; Z)] does not vanish there. By the positive correlation implied by (15) of Lemma

10, for some proper (v°,w"), the iterates {(v’,w')} may move towards a local minimizer in

the beginning. But when {(v?, w®)} approaches it, the descent property (13) does not hold for
Ez [gia (v, w; Z)] because of (16), hence the training loss begins to increase and instability arises.

4 EXPERIMENTS

While our theory implies that both vanilla and clipped ReLLUs learn a two-linear-layer CNN, their
empirical performances on deeper nets are different. In this section, we compare the performances
of the identity, ReLU and clipped ReLU STEs on MNIST (LeCun et al., 1998) and CIFAR-10
(Krizhevsky, 2009) benchmarks for 2-bit or 4-bit quantized activations. As an illustration, we plot
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the 2-bit quantized ReLU and its associated clipped ReLU in Figure 3 in the appendix. Intuitively,
the clipped ReLU should be the best performer, as it best approximates the original quantized ReLLU.
We also report the instability issue of the training algorithm when using an improper STE in section
4.2. In all experiments, the weights are kept float.

The resolution « for the quantized ReLLU needs to be carefully chosen to maintain the full-precision
level accuracy. To this end, we follow (Cai et al., 2017) and resort to a modified batch normalization
layer (Ioffe & Szegedy, 2015) without the scale and shift, whose output components approximately
follow a unit Gaussian distribution. Then the « that fits the input of activation layer the best can
be pre-computed by a variant of Lloyd’s algorithm (Lloyd, 1982; Yin et al., 2018a) applied to a set
of simulated 1-D half-Gaussian data. After determining the «, it will be fixed during the whole
training process. Since the original LeNet-5 does not have batch normalization, we add one prior
to each activation layer. We emphasize that we are not claiming the superiority of the quantization
approach used here, as it is nothing but the HWGQ (Cai et al., 2017), except we consider the uniform
quantization.

The optimizer we use is the stochastic (coarse) gradient descent with momentum = 0.9 for all ex-
periments. We train 50 epochs for LeNet-5 (LeCun et al., 1998) on MNIST, and 200 epochs for
VGG-11 (Simonyan & Zisserman, 2014) and ResNet-20 (He et al., 2016) on CIFAR-10. The pa-
rameters/weights are initialized with those from their pre-trained full-precision counterparts. The
schedule of the learning rate is specified in Table 2 in the appendix.

4.1 COMPARISON RESULTS

The experimental results are summarized in Table 1, where we record both the training losses and
validation accuracies. Among the three STEs, the derivative of clipped ReLU gives the best overall
performance, followed by vanilla ReLU and then by the identity function. For deeper networks,
clipped ReLU is the best performer. But on the relatively shallow LeNet-5 network, vanilla ReLU
exhibits comparable performance to the clipped ReLLU, which is somewhat in line with our theoret-
ical finding that ReL.U is a great STE for learning the two-linear-layer (shallow) CNN.

Straight-through estimator

Network | BitWidth identity vanilla ReLU clipped ReLU

2 2.6 x 1072/98.49 5.1 x 1073/99.24 5.4 x 1073/99.23

MNIST | LeNet5 7 6.0 x 10-°/98.98 9.0 x 10-%/99.32 8.8 x 10-%/99.24
VGGIL 2 0.19/36.58 0.10/38.69 0.02/90.92

CIFARIO i 31x10°-2/90.19 1.5 x 10-°/92.01 1.3 x 10-3/92.08
ResNet20 2 1.56/46.52 1.50/48.05 0.24/38.39
‘ 7 1.38/54.16 0.25/36.59 0.04/91.24

Table 1: Training loss/validation accuracy (%) on MNIST and CIFAR-10 with quantized activations
and float weights, for STEs using derivatives of the identity function, vanilla ReLU and clipped
ReLU at bit-widths 2 and 4.

4.2 INSTABILITY

We report the phenomenon of being repelled from a good minimum on ResNet-20 with 4-bit acti-
vations when using the identity STE, to demonstrate the instability issue as predicted in Theorem 1.
By Table 1, the coarse gradient descent algorithms using the vanilla and clipped ReLUs converge to
the neighborhoods of the minima with validation accuracies (training losses) of 86.59% (0.25) and
91.24% (0.04), respectively, whereas that using the identity STE gives 54.16% (1.38). Note that the
landscape of the empirical loss function does not depend on which STE is used in the training. Then
we initialize training with the two improved minima and use the identity STE. To see if the algorithm
is stable there, we start the training with a tiny learning rate of 10~°. For both initializations, the
training loss and validation error significantly increase within the first 20 epochs; see Figure 4.2. To
speedup training, at epoch 20, we switch to the normal schedule of learning rate specified in Table
2 and run 200 additional epochs. The training using the identity STE ends up with a much worse
minimum. This is because the coarse gradient with identity STE does not vanish at the good minima
in this case (Lemma 9). Similarly, the poor performance of ReLU STE on 2-bit activated ResNet-20
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is also due to the instability of the corresponding training algorithm at good minima, as illustrated
by Figure 4 in Appendix C, although it diverges much slower.

5 —— CRelLU 1.53 § ] —— CRelLU 47.48%

4 RelU 1.48 5807 RelU 49.73%
a e
=3 g 60
£ ©
€2 | Py S 40 s, A
5 L —— E MW

0 J . | | . ©20 . \/\M ‘ ‘ , ‘

0 50 100 150 200 0 50 100 150 200
epoch epoch

Figure 2: When initialized with weights (good minima) produced by the vanilla (orange) and clipped
(blue) ReL.Us on ResNet-20 with 4-bit activations, the coarse gradient descent using the identity STE
ends up being repelled from there. The learning rate is set to 10~° until epoch 20.

5 CONCLUDING REMARKS

We provided the first theoretical justification for the concept of STE that it gives rise to descent
training algorithm. We considered three STEs: the derivatives of the identity function, vanilla ReLU
and clipped ReLU, for learning a two-linear-layer CNN with binary activation. We derived the
explicit formulas of the expected coarse gradients corresponding to the STEs, and showed that the
negative expected coarse gradients based on vanilla and clipped ReLUs are descent directions for
minimizing the population loss, whereas the identity STE is not since it generates a coarse gradient
incompatible with the energy landscape. The instability/incompatibility issue was confirmed in
CIFAR experiments for improper choices of STE. In the future work, we aim further understanding
of coarse gradient descent for large-scale optimization problems with intractable gradients.
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APPENDIX

A. THE PLOTS OF QUANTIZED AND CLIPPED RELUS

quantized ReLLU clipped ReLU
oa(x) Gal@)
3al - 3al A
20 - 2al
al al
o o 2 3a z ol o 2 3a x

Figure 3: The plots of 2-bit quantized ReLU o, () (with 22 = 4 quantization levels including 0)

and the associated clipped ReLU G, (). « is the resolution determined in advance of the network
training.

B. THE SCHEDULE OF LEARNING RATE

Learning rate

Network | # epochs | Batch size initial decay rate  milestone

LeNet5 50 64 0.1 0.1 [20,40]
VGGI1 200 128 0.01 0.1 [80,140]
ResNet20 200 128 0.01 0.1 [80,140]

Table 2: The schedule of the learning rate.

C. INSTABILITY OF RELU STE ON RESNET-20 WITH 2-BIT ACTIVATIONS

8 0.8
> 85
(9} 1))
O 4
2 0.6
< £
275 o4
©
°
g 70
0 50 100 150 200 0 50 100 150 200
epoch epoch

Figure 4: When initialized with the weights produced by the clipped ReLU STE on ResNet-20 with
2-bit activations (88.38% validation accuracy), the coarse gradient descent using the ReLU STE with
1075 learning rate is not stable there, and both classification and training errors begin to increase.

D. ADDITIONAL SUPPORTING LEMMAS
Lemma 11. Ler z € R™ be a Gaussian random vector with entries i.i.d. sampled from N (0, 1).
Given nonzero vectors w, w € R™ with the angle 0, we have

1 -0
E [1{z7w>0}] = 57 E [1{sz>O,zT1D>O}] = 7T27T )

13
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and
. 1w _ cos(0/2) T t el >
21 (57 w>0)] ~ Vor w]’ Zlarwn0.0m w00 = vam H o7+ 1|
Twll T Tl

Proof of Lemma 11. The third identity was proved in Lemma A.1 of (Du et al., 2018). To
show the first one, without loss of generality we assume w = [w1,0,_;]T with w; > 0, then

E [1{ZTw>O}] = P(Zl > 0) =3
We further assume @ = [101, W2, 0, _,]T. It is easy to see that

T—0

E[1{zTws0 2Tws0y] =Pz w >0,z w > 0) = o

To prove the last identity, we use polar representation of two-dimensional Gaussian random vari-
ables, where r is the radius and ¢ is the angle with dP,. = r exp(—r?/2)dr and dPy = 5-d¢. Then

E [21(57w>0,47w>0}] = 0 for i > 3. Moreover,

1 e 2 3 1+ cos(6
E [le{sz>0,zTﬁ;>0}] - g/o rexp (_2> dr/ Z+0 cos(¢)dg = N \/27r()
-3

and
1 [ r? E sin(f)
E |zo1g, 2T = — r?exp | —— dT/ sin(¢)d¢ = .
(221 w0, a0 27T/o p( 2) 740 (9)d¢ 2v/21
Therefore,
cos(9/2) . T+ cos(6/2) et t T
E |zl ,7Tw>0.27 @ = ————[cos(0/2),sin(0/2),0,,_,] = ,
[ {zTw>0,2T >0}] \/% [ (/ ) ( / ) 2] \/ﬂ Hﬁ-i— “w”
where the last equality holds because m and % are two unit-normed vectors with angle
Twl T Tl
0/2. O

Lemma 12. Let z € R™ be a Gaussian random vector with entries i.i.d. sampled from N(0,1).
Given nonzero vectors w, w € R™ with the angle 6, we have

w
E [Z1{0<z7w<1}:| = p(07 w)m7

E [Z1{0<z7w<1,zTu~)>0}] = ((p(0, w)) — cot(0/2) - 4(0, w)) ﬁ
© csc(8/2) - g0, ) T+ T
H Tl + T H
Here
w) = ! : cos sec(¢) w) = i B sin sec(9)
o) =g [ oo (o) s avwr = o [ e (o) as

with £(x) = fOI 2 exp(— %)dr satisfying &(+00) =

p(m, w) = q(0, w) = ¢(m, w) =0.

. In addition,

[SIE

2Same as in Lemma 4, we redefine E [zl{z7w>0’ ZT,“-)>O}} = 0, in the case f(w, w) = .

14
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Proof of Lemma 12. Following the proof of Lemma 11, we let w = [wy,0, ;]T with w; > 0,

W = [W,W2,0,] ,]T, and use the polar representation of two-dimensional Gaussian distribution.
Then

™

sec(®)
1 (2 Twl r2
Blnlpcrwen] = 3= [ cos@) [ 7 e (—2) drdé = p(0,w)

us
2

and
<ec(¢)

1 [2 Twl r2
E [221{0<zmw<1}) = g/ _sin(9) / r? exp (—) drd¢ = ¢(0,w) =0,

-2

since the integrand above is an odd function in ¢. Moreover, E [Zi1{0<zrw<1}} = 0for¢ > 3. So
the first identity holds. For the second one, we have

x sec()

1 [2 T r2
E [Z11{0<sz<1 sz>0}] 277 / - CO@(Qb)/O r’ eXp (_2> d’l“d(b = p(ev UJ),

and similarly, E [221{0<z7w<17zTﬁ,>0}] = ¢(f, w). Therefore,

E[Z1{0<z7'w<1,zT'u3>0}] = [p(ﬁ,’IU) (9 w)70n 2]

s
B3

Since = = [1,0 ;] and ﬁ = [cos(#/2),sin(0/2),0] _,]T, it is easy to check the
Fwll T T

second 1dent1ty is also true. O

|
B

gk
sk

Lemma 13. Let p(0,w) and q(0, w) be defined in Lemma 12. Then for 0 € [5, ], we have
1. p(8,w) < q(0,w).

2. (1 - %) p(0,w) < ¢(0,w).

Proof of Lemma 13. 1. Let 0 € [T, 7], since { > 0,

™ ™

= o (5 )s0= L [ 5 -)e ()

2

<5 egg im0 - 006 (2 a0 < 1 [* sniore (24D o = 0.,

2 w]| z |w]|
((ﬁ)>

where the last inequality is due to the rearrangement inequality since both sin(¢) and £ (bﬁfu

are increasing in ¢ on [0, 7].

2. Since cos(¢)& (Sec(@) is even, we have

flwll
x

i/gw cos(9)€ (ST'(;(}QT)) do = %/05 cos(d)¢ (ﬁiﬁ?) d¢

<2 : sin(g)¢ (Sﬁj£¢)) a1 | T s (Se‘;ﬁﬁ)) ao.

2
The first inequality is due to part 1 which gives p(7/2,w) < ¢(7/2, w), whereas the second one

holds because sin(¢)& (Sﬁi(}‘ﬁ)) is increasing on [0, 5. O

Lemma 14. For any nonzero vectors w and W with ||| > ||w|| = ¢ > 0, we have
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L |0(w, w*) = 6(w, w*)| < 5 |lw — wl|.

(I T)w* (I —‘Zﬂi)w*
2 L i ]
(-t )|

IIwH wT ) . [l
In—jwE ¥

Proof of Lemma 14. 1. Since by Cauchy-Schwarz inequality,

<w,w - c“’> =@ w— c|w| <0,
[|w|]

we have
- 2
bo -l = | 1 )*—(w—“f’) > (1- g @
||w|| || |
-2
o O R T
B IIwH @l
Therefore,
w w
|0(w, w*) — (w, w")| < (w,w) =0 (, - )
[[w]|” [[w]]
Q(L 11)) -
N R e IR
- 2 2 [ lwl [l ’

where we used the fact sin(z) > 2% for z € [0, %] and the estimate in (17).

2
- il

7

. T . L -
2. Since (In - %) w?* is the projection of w* onto the complement space of w, and likewise for

(In — %)w*, the angle between (In W)w and (I w—‘f)w* is equal to the angle

lw]l?
between w and w. Therefore,

(gl (e (o ey

b

T = an T w ’ W
(1. - 2 w|| | (1 - 225w jwl]” |||
and thus
T ~ T
1 (In - "1|111;L)u”2>w 1 (In - T|U’~w”2)’u)
w _ ww’ * w _ ww" *
ol (2~ gz )| 10 H(I P
:H _ o || fw—w| T——
fwl? ~ Twl? | ~ Jwlle)] =@
The second equality above holds because
H w |21 1 2w, w)  |w—w|?
lwl*  [|lw]? lwl* @l flw|?[w|*  [lw]?[lw]>

E. MAIN PROOFS

Lemma 1. If w # 0, the population loss f(v,w) is given by

8

In addition, f(v,w) = $(v*)" (I, + 1,,,1,),)v* for w = 0,,.

16

1 2 * * * *
= [ (I + 151} ) — 207 ((1 — ;H(w,w )) I, + 1,”1,1) v+ () (I + 1,1,
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Proof of Lemma 1. We notice that
flv,w) = %(UTEZ [0(Zw)o(Zw) v — 2v  Ezlo(Zw)o(Zw*) Tv*
+ (v*) "Ez[o(Zw*)o(Zw*) "v*).

Let Z, be the i*! row vector of Z. Since w # 0,,, using Lemma 11, we have

Bz [o(Zw)o(Zw)T],, = E [o(2] w)o(Z] w)] = E [1{z7 050 = %

and for 7 # 7,

Ez [0(Zw)o(Zw)T],; = E [0(Z] w)o(Z] w)] = E [1z7ws0] B [Lzrws0] = i

Therefore, Bz [0(Zw)o(Zw) | = Ez [0(Zw*)o(Zw*) "] = 1 (I, + 1,,1,,). Furthermore,

* _ 9 ’ ’
Ez [0(Zw)o(Zw*)"],, = E {1{zjw>0,zjw*>0}] = %:fu})’

and Bz [0(Zw)o(Zw*)"],. = 1. So,

]

Ez [0(Zw)o(Zw*) "] = i <<1 — 29(“;“’)) I, + 1m1jn> .

Then it is easy to validate the first claim. Moreover, if w = 0,,, then

flo,w) = %(v*)TEZ[J(Zw*)U(Zw*)T}’U* = é(v*)T(Im + lml;,rl)'u*.

Lemma 2. If w # 0,, and 6(w,w*) € (0, ), the partial gradients of f(v, w) w.rt. v and w are

0 1 1 2 . .
%(v,w) = E(Im + 1,”1;)'0 1 (<1 — ;G(w,w )) I, + 1m1;> v
and
T o« In _ ww—; w*
if(v w)= -2 " [[w]]
respectively.

Proof of Lemma 2. The first claim is trivial, and we only show the second one. Since 6(w, w*) =

arccos (@) is differentiable w.r.t. w at f(w, w*) € (0, 7), we have

[l
of v v* 90 . v v |w|fw* — (ww*)w
SV w) = —— o= (w,w") = - —
’LU'U)T *
_ ’UT’U* (In, — e w
2rllel (1, - g ) w||
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Proposition 1. If the true parameter v* satisfies (1,,v*)* < ZL||v* |2, then

—(1,,0)?
(m + Dfor|? = (1,0%)

m

{(U,w) cv= (I, +1,1) )" ( 2Im+1m1;) v*,

o) = T DY

2 (m+ 1o = (1,,0%)?

give the saddle points obeying (8), and {(v,w) : f(w,w*) =7, v = (Im + 1m1;)71(1m1:n —
I,,))v*} are the spurious local minimizers. Otherwise, the model (2) has no saddle points or spurious
local minimizers.

Proof of Proposition 1. Suppose v 'v* = 0 and g—i(v, w) = 0, then by Lemma 1,

2
0=v'v" =) (I, +1,1)"! ((1 — 9(w,w*)> I, + 1m1;) v*. (18)
i
From (18) it follows that
m m

2 * * — * * — * *
—0(w, w) (V") (Lt 1m1y) " 0" = () (T 1 1) ™" (L + L) 07 = 072 (19)

On the other hand, from (18) it also follows that

2 * *\ T Ty—1,_ % *\ T Ty—-1 T (]-T'v*)2
—O(w,w") = 1) (v") (I;m +1nl,)" v" = (0") (In+ 1nly)" 1n(1,07) = )
s m+1
where we used (I, + 1,,1,})1,, = (m + 1)1,,. Taking the difference of the two equalities above
gives
T 9%\ 2
*\ T Ty\—1,,% * (|2 (1mv )
I, 1m1m = - 1 - 20
(") (T + 11 )0 = o2 = Cm2 o)
By (19), we have §(w, w*) = § (m+1()7|7\lv+*l\l)l‘:)lliv*)2 , which requires
T (mt D | s mel
2t Do |2 — (ILo )2 <, or equivalently, (1,,v")° < 5 [lvo*]=.

Furthermore, since g—i(v, w) = 0, we have

v=I,+1,1)7"! ((1 — 29(w,w*)> I, + 1m1;) v*
™

=, +1,1))7! —(1,07)" I,+1,1) )v*
mmt s\ Dl [P = (e )

Next, we check the local optimality of the stationary points. By ignoring the scaling and constant
terms, we rewrite the objective function as

5 2
v,0):=v' (I, +1,1 )v—2v" ((1—=0)1IL,+1,1 |v* for e [0,7].
m m
T
It is easy to check that its Hessian matrix
27 _[2(In +1,,1))  2o*
\% f(v79)_ |: %(’U*)T 0

is indefinite. Therefore, the stationary points are saddle points.

Moreover, if (1, v*)? < 2L |lv*||2, at the point (v,6) = (I, + 1,,1,,) " (1,1, — Iy)v*, @),
we have
v vt = (U*)T(Im + 17711;,;)_1(17,11;:T —I,)v"
2(1T’U*)2
* (12 *\ T TN\—1,.% m * |2
= -2 I, +1,1, =" <0, 21
072 = 2(0) (En + 1 1) 70" = 2l o) @

18
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where we used (20) in the last identity. We consider an arbitrary point (v + Av, 7 + A#) in the
neighborhood of (v, 7) with A@ < 0. The perturbed objective value is

f(v+ Av, 7+ Af) = (v + Av)" (I + 1., 1T)(’U+A’U)—2(’U+A’U)T (lml;;—Im) v*
2A9

+ 20+ A0)Tw

On the right hand side, since v = (I,,, + 1,,1} )~*(1,,1,} — I,,,)v* is the unique minimizer to the
quadratic function f(v, ), we have if Av # 0,,,

(v + Av) T (I, + 11,),) (v + Av) = 2(v + Av) T (1,1, — I,) v* > f(v, 7).

Moreover, for sufficiently small [|Av||, it holds that A6 - (v + Av)Tv* > 0 for Af < 0 because
of (21). Therefore, f(v + Av, 7 + Af) > f(v, ) whenever (Av, Af) is small and non-zero, and
(I + 1,,10) " (1,,1) — I,,)v*, 7) is a local minimizer of f.

f -5 (v, w) does not exist,

To prove the second claim, suppose (1, v*)? > mtL
or gi (v, w) and %(v, w) do not vanish simultaneously, and thus there is no stationary point.

At the point (v,0) = (I, + 1,,1,}) 71 (1,1, — I,,,)v*, ), we have

21T *)2
'UT’U* ( ’U)

=2"mZ 7 ¥ > 0.
e P
If v v* > 0, since Vf(v,0) = 1105, 2vTv*] 7, a small perturbation [0,,, A6]" with A§ < 0

will give a strictly decreased objectlve value, 50 (v,0) = (I, + 1,,1,,) " (L 1), — L, )v*, 7) is
not a local minimizer. If v " v* = 0, then V f (v,0) = 0,41, the same conclusion can be reached by
examining the second order necessary condition. O

Lemma 3. For any differentiable points (v, w) and (9, w) with min{||w||, ||[W||} = ¢w > 0 and
max{||v|, |9||} = Cy, there exists a Lipschitz constant L > 0 depending on C., and c.,, such that

IVf(v,w) =V f(o,w)| < Ll[(v, w) - (0, )]

Proof of Lemma 3. It is easy to check that || I,,, + 1,,1,} || = m + 1. Then

0 ) - 1 - 2 -
Hf('u, 8{)( )H =1 H(Ierlmlg)(vv)+7r(¢9(w,w*) — f(w, w*))v*
< ol + 1w, ) — o0, 0)
1 *
<"y g Ly

| /\

1 (mr 1+ 2 o0 - .01,

where the last inequality is due to Lemma 14.1.

19
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We further have
I ww * I ww *
9 S |7 () e (e
FIACE ow® o7 ||w]] H(I” _ ml)w* 27| H(I” _ ﬁﬁ)w*
_ ww! * _ ww! *
- ’UT’U* (In \IwHZ)w ’UT’U* (In I ~H2)’w
12 ww | % 2 ww | *
Tl (£, — i ) el (1, — i Jow
Tl * Wb *
’UT’U* (In — I ~”2)’UJ ’l~)T’U* (In — ”muz)w
191 [~ o]~ 21 [ (1~ e
v "] . ||v*|| .
< e lw =l + 5o 3|
Cw
(Co + cw)llv7]| -
< (v, w) — (8, 9))

where the second last inequality is to due to Lemma 14.2. Combining the two inequalities above
validates the claim. O

Lemma 4. The expected partial gradient of (v, w;Z) w.rt. v is

of

Bz | o (0w0:2)] = o (0.0).

Let p(x) = max{x,0} in (5). The expected coarse gradient w.r.t. w is

hiv,v') w__ o (9(1071“)) AR T B
2v2r lwl] 2 V2 HHT

IEZ grelu('vvw;z)] =

where h(v,v*) = ||v||? + (1) v)? — (1,Lv)(1,,v*) + v T v*.

Proof of Lemma 4. The first claim is true because ge (v, w; Z) is linear in v. By (5),

gu(v,w; Z) = Z7 (4 (Zw) © v) (uTa(zu;) - (v*)Ta(Zw*)).

Using the fact that p' = 0 = 1,03, we have

Ez [gre (v, w; Z)] l(Zvl Z—r ZU:U(Zz—w*)> ( me(ij))]
i=1 i=1
z [(Z VilzTws0y — val{zjw*>o}> ( 1{zjw>o}vizi>] :
i=1 i=1

Invoking Lemma 11, we have

NE

1 w g y

if 1 = j,

E {Zil{zjw>0,ZIw>0}} - {\/ﬁ s if i # j

: 3var Twl )

and

cos(f(w,w™)/2) ﬁer* ifi=1
w * =
E [Zil{Z?w>0,Z_7’Tw*>0}} - 1 \/121;7 e ifi £ 9
2v2r Jwl i J.

3We redefine the second term as O,, in the case O(w,w™) = 7, or equivalently, ﬁ +w* = 0,.
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Therefore,

m m m

Ez [grer (v, w: Z)] Zv E {z 1{ZTw>O}} +3°5 ok [zi1{zjw>07zyw>0}

=1 j=1

J#i

m
— Z ’UiUZ]E |:Zi1{ZiT'w>0,Z:'w*>0}i|

i=1

- Z ZUW}FE [Zil{ZIw>O,Z;w*>O}]
=1 j=1
=

=1 j=

1 0 * T % %-ﬁ-w*
=(|v||2+<1,1v>2>“’—cos( (w, w >) vTv" Tul
2V2r [w]|

’ 2 | o+ |
1 w
(1,0)(10%) — v v%) 0,
2\/27r ( ) ||wl|
and the result follows.
Lemma 5. Ifw # 0,, and 0(w,w*) € (0, ), then the inner product between the expected coarse
and true gradients w.r.t. w is

<Ez [grelu(’v,w; Z)} , gl{](v,w)> = S;I(l\(/i(TTu;éﬁl};f')(vTv*)Q > 0.

Moreover, if further ||v]| < Cy, and ||w|| > cu, there exists a constant Ayey > 0 depending on C,
and ¢, such that

H]Ez [grelu('v,'uﬁ Z)] H2 < Arelu <Hg£(vaw)

2 N <]EZ {grelu(v,w; Z)} , gi('u,'w)>> .

Proof of Lemma 5. By Lemmas 2 and 4, we have

8]0 B ’UT’U* (In — ’ll‘l:ﬁ‘z)w*
90 = "5l ww ),
| (20— i )

and

h * ] * Tox 2o 4 qp*
EZ grelu(v,w; Z) = Mi — oS < (wyw )) Vv Tl
N
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Notice that (I o ”Z) =0, and ||lw*|| = 1, if O(w, w,) # 0,7, then we have

(k2

—

grelu('Ua w; Z):| s 8871'];(’0, ’U))>

9(w,w*)> (vTv*)? < 1 (In - T\Iﬁ\;)w* w* >

U ) i (o] o
_ (9 ) [w]|* — (w " w*)?
27T 3 ||Hw||2w* —w(w w)| |lw+ [wlw|
B (a w, 0’ ) w2 (ww*)?
2 \/||w||4 lw[[2(w )2 /2(w][? + [[w]| (w Tw*))
B (9 w, w’ ) ||wu2—<wTw ?
2 \/7T|’w|| Viwl? = (wTw)?/[[w] + (wTw)
17 w ! w*
_ (9 w, w* ) ||wn
2 V)3 wl|
B (H'w'w ) \/l—cos (0(w, w*))
V)3 w]|
sin (0(w, w* T
= (’U v*)?
2(v2m)? v
To show the second claim, without loss of generality, we assume ||w|| = 1. Denote 6 := 6(w, w*).

By Lemma 1, we have

of 1 T 1 20 T
'l = (I, +1,1 —— | ({1=—=)In+1,1
gy W) = g Im+ Inly)o =g (< 7r> T )

By Lemma 4,
h(v,v*) w (9) vTv* Ty T W
E {reuv,w;Z}zi——COS - , 22
Z | Grelu N = %v5r Twl 2) Vor Hﬁ+w*’ (22)
where

h(v,v*) = [[v]* + (1,0)* = (1,0)(1,0") + v "

m m

= 'UT (Im + ]-m]- ) v — T mlT Im)v*

=v' (I, +1nl,),)v (1 1)+ (1—29>Im>v*+2<1—9>UTU*
s ™

= 4UT%(’U, ( (23)
v

and by the first claim,

<Ez [grelu(v, w; Z)} ) ng)(v,w)> = 2(\/8;%;2?'10”(@7@*)2.
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Hence, for some A}, depending only on C,, and ¢,,, we have

2
HEZ [grelu(va w; Z):| H

) w
_ [ ) w +cos<0) fT e et
Vor 2) Vor \ |lw| HH%HjLwH

+ (1 — Q — cos <9
™ \/ IIwH

oct o

2

2 5 (0 3(vTv*)? | w ﬁ""‘lﬁ
T 2) T ||l -
w *
Huwn Tw H

(2o () 25

IN

7(”»“’)

ov

™

™
2 2 2 2 T py%)2
< 62” Hgi('n,w) + cos? (g) %(vﬂ)*)z + <1 - % — cos (g)) %
6C2 ||of 231 (0N o (0N, T .y 3sin(d), + ..
< v || Y o 7 : 7 * i S *
< H +SCOS <2>sm <2>(vv)+ . (v'v")

< Arelu (Hgi(v>w)

: + <Ez [grelu(v,w; Z)} ; gi(v,w)>> :

where the equality is due to (22) and (23), the first inequality is due to Cauchy-Schwarz in-

is ¢ and

equality, the second inequality holds because the angle between ﬁ and H 3
TewTl

"
Twl +"’

quTH - WH < g, whereas the third inequality is due to sin(z) > 27*, cos(z) > 1— =
Twl TW
and
2 2 2 2
(1 T cos(x)) < (cos(x) -1+ a:) (cos(x) +1- x) < sin(z)(2cos(x)) = sin(2x)
™ ™ 7r
forall z € [0, §]. O

Lemma 6. When Algorithm 1 converges, Ez [%(v, w; Z)} and Ez [grelu(v, w; Z)] vanish simul-

taneously, which only occurs at the

1. Saddle points where (8) is satisfied according to Proposition 1.

2. Minimizers of (2) where v = v*, (w, w*) = 0, orv = (I, +1,,1,}) )~ 1(1,,1,}, — I,,,)v*
0w, w*) =

Proof of Lemma 6. By Lemma 4, suppose we have
ol 1 1 2
Ey {a (v, w: Z)] T+ 101 v -5 ((1 - a(w,w*)> I, + 1m1;> vt =0, (24)
™

and

=0n, (25

* * T g% + w*
Ez [grelu(fu7w;Z)i| = M w S (9(117710 )) v v HWH

2v2r |wl| 2 V2 HW 1w H

where h(v,v*) = ||[v|>+ (1, v)? — (1] v)(1] v*) + v Tv*. By (25), we must have (w, w*) = 0
or f(w,w*) =morv' v*=0.
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If (w, w*) = 0, then by (24), v = v*, and (25) is satisfied.
If 0(w, w*) = 7, then by (24), v = (I,,, + 1,,1,1.)71(1,,1] — I,,,)v*, and (25) is satisfied.

If v v* = 0, then by (24), we have the expressions for v and 6(w, w*) from Proposition 1, and
(25) is satisfied. O]

Lemma 7. If w # 0,, and 0(w,w*) € (0,7), then

0,w)h(v,v*) w . o T w*
B (g (0,: Z)] = DD (7 02 g6, w0) T2
2 Il H Tw T 7
T % w
— (v ") (p(0, w) — cot(6/2) - q(6, w)) Tl (26)
where h(v,v*) = ||v||? + (1), v)? — (1, v)(1,}v*) + v v* same as in Lemma 5, and
1 z sec 1 E] . sec
pow) = o [ costons (9D ao a0y = o [7 sntore (2 ) a
21 J_z 49 [lw]| 2m ) x40 [|w]
with £(x) := fo r? exp(— %)dr The inner product between the expected coarse and true gradients

W.Lt. W

<IEZ [gcrelu(v,w; Z)_ af('v,'w)> = 9(6, w) (vTv*)? > 0.

1" dw 27||w|| -
Moreover, if further ||v|| < Cy, and ||w|| > cq, there exists a constant Acrery > 0 depending on C,,

and ¢y, such that
0
+ <EZ [gcrelu(vv w; Z):| ) %(’U, w)>> .

5 2
HEZ [gcrelu(va w; Z):| H S Acrelu (
Proof of Lemma 7. Denote 0 := 6(w, w*). We first compute E [gcrelu(v, w; Z)} . By (5),

of
ov

(v, w)

gu(v,w; Z) = Z7 (4 (Zw) © v) (ng(Zw) - ('u*)TU(Zw*)).

Since p' = 1fo<z<1y and 0 = 1>}, we have

(szw Z*’ZT )(szl zwﬂ

i=1

(Z Ui1{0<zjw<1} - ZU:1{0<Z:w*<1}> (Z 1{zjw>o}vizi>1

IEZ [gcrelu(v w; Z

i=1 i=1
0 h * o T w*
p( 7w) (’U,’U ) w —(’UT’U*)CSC(G/Q)-(] ) ” ]
2l [ v
* w
— (v"v") (p(8, |w])) — cot(8/2) - (6, w)) Tl
In the last equality above, we called Lemma 12.
Notice that (I %)w = 0, and |[w*|| = 1. If f(w,w,) # 0,m, then the inner product
between Ez {gcrelu(v, w; Z)} and ﬁ(v, w) is given by
of
<EZ |:gcrelu(v7 wj Z)i| ) %(U, ’UJ)>
I 'w'wT *
0 2] 1 ( n — 2)'11) *
= (CSC (2> q(27w) ('UT'U*)2 < HwHT 9 et
m I H( wwz)w* e+ w* H

q(oaw) T _.%\2
e 2 0-
o] Y
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In the last line, ¢(0, w) > 0 because sin(¢)¢ (sﬁi’ffﬁ)) is odd in ¢ and positive for ¢ € (0, 7).

2
Next, we bound H]Ez [gcrelu('v, w; Z)} H . Since (23) gives
h(v,v*) = 4vTﬁ(v, w) + 2 (1 - 0) v v,
ov T

where according to Lemma 1,

of 1 . 1 20 .
%(v,w) = Z(Im + lmlm)v ~1 (<1 - ) I,+1,1, |v

™

We rewrite the coarse partial gradient w.r.t. w in (26) as

Ez [gcrelu('u7 w; Z)] = p(07w) (QUTZI{(U7’LU) + (1 — i) ’UT’U*> l

[|w]
— (v ") esc(0/2) - q(0, w) ““’” T
H Twl T @*
— (v"*) (p(0, w) — cot(/2) - q(6, w)) Twl

_ of
- 2p(0,w) Ta’U ('U UJ) Hw”

+0o) (12 2) p0.w) - plow)) 2

+ (0T 0%) cse(8/2) - (9,w)( N v )

[[wl| Hﬁ + w*
— (v ") (ese(0/2) — cot(8/2))q(0, w)H:Z—”

To prove the last claim, we notice that in the above equality,

(cse(0/2) — cot(0/2))q(6, )”% = (csc(6/2) — cot(0/2))%q(0, w)? < q(6,w)?, (28)

cse(0/2) - (0, w) | 2 — Tl £
(”w” Hu |+“’H>

Now, what is left is to bound ((1 — %) p(0, w) — p(0, w))z, using a multiple of ¢(f, w). Recall
that

p(0, w) = % /_Zw cos(¢)§ (ST(;(JTT)) do, q(,w) = 217T /_;9 sin(¢)¢ (Sﬁ(;()ﬁ)) do.

2

0/ ; 27)

2 == (v, w)

ov

2

9/2 \* 5 _ w2 9
< <Sm(9/2)> q(0,w)" < ZQ(&“’) - (29

We first show that both ((1— £) p(0,w) — p(6, 'w))2 and ¢(6,w) are symmetric with respect to
¢ = % on [0, |. This is because

alr — 0,w) = — / "m0 (Sec(¢>> dg

2m Jz - [[wll

— g0, w) + — / (o (See<¢)) 46 = g(0,w).

0 [[w]]
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and

(1— ”;H)pm,w)—p(w—e,w)

2 sec(¢) I sec(¢)
= [0 (R 0= o [ miore (o) o
0 1 [z sec(o) 1 [z sec(o)
(1) 3 [ cosone (ot oot o [ oo ()
= ((1-2)p0.0) - piow)).
T
Therefore, it suffices to consider 0 € |

%, only. Then calling Lemma 13 for # € [7, 7], we have
p(0,w) < q(0,w) and (1 — £) p(0, w) < ¢(0, w). Therefore,

(000 (1= ) pt0:w)) <t

Combining the above estimate together with (27), (28) and (29), and using Cauchy-Schwarz in-
equality, we have

us
2

Bz [gerern (v, w3 Z)]||? < 4 <4p(0 w)C?

of
87(1) w)

7T2 T,,%
r 24 7 ) a(,w)*(v'v7)? |,
where p(0, w) and ¢(6, w) are uniformly bounded. This completes the proof.

O

Lemma 8. When Algorithm I converges, Ez [g—f)(v, w; Z)} and Eg, [gcrelu('u w Z)} vanish simul-
taneously, which only occurs at the

1. Saddle points where (8) is satisfied according to Proposition 1

2. Minimizers of (2) where v = v*, (w, w*) = 0, orv = (I, +1,,1,))
O(w, w*) = .

“1(1,,1) —I,)v*

Proof of Lemma 8. The proof of Lemma 8§ is similar to that of Lemma 6, and we omit it here. The
core part is that ¢(f, w) defined in Lemma 12 is non-negative and equals 0 only at § = 0, 7, as well
as p(0,w) > p(f,w) > p(m,w) =0

O

Lemma 9. Ler u(x) = x in (5). Then the expected coarse partial gradient w.r.t. w is
If0(w,w*) =mand v = (I, + 1m1;',—l)_ (1,1) — I,,)v*,

B [ga(v.w2)] = <= (IolP ey (07w ).
[B2gia(0,wi2)] | = %(%v*)? >0

i.e, Ez {gld(v w Z)} does not vanish at the local minimizers if 1] v* # 0 and m > 1

Proof of Lemma 9. By (5)

gu(v,w; Z) = Z7 (4 (Zw) © v) (vTa(zu;) - (v*)Ta(Zw*)).
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Using the facts that 1 = 1 and o0 = 1,0}, we have

<Zwl{sz>0} Zv 1{er >0}> (Z%Zlﬂ
i=1
{Z 1{sz>0}} - ZZ”:UJE [Zil{zjwso}}

=1 j=1

r(” ol g ~ 7).

In the last equality above, we called the third identity in Lemma 11. If f(w,w*) = 7w and v =
(L, +1,,17) " (1,1, = I,)v", then

IEZ [gld(’v w; Z

uMs

i

1
Ez [gia(v, w; Z)]|| = —=|v " (v + v*
Bz [gia( | \/ﬂ| ( )|
-1
\/ﬂ ‘ T1l) = L) (I + 11)) ((I +1,10) A1) — L) + Im) v
1 *
\/ﬂ ’ 1,1 T - Im) (Im + 1m1;) (Im + ]-m]-;;rq) 1 (]‘IL )
2 *
= Vatn ) (e I L)
— 2(Tn_ 1) ( T *)2
V2r(m+1)20 ™"
In the third equality, we used the identity (I, + 1,1, )1,, = (m + 1)1, twice. O

Lemma 10. Ifw # 0,, and 6(w,w™*) € (0, 7), then the inner product between the expected coarse
and true gradients w.r.t. w is

<]EZ {gid('u,w; Z)} , gj;(v,w)> = W(UTU*)Q > 0.

When 0(w, w*) = m, v — (I, + lmljn)fl(lmll — I,)v*, if 1) v* # 0 and m > 1, we have
T

%(v, w)HQ + <Ez [gid(’v, w; Z)} , a%(vvw)>

— +o0.

Proof of Lemma 10. By Lemmas 2 and 4, we have
'Ll)’ll}T *
’UT’U* (In — ”wHZ)w

O
ow "’ 27r||'w|| H (In _ ﬁﬁ;)w*
and
1 w * *
EZ [gid(v7w;z):| = \/i < H2 || || (UTU )’U] ) .
Since (I — ”2)111 =0, and ||w*|| = 1, if O(w, w,) # 0, m, then we have

*

(vTv*)? (w*) " <In — %)w

2] 2L o)) =
(Eelouto ). 55 0m) - | (2~ )

* — 7(“’ w )2 * *
_ @) IR (0T’ | (wlw)?
(v2r)3|w]| (wn T (V27)3||w| [|w]|?
(’UTU*)2

= ————sin(f(w, w")).

(vV2m)3] |||
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When f(w,w*) — w, v — (I, + lmll)fl(lmljn — I,)v*, both Hg—i(v,w)H
and <]EZ [gld(v w; Z)},aw(v w)> converge to 0. But if 1] v* # 0 and m > 1,

H]Ez [gld(v w; Z }H — %(1;1}*)2 > 0, which completes the proof. O

Theorem 1. Let {(v', w')} be the sequence generated by Algorithm I with ReLU p(x) =
max{z, 0} or clipped ReLU p(z) = min{max{z,0},1}. Suppose ||w'| > cy for all t with
some ¢y, > 0. Then if the learning rate 7 > 0 is sufficiently small, for any initialization
(0%, wP), the objective sequence {f(v',w')} is monotonically decreasing, and {(v',w')} con-
verges to a saddle point or a (local) minimizer of the population loss minimization (2). In addi-
tion, if 1.} v* # 0 and m > 1, the descent and convergence properties do not hold for Algorithm
1 with the identity function p(x) = x near the local minimizers satisfying 0(w, w*) = 7 and
v=(I,+1,1))" 1,1} — I,)v*

Proof of Theorem 1. We first prove the upper boundedness of {v'}. Due to the coerciveness of
f(v,w) wr.t v, there exists C;,, > 0, such that ||v| < C, forany v € {v € R™ : f(v,w) <
f (vO w) for some w}. In particular, ||v°|] < C,. Using induction, suppose we already have
fotw?) < f(v° w?) and ||[v?|| < Cy. If O(w?, w*) = 0 or , then O(w”, w*) = 0 or 7 for all
T 2 t, and the orlglnal problem reduces to a quadratic program in terms of v. So {v’} will converge
to v* or (Im +1,,1,))7%(1,,1,] — I,,,)v* by choosing a suitable step size 7. In either case, we have
HEZ[ (vt, wh; Z) } H and HIEZ [grelu(v wt; Z) H’ both converge to 0. Else if §(w?, w*) € (0, ),

we define for any a € [0, 1] that

vi(a) == v" —a(v' — o) = v —anky [gi(vt, w'; Z)]

and

- wt) = wt - C”YEZ [grelu(’uta wt; Z)] )

which satisfy

v (0) = v, v'(1) = o', w'(0) = w', wi(1) = w't.

Let us fix 0 < ¢ < ¢ and C > C,. By the expressions of Ez[ (v',w';Z)] and

Ez [grelu (v?, w?; Z)] given in Lemma 4, and since ||w?|| = 1, for sufficiently small 7 depending
on Cy and ¢, with ) < 7, it holds that ||v!(a)|| < C and ||w'(a)|| > ¢ for all a € [0, 1]. Possibly

at some point ag where 8(w?(ag), w*) = 0 or , the partial gradient 2L (v!(ag), w?(ao)) does not

81{;( t(a), w'(a)) H is uniformly bounded for all a € [0,1]/{ao}, which makes

it integrable over the interval [0, 1]. Then for some constants L and Ay.1, depending on C and ¢, we

exist. Otherwise,

28



Published as a conference paper at ICLR 2019

have
FH i) = f(of + (07— o) w + (@ - w))

= f(v' w') +/0 <g£( Ya),w'(a)), v — vt> da

+ /1 <gi(vt(a),wt(a)),wt+1/2 - wt> da
0
_ f(’l]t7wt) + <g£(,ut7,wt)’,ut+l _ ’Ut> + <gj;(vt’wt)7 t+1/2 ,wt>

N /01 <g£(vt(a)7wt(a)) _ %(Uﬁwt),vm - vt>da

+/0 <g,lj;( "(a), w'(a)) — %(Ut7wt)7wt+1/2 _ wt> da

< fo'w') - (n— Lg) Hgf( ‘

(el ot
< f(v', w') — (77 (1+Am1u) 5 >‘ gi( ,wh) 2

AveraLn? 0
- <77 - 1217) <a1'];(vta wt)a ]EZ [grclu(vtv wt; Z):| > . (30)

The third equality is due to the fundamental theorem of calculus. In the first inequality, we called
Lemma 3 for (v',w') and (v'(a),w'(a)) with a € [0,1]/{ao}. In the last inequality, we used

~} we have f(v!TH w!tt) < f(vh w!) <

Lemma 5. So when < 1y := min m,n ,

f(©°,w?), and thus [|[v' ]| < C,.

Summing up the inequality (30) over ¢ from 0 to co and using f > 0, we have

i L?’] 2 AreluLn 8f t t t t

Z 1-— (1+Arelu ) H ’U , W ) + (1 - ) <(U ,’LU’),EZ grelu(v/awl;z)
— ( 2 ow }
< (0w /n < co.
Hence,

. ||of B
tlggo 8v(v w) =0

and

lim <gi(vt, w'),Ez [grelu(vt, w'; Z)} > =0.
Invoking Lemma 5 again, we further have

lim ‘]EZ {grelu('vt, w?; Z)} H =0.

t—o0

Invoking Lemma 6, we have that coarse gradient descent with ReLU p(x) (subsequentially) con-
verges to a saddle point or a minimizer.

Using Lemmas 7, 8 and similar arguments, we can prove the convergence of coarse gradient descent
with clipped ReLU STE.

The second claim follows from Lemmas 9 and 10. ]

F. CONVERGENCE TO GLOBAL MINIMIZERS

We prove that if the initialization weights (v%,w") satisfy (v°)Tv* > 0, (w®, w*) < Z and
(1) v*) (1] v°) < (1) v*)2, then we have convergence guarantee to global optima by using the

vanilla or clipped ReLU STE.
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Theorem 2. Under the assumptions of Theorem 1, if further the initialization (v°,w°) satisfies
(v%)Tv* >0, (w’, w*) < F and (1,,v*)(1,,v°) < (1,,v*)?, then by using the vanila or clipped
ReLU STE for sufficiently learning rate n > 0, we have (v')Tv* > 0 and 6(w', w*) < % for all
t >0, and {(vt, w')} converges to a global minimizer.

Proof of Theorem 2. Proof by induction. Suppose (vf)Tv* > 0, O(w!,w*) < and

(1) v*) (1] v*) < (1) v*)2. Then for small enough 7, we have

()T = ( b2 ((Im + 1,1, )0 — <(1 — ie(wt,w*)> I, + 1m1;) v*))T v*

= (1=2) ") Tv" + T (150 = (L) (L)

o[

-3

W

2
+ Z (1 - W@(wt,w*)) [v*]|2 > 0.
and
1 2
(oo = (1= ) anenanen) + 2 (w1 2otw.w)) (10
™

IN

(1 - %H(w,w*)) (1] v*)? < (1] v*)2,

Moreover, by Lemmas 4, 5 and 7, both Ez[gye1u (v, w; Z)] and Ez [gereln (v, w; Z)] can be written in
the form of a; (Im — %) w* + asw, where a; < 0 and « is bounded by a constant depending
on C,, and ¢,,. Therefore,

’l,U’UJ—r

[[wl]?

and thus 6(w'*!, w*) < Z. Finally, since {(v’,w")} converges, it can only converge to a global
minimizer. O

(wt+1)Tw* _ (1 _ naQ)(wt)Tw* _ al(w*)T (Im _ > w* Z (1 _ nag)(wt)—r'w* > O7
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