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Abstract
We study the classic Maximum Independent Set problem under the notion of stability introduced by
Bilu and Linial (2010): a weighted instance of Independent Set is γ-stable if it has a unique optimal
solution that remains the unique optimal solution under multiplicative perturbations of the weights
by a factor of at most γ ≥ 1. The goal then is to efficiently recover this “pronounced” optimal
solution exactly. In this work, we solve stable instances of Independent Set on several classes of
graphs: we improve upon previous results by solving Õ(∆/

√
log ∆)-stable instances on graphs of

maximum degree ∆, (k − 1)-stable instances on k-colorable graphs and (1 + ε)-stable instances on
planar graphs (for any fixed ε > 0), using both combinatorial techniques as well as LPs and the
Sherali-Adams hierarchy.

For general graphs, we present a strong lower bound showing that there are no efficient algorithms
for O(n 1

2 −ε)-stable instances of Independent Set, assuming the planted clique conjecture. To
complement our negative result, we give an algorithm for (εn)-stable instances, for any fixed ε > 0.
As a by-product of our techniques, we give algorithms as well as lower bounds for stable instances
of Node Multiway Cut (a generalization of Edge Multiway Cut), by exploiting its connections to
Vertex Cover. Furthermore, we prove a general structural result showing that the integrality gap of
convex relaxations of several maximization problems reduces dramatically on stable instances.

Moreover, we initiate the study of certified algorithms for Independent Set. The notion of a
γ-certified algorithm was introduced very recently by Makarychev and Makarychev (2018) and it
is a class of γ-approximation algorithms that satisfy one crucial property: the solution returned is
optimal for a perturbation of the original instance, where perturbations are again multiplicative up
to a factor of γ ≥ 1 (hence, such algorithms not only solve γ-stable instances optimally, but also
have guarantees even on unstable instances). Here, we obtain ∆-certified algorithms for Independent
Set on graphs of maximum degree ∆, and (1 + ε)-certified algorithms on planar graphs. Finally,
we analyze the algorithm of Berman and Fürer (1994) and prove that it is a

(
∆+1

3 + ε
)
-certified

algorithm for Independent Set on graphs of maximum degree ∆ where all weights are equal to 1.
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1 Introduction

The Maximum Independent Set problem (simply MIS from now on) is a central problem
in theoretical computer science and has been the subject of extensive research over the
last few decades. As a result we now have a thorough understanding of the worst-case
behavior of the problem. In general graphs, the problem is n1−ε-hard to approximate,
assuming that P 6= NP [34, 48], and n/2(logn)3/4+ε-hard to approximate, assuming that
NP 6⊆ BPTIME(2(logn)O(1)) [37]. On the positive side, the current best algorithm is due to
Feige [27] achieving a Õ(n/ log3 n)-approximation (the notation Õ hides some poly(log logn)
factors). In order to circumvent the strong lower bounds, many works have focused on special
classes of graphs, such as bounded-degree graphs (see, e.g., [1, 5, 10, 11, 21, 31, 32, 33]),
planar graphs ([7]) etc. In this work, we build upon this long line of research and study MIS
under the beyond worst-case framework introduced by Bilu and Linial [17].

In an attempt to capture real-life instances of combinatorial optimization problems, Bilu
and Linial proposed a notion of stability, which we now instantiate in the context of MIS
(from now on, we will always assume weighted instances of MIS).

I Definition 1 (γ-perturbation [17]). Let G = (V,E,w), w : V → R>0, be an instance of
MIS. An instance G′ = (V,E,w′) is a γ-perturbation of G, for some parameter γ ≥ 1, if for
every u ∈ V we have wu ≤ w′u ≤ γ · wu.

I Definition 2 (γ-stability [17]). Let G = (V,E,w), w : V → R>0, be an instance of MIS.
The instance G is γ-stable, for some parameter γ ≥ 1, if:
1. it has a unique maximum independent set I∗,
2. every γ-perturbation G′ of G has a unique maximum independent set equal to I∗.
Equivalently, G is γ-stable if it has an independent set I∗ such that w(I∗ \ S) > γ ·w(S \ I∗)
for every feasible independent set S 6= I∗ (we use the notation w(Q) :=

∑
u∈Q wu for Q ⊆ V ).

This definition of stability is motivated by the empirical observation that in many real-life
instances, the optimal solution stands out from the rest of the solution space, and thus
is not sensitive to small perturbations of the parameters. This suggests that the optimal
solution does not change (structurally) if the parameters of the instance are perturbed (even
adversarially). Observe that the smaller the so-called stability threshold γ is, the less severe
the restrictions imposed on the instance are; for example, γ = 1 is the case where we only
require the optimal solution to be unique. Thus, the main goal in this framework is to
recover the optimal solution in polynomial time, for as small γ ≥ 1 as possible. An “optimal”
result would translate to γ being 1 + ε, for small ε > 0, since assuming uniqueness of the
optimal solution is not believed to make the problems easier (see, e.g., [47]), and thus ε
is unlikely to be zero. We note that perturbations are scale-invariant, and so it suffices
to consider perturbations that only scale up. Moreover, we observe that an algorithm for
γ-stable instances of MIS solves γ-stable instances of Minimum Vertex Cover, and vice versa.

Stability was first introduced for Max Cut [17], but the authors note that it naturally
extends to other problems, such as MIS, and, moreover, they prove that the greedy algorithm
for MIS solves ∆-stable instances on graphs of maximum degree ∆. The work of Bilu and
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Linial has inspired numerous works on stable instances of various optimization problems; we
give an overview of the literature in the next page.

Prior works on stability have also studied robust algorithms [42, 4]; these are algorithms
that either output an optimal solution or provide a polynomial-time verifiable certificate
that the instance is not γ-stable (see Section 2 for a definition). Motivated by the notion
of stability, Makarychev and Makarychev [41] recently introduced an intriguing class of
algorithms, namely γ-certified algorithms.

I Definition 3 (γ-certified algorithm [41]). An algorithm for MIS is called γ-certified, for
some parameter γ ≥ 1, if for every instance G = (V,E,w), w : V → R>0, it computes
1. a feasible independent set S ⊆ V of G,
2. a γ-perturbation G′ = (V,E,w′) of G such that S is a maximum independent set of G′.
Equivalently, Condition (2) can be replaced by the following: γ ·w(S \ I) ≥ w(I \S) for every
independent set I of G.

We highlight that a certified algorithm works for every instance; if the instance is γ-stable,
then the solution returned is the optimal one, while if it is not stable, the solution is within
a γ-factor of optimal. Hence a γ-certified algorithm is also a γ-approximation algorithm.

Motivation. Stability is especially natural for problems where the given objective function
may be a proxy for a true goal of identifying a hidden correct solution. For MIS, a natural
such scenario is applying a machine learning algorithm in the presence of pairwise constraints.
Consider, for instance, an algorithm that scans news articles on the web and aims to extract
events such as “athlete X won the Olympic gold medal in Y”. For each such statement, the
algorithm gives a confidence score (e.g., it might be more confident if it saw this listed in
a table rather than inferring it from a free-text sentence that the algorithm might have
misunderstood). But in addition, the algorithm might also know logical constraints such
as “at most one person can win a gold medal in any given event”. These logical constraints
would then become edges in a graph, and the goal of finding the most likely combination of
events would become a MIS problem. Stability would be natural to assume in such a setting
since the exact confidence weights are somewhat heuristic, and the goal is to recover an
underlying ground truth. It is also easy to see the usefulness of a certified algorithm in this
setting. Given a certified algorithm that outputs a γ-perturbation, the user of the machine
learning algorithm can further test and debug the system by trying to gather evidence for
events on which the perturbation puts higher weight.

Related Work. There have been many works on the worst-case complexity of MIS and
the current best known algorithms give Õ(n/ log3 n)-approximation [27], and Õ(∆/ log ∆)-
approximation [31, 33, 36]), where ∆ is the maximum degree. The problem has also been
studied from the lens of beyond worst-case analysis. For random graphs with a planted
independent set, MIS is equivalent to the classic planted clique problem. Inspired by semi-
random models of [18], Feige and Killian [28] designed SDP-based algorithms for computing
large independent sets in semi-random graphs. Finally, there has been work on MIS under
noise [40, 12].

The notion of Bilu-Linial stability goes beyond random/semi-random models and proposes
deterministic conditions that give rise to non worst-case, real-life instances. The study of this
notion has led to insights into the complexity of many problems in optimization and machine
learning. For MIS, Bilu [15] analyzed the greedy algorithm and showed that it recovers
the optimal solution for ∆-stable instances of graphs of maximum degree ∆. The same
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result is also a corollary of a general theorem about the greedy algorithm and p-extendible
independence systems proved by Chatziafratis et al. [22]. On the negative side, Angelidakis
et al. [4] showed that there is no robust algorithm for n1−ε-stable instances of MIS on general
graphs (unbounded degree), assuming that P 6= NP.

The work of Bilu and Linial has inspired a sequence of works about stable instances
of various combinatorial optimization problems. There are now algorithms that solve
O(
√

logn log logn)-stable instances of Max Cut [16, 42], (2− 2/k)-stable instances of Edge
Multiway Cut, where k is the number of terminals [42, 4], and 1.8-stable instances of
symmetric TSP [45]. There has also been extensive work on stable instances of clustering
problems (usually called perturbation-resilient instances) with many positive results for
problems such as k-median, k-means, and k-center [6, 9, 8, 4, 25, 23, 26, 30], and more
recently on MAP inference [38, 39].

Our results. We explore the notion of stability in the context of MIS and significantly
improve our understanding of its behavior on stable instances; we design algorithms for
stable instances on different graph classes, and also initiate the study of certified algorithms
for MIS. More specifically, we obtain the following results.

Planar graphs: We show that on planar graphs, any constant stability suffices to solve
the problem exactly in polynomial time. More precisely, we provide robust and certified
algorithms for (1 + ε)-stable instances of planar MIS, for any fixed ε > 0. To obtain these
results, we utilize the Sherali-Adams hierarchy, demonstrating that hierarchies may be
helpful for solving stable instances.
Graphs with small chromatic number or bounded degree: We provide robust
algorithms for solving (k − 1)-stable instances of MIS on k-colorable graphs (where the
algorithm does not have access to a k-coloring of the graph) and (∆−1)-stable instances of
MIS on graphs of maximum degree ∆. Both results are based on LPs. For bounded-degree
graphs, we then turn to combinatorial techniques and design a (non-robust) algorithm for
Õ(∆/

√
log ∆)-stable instances; this is the first algorithm that solves o(∆)-stable instances.

Moreover, we show that the standard greedy algorithm is a ∆-certified algorithm for
MIS, whereas for unweighted instances, the algorithm of Berman and Fürer (1994) is a(∆+1

3 + ε
)
-certified algorithm.

General graphs: For general graphs, we show that solving o(
√
n)-stable instances is

hard assuming the hardness of finding maximum cliques in a random graph. To the best
of our knowledge, this is only the second case of a lower bound for stable instances of a
graph optimization problem that applies to any polynomial-time algorithm and not only
to robust algorithms [42, 4] (the first being the lower bound for Max k-Cut [42]). We
complement this lower bound by giving an algorithm for (εn)-stable instances of MIS on
graphs with n vertices, for any fixed ε > 0.
Convex relaxations and stability: We present a structural result for the integrality
gap of convex relaxations of maximization problems on stable instances: if the integrality
gap of a relaxation is α, then it is at most min

{
α, 1 + 1

β−1

}
for (αβ)-stable instances,

for any β > 1. This result demonstrates a smooth trade-off between stability and the
performance of a convex relaxation, and also implies (1 + ε)-estimation algorithms1 for
O(α/ε)-stable instances.

1 An α-estimation algorithm returns a value that is within a factor of α from the optimum, but not
necessarily a corresponding solution that realizes this value.
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Node Multiway Cut: We give the first results on stable instances of Node Multiway
Cut, a strict generalization of the well-studied (under stability) Edge Multiway Cut
problem [42, 4]. In particular, we give a robust algorithm for (k − 1)-stable instances,
where k is the number of terminals, and show that all negative results on stable instances
of MIS directly apply to Node Multiway Cut.

Organization of material. Section 2 provides definitions and related facts. Section 3
contains the algorithms for stable instances of MIS on bounded-degree, small chromatic
number and planar graphs. Section 4 contains our results for stable instances on general
graphs. Section 5 demonstrates how the performance of convex relaxations improves as
stability increases. Section 6 contains various certified algorithms for MIS. Due to space
constraints, the results for the Node Multiway Cut problem are omitted and can be found in
the full version of the paper [3]. The same applies to all proofs that have been omitted.

2 Preliminaries and definitions

Given a γ-stable instance, our goal is to design polynomial-time algorithms that recover the
unique optimal solution, for as small γ ≥ 1 as possible. A special class of such algorithms
that is of particular interest is the class of robust algorithms, introduced by Makarychev et
al. [42].
I Definition 4 (robust algorithm [42]). Let G = (V,E,w), w : V → R>0, be an instance of
MIS. An algorithm A is a robust algorithm for γ-stable instances if:
1. it always returns the unique optimal solution of G, when G is γ-stable,
2. it either returns an optimal solution of G or reports that G is not stable, when G is not

γ-stable.
Note that a robust algorithm is not allowed to err, while a non-robust algorithm is allowed

to return a suboptimal solution, if the instance is not γ-stable. We now present a useful
lemma about stable instances of MIS that is used in several of our results. From now on, we
denote the neighborhood of a vertex u of a graph G = (V,E) as N(u) = {v : (u, v) ∈ E},
and the neighborhood of a set S ⊆ V as N(S) = {v ∈ V \ S : ∃u ∈ S s.t. (u, v) ∈ E}.
I Lemma 5. Let G = (V,E,w) be a γ-stable instance of MIS whose optimal independent set
is I∗. Then, for any v ∈ I∗, the induced instance G̃ = G[V \ ({v} ∪N(v))] is γ-stable, and
its unique maximum independent set is I∗ \ {v}.

Regarding certified algorithms (see Definition 3), it is easy to observe the following.
I Observation 6 ([41]). A γ-certified algorithm for MIS satisfies the following:
1. returns the unique optimal solution, when run on a γ-stable instance,
2. is a γ-certified algorithm for Vertex Cover, and vice versa,
3. is a γ-approximation algorithm for MIS (and Vertex Cover).

We stress that not all algorithms for stable instances are certified, so there is no equivalence
between the two notions. Some examples (communicated to us by Yury Makarychev [43])
include the algorithms for stable instances of TSP [45], Max Cut (the GW SDP with triangle
inequalities), and clustering. All these algorithms solve stable instances but are not certified.
Thus, designing a certified algorithm is, potentially, a harder task than designing an algorithm
for stable instances.

From now on, if an algorithm for MIS only returns a feasible solution S, it will be
assumed to be “candidate” γ-certified that also returns the perturbed weight function w′
with w′u = γ · wu for u ∈ S and w′u = wu, otherwise.
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3 Stable instances of MIS on special classes of graphs

In the next few sections, we obtain algorithms for stable instances of MIS on several natural
classes of graphs, by using convex relaxations and combinatorial techniques.

3.1 Convex relaxations and robust algorithms
The starting point for the design of robust algorithms via convex relaxations is the structural
result of Makarychev et al. [42], that gives sufficient conditions for the integrality of convex
relaxations on stable instances. We now introduce a definition and restate their theorem in
the setting of MIS.

I Definition 7 ((α, β)-rounding). Let x : V → [0, 1] be a feasible fractional solution of a
convex relaxation of MIS whose objective value for an instance G = (V,E,w) is

∑
u∈V wuxu.

A randomized rounding scheme for x is an (α, β)-rounding, for some parameters α, β ≥ 1, if
it always returns a feasible independent set S, such that the following two properties hold for
every vertex u ∈ V :
1. Pr[u ∈ S] ≥ 1

α · xu,
2. Pr[u /∈ S] ≤ β · (1− xu).

I Theorem 8 ([42]). Let x : V → [0, 1] be an optimal fractional solution of a convex relaxation
of MIS whose objective value for an instance G = (V,E,w) is

∑
u∈V wuxu. Suppose that

there exists an (α, β)-rounding for x, for some α, β ≥ 1. Then, x is integral for (αβ)-stable
instances.

The theorem suggests a simple robust algorithm: solve the relaxation, and if the solution is
integral, report it, otherwise report that the instance is not stable (observe that the rounding
scheme is used only in the analysis).

3.2 A robust algorithm for (k − 1)-stable instances of MIS on
k-colorable graphs

In this section, we give a robust algorithm for (k − 1)-stable instances of MIS on k-colorable
graphs by utilizing Theorem 8 and the standard LP for MIS. For a graph G = (V,E,w), the
standard LP has an indicator variable xu for each vertex u ∈ V , and is given below.

(LP) max :
∑
u∈V

wuxu s.t.: xu + xv ≤ 1 ∀(u, v) ∈ E, and xu ∈ [0, 1] ∀u ∈ V.

The corresponding polytope is half-integral [46], and so we always have an optimal solution
x with xu ∈

{
0, 1

2 , 1
}
for every u ∈ V . This is useful for designing (α, β)-rounding schemes,

as it allows us to consider randomized combinatorial algorithms and easily present them as
rounding schemes.

The crucial observation that we make is that the rounding scheme in Theorem 8 is only
used in the analysis and is not part of the algorithm, and so it can run in super-polynomial
time. We also note that the final (polynomial-time) algorithm does not need to have a
k-coloring of the graph. Let G = (V,E,w) be a k-colorable graph, and let x be an optimal
half-integral solution. Let Vi = {u ∈ V : xu = i} for i ∈ {0, 1/2, 1}. We consider the rounding
scheme of Hochbaum [35] (see Algorithm 1). We use the notation [k] = {1, ..., k}.

I Theorem 9. Let G = (V,E,w) be a k-colorable graph. Given an optimal half-integral
solution x, the rounding scheme of Algorithm 1 is a

(
k
2 ,

2(k−1)
k

)
-rounding for x.
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Algorithm 1 Hochbaum’s k-colorable rounding scheme
1. Compute a k-coloring f : V1/2 → [k] of the induced graph G[V1/2].
2. Pick j uniformly at random from the set [k], and set V (j)

1/2 := {u ∈ V1/2 : f(u) = j}.
3. Return S := V

(j)
1/2 ∪ V1.

Proof. The set S is feasible, as there is no edge between V1 and V1/2 and f is a valid
coloring. For u ∈ V0, we have Pr[u ∈ S] = 0 = xu and Pr[u /∈ S] = 1 = 1 − xu. For
u ∈ V1, we have Pr[u ∈ S] = 1 = xu and Pr[u /∈ S] = 0 = 1 − xu. Let u ∈ V1/2. We have
Pr[u ∈ S] ≥ 1

k = 2
k · xu and Pr[u /∈ S] ≤ 1− 1

k = 2(k−1)
k · (1− xu). The result follows. J

Theorems 8 and 9 now imply the following theorem, which is tight.

I Theorem 10. The standard LP for MIS is integral for (k−1)-stable instances of k-colorable
graphs.

3.3 Algorithms for stable instances of MIS on bounded-degree graphs
Throughout this section, we assume that all graphs have maximum degree ∆. The only
result (prior to our work) for stable instances on such graphs was using the greedy algorithm
and was given by Bilu [15].

Algorithm 2 The greedy algorithm for MIS
1. Let S := ∅ and X := V .
2. while (X 6= ∅):

Set S := S ∪ {u} and X := X \ ({u} ∪N(u)), where u := arg maxv∈X{wv}.
3. Return S.

I Theorem 11 ([15]). The greedy algorithm (see Algorithm 2) solves ∆-stable instances of
MIS on graphs of maximum degree ∆.

We first note that, since the maximum degree is ∆, the chromatic number is at most ∆+1,
and so Theorem 10 implies a robust algorithm for ∆-stable instances, giving a robust analog
of Bilu’s result. In fact, we can slightly improve upon that by using Brook’s Theorem [20],
which states that the chromatic number is at most ∆, unless the graph is complete or an
odd cycle. We can then prove following theorem.

I Theorem 12. There exists a robust algorithm for (∆− 1)-stable instances of MIS, where
∆ is the maximum degree.

We now turn to non-robust algorithms and present an algorithm that solves o(∆)-stable
instances, as long as the weights are polynomially-bounded integers. The core of the algorithm
is a procedure that uses an α-approximation algorithm as a black-box in order to recover the
optimal solution, when the instance is stable. Let G = (V,E,w) be a graph with n = |V |
and w : V → {1, ..., poly(n)}. Let A denote an α-approximation algorithm for MIS. We will
give an algorithm for γ-stable instances with γ =

⌈√
2∆α

⌉
. Note that we can assume that

α ≤ ∆ and γ ≤ ∆. These assumptions hold for the rest of this section. Algorithm 3 is the
main algorithm, and it uses Algorithm 4 as a subroutine.

To prove the algorithm’s correctness, we need some lemmas (see the full version [3] for
their proofs).

ESA 2019
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Algorithm 3 Algorithm for γ-stable instances, where γ =
⌈√

2∆α
⌉

Bounded-Alg(G(V,E,w)):
1. If w(V ) ≤ γ, then return V .
2. Run α-approximation algorithm A on G to get an independent set I.
3. Let S := PURIFY(G, I, γ).
4. Let S′ := Bounded-Alg(G[V \ (S ∪N(S))]).
5. Return S ∪ S′.

Algorithm 4 The PURIFY procedure
INPUT: Graph G = (V,E,w), independent set I ⊆ V and factor γ ≥ 1.

1. Create a bipartite unweighted graph G0 = (L ∪R,E0), where L contains γ · w(u) copies
of each u ∈ I and R contains w(v) copies of each v ∈ V \ I. The set E0 is defined as
follows: if (u, v) is an edge in G with u ∈ I and v /∈ I, then add edges from each copy of
u in L to each copy of v in R.

2. Compute a maximum cardinality matching M of G0.
3. Return the set of all vertices u ∈ I that have at least one unmatched copy in L w.r.t. M .

I Lemma 13. Let G = (V,E,w) be γ-stable, with wu ≥ 1, for every u ∈ V . If w(V ) ≤ γ,
then E = ∅.

The above lemma justifies Step 1 of Algorithm 3.

I Lemma 14. Let G = (V,E,w) be γ-stable, and let I∗ be its maximum independent set.
Then w(I∗) > γ

2∆ · w(V ).

I Lemma 15. Let G = (V,E,w) be a γ-stable instance, let I∗ be its maximum independent
set and let I ′ be an α-approximate independent set. Then I∗ ∩ I ′ 6= ∅.

We now analyze the PURIFY procedure (Algorithm 4).

I Lemma 16. Let G be a γ-stable instance that is given as input to the PURIFY procedure
(see Algorithm 4), along with an α-approximate independent set I, and let I∗ be its maximum
independent set. If I 6= I∗, then the set S returned by the procedure always satisfies the
following two properties:
1. S 6= ∅,
2. S ⊆ I∗.

Proof. We first prove Property (1). Let’s assume that S = ∅. This means that all vertices
in L are matched. By construction, this implies that γ · w(I) ≤ w(V \ I). Since I is an
α-approximation, we have that γ ·w(I) ≥ γ

α ·w(I∗) > γ·γ
2∆αw(V ) ≥ 2∆α

2∆αw(V ) = w(V ), where
the second inequality is due to Lemma 14. We conclude that w(V \ I) > w(V ), which is a
contradiction. Thus, S 6= ∅.

We turn to Property (2). Let A = I \ I∗ and B = I∗ \ I. Let A0 ⊆ L be the copies of the
vertices of set A in G0, and let B0 ⊆ R be the copies of the vertices of set B in G0. We will
show that for every Z ⊆ A0, we have |N(Z) ∩ B0| ≥ |Z|. To see this, let Z ⊆ A0, and let
I(Z) ⊆ A be the distinct vertices of A whose copies (not necessarily all of them) are included
in Z. Since the instance is γ-stable, this implies that the weight of the neighbors F ⊆ B of
I(Z) in I∗ is strictly larger than γ ·w(I(Z)). By construction, we have that |Z| ≤ γ ·w(I(Z)),
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and the number of vertices in G0 corresponding to vertices of F is equal to w(F ). Moreover,
all of these w(F ) vertices are connected with at least one vertex in Z, which means that
w(F ) = |N(Z)∩B0|. This implies that |N(Z)∩B0| > |Z|. Thus, Hall’s condition is satisfied,
and so there exists a perfect matching between the vertices of A0 and (a subset of the vertices
of) B0.

We observe now that the neighbors of all vertices in B0 are only vertices in A0 and not in
L \A0. This means that any maximum matching matches all vertices of A0 (otherwise, we
could increase the size of the matching by matching all vertices in A0). Thus, S ⊆ I ∩ I∗. J

Putting everything together, and by using the Õ(∆/ log ∆)-approximation algorithm of
Halldórsson [31] or Halperin [33] as a black-box, it is easy to prove the following theorem.

I Theorem 17. Algorithm 3 correctly solves
⌈√

2∆α
⌉
-stable instances in polynomial time.

In particular, there is an algorithm that solves Õ(∆/
√

log ∆)-stable instances.

3.4 Robust algorithms for (1 + ε)-stable instances of MIS on planar
graphs

In this section, we design a robust algorithm for (1 + ε)-stable instances of MIS on planar
graphs. Theorem 10 already implies a robust algorithm for 3-stable instances of planar MIS,
but we will use the Sherali-Adams hierarchy (denoted as SA from now on) to reduce this
threshold down to 1 + ε, for any fixed ε > 0. In particular, we show that O(1/ε) rounds
of SA suffice to optimally solve (1 + ε)-stable planar instances. We will not introduce the
SA hierarchy formally, and we refer the reader to the many available surveys about it (see,
e.g., [24]). The t-th level of SA for MIS has a variable YS for every subset S ⊆ V of size
at most |S| ≤ t + 1, whose intended value is YS =

∏
u∈S xu, where xu is the indicator of

whether u belongs to the independent set. The relaxation has size nO(t), and thus can be
solved in time nO(t).

Our starting point is the work of Magen and Moharrami [40], which gives a SA-based
PTAS for MIS on planar graphs, inspired by Baker’s technique [7]. In particular, [40] gives a
rounding scheme for the O(t)-th round of SA that returns a (1 +O(1/t))-approximation. In
this section, we slightly modify and analyze their rounding scheme, and prove that it satisfies
the conditions of Theorem 8. For that, we need a theorem of Bienstock and Ozbay [14]. For
any subgraph H of a graph G = (V,E), let V (H) denote the set of vertices contained in H.

I Theorem 18 ([14]). Let t ≥ 1 and Y be a feasible vector for the t-th level SA relaxation of
the standard Independent Set LP for a graph G. Then, for any subgraph H of G of treewidth
at most t, the vector (Y{u})u∈V (H) is a convex combination of independent sets of H.

The above theorem implies that the t-th level SA polytope is equal to the convex hull of all
independent sets of the graph, when the graph has treewidth at most t.

The rounding scheme of Magen and Moharrami [40]. Let G = (V,E,w) be a planar
graph and {YS}S⊆V :|S|≤t+1 be an optimal t-th level solution of SA. We denote Y{u} as yu, for
any u ∈ V . We first fix a planar embedding of G. V can then be naturally partitioned into
sets V0, V1, ..., VL, for some L ∈ {0, ..., n− 1}, where V0 is the set of vertices in the boundary
of the outerface, V1 is the set of vertices in the boundary of the outerface after V0 is removed,
and so on. Note that for any edge (u, v) ∈ E, we have u ∈ Vi and v ∈ Vj with |i − j| ≤ 1.
We will assume that L ≥ 4, since, otherwise, the graph is at most 4-outerplanar and the
problem can then be solved optimally [7].
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Following [7], we fix a parameter k ∈ {1, ..., L}, and for every i ∈ {0, ..., k − 1}, we define
B(i) =

⋃
j≡i(mod k) Vj . We now pick an index j ∈ {0, ..., k − 1} uniformly at random. Let

G0 = G[V0 ∪ V1... ∪ Vj ], and for i ≥ 1, Gi = G[
⋃ik+j
q=(i−1)k+j Vq], where for a subset X ⊆ V ,

G[X] is the induced subgraph on X. Observe that every edge and vertex of G appears in
one or two of the subgraphs {Gi}, and every vertex u ∈ V \B(j) appears in exactly one Gi.

Magen and Moharrami observe that for every subgraph Gi = (V (Gi), E(Gi)), the set of
vectors {YS}S⊆V (Gi):|S|≤t+1 is a feasible solution for the t-th level SA relaxation of the graph
Gi. This is easy to see, as the LP associated with Gi is weaker than the LP associated with
G (on all common variables), since Gi is a subgraph of G, and this extends to SA as well. We
need one more observation: a k-outerplanar graph has treewidth at most 3k−1 (see [19]). By
construction, each Gi is a (k+1)-outerplanar graph. Thus, by setting t = 3k+2, Theorem 18
implies that the vector {yu}u∈V (Gi) can be written as a convex combination of independent
sets of Gi. Let pi be the corresponding distribution of independent sets of Gi, implied by
{yu}u∈V (Gi).

We now consider the following rounding scheme. For each Gi, we (independently) sample
an independent set Si of Gi according to pi. Each vertex u ∈ V \B(j) belongs to exactly one
Gi and is included in the final independent set S if u ∈ Si. A vertex u ∈ B(j) might belong
to two different graphs Gi, Gi+1, and is included in S only if u ∈ Si ∩ Si+1. The algorithm
then returns S.

Before analyzing the algorithm, we note that standard tree-decomposition based arguments
show that the rounding is constructive (i.e. polynomial-time; this fact is not needed for
the algorithm for stable instances of planar MIS, but will be used when designing certified
algorithms).

I Theorem 19. The above randomized rounding scheme always returns a feasible independent
set S, such that for every vertex u ∈ V ,
1. Pr[u ∈ S] ≥ k−1

k · yu + 1
k · y

2
u,

2. Pr[u /∈ S] ≤
(
1 + 1

k

)
· (1− yu).

Proof. It is easy to see that S is always a feasible independent set. We now compute
the corresponding probabilities. Since the marginal probability of pi on a vertex u ∈ Gi
is yu, for any fixed j, for every vertex u ∈ V \ B(j), we have Pr[u ∈ S] = yu, and
for every vertex u ∈ B(j), we have Pr[u ∈ S] ≥ y2

u. Since j is picked uniformly at
random, each vertex u ∈ V belongs to B(j) with probability exactly equal to 1

k . Thus,
we conclude that for every vertex u ∈ V , we have Pr[u ∈ S] ≥ k−1

k · yu + 1
k · y

2
u, and

Pr[u /∈ S] ≤ 1−
(
k−1
k · yu + 1

k · y
2
u

)
= 1− yu + yu

k · (1− yu) ≤
(
1 + 1

k

)
· (1− yu). J

The above theorem implies that the rounding scheme is a
(

k
k−1 ,

k+1
k

)
-rounding. The following

theorem now is a direct consequence of Theorems 8 and 19.

I Theorem 20. For every ε > 0, the SA relaxation of
(
3
⌈ 2
ε

⌉
+ 5
)

= O(1/ε) rounds is
integral for (1 + ε)-stable instances of MIS on planar graphs.

4 Stable instances of MIS on general graphs

In this section, we study stable instances of general graphs. We present a strong lower bound
on any algorithm (not necessarily robust) that solves o(

√
n)-stable instances. We complement

this lower bound with an algorithm that solves (εn)-stable instances in time nO(1/ε).
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4.1 Computational hardness of stable instances of MIS

We show that for general graphs it is unlikely to obtain efficient algorithms for solving
γ-stable instances for small values of γ. Our hardness reduction is based on the planted clique
conjecture [29, 44], which states that finding o(

√
n) sized planted independent sets/cliques

in the Erdős-Rényi graph G
(
n, 1

2
)
is computationally hard. Let G

(
n, 1

2 , k
)
denote the

distribution over graphs obtained by sampling a graph from G
(
n, 1

2
)
and then picking a

uniformly random subset of k vertices and deleting all edges among them. The conjecture is
formally stated below.

I Conjecture 21. Let 0 < ε < 1
2 be a constant. Suppose that an algorithm A receives an

input graph G that is either sampled from the ensemble G
(
n, 1

2
)
or G

(
n, 1

2 , n
1
2−ε
)
. Then, no

A that runs in time polynomial in n can decide, with probability at least 4
5 , which ensemble

G was sampled from.

Our lower bound follows from the observation that planted random instances are stable
up to high values of γ, and this suffices to imply our main result.

I Theorem 22. Let ε > 0 be a constant and consider a random graph G on n vertices
generated by first picking edges according to the Erdős-Rényi model G(n, 1

2 ), followed by
choosing a set I of vertices of size n 1

2−ε, uniformly at random, and deleting all edges inside
I. Then, with probability 1− o(1), the resulting instance is a Θ(n 1

2−ε/ logn)-stable instance
of MIS.

Proof. Let G = (V,E) be the resulting graph (we assume that all weights are set to 1).
We start by stating two well-known properties of the graph G that hold with probability
1− o(1) ([2]).
1. For each vertex u ∈ V \ I, we have |N(u) ∩ I| ≥ 1

2 · n
1
2−ε (1± o(1)).

2. The size of the maximum independent set in the graph G[V \I] is at most d2(1±o(1)) logne.

Consider any other independent set S 6= I. By Property 1, we have that |I \ S| ≥
1
2n

1
2−ε(1− o(1)). By Property 2, we must have that |S \ I| ≤ 2(1 ± o(1)) logn. Hence,

|S| < |I| and furthermore, |I \ S| > γ · |S \ I| for γ = n
1
2 −ε

4 logn . We conclude that the instance

is
(
n

1
2 −ε

4 logn

)
-stable. J

4.2 An algorithm for (εn)-stable instances
In this section, we design an algorithm for (εn)-stable instances on graphs of n vertices,
that runs in time nO(1/ε); thus, ε > 0 is assumed to be constant. Due to space constraints,
we only give an informal description of the algorithm for the special case of (n/2)-stable
instances; the algorithm then naturally generalizes to (n/k)-stable instances, for any integer
k ≥ 2. The base case (i.e., k = 1) uses the greedy algorithm.

We start by observing that either the chromatic number is at most n/2, in which case the
LP is integral, or there are more than n/2 vertices of degree at least n/2. In the latter case, we
check whether each of these high-degree vertices belongs to the optimal solution, by removing
each such vertex and its neighborhood, one at a time, and using the algorithm recursively.
Since their neighborhoods are large, we end up with graphs with at most n/2 vertices, which
are still (n/2)-stable if the removed vertex belongs to the optimal solution; thus, the recursion
succeeds on them (in particular, the greedy algorithms solves such instances). Finally, if
none of these high-degree vertices belongs to the optimal solution, then we remove all of
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them, and end up again with a graph with at most n/2 vertices that is (n/2)-stable; the
recursive call again solves that instance. By returning the best of all computed solutions, we
are guaranteed to recover the optimal solution.

I Theorem 23. There exists an algorithm that solves (nk )-stable instances of MIS on graphs
of n vertices in time nO(k).

5 Stability and integrality gaps of convex relaxations

In this section, we state a general theorem about the integrality gap of convex relaxations
of maximization problems on stable instances. In particular, we show that, even if the
conditions of Theorem 8 are not satisfied, the integrality gap still significantly decreases as
stability increases.

I Theorem 24. Consider a relaxation for MIS that assigns a value xu ∈ [0, 1] to each vertex
u of a graph G = (V,E,w), and its objective function is

∑
u∈V wuxu. Let α be its integrality

gap, for some α > 1. Then, its integrality gap is at most min{α, 1 + 1
β−1} on (αβ)-stable

instances, for any β > 1.

The proof is somewhat similar in spirit to the lemmas and analysis used for Algorithm 3.
We stress that the above result is inherently non-constructive. Nevertheless, it suggests
estimation algorithms for stable instances of MIS, such as the following, which is is a direct
consequence of Theorem 24 and the results of [31, 33].

I Corollary 25. For any fixed ε > 0, the Lovasz θ-function SDP has integrality gap at most
1 + ε on Õ

(
1
ε ·

∆
log ∆

)
-stable instances of MIS of maximum degree ∆.

We note that the theorem naturally extends to many other maximization graph problems,
and is particularly interesting for relaxations that require super-constant stability for the
recovery of the optimal solution (e.g., the Max Cut SDP has integrality gap 1 + ε for (2/ε)-
stable instances although the integrality gap drops to exactly 1 for Ω(

√
logn · log logn)-stable

instances).
In general, such a theorem is not expected to hold for minimization problems, but, in our

case, MIS gives rise to its complementary Minimum Vertex Cover problem, and it turns out
that we can prove a very similar result for Minimum Vertex Cover as well.

6 Certified algorithms for MIS

In this section, we initiate the systematic study of certified algorithms for MIS, introduced
by Makarychev and Makarychev [41].

6.1 Certified algorithms using convex relaxations
An important observation that [41] makes is that an approach very similar to the one used
for the design of algorithms for weakly-stable instances [42] can be used to obtain certified
algorithms. More formally, they prove the following theorem.

I Theorem 26 ([41]). Let x : V → [0, 1] be an optimal fractional solution of a convex
relaxation of MIS whose objective value for an instance G = (V,E,w) is

∑
u∈V wuxu. Suppose

that there exists a polynomial-time (α, β)-rounding for x. Then, there exists a polynomial-time
(αβ + ε)-certified algorithm for MIS on instances with integer polynomially-bounded weights
(for ε ≥ 1/poly(n) > 0).
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We now combine Theorem 19 with Theorem 26 and obtain the following theorem.

I Theorem 27. There exists a polynomial-time (1 + ε)-certified algorithm for MIS on planar
graphs with integer polynomially-bounded weights (for ε ≥ 1/poly(n) > 0).

6.2 Combinatorial certified algorithms
In this section, we study several combinatorial algorithms for MIS and prove that they are
certified. The first result is about the greedy algorithm.

I Theorem 28. The greedy algorithm (see Algorithm 2) is a ∆-certified algorithm for MIS on
graphs of maximum degree ∆. More generally, the greedy algorithm is a ∆-certified algorithm
for any instance of a ∆-extendible system.

Moreover, we introduce a variant of the greedy algorithm for MIS that is a
√

∆2 −∆ + 1-
certified algorithm; the improvement over the greedy is moderate for small values of ∆.
Finally, we show that the algorithm of Berman and Fürer [13] is

(∆+1
3 + ε

)
-certified, when all

weights are 1. We acknowledge that the restriction to unweighted graphs limits the scope of
the algorithm, but we consider this as a first step towards obtaining (c∆)-certified algorithms,
for c < 1.

I Theorem 29. The Berman-Fürer algorithm ([13]) is a
(∆+1

3 + ε
)
-certified algorithm for

MIS on graphs of maximum degree ∆, when all weights are equal to 1.

Let G = (V,E,w) be a graph of maximum degree ∆, n = |V |, where wu = 1 for every
u ∈ V . We say X is an improvement of I, if both I and I ⊕X are independent sets, the
subgraph induced by X is connected and I ⊕X is larger than I. (The operator ⊕ denotes
the symmetric difference.)

The algorithm starts with a feasible independent set I ′ and iteratively improves the
solution by checking whether there exists an improvement X with size |X| ≤ σ. If so, it
replaces I by I ⊕X and repeats. Otherwise, if no such improvement exists, it outputs the
current independent set I. Assuming that ∆ is a constant, the algorithm runs in polynomial
time as long as σ = O(logn).

I Lemma 30 ([13]). If ∆ is a constant and σ = O(logn), the algorithm runs in polynomial
time.

The main result can be presented as follows. Along with Definition 3, it implies The-
orem 29.

I Lemma 31. Let I be the independent set returned by the algorithm with σ = 32k∆4k logn
and let S 6= I be any feasible independent set. Then, we have |S \ I| ≤

(∆+1
3 + ε

)
· |I \ S|,

where ε = 1
3k .

Proof. Let S̄ = S \ I and Ī = I \ S. First, we observe that every u ∈ S̄ has at least one
neighbor in Ī, otherwise, we could improve I by adding a new vertex from S̄. We now
consider the set T = {u ∈ S̄ : |N(u) ∩ I| = 1} ⊆ S̄. In words, T is the set of elements in S̄
that have exactly one neighbor in I. We also define J = {v ∈ Ī : N(v)∩ T 6= ∅} to be the set
of elements of Ī that have at least one neighbor in T . We will show that |T | ≤ |J |.

To prove this, let’s assume that |T | > |J |. Then, by the pigeonhole principle, we must have
at least one vertex v ∈ J that is connected to at least two vertices u1, u2 ∈ T . This implies
that replacing v with u1 and u2 would be an improvement. Thus, we get a contradiction.
Now let I0 = Ī \ J and S0 = S̄ \ T . The final step of the proof is a direct consequence
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of Lemma 3.5 of [13], that states that if there is no improvement over I of size at most
σ = 32k∆4k logn, then for ε = 1/(3k), |S0| ≤

(∆+1
3 + ε

)
|I0|. Recall that we have already

proved |T | ≤ |J |. Therefore,

|S\I| = |S0|+|T | ≤
(

∆ + 1
3 + ε

)
|I0|+|J | ≤

(
∆ + 1

3 + ε

)
(|I0|+ |J |) =

(
∆ + 1

3 + ε

)
|I\S|.

J
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