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Abstract 52 

 53 

Biodiversity-ecosystem functioning (BEF) research grew rapidly following concerns that biodiversity 54 

loss would negatively affect ecosystem functions and the ecosystem services they underpin. However, 55 

despite evidence that biodiversity strongly affects ecosystem functioning, the influence of BEF 56 

research upon policy and the management of ‘real-world’ ecosystems, i.e. semi-natural habitats and 57 

agroecosystems, has been limited. Here, we address this issue by classifying BEF research into three 58 

clusters based on the degree of human control over species composition and the spatial scale, in terms 59 

of grain, of the study, and discussing how the research of each cluster is best suited to inform 60 

particular fields of ecosystem management. Research in the first cluster, small-grain highly controlled 61 

studies, is best able to provide general insights into mechanisms and to inform the management of 62 

species-poor and highly managed systems such as croplands, plantations, and the restoration of 63 

heavily degraded ecosystems. Research from the second cluster, small-grain observational studies, and 64 

species removal and addition studies, may allow for direct predictions of the impacts of species loss in 65 

specific semi-natural ecosystems. Research in the third cluster, large-grain uncontrolled studies, may 66 

best inform landscape-scale management and national-scale policy. We discuss barriers to transfer 67 

within each cluster and suggest how new research and knowledge exchange mechanisms may 68 

overcome these challenges. To meet the potential for BEF research to address global challenges, we 69 

recommend transdisciplinary research that goes beyond these current clusters and considers the social-70 

ecological context of the ecosystems in which BEF knowledge is generated. This requires recognizing 71 

the social and economic value of biodiversity for ecosystem services at scales, and in units, that matter 72 

to land managers and policy makers.  73 



4 
 

Key words  74 

BEF research; Biodiversity experiments, Ecosystem services; Grasslands; Ecosystem management, 75 

Knowledge transfer 76 

 77 

Introduction 78 

 79 

Widespread concerns over the consequences of global biodiversity loss led to an explosion of 80 

ecological research in the early 1990s into the relationship between biodiversity and the functioning of 81 

ecosystems (hereafter BEF research) (Schulze and Mooney, 1994; Loreau et al., 2001; Hooper et al., 82 

2005; Eisenhauer et al., 2019 this issue; Hines et al. 2019 this issue). Historically, most work in this 83 

field has been conducted in experimental settings, especially in grasslands, where extinction is 84 

simulated by randomly assembling plant communities differing in species and functional richness and 85 

where other environmental drivers of ecosystem function are controlled for (Hector et al., 1999; 86 

Tilman et al. 2001; Weisser et al. 2017). While this work has led to several robust conclusions 87 

regarding the form of biodiversity-function relationships and the mechanisms that drive them 88 

(Cardinale et al. 2012), there remain doubts regarding the capacity for experimental BEF research to 89 

inform the management of biodiversity and ecosystem functions and services in the ‘real world’ (i.e. 90 

ecosystems with communities that have not been experimentally manipulated) (Huston 1997; Lepš 91 

2004,  Srivistava & Vellend 2005; Wardle, 2016; Eisenhauer et al., 2016). Much of this debate 92 

concerns the design of biodiversity experiments, which were established to investigate if biodiversity 93 

could affect function, and via what mechanisms (Tilman et al., 1996; Loreau and Hector, 2001; 94 

Schmid et al. 2002).  95 

 96 

A more recent generation of BEF research has been conducted in non-experimental and naturally 97 

assembled real-world ecosystems such as natural and semi-natural (hereafter semi-natural) drylands, 98 

grasslands and forests (e.g., Maestre et al., 2012; Grace et al., 2016; Van Der Plas et al., 2016; Duffy 99 

et al., 2017; Fanin et al., 2018; Hautier et al.; 2018, van der Plas 2019). As they are performed in 100 
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naturally assembled communities, shaped by both environmental drivers and global change factors, 101 

these studies are correlational and tend to rely upon statistical controls, thus limiting confident 102 

inference about the functional consequences of biodiversity loss in these systems. Removal 103 

experiments can help overcome this issue but, to date, relatively few have been conducted (Díaz et al 104 

2003; Fry et al. 2013; Fanin et al. 2018). While a lack of confident inference may limit transfer, many 105 

other knowledge gaps also limit the transferability of BEF research. For example, there is little 106 

consensus regarding on how strongly biodiversity loss affects ecosystem functioning, relative to other 107 

drivers (Strivistava & Vellend 2005; Hooper et al 2012; Duffy et al 2017; van der Plas 2019). 108 

Moreover, the functional consequences of the non-random extinction which occurs in semi-natural 109 

ecosystems have largely been estimated from correlational studies (Larsen et al. 2005; Duffy et al 110 

2017; van der Plas et al 2019a, but see Lyons & Schwarz 2001 and Zavaleta and Hulvey 2004). 111 

Further challenges in the knowledge transfer and application of BEF research emerge from a lack of 112 

information regarding the social and economic barriers to conserving biodiversity and promoting 113 

diversification (Fazey et al. 2013; Rosa et al. 2019). Filling these knowledge gaps would help in 114 

providing reliable evidence to inform the management of the world´s ecosystems, e.g. via the 115 

Intergovernmental Science-Policy Panel on Biodiversity and Ecosystem Services (IPBES) (Díaz et al., 116 

2015; Díaz et al., 2018).  117 

 118 

In this article, we review the current understanding of the BEF relationship and discuss how BEF 119 

research could inform the management of real-world ecosystems. We do this by assessing the 120 

suitability of current knowledge for transfer and how this is reflected in current applied research. We 121 

then identify barriers to transfer and expand on how these barriers can be overcome via future research 122 

and changes to knowledge exchange mechanisms. Throughout, we emphasize the transition of BEF 123 

research from a fundamental science to applied research that can inform management. By doing so we 124 

assume that the promotion of certain ecosystem services is desired (e.g. carbon storage or crop 125 

production).  126 

 127 



6 
 

To aid understanding of the potential transfer of BEF research, we classify it into three clusters based 128 

upon a) the degree of human control over the plant community, which in experiments manifests 129 

through removal of non-target species, and in real world ecosystems through management inputs, and 130 

b) the size of the study plots or area, i.e. grain (Fig. 1a). While these two axes represent continuous 131 

gradients, and some studies are difficult to classify, research within each cluster shares several features 132 

(described below), making a general critique possible. Furthermore, each of these clusters shares 133 

features with a subset of real-world ecosystems (e.g. similar levels of human control over plant 134 

community and the grain of management (Fig. 1b). Based on these similarities, we suggest 135 

possibilities and challenges for knowledge transfer and applications. We then identify future research 136 

needs (summarized in Table 1). Throughout our discussion, we focus on terrestrial ecosystems, 137 

particularly the role of plant diversity in grasslands and that of insects in agricultural landscapes. This 138 

focus is a result of our own expertise and the historical focus of much BEF research on these systems 139 

(Hines et al. 2019 this issue).  140 

>Figure 1 here 141 

Small-grain and highly-controlled experiments (Cluster A)  142 

 143 

Since the mid 90’s, more than 600 experiments have been established to explore the causal 144 

relationship between biodiversity and ecosystem functioning (Cardinale et al. 2012), typically under 145 

field conditions (e.g. Tilman 1996; Hector et al., 1999; Roscher et al., 2004). The primary goal of 146 

these experiments was to establish whether biodiversity could affect ecosystem functioning, and so 147 

they controlled for potentially confounding effects of environmental conditions, functional 148 

composition, individual density, and non-random assembly and disassembly processes (Schmid et al. 149 

2002, Schmid and Hector 2004, Eisenhauer et al. 2019, this issue). To achieve this, BEF experiments 150 

apply a diversity treatment, where varying levels of plants species richness are sown or planted, and 151 

ecosystem functioning is measured (Schmid et al. 2002:  Bruehlheide et al. 2014). As such studies are 152 

highly controlled (e.g. via randomized blocking, weeding and the homogenization of growing 153 
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conditions), diversity effects may be ascribed with confidence and detailed inferences can be made 154 

regarding the identity of the mechanisms driving biodiversity effects (Loreau and Hector 2001).  155 

 156 

While these experiments act as model systems for BEF research, with generally applicable results to a 157 

wide range of systems (Schmid & Hector 2004; Eisenhauer et al., 2016), the direct application of these 158 

insights in the management of real-world ecosystems could be limited for several reasons. First, the 159 

sown or planted community (and its species richness) is maintained through the repeated removal of 160 

non-target species, which typically does not occur in real-world systems. As a result, communities 161 

may be present that would not persist without human intervention. Second, the species richness 162 

gradient tends to span levels of diversity (typically 1- <20 plant species) that are much lower than 163 

many semi-natural communities (Wilson et al. 2012). Third, the studies tend to be conducted in 164 

replicated plots smaller than 500 m2 (Tilman 1996; Hector et al., 1999; Roscher et al., 2004), with a 165 

median size of 3 m2 (Cardinale et al. 2012). As such studies are labor-intensive, they also tend to be 166 

unreplicated at the landscape scale (but see Hector et al 1999; Kirwan et al. 2007). However, the large 167 

number of experiments with comparable designs allows meta-level, large extent analyses to be 168 

conducted (Balvanera et al 2006; Isbell et al. 2015; Lefcheck et al., 2015; Verheyen et al 2016; Craven 169 

et al. 2018).  170 

 171 

What can be transferred 172 

 173 

BEF experiments were designed to provide general mechanistic insights into the BEF relationship. 174 

Nevertheless, the close control of plant community composition and their low species diversity means 175 

that findings from BEF experiments are potentially transferable to highly managed ecosystems, e.g. 176 

intensive agricultural grasslands, plantation forestry, gardens, sown communities found in urban green 177 

spaces or ecosystems restored from a heavily degraded state (Fig. 1b). Such systems tend to be 178 

managed intensively and at small scales, e.g. via the application of selective herbicides, weeding and 179 

fertilization. As these systems typically contain fewer species than most semi-natural ecosystems, we 180 

predict that BEF research is best able to inform work related to diversification, rather than the impacts 181 
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of species loss. BEF experiment results suggest that diversification of such systems would lead to 182 

considerable gains in the supply of some ecosystem services, as numerous functions related to 183 

agricultural production and sustainability often increase with species diversity, including plant 184 

productivity, pollination, soil carbon storage and weed suppression (Isbell et al., 2017). Moreover, 185 

species-rich communities produce a more stable and constant yield (Isbell et al. 2015; Craven et al. 186 

2018), which may reduce risks to farmers (Finger & Buchmann 2015).  187 

 188 

Experimental results indicate that the benefits of diversification are greater when increasing diversity 189 

from low to intermediate levels (e.g. from 1 to 8 grassland species per m2) than from medium to high 190 

(e.g. from 8 to 16), as the diversity-function relationship tends to saturate (Isbell et al. 2017). As 191 

species are typically grown in monocultures and in a wide range of low-diversity mixtures, data from 192 

these experiments can help to identify high performing species, but also high performing mixtures, for 193 

a range of ecosystem functions. Agronomists have conducted significant research on crop 194 

diversification for many years (Vandermeer 1992; Brooker et al. 2015), and demonstrated that crop 195 

diversification can lead to various positive outcomes, such as increased primary crop yield and 196 

biocontrol (Iverson et al 2014). Moreover, intercropping can improve yield stability (Raseduzzaman & 197 

Jensen 2017), and more diverse mixtures of cover crops, especially those containing legumes, lead to 198 

multiple additional benefits (Storkey et al. 2015; Blesh, 2018), thus increasing their multifunctionality 199 

(defined here as ecosystem service multifunctionality, the co-supply of multiple ecosystem services 200 

relative to their human demand, Manning et al 2018). Similarly, crop mixtures of multiple cultivars 201 

provide higher yields (Reiss and Drinkwater, 2018), and the mixing of rice varieties within a field 202 

reduces disease prevalence (Zhu et al., 2000). The frameworks and fundamental insights of BEF 203 

research may inform such research by identifying general rules governing complementary 204 

combinations of species and varieties (Brooker et al. 2015; Wright et al. 2017).  205 

 206 

An additional benefit of BEF experiments is that they often provide information on a wider range of 207 

ecosystem services than many agricultural experiments and agronomic analyses, which tend to focus 208 

on yield and its sustainability, e.g. weed control and nutrient cycling (Meyer et al. 2018). Mixtures that 209 
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promote the supply of multiple ecosystem services simultaneously may therefore be identified from 210 

BEF studies (Storkey et al. 2015; Baeten et al. 2019). Further evidence of existing BEF transfer comes 211 

from grassland studies, which indicate that there are multiple benefits of diversifying agroecosystems 212 

in terms of grass yield and reduced weed abundance (Finn et al., 2013). Studies have also shown that 213 

diverse grassland mixtures produce greater bioenergy yields (Khalsa et al. 2004; Tilman et al 2006). 214 

However, another study of bioenergy production in grass mixtures showed that diverse mixtures were 215 

not more productive than currently used monocultures, thus showing that diversification might not 216 

always promote bioenergy production (Dickson and Gross, 2015). Even in the absence of positive 217 

impacts of diversity on productivity, other benefits may be realized; diverse bioenergy landscapes can 218 

promote the supply of other ecosystem services including greenhouse gas mitigation, pest suppression, 219 

pollination, and bird watching potential (Werling et al 2014).  220 

 221 

A number of other avenues of experimental BEF research have the capacity to inform the management 222 

of intensive systems. BEF experiments show that damage to plant growth and productivity from plant 223 

pathogens and pests is often weaker in more diverse communities, both aboveground (Otway et al., 224 

2005; Civitello et al., 2015) and belowground (Maron et al., 2011; Schnitzer et al., 2011).  225 

Accordingly, information from BEF experiments on plant-soil feedbacks (e.g. Vogel et al. 2019a this 226 

issue) could potentially help to devise effective crop rotation sequences , e.g. by identifying consistent 227 

antagonistic or synergistic feedbacks between functional groups when grown together or in sequence 228 

(Barel et al. 2018; Ingerslew 2018). The insights of BEF experiments are also applicable to the 229 

gardens and green roof planting (Lundholm et al. 2010) and the restoration of highly degraded 230 

ecosystems. Here it may be possible to determine species mixtures or particular functional trait 231 

combinations, which, when sown or planted, deliver desired functions, such as soil aggregate stability 232 

and soil organic matter accumulation (Lange et al. 2015; Gould et al. 2016; Kollmann et al. 2016; 233 

Yang et al. 2019). In restoration, another promising approach would be to identify and sow mixtures 234 

of species that facilitate each other as this is a key mechanism underlying biodiversity effects in harsh 235 

environments (Wright et al., 2017). Finally, evidence from forests suggests that similar or higher 236 

amounts of timber production can be achieved in mixed plantations of native species compared to 237 
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monocultures of plantation species, and that co-benefits, e.g. to biodiversity conservation, would also 238 

be realized (Pretzsch & Schütze 2009; Hulvey et al. 2013; Gamfeldt et al. 2013; Huang et al. 2018). 239 

As with crops, the results of BEF studies can also be used to indicate the tree species mixtures that 240 

best achieve this multifunctionality (Teuscher et al. 2016; Baeten et al. 2019).   241 

 242 

Barriers to transfer and directions for future research 243 

 244 

While the plant communities of BEF experiments and human-dominated ecosystems share 245 

similarities, there are also marked differences. For instance, the species composition in BEF 246 

experiments is randomly assembled and they are usually performed in unfertilized, pesticide-free, 247 

unirrigated systems.  In contrast, in intensively managed real-world systems, prior knowledge has led 248 

managers to select high performing, but often low diversity, mixtures by sowing and planting species 249 

that deliver high levels of desired services, and/or encouraging these via pesticide application, 250 

irrigation and fertilization. The benefits of diversification therefore need to be demonstrated relative to 251 

these intensive low diversity communities, rather than the random low diversity assemblages found in 252 

BEF experiments. For example, in European grasslands farmers typically sow or maintain mixtures of 253 

a single grass, Lolium perenne, and a single legume, Trifolium repens, to which fertilizers are also 254 

applied (Peeters et al. 2014). Such a mixture clearly differs from the random species-poor mixtures of 255 

grassland biodiversity experiments. It is unclear if the relatively diverse and high-functioning 256 

communities of biodiversity experiments are generally able to deliver yield of a similar or higher 257 

quality, quantity and reliability. However, it has been demonstrated that diversification from 1-2 to 3-4 258 

species provides significant increases in grassland yield and higher resistance to weed invasion 259 

(Kirwan et al. 2007; Nyfeler et al. 2009; Finn et al 2013). We hypothesize that the species-poor 260 

communities found in intensively managed systems are more likely to resemble the high performing 261 

species-poor communities of BEF experiments (e.g. those dominated by tall grasses of fertile 262 

conditions) than the low performing communities, which may struggle to persist without regular 263 

weeding and close control (e.g. those containing only a few small herbs). In contrast, the low diversity 264 

situations found in experiments, where potentially dominant species are missing, could be relevant to 265 
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isolated habitat patches, where species cannot disperse to potentially suitable conditions and the 266 

species pool is restricted.  267 

 268 

As described above, current research suggests that links between BEF and agronomic research are 269 

beginning to emerge. However, current studies do not cover the wide range of situations in which 270 

diversification could be beneficial to agroecosystems. To the best of our knowledge, little work has yet 271 

made the transition to widespread adoption, an exception being the standard mixtures for forage 272 

production in Switzerland  (see Fig. 2 for details), This lack of adoption highlights knowledge 273 

exchange as an important bottleneck and another future need. To enable this, future BEF experiments 274 

could increase their relevance for management by drawing experimental communities from species 275 

pools that contain potentially useful and manageable species, and performing experiments in settings 276 

that are similar to those found in land use systems (e.g. fertilized or grazed grasslands). In this way, 277 

communities that are manageable and multifunctional may also be identified, and specific mixtures 278 

can be recommended (e.g. current policy in Switzerland). These should be cost-efficient and self-279 

supporting and thus easily adapted and maintained by land managers.  280 

 281 

Results on the relationship between biodiversity and the stability of ecosystem functions and services 282 

also require re-interpretation if they are to inform ecosystem management. While definitions of 283 

stability very greatly (Wissel & Grimm 1997), BEF studies typically measure stability as the 284 

coefficient of variation (e.g. Craven et al. 2018; Knapp and van der Heijden 2018), the resistance to 285 

perturbations, or the rate of recovery following these (Isbell et al. 2015). In contrast, ecosystem 286 

managers often perceive stability differently (Dongahue et al., 2016); while reliability is appreciated, 287 

and there are minimum levels of ecosystem service supply that are acceptable and over-performance 288 

(e.g. high productivity in favorable weather years, Wright et al. 2015) is often appreciated. Therefore, 289 

alternative measures of stability, e.g. that measure the number of years in which the supply of services 290 

exceed an acceptable threshold (Oliver et al., 2015), need to be employed if diversity-stability 291 

relationships are to be determined meaningfully for agroecosystems. 292 

 293 
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Finally, the transfer of BEF research findings to the real world may be limited by the uncertainties 294 

related to the profitability and management associated with diversifying species-poor communities and 295 

maintaining high species richness. For example, in many agricultural grasslands, plant species loss and 296 

dominance by a few nitrophilous species has occurred due to fertilization (Gaujour et al. 2012; 297 

Gossner et al., 2016). Reducing nutrient availability and reversing these biodiversity declines can be 298 

difficult (Smith et al., 2008; Clark and Tilman, 2010; Storkey et al., 2015). Moreover, species-rich 299 

seed mixtures may prove expensive to create, and it remains to be seen if diverse and high functioning 300 

grasslands can be created and maintained cost-effectively over large areas. In croplands, multispecies 301 

mixtures might pose challenges to harvesting and sorting, as most modern agricultural machinery 302 

specializes in managing and cropping monocultures, and the harvesting of mixtures is relatively costly 303 

and labor-intensive (Magrini et al., 2011). We therefore need to know if, and under which conditions, 304 

encouraging diversity in agricultural systems is efficient and feasible, especially compared to 305 

management practices that deliver similar benefits (e.g. the promotion of productivity via 306 

diversification versus fertilization) (Kleijn et al. 2019). A key part of this may be to acknowledge 307 

additional benefits of diversity (e.g. pest control, pollination or higher yield stability) and to factor this 308 

multifunctionality into comparisons. To better inform the management of agroecosystems and 309 

potentially lead to their diversification, a new generation of more applied and social-ecological BEF 310 

research is required (Geertsema et al., 2016). In this new work, comparisons should be made between 311 

the ‘high performing low-diversity systems’ that are the current norm and multifunctional ‘sustainable 312 

high-diversity systems’ that can be established and maintained at an equivalent cost to current 313 

systems, or which provide additional benefits that justify greater cost (e.g. carbon storage or avoided 314 

emissions) (Binder et al., 2018). Alternatively, evidence that high diversity systems can be intensified 315 

without negative environmental impacts, e.g. as demonstrated for biofuel grasslands (Yang et al. 316 

2018). Clearly, such approaches require transdisciplinary research involving economic and/or multiple 317 

stakeholder-based assessments of the value of the diverse systems relative to current and future 318 

systems and practices (Jackson et al. 2012; Geertsema  et al., 2016; Bretagnolle et al. 2018; Kleijn et 319 

al. 2019) (Table 1).   320 
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Small-grain studies with low experimental control (Cluster B) 321 

 322 

The second cluster contains small-grain observational studies that investigate natural- or human-323 

induced gradients of plant diversity in less intensively managed systems (e.g. Kahmen et al. 2005a; 324 

Maestre et al., 2012; Soliveres et al., 2016a; van der Plas et al., 2016; Zhu et al., 2016) (Fig. 1). In this 325 

cluster, we also consider experiments in which particular species or functional groups are removed 326 

from intact ecosystems, often according to simulated global change scenarios (Smith & Knapp 2003; 327 

Cross & Harte, 2007; Suding et al., 2008, Fry et al. 2013; Pan et al. 2016; Fanin et al. 2018), and those 328 

which boost diversity in established communities or disturbed sites, e.g. via seeding (van der Putten et 329 

al. 2000; Bullock et al 2007; Stein et al. 2008; Weidlich et al. 2018). Finally, we also consider global 330 

change driver experiments, where biodiversity change is treated as a co-variate and used to explain 331 

observed changes in function (e.g. Grace et al., 2016; Hautier et al., 2018). Plot sizes are similar to 332 

those in cluster A (i.e. <500m2) and diversity levels vary greatly, from inherently species-poor 333 

ecosystems (e.g. Suding et al., 2008) to species-rich communities (Allan et al., 2015). Therefore, in 334 

contrast to most of the experiments of cluster A, studies from cluster B tend to contain more mature 335 

communities with higher species richness, fewer monocultures, less or no weeding, and species 336 

compositions and management regimes that are more similar to real-world low management intensity 337 

systems. In most of these studies, and in contrast to most BEF experiments that manipulate random 338 

community assembly, diversity loss occurs as non-random disassembly in response to environmental 339 

drivers. Observational studies of cluster B often statistically control for co-varying factors that may 340 

also drive ecosystem functions. These may include biotic covariates, such as functional composition 341 

and the abundance of different functional groups (Maestre et al., 2012; Allan et al., 2015; Soliveres et 342 

al., 2016a; Soliveres et al., 2016b; Van Der Plas et al., 2016), which strongly co-vary with diversity in 343 

many communities (Allan et al., 2015; Barnes et al. 2016; Soliveres et al., 2016).   344 

 345 

The design of studies in this cluster limits interpretation about the cause of biodiversity effects as data 346 

for monoculture performances are usually unavailable, meaning that the mechanisms underlying 347 

biodiversity effects cannot be estimated (Loreau and Hector 2001). This is unfortunate as these 348 
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processes may differ in their strength compared to biodiversity experiments. For example, in mature 349 

communities, species may show higher levels of niche differentiation at both between and within 350 

species levels (Zuppinger-Dingley et al., 2014; Guimarães-Steinicke et al. 2019, this issue). A final 351 

property differentiating cluster B studies from those of cluster A is that variation in the diversity of 352 

other trophic levels is a complex product of responses to environmental drivers and concurrent 353 

changes in all trophic levels (Tscharntke et al., 2005; Soliveres et al. 2016a,b), rather than primarily 354 

driven by variation in the diversity of primary producers (Scherber et al. 2010).  355 

 356 

What can be transferred 357 

 358 

Because they are conducted in unmanipulated real-world ecosystems, cluster B results are directly 359 

transferable to semi-natural ecosystems, which experience species loss and compositional change due 360 

to global environmental change. Cluster B studies provide direct estimates of the real-world impacts of 361 

global change drivers on diversity, and the corresponding impact of these changes on ecosystem 362 

function.  However, most cluster B studies are observational, so patterns remain correlational, despite 363 

statistical controls. Nevertheless, due to their greater realism, syntheses of cluster B results (van der 364 

Plas 2019a), can provide statistical estimates of where different components of biodiversity play their 365 

greatest role, and estimates may be used as an evidence base for both local managers and in global 366 

assessments.  367 

 368 

The experimental studies of cluster B can provide information on how diversification can boost 369 

ecosystem functioning in restored or enriched communities. For example, several studies show that 370 

sowing into intact communities can increase both species richness and ecosystem functioning, 371 

including community productivity and carbon storage (Bullock et al 2007; Stein et al. 2008; Weidlich 372 

et al. 2018).  373 

 374 

Barriers to transfer and directions for future research 375 

 376 
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For research in cluster B to become more directly transferable to the management of semi-natural 377 

ecosystems, greater confidence in the mechanisms underlying real-world BEF relationships is needed. 378 

While management recommendations may be drawn from selected case studies such as those 379 

presented above, a general understanding of the relative and interacting roles of environmental 380 

covariates, direct effects of global change drivers and various facets of diversity and compositional 381 

change is lacking (van der Plas 2019a). Biodiversity could play an important role in maintaining 382 

ecosystem function in real world ecosystems. Yet, whether loss of a few species at this scale makes a 383 

strong contribution to function, relative to these other drivers, has been only been tested in a limited 384 

number of cases (e.g. Manning et al. 2006; Allan et al. 2015; Winfree et al. 2015; Grace et al., 2016), 385 

and inconsistently, making generalization difficult (van der Plas 2019a). To address this issue, 386 

observational studies need to ensure that factors such as abundance and functional composition are 387 

properly controlled for statistically. Predictions of the impacts of drivers on ecosystem services can be 388 

made by combining a) estimates of expected biodiversity change according to different global change 389 

drivers across a range of conditions (e.g. Grace et al., 2016; Hautier et al., 2018; Bjorkman et al. 390 

2018), b) knowledge of how great a difference to functions and services such changes will make (e.g. 391 

Craven et al. 2018), and c) ecosystem service production functions (Isbell et al. 2015). This in turn 392 

allows for estimates of where ecosystem service-based arguments for conservation are strongest. Such 393 

predictions, if verified, could then form a sound basis for management decisions.  394 

 395 

Transfer would also be enabled by a new generation of experiments. These could include a wider 396 

range of non-random extinction scenarios, assessments of the relative importance of abiotic drivers of 397 

function and biodiversity (e.g. Manning et al., 2006; Isbell et al., 2013), and the reduction of diversity 398 

from high to intermediate levels (Zobel et al. 1994), in order to verify, or refute the results of 399 

observational studies. To do this, manipulations such as the manipulation of dominance and functional 400 

composition, trait dissimilarity, or other aspects of biodiversity could be employed (Smith and Knapp, 401 

2003; Manning et al., 2006; Cross and Harte, 2007). Manipulations that simulate the homogenization 402 

of biota (i.e. the loss of beta diversity, while alpha diversity remains unchanged), may also prove 403 

informative, as this may be as, or more, common than alpha diversity loss in real-world ecosystems 404 
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(Flohre et al., 2011; Vellend et al., 2014; Dornelas et al., 2014; Gossner et al., 2016; Wardle 2016). 405 

Finally, it may be possible to link community assembly mechanisms (e.g. founder effects and habitat 406 

filtering) and functional BEF research to identify how to increase species richness and promote certain 407 

ecosystem functions, information that would be particularly useful in ecosystem restoration (Bullock 408 

et al. 2007; Stein et al. 2008; Kirmer et al. 2012; Weidlich et al. 2018) (Table 1).  409 

 410 

Work is also needed in converting the measures of ecosystem function commonly taken in ecological 411 

studies into measures of ecosystem services that are of relevance to stakeholders (Mace et al. 2012; 412 

Kleijn et al. 2019). This requires the development of new metrics, e.g. trait measures that link to 413 

nutritional quality or cultural services such as aesthetic appeal. Applied studies could explicitly 414 

measure relevant ecosystem services, e.g. by involving stakeholders, assessing which services are 415 

most important to them, and adapting function measures to quantify these (Martín-López et al. 2012; 416 

King et al. 2015; Manning et al. 2018). This approach, and many of the others outlined above requires 417 

inter- and transdisciplinary research involving stakeholders and researchers from other disciplines e.g. 418 

with farmers, local governments, agronomists and economists.  419 

Large-grain studies without experimental control (Cluster C) 420 

 421 

The third cluster (C) contains BEF studies that cover large areas (from 100 m2 to landscapes) (e.g. 422 

Larsen et al. 2005; Garibaldi et al. 2013; Winfree et al., 2018). Due to the huge efforts required to 423 

manipulate diversity at a large spatial and temporal grain (Teuscher et al., 2016), such studies tend to 424 

be observational, comparative, and of low replication, although the large number of such studies has 425 

allowed for meta-level analyses to be conducted (Lichtenberg et al. 2017). The focal study organisms 426 

also tend to be invertebrates, particularly pollinators, instead of plants. The measurement of 427 

biodiversity (e.g. species richness and functional diversity) is also often limited in these studies due to 428 

the effort required to measure it directly over large areas. As a result, it is often landscape variables, 429 

such as landscape configuration and the proportion of different land uses that are related to function, 430 

rather than diversity (e.g. Bosem Baillod et al 2017; Hass et al., 2018). These landscape properties 431 
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may influence the dispersal, abundance and diversity of organisms within the landscape, and may also 432 

correlate with management factors and abiotic drivers of ecosystem function (Gámez-Virués et al., 433 

2015; Dominik et al., 2018; Lindborg et al., 2017). As a result of these covariances, the role of 434 

biodiversity in driving ecosystem functioning cannot always be confidently ascribed (Tscharntke et al 435 

2016).  436 

 437 

Within this cluster, we also place remote sensing studies (e.g. Oehri et al., 2017) and national and 438 

regional correlational studies (e.g. Anderson et al., 2009). In these, biodiversity can only be measured 439 

using proxies or with presence/absence data within large grid cells (e.g. 10 x 10 km), e.g. from 440 

national monitoring schemes. These coarse biodiversity measures are then correlated with ecosystem 441 

service proxy measures such as carbon storage and recreational use. These studies often lack a strong 442 

mechanistic basis, and focus instead on how biodiversity co-varies with ecosystem services (e.g. 443 

Anderson et al., 2009; Maskell et al., 2013). Even where covariates are included and mechanistic 444 

relationships postulated (e.g. Oehri et al., 2017; Duffy et al., 2017), causal links are hard to infer due 445 

to the strong covariance between biodiversity and other drivers, and the high probability of missing, or 446 

improperly measuring, important covariates.  447 

 448 

Another common type of BEF study at this scale are those showing that functional biodiversity co-449 

varies or differs across environmental gradients and management regimes (Rader et al., 2014, Gámez-450 

Virués et al., 2015). While there is significant evidence that functional traits do relate to ecosystem 451 

processes and properties at landscape and national scales (e.g. Lavorel et al. 2011; Garibaldi et al. 452 

2015; Manning et al. 2015), evidence for a mechanistic link between the functional diversity of traits 453 

to the supply of ecosystem services at these scales is generally limited. 454 

 455 

What can be transferred  456 

 457 

As the studies of cluster C are performed in real landscapes, and as management is often conducted at 458 

large scales (e.g. by farmers or foresters), research findings from this cluster are potentially of high 459 
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relevance to policy and large-scale management, e.g. via payments for ecosystem service schemes. In 460 

recent years, a number of studies have demonstrated large-scale benefits of landscapes with high 461 

diversity of crops and non-crop habitats, which support higher biodiversity (Gardiner et al., 2009; 462 

Redlich et al., 2018). These benefits include more effective pollination and biological pest control 463 

(Garibaldi et al. 2013; Winfree et al., 2018). By showing how diversity and diversification practices 464 

influence ecosystem service delivery, these practices can then be incorporated into agronomic 465 

considerations (Rosa et al., 2019) and into agri-environment policy (Garibaldi et al. 2014). Studies at 466 

this scale also complement those of the other clusters by showing that biodiversity not only promotes 467 

ecosystem function and services at the plot scale but also via spillover effects into the surrounding 468 

landscape, with ecosystem service benefits including  pest suppression, pollination, and bird watching 469 

potential (Blitzer et al 2012; Werling et al 2014). However, biodiversity does not always promote 470 

function at these scales. For example, natural enemy diversity does not always relate to pest 471 

abundance, nor higher crop yields (Tscharntke et al. 2016), and in some cases biodiversity does not 472 

control pests as effectively as pesticides (Samngegard et al. 2018).  473 

 474 

Barriers to transfer and directions for future research 475 

 476 

The observational nature of most research in this cluster means that the exact role of diversity in 477 

driving ecosystem function and providing ecosystem services at these scales is hard to ascertain. This 478 

general limitation is compounded by several other barriers which can prevent transfer to landscape 479 

management and policy. First, several processes could drive BEF relationships at landscape scales that 480 

do not operate at the smaller grain size of clusters A and B, and as a result are little acknowledged in 481 

BEF research, outside of theory (Loreau et al., 2003; Tscharntke et al., 2012; Lindborg et al., 2017). 482 

These include the spatial processes that maintain diversity, the matching between species and 483 

environmental conditions in which they perform well (Leibold et al. 2017; Mori et al 2018), and the 484 

potential for different species to provide different functions and services in different patches of the 485 

landscape, thus boosting landscape multifunctionality (van der Plas et al. 2016, 2019b). The strength 486 

and role of such mechanisms clearly needs to be demonstrated. Another key problem in transferring 487 
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BEF research to large scales is that landscape managers typically seek to simultaneously promote 488 

multiple ecosystem services, i.e. the multifunctionality of landscapes, not single ecosystem functions 489 

at the plot scale (Manning et al., 2018; Kremen & Merenlender 2018). A focus on single functions is 490 

problematic if they trade-off and the components of diversity that boost some ecosystem services 491 

diminish others. For example, the maintenance of biodiversity-rich habitats may add resilience to 492 

multiple ecosystem functions at the landscape scale, but also occupies land that could be used for crop 493 

production.  494 

 495 

New research approaches are required to overcome the difficulties in identifying how biodiversity 496 

controls ecosystem functioning at large scales, and how biodiversity may be conserved and promoted 497 

to increase the supply of ecosystem services. First, to ensure that service measures are of relevance to 498 

stakeholders, we require a better understanding of which services are demanded by different 499 

stakeholders, and at which different temporal and spatial scales, so that relevant indicator variables or 500 

ecosystem service production functions can be used (Tallis 2011). A more holistic approach, which 501 

accounts for the relative demand for different ecosystem services and how this changes with socio-502 

economic context, is therefore required, e.g. to assess how much land can be returned to a high 503 

biodiversity condition while maintaining desired levels of food production and other ecosystem 504 

services (Clough et al. 2011; Kremen & Merenlender 2018; Manning et al. 2018). Such studies should 505 

also identify what drives patterns of land use and management and hence biodiversity loss, so that 506 

appropriate interventions can be identified (Grass et al. 2019).  507 

 508 

To consider landscape multifunctionality and its dependence on biodiversity, multiple ecosystem 509 

services need to be scaled up in space and time, which is challenging. Some of the functions that can 510 

be measured at the plot scale can be ‘linearly’ scaled up, e.g. by using remote sensing proxies of 511 

diversity and functional traits, and interpolated maps, e.g. of climate and soil properties (Manning et 512 

al., 2015; van der Plas et al., 2018). Others, however, require an understanding of spatial interactions 513 

that makes their upscaling more complex, e.g. pollination and nutrient leaching (Koh et al. 2016, 514 

Lindborg et al. 2017.). Furthermore, some services that operate at large scales (e.g. flood control, 515 
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landscape aesthetics) cannot be predicted and scaled up from small-scale measures. Therefore, new 516 

procedures and methods are needed to quantify large-scale multifunctionality and the role of 517 

biodiversity in driving it. There have been calls for landscape-scale experiments to address these 518 

issues (Koh et al., 2009; Landis 2017). One example is the recent EFForTS project in which "tree 519 

islands" of varying size and tree diversity (0-6 species) have been planted in oil-palm clearings 520 

(Teuscher et al., 2016). Initial results indicate no economic trade-off:  the islands generate yield gains 521 

which compensate for the reduced number of oil palms (Gerard et al., 2017). However, the high 522 

financial cost and/or logistical effort of such experiments means it may be more realistic to use 523 

biophysical models in most cases. Unfortunately, such models do not currently fully represent the 524 

complexity of biodiversity or its relationship with ecosystem functions and services (Lavorel et al. 525 

2017).   526 

 527 

To understand biodiversity-landscape multifunctionality relationships, a greater knowledge of which 528 

aspects of diversity underpin different ecosystem services is also required. While knowledge exists 529 

regarding the drivers of many ecosystem service provider groups at the landscape scale (e.g. plants, 530 

birds, butterflies and pollinators, Roschewitz et al. 2005;  Rösch et al. 2015; Kormann et al 2015; Grab 531 

et al. 2019), this understanding needs to be extended to other groups, including soil microbes and soil 532 

fauna. Similarly, understanding of how spatial biodiversity dynamics affect functions and the services 533 

they underpin needs to be extended to taxa involved in services other than pest control and pollination 534 

(Table 1). In some cases, there may be trade-offs between services, e.g. if the conditions that 535 

maximize the diversity of one taxa do not favor another (van der Plas 2019b). This research may also 536 

demonstrate that when it comes to real-world ecosystem services and landscape-level 537 

multifunctionality, biodiversity effects are not easily generalizable, but depend on the context. Thus, 538 

the rules of this context-dependency need to be identified (Allan et al 2015; Birkhofer et al., 2018; 539 

Samnegard et al 2018). Doing this will limit uncertainty; managers could be less reluctant to manage 540 

for biodiversity when the degree to which it provides ecosystem service benefits at larger scales has 541 

been clearly demonstrated. In semi-natural ecosystems the promotion of the biodiversity components 542 

underpinning ecosystem services are most likely to be achieved via management options that are 543 
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simple and effective over large areas, and so the practices that would promote the desired facets of 544 

biodiversity, e.g. mowing or the introduction of selective grazers, may need to be identified.  545 

Conclusion 546 

 547 

A vast array of BEF studies has taught us much about the complex relationship between biodiversity 548 

and ecosystem functioning. In this article, we argue that with some re-analysis and re-interpretation, 549 

some of this research could be directly transferred to policy and management, where practitioners 550 

could use its insights to guide the diversification of agricultural and other human-dominated 551 

ecosystems, and inform the conservation of biodiversity in semi-natural ecosystems. However, there 552 

are numerous challenges to the transfer of BEF research to more applied research and practice, and we 553 

argue that these challenges differ depending on the spatial grain of the study and the degree of 554 

community manipulation. While acknowledging the differences in transferability between these 555 

clusters of BEF research may help resolve the ongoing debate about relevance of BEF findings a new 556 

generation of BEF research is also required. This would involve the merging and connecting research 557 

between the current clusters, e.g. the setup of a new generation of biodiversity experiments that bridge 558 

the gap between current BEF experiments and observational studies. These should be complemented 559 

by new observational studies which more comprehensively account for covarying factors and which 560 

better acknowledge the link between ecosystem function and ecosystem services (Table 1).  561 

 562 

It should be noted that the main message transferred from BEF research may simply be a stronger and 563 

more confident argument that it is important to conserve the diversity that is already present in semi-564 

natural systems. In some cases BEF research may also show that not every species plays a positive or 565 

strong role in driving certain ecosystem functions, and that a small number of species dominate the 566 

supply of certain services (Kleijn et al. 2015). In such cases, acknowledging the non-market benefits 567 

of species and returning to more traditional ethical arguments will help promote biodiversity 568 

conservation (e.g. Hill et al 2019).  569 
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Finally, to make BEF research more applied, large-scale studies that utilise novel approaches to 570 

investigate the role of diversity in providing the desired ecosystem services at the landscape scale are 571 

required (Table 1). Accordingly, key considerations in applied BEF research are to acknowledge when 572 

research is fundamental or applied, and to clarify when services, rather than functions, are being 573 

considered, thus making it transparent which services and functions are focal and why, and 574 

acknowledging which stakeholder groups may benefit. In many respects, the technical solutions to the 575 

challenges addressed in this article are already being investigated. However, if the potential for BEF 576 

research to address global challenges is to be fully realized, future BEF must also be transdisciplinary, 577 

and include the main stakeholders of the ecosystem collaboratively from their inception. By 578 

considering social-ecological context, BEF research should be better able to demonstrate the social 579 

and economic value of biodiversity at the scales that matter to land managers and policy makers.  580 
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Table 1. Research required to enable the real-world application of BEF research   1290 
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Research need and approach Potential benefit to Examples or foundational 
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transfer studies 

Cluster A 

Identify mechanistic general rules 

governing complementary species 

combinations in existing 

biodiversity experiments 

Suggested combinations of 

species for restoration, 

intercropping and crop 

rotation, mixed plantations 

etc. 

Zuppinger‐Dingley et al. 

(2014)  

Brooker et al. (2015) 

Demonstrate the biodiversity- 

multifunctionality relationship in 

sown or planted ecosystems, e.g. by 

identifying mixtures that provide 

multiple desired services 

Could be used to design 

multifunctional species 

mixtures that provide 

benefits to a range of 

stakeholder groups 

Baeten et al. (2019) 

Finn et al. (2013) 

Compare multispecies mixtures to 

the high performing species-poor 

systems of current management 

Without realistic comparison 

to current management 

alternative option will not be 

adopted 

Binder et al (2018) 

Perform BEF experiments with 

species pools that contain potentially 

useful and manageable species (e.g. 

self-sustaining mixtures) 

High performing mixtures 

identified can be managed in 

a cost-effective manner 

Kirwan et al (2007) 

Finn et al (2013) 

Generate measures of stability that 

are relevant to managers 

To show relationship 

between biodiversity and the 

stability sought by 

stakeholders  

Donohue et al (2016) 

Oliver et al. (2015) 

Demonstrate the cost effectiveness 

of multispecies mixtures compared 

to existing management and develop 

Unless clear benefits are 

demonstrated diversification 

may not be adopted 

Finger & Buchmann (2015) 

Blaauw & Isaacs (2014) 
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technology that increases this (e.g. 

multicrop harvesters) 

Cluster B 

Form general predictions of how 

biodiversity and other drivers of 

ecosystem function changes in 

response to global change drivers  

Accurate and general 

estimates and predictions of 

biodiversity loss are the 

foundation of accurate and 

general assessments of their 

impacts 

Bjorkman et al (2018) 

Grace et al (2016) 

Develop mechanistic understanding 

of biodiversity in real world 

systems, e.g. by using new 

quantitative tools to disentangle 

biodiversity effects 

Would increase confidence 

in correlational BEF 

relationships and allow their 

causes to be understood 

Grace et al (2016) 

Systematically assess the relative 

role of alpha and beta diversity, 

functional composition, abundance 

and other covariates including 

abiotic factors and understand the 

feedbacks and relationships between 

these drivers 

Would lead to more precise 

estimates of the relative role 

of biodiversity in semi-

natural systems and its 

relationship with other 

factors 

Allan et al (2015) 

Winfree et al (2015) 

van der Plas et al (2016) 

Establish a new generation of 

experiments that varies the above 

factors, across realistic gradients 

Would allow causation to be 

inferred for the above 

relationships 

Smith & Knapp (2003) 

Manning et al (2006) 

 

Assess the role of biodiversity in 

species rich communities, including 

that of rare species  

Most diversity loss occurs 

between high and 

intermediate levels and rare 

Soliveres et al. (2016b) 

Klein et al (2003) 

Lyons & Schwartz (2001) 
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species are more likely to be 

lost 

 

Provide statistical estimates of 

where different components of 

biodiversity play their greatest role 

and test these estimates 

Can be used in regional and 

global assessments and 

projections of the expected 

impacts of biodiversity loss 

van der Plas (2019a) 

Explore the BEF relationship within 

the context of ecosystem restoration, 

and link this to community assembly 

mechanisms 

The restoration of semi-

natural habitats may be more 

effective if a high diversity 

of species is used 

Bullock et al. (2007) 

Weidlich et al. (2018) 

 

Cluster C 

Understand the strength and role of 

mechanisms linking biodiversity to 

ecosystem function at spatial and 

temporal scales (e.g. species 

matching to site conditions, 

dispersal processes)  

Biodiversity may play a 

different role at large scales 

to that established in 

experiments 

Loreau et al (2003) 

Mori et al (2018) 

Upscale ecosystem functions to 

large scales and link these to 

ecosystem services  

Would allow the relationship 

between biodiversity, 

ecosystem functions and 

ecosystem services to be 

evaluated at management 

relevant scales 

Clough et al (2016) 

Lindborg et al (2017) 

LeClec'h et al. (subm.) 

Use upscaled measures to 

understand which taxa drive 

ecosystem services and disservices 

at landscape scales, and what factors 

Would allow important 

ecosystem service providers 

to be identified and managed 

appropriately 

Van der Plas et al (2018) 

Winfree et al (2018) 

Grass et al (2019) 
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drive the diversity of these taxa 

Evaluate the role of biodiversity in 

driving landscape multifunctionality 

of ecosystem services (via upscaled 

measures) 

Would allow the impact of 

biodiversity on a range of 

stakeholders and wider 

society to be communicated 

Van der Plas et al (2018) 

Manning et al (2018) 

Knowledge exchange (all clusters) 

Disseminate research findings 

effectively (e.g. via web tools and 

demonstration sites).  

Non-academic approaches 

are required for BEF 

research findings to reach 

potential end-users users  

Activities of:  

Forum for the Future of 

Agriculture (FFA) 

European Landowners 

Organisation (ELO) 

F.R.A.N.Z.  

Conservation evidence website 

RSPB Hope Farm  

Work in collaboration with 

stakeholders to collect information 

on which ecosystem services are 

desired, at which different temporal 

and spatial scales, and their relative 

importance 

This could inform applied 

BEF research, ensuring that 

it meets the needs of 

potential end-users 

Geertstema et al (2016) 

Walter et al. (2017) 
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 1293 

Figure 1. Clusters of BEF research and their relation to real world ecosystems. a) selected research 1294 

projects, b) selected ‘real-world’ ecosystems. Note that, as spatial scale increases, the user of 1295 

research findings changes from individual local scale managers to governments and 1296 

institutions and the form of transfer changes from management practice recommendations to 1297 

policy change, though these are clearly interrelated. Example references for the studies shown 1298 

are: Jena experiment (Weisser et al 2017), BigBio (Tilman et al. 2001), BioCON (Reich et al. 1299 

2001), COST Action 852 (Kirwan et al 2007), BIODEPTH (Hector 1999), BEF-China 1300 

(Huang et al. 2018), CLUE (van der Putten et al. 2000), NutNet (Grace et al., 2016), 1301 

Biodiversity Exploratories (Allan et al. 2015), Global Drylands (Maestre et al 2012), FunDiv 1302 

(Van der Plas et al 2016), EFForTS (Teuscher et al. 2016), AgriPopes (Emmerson et al. 1303 

2016), ZA PVS (Bretagnolle et al 2018), UKNEA National Ecosystem Assessment (2011).  1304 

 1305 
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 1306 

Figure 2. Swiss grassland diversification. In Switzerland species rich semi-natural grasslands 1307 

(left) can decline to a more species-poor state (right) if fertilized and mown frequently. To 1308 

counteract this loss many species rich sites are maintained via agri-environment policy 1309 

schemes (Kampmann et al. 2012) and Swiss researchers have developed diversified seed 1310 

mixtures suitable for a wide range of conditions that have been adopted by many Swiss 1311 

farmers (Agrarforschung Schweiz 2019). We postulate that this adoption is likely to be 1312 

attributable to a range of factors including: a strong cultural valuation of grassland, a clear 1313 

mandate of agriculture to manage sustainably (in Swiss Constitution, article 104), generous 1314 

agri-environment compensation schemes for a range of grassland types, and a strong focus on 1315 

applied grassland research that has investigated which mixtures work over different time 1316 

horizons (e.g. annual to permanent) and environmental conditions (moisture and elevational 1317 

gradients) (e.g. Suter et al. 2015). Finally, there is effective communication from both 1318 

researchers (e.g. Agroscope) and the Swiss grassland society (AGFF, 2019), which contains 1319 

many farmers as members. Future BEF transfer work could investigate the role of such 1320 

factors in successful transfer. Photo credits Peter Manning.  1321 


