


• We propose a synchronous scheme for passive-proactive

lane changing.

• According to the requirements of the lane change

problem, we build a game theoretic deep Q-learning

algorithm to help autonomous vehicles successfully

complete lane change tasks.

II. RELATED WORK

Traditionally, reinforcement learning (RL) has exclusively

considered the optimization of single-agent policies in static

environments. Unfortunately, the lane change task on road-

ways, along with many other tasks in this environment,

is a multi-agent participation process. One challenge that

arises as a result of this multi-agent RL (MARL) problem is

that the environment will become non-stationary, rendering

algorithms seeking stationary solutions vulnerable to thrash-

ing. This is due to the fact that one agent’s policy update

will be considered as the non-stationary disturbance of the

environment by other agents. To remedy this, one intuitive

solution is to enforce that the current agent only consider

the other agents as part of the environment and use the

single-agent RL method directly. For example, Tan et al. [6]

analyzed the performance of collaboration vs. independent

action in a mixed-agent scenario. Matignon et al. [7] showed

that in the uncoordinated case, independent learning results

in non-stationary and shadowed equilibria. However, these

approaches generally result in the current agent not leverag-

ing all prior information when in cooperative or competitive

scenarios.

A significant amount of effort has been devoted to deter-

mining how best to optimize the value function approxima-

tion and how to overcome local minima or sluggish conver-

gence on the dynamic programming side of the problem. To

address this, Littman et al. [8], [9] proposed that Markov

games could be leveraged to address the MARL problem.

This minimax-Q algorithm focuses on the zero-sum game

of the agents such that agents policies will converge to a

fixed,“safe” strategy.

Separately from MARL, recent advances in DRL have

shown incredible utility on a variety of challenging RL

problems. DRL is an extension to classical reinforcement

learning where the policy, value function and/or underlying

model are replaced with a deep neural network. This method

has been applied to many different problems, including opti-

mizing dialogue management [10], governing a quadrupedal

trot gait [11], and designing a controller for helicopter with

inverted flight [12]. At the core of these methods is deep

learning (DL) [13], i.e. the use of deep neural networks

as data-driven high dimensional function approximations,

which have provided a computational method to represent

functions with a controllable complexity. Introducing DL

into reinforcement learning has generally provided greater

flexibility for the decision-making process and improved

computational efficiency through the leveraging of graphical

processing units (GPUs). For example, Mnih et al.[14] show

that deep Q-learning can be applied play Atari 2600 games

based only on the raw pixel data as input with amazing

performance.

Especially recent work has shown incredible promise in

the proliferation of these methods to achieve control prob-

lems. For example, [15] mapped raw RGB-D observations

directly to torques in order to assist the learning of control

inputs for manipulation. Others have also extended the utility

of DRL by both improvements on the optimization process

[16] and designing neural network architectures [17]. As part

of the former effort, Bahdanau et al. [18] proposed an actor-

critic algorithm to generate sequences in natural language

processing (NLP) problems. So-called Deep Q-Networks

(DQNs), named for their replacement of the Q function in

RL with a deep neural network, have even reached human-

level performance on some video games [19]. Recently this

has been extended to other problems via the AlphaGo [20]

and AlphaGo Zero [21] frameworks.

Very recently, Tampuu et al. [22] considered the two-

player pong game using DQN for learning collaborative

playing strategies. Building on these successes, Jakob et

al. built a general decentralized multi-agent actor-critic al-

gorithm called counterfactual multi-agent (COMA), which

considered a centralized critic function [23] to approximate

the Q-function and subsequently optimize agent policies.

COMA demonstrated impressive improvement of average

performance when tested in StarCraft unit micromanage-

ment. Meanwhile, Lowe et al. [24] proposed a general-

purpose multi-agent learning algorithm by considering the

one-to-one critic functions for each agent under the mixed

cooperative-competitive environment. Their work only used

local information to handle cooperative, competitive, or

mixed interaction behaviors of agents without assuming a

differentiable model. Other recent works [25], [26], [27],

[28] also considered these cooperative-agent problems in the

context of RL.

III. METHODOLOGY

In this section, we briefly review some background knowl-

edge on the method that we will use.

A. Single-agent RL

In the standard single-agent RL setting, one agent interacts

with the environment over discrete times. At time t, the

agent observes the state st ∈ S and executes the action

at ∈ A based on certain policy π : S → PD(A) where

PD(·) represents the probability distribution over a certain

space. The environment then transits to the next state st+1 ∼
P (·|st, at) through transition function P : S×A→ PD(S),
and the agent attains a reward rt : S × A → R. Given an

initial state s at time t, we aim to find a policy π to maximize

the expected total rewards E[
∑T−t

k=0 γ
krt+k|st = s] with a

discount factor γ ∈ (0, 1). There are two general approaches

to solving a RL problem: policy optimization and dynamic

programming.

1) Policy Optimization: This approach tries to

find the optimal policy through direct searching or

solving the corresponding optimization problem. For



instance, policy gradient method considers a class of

polices πθ = π(a|s; θ) that are parameterized by θ.

Denoted the total discounted reward under the policy

with parameter θ by J(θ) = Eτ∼p(τ ;θ)[
∑

t≥0 γ
trt],

where p(τ ; θ) is the distribution over the trajectory

τ
.
= (s0, a0, r0, s1, a1, r1, · · · ). We can update and find the

optimal θ (i.e., the optimal policy) by the gradient method;

see, e.g., [29], [30], [15]. In particular, the REINFORCE

algorithm[29] uses the sample of trajectory directly to

update θ. To address the high variance brought by the

direct use of the gradient ∇θJ(θ), Vanilla REINFORCE

introduces unbiased baseline b(st) such that ∇θJ(θ) =

Eτ

[

∑T
t=0

(

∑T
t′=t γ

t′−trt′ − b(st)
)

∇θ log πθ(at|st)
]

has

low variance [30].

2) Dynamic Programming: We will use one of the

dynamic programming approaches – Q-learning method

(Watkins, 1989) and its variants in this paper. To maximize

the state-value function Vπ(s) = E[
∑T−t

k=0 γ
krt+k|st = s, π]

with the initial state s at time t, we define action-state

value function Qπ(s, a) = E[
∑T−t

k=0 γ
krt+k|st = s, at =

a, π]. Then for any (s, a) ∈ S × A, a policy π∗ maximiz-

ing Qπ(s, a) also maximizes Vπ . Furthermore, the optimal

Qπ∗(st, at) satisfies the following Bellman equation:

Qπ∗(st, at) = rt + γEat+1∼π∗,st+1
Qπ∗(st+1, at+1), (1)

which can be solved iteratively with certain deterministic

function φ : S → A according to

Qt+1(st, at) = (1− αt)Qt(st, at)

+αt[rt + γQt(st+1, φ(st+1))] (2)

under certain condition [5].

Mnih et al. recently developed deep Q-learning [14], [19]

that integrates neural networks with Q-learning method. They

introduced the approximation Qπ∗(s, a) ≈ Q(s, a; θ) includ-

ing additional replay buffer and target neural network. At

training iteration i with current state st, the objective is min-

imizing the loss function Li(θi) = Est [(yi−Q(st, at; θi))
2]

with yi = Est+1
[rt + γmaxa Q(st+1, a; θi−1)], and the

stochastic gradient descent is used to update neural network

weights θi where the gradient is given by

∇θiLi(θi)=E[
(

rt + γmax
a

Q(st+1, a; θi−1)−Q(st, at; θi)
)

∇θiQ(st, at; θi)]. (3)

B. Markov Game

A Markov game [8], also called stochastic game, is

defined as {N , S, (Ak)k∈N , P, (rk)k∈N , (πk)k∈N } where

N = {1, · · · , n} is the set of agents, S the set of states,

Ak the set of actions available for agent k, P : S ×
A1 × · · · × An → PD(S) the state transition function,

rk : S ×A1 × · · · ×An → R the agent k’s reward function,

and πk : S → PD(Ak) the agent k’s policy. Each agent k
aims to maximize its expected discounted total rewards with

the starting state s at time t,

Vπk(s) = E

[

T−t
∑

i=0

γirkt+i|st = s, (πk)k∈N

]

. (4)

In this paper, we will use a two-agent Markov game to model

the lane change problem, solve the resulting game based on

the deep Q-learning method.

IV. LANE CHANGE PROBLEM

The lane change problem has received lots of research;

see, e.g., [31] that investigates how to adjust the actions in an

aggressive lane-change situation to improve the traffic flow,

[32] that introduces an integrated model to jointly consider

the mandatory and discretionary lane-change behaviors, and

[33] that proposes a data-driven model to simulate the lane

change process. In this paper, we will study the collaborative

lane change in a system of autonomous vehicles. We assume

that each vehicle can observe the states of other vehicles with

bounded errors, but no vehicle is at a position to (globally)

coordinate the lane change process. Instead, the vehicles will

cooperatively carry out the lane change through playing an

equivalent Markov game.

As shown in Fig. 1, we consider a simplified while realistic

lane change setting, where car0 sends the signal to change

its lane into lane-3, car2 responds to this signal to create the

merging space, and other neighboring vehicles are assumed

to be not responsive (NR) to the signal. The lane change

process includes an adjustment stage and a merging stage.

During the adjustment stage, car0 will keep adjusting its

position and speed waiting for the merging moment, while

car2 is adjusting its position and speed to create the merging

space. When the adjustment is finished, car0 will take the

merging action to complete the lane change process.

The above lane change setting results in a proactive-

passive system with one proactive agent (car0), one passive

agent (car2), and one reference agent (car1); see Table I.

We empower the vehicles with RL to guide their actions,

for instance, when the proactive agent switches from the

adjustment stage to the merging stage.

Characters Purpose Examples

Reference agent NR car1

Proactive agent Learn to take actions to merge car0

Passive agent Learn to create merging space car2

Others NR car3, car4, car5

TABLE I: Vehicle roles

Specifically, the set of agents N = {1, 2} corresponding

to the proactive and passive agents/vehicles. The state at

time t is denoted by st = (skt )k∈N , with skt = (xk
t , y

k
t , v

k
t )

where (xk
t , y

k
t ) denotes the 2D position/coordinate and

vkt the linear velocity of agent k. At time t, vehicle

k’s action is denoted by akt
.
= (s, u), where s ∈

{1 (acceleration), 0 (keep),−1 (deceleration)} and u ∈
{1 (veer − left), 0 (keep),−1 (veer − right)}. The basic

actions include acceleration (1, 0), deceleration (−1, 0), keep

(0, 0), veer-left (0, 1), and veer-right (0,−1). We assume

that merging action is either veer-left or veer-right. Since we

focus on the proper stage-switching moment, the vehicle will

keep on its lane before that and the basic operations include

speed up and slow down. When the merging configuration

is reached, the proactive vehicle takes the merging action.



As for the state dynamics of the vehicle, we use the double

integrator model:
[

ykt+1

vkt+1

]

=

[

1 1
0 1

] [

ykt
vkt

]

+

[

0
1

]

uk(akt )∆t+ εt, (5)

where uk(akt ) specifies the input magnitude upon action akt
and εt is the disturbance. The transition function is st+1 ∼
P (·|st, (a

1, a2)) follows from the above dynamics.

The reward function is built by considering the possible

risks and state changes, as follows:

rkt (st, (a
1
t , a

2
t )) =



















dist(ykt ), otherwise,

2, if|dist(ykt )| < η, η > 0,

20, if success,

−10, if collision,

where, based on the lane change setting in Fig. 1,

dist(y1t ) = −c1 min{y1t−y
car2
t

, 0}−c2 max{y1t−y
car1
t , 0}−

c3 max{y1t − ycar3
t

, 0} and dist(y2t ) = −c4 max{y2t −

ycar1t , 0} − c5 max{y2t − ycar5
t

, 0}, with ykt = ykt −

dsafe, yk
t
= ykt + dsafe. Here, dsafe is the safe distance

between vehicles, cj are weights to trade off among risks,

and η > 0 is a certain threshold to mark the expected zone or

not. The proactive and passive agents/vehicles will learn the

optimal policy πk(·|s) that maximizes the total discounted

reward to guide the lane change. Notice that the reward of

each agent depends on the state (and thus action) of the

other agent, which effectively leads to a strategic interaction

among the agents and allows to study the cooperative lane

change using the Markov game framework.

V. LANE CHANGE SCHEMES

In the section, we consider two lane change schemes based

on RL. In the first one (called asynchronous scheme), each

vehicle treats the other vehicle as part of the environment

and carries out RL as in the standard single-agent RL

setting. Such a scheme often leads to vehicle collision, which

motivates us to consider another scheme (called synchronous

scheme) where vehicles carry out RL to solve for the

resulting Markov game. This scheme takes into consideration

the strategic behavior (being reward maximizer) of other

vehicles, and leads to safe lane change.

A. Asynchronous scheme

Each vehicle considers all other vehicles as part of the

environment, and carries out (single-agent) Deep Q-learning

as in Algorithm 1. As each vehicle’s action does not take

into account the strategic behavior of the other vehicle, the

asynchronous scheme may lead to vehicle collision. This is

confirmed by the experiments; see Section VI.

B. Synchronous scheme

Motivated by [9][8], we use Markov game to model and

guide the lane process.

Definition 1: A two-agent Markov game is defined as

G := {N , S, (Ak)k∈N , P, (rk)k∈N , (πk)k∈N }, where N =
{1, 2}, S and (Ak)k∈N are the state space and action spaces,

Algorithm 1 Deep Q-learning algorithm [14]

1: Initialization of Q(s, a; θ) and the replay buffer D.

2: for episode 1 : M do

3: Randomly choose a starting state s0.

4: for t = 1, · · · , T do

5: Choose action at = argmaxa Q(st, a; θ) with

probability 1− ǫ. Otherwise, make a random choice.

6: Take action at in simulator and add

(st, at, rt, st+1) to the replay buffer.

7: Take a sample (s, a, r, s′) from D.

8: Update neural network by θ ← θ − α∇θL(θ)
where y = r + γmaxa′ Q(s′, a′; θ) or y = r if the

process is terminated.

9: end for

10: end for

πk = {πk
t }t=1,···T is the strategy of agent k., rk(s, (a1, a2))

is the reward function of agent k and P (·|s, (a1, a2)) is the

transition function.

At time t, agent k obseves state st, takes action akt ∼
πk
t (·|st) according to its strategy πk consisting of the policies

πk
t , and receives the reward rkt (st, (a

1
t , a

2
t )), while the state

st+1 ∼ P (·|st, (a
1
t , a

2
t )). In Markov game, the agents will

adjust their strategies to reach an Nash equilibrium.

Definition 2: A Nash equilibrium of two-agent Markov

game G is a pair of strategy (π1∗ , π1∗) such that ∀s ∈ S,

V 1(s|π1∗ , π2∗) ≥ V 1(s|π1, π2∗), ∀π1, (6)

V 2(s|π1∗ , π2∗) ≥ V 2(s|π1∗ , π2), ∀π2, (7)

where V k is the state value function defined by equation (4).

We see that at a Nash equilibrium each agent’s strategy is

the best response to the other’s strategy. We consider only

stationary strategies, and the existence of Nash equilibrium

is ensured by the following theorem.

Theorem 3: (Filar and Vrieze [34], Theorem 4.6.4) A

Markov game with stationary strategy has at least one Nash

equilibrium.

Further, consider the optimal action-state function

Qk∗

π (st, (a
1
t , a

2
t )) = rkt (st, (a

1
t , a

2
t ))+

γEa1
t+1

∼π1∗ ,a2
t+1

∼π2∗ ,st+1
Qk

π∗(st+1, (a
1
t+1, a

2
t+1)). (8)

The agent k will take action based on πk(st) and

Qk
π(st, (a

1
t , a

2
t )) at each time t, which leads to a bimatrix

game.

Definition 4: A bimatrix game is defined as

{N , (Mk)k∈N , (πk)k∈N }, where the set of agents

N = {1, 2}, payoff (Mk)k∈N are |A1| × |A2| matrices

with the (i, j)-th entry Mk(i, j) = Qk
πk(st, (a

1
i , a

2
j )), and

πk is the strategy of agent k. The mixed strategy Nash

equilibrium of this bimatrix game is a pair of probabilities

(µ1∗ , µ2∗) satisfying

µ1∗M1µ2∗ ≥ µ1M1µ2∗ , ∀µ1 ∈ PD(A1), (9)

µ1∗M2µ2∗ ≥ µ1∗M2µ2, ∀µ2 ∈ PD(A2). (10)



By modeling each decision making step as a bimatrix

game, the whole Markov game consists of a sequence

of bimatrix games. Theorem 3 of [9] ensures that the

Nash equilibrium (π1(st), π
2(st)) of the bimatrix game

(Q1(st), Q
2(st)) is also part of the Nash equilbrium of the

whole Markov game. If πk∗

= {πk∗

(s̄ℓ)}ℓ=1,··· ,|S| is the

Nash equilibrium of the Markov game G, then there exists

one (π1∗(s̄′), π2∗(s̄′)) that is also the Nash equilibrium of

the bimatrix game (Q1(st), Q
2(st)) with st = s̄′. The state

function value V k(s|π1∗ , π2∗) = π1∗(s)Qk∗

(s)π2(s) with

the starting state s, and the action-state function value (8) is

given by

Qk∗

π (st, (a
1
t , a

2
t )) =rkt (st, (a

1
t , a

2
t ))+

γEst+1
[V k(st+1|π

1∗ , π2∗)]. (11)

After taking action akt ∼ πk(st), the updated payoff matrix

will be the Nash equilibrium (π1(st+1), π
2(st+1)) of the

bimatrix game (Q1
t (st+1), Q

2
t (st+1)) instead of independent

update [9],

Qk
t+1(st,(a

1, a2)) = (1− αt)Q
k
t (st, (a

1, a2))

+ αt[r
1
t+1 + γπ1(st+1)Q

k
t (st+1)π

2(st+1)]. (12)

Notice that the Q-values with different state-action pairs

are difficult to calculate directly. Instead, we can use neural

network as the estimator of the Q-table: Qk(s) ≈ Qk(s; θk).
This leads to the Algorithm 2.

Algorithm 2 Deep bimatrix Q-learning for vehicle k

1: Build neural networks Qk(·; θk) with output size |A1|×
|A2| and replay buffer D.

2: Build the initial QN/k(·;λ) for the other vehicle.

3: for episode 1 : M do

4: Vehicle k chooses a starting state sk0 randomly.

5: for t = 1, · · · , T do

6: Calculates (π1(st), π
2(st)).

7: Two vehicles reach (π1(st), π
2(st)) consensus.

8: Chooses action by πk(st) with probability 1− ǫ.
Otherwise, vehicle k chooses action randomly.

9: Take actions in the simulator and add

(st, (a
1
t , a

2
t ), r

k
t , st+1) into replay buffer D.

10: while One minibatch sample from D do

11: For each (s, (a1, a2), rk, s′) in the minibatch,

calculate target yk as follows

yk =

{

rk + γπ1(s′)Qk
t (s

′; θk)π2(s′), not terminated,

rk, terminated.

12: Use stochastic gradient descent to update θk

with the cost function (yk −Qk(s, (a1, a2); θk))2.

13: Update Q
N/k
t (s;λ).

14: end while

15: end for

16: end for

Here (π1(st), π
2(st)) is the mixture Nash equilibrium of

bimatrix game (Qk(st; θ
k), QN/k(st;λ)). We apply Lemke-

Howson algorithm to caculate the mixture Nash equilibrium

of the bimatrix game. Qk(st; θ
k) is the vehicle k’s Q-values

and QN/k(st;λ) is the estimate of the other vehicle’s Q-

values. QN/k(st;λ) can be build by neural network and the

data (e.g., r
N/k
t or st or QN/k(st; θ

N/k)) sent by the other

vehicle N/k. Based on the received data, λ can be updated

using the gradient method or replaced by the received value

of QN/k(st; θ
N/k) value. In our experiments, we use the

received QN/k(st; θ
N/k) from the other vehicle.

C. Convergence of Algorithm 2

Based on [9], the following theorem ensures the conver-

gence of the algorithm 2.

Theorem 5: (Theorem 4 in [9]) Given a Markov game

G := {N , S, (Ak)k∈N , P, (rk)k∈N , (πk)k∈N } as in Defini-

tion 1. If we take the iterative update (12) through Algorithm

2, it will converge to the Nash equilibrium (π1∗ , π2∗) of G.

Proof: By the Conditional Averaging Lemma in [35],

Qk
t+1(st, (a

1
t , a

2
t )) = (1 − αt)Q

k
t (st, (a

1
t , a

2
t )) + αt[r

k
t +

γπ1(st+1)Q
k
t (st+1)π

2(st+1)] will converge to

T̄ kQk(st, (a
1
t , a

2
t ))

= Est+1
[rkt + γπ1(st+1)Q

k
t (st+1)π

2(st+1)] (13)

=
∑

st+1

P (st+1|st, (a
1
t , a

2
t ))[r

k
t + γπ1(st+1)Q

k
t (st+1)π

2(st+1)]

=
∑

st+1

P (st+1|st, (a
1
t , a

2
t ))T

kQk(st),

where T kQk(st) = rkt + γπ1(st+1)Q
k
t (st+1)π

2(st+1). By

Theorem 9 in the Appendix, T k is a contraction mapping,

and so is T̄ k. So the update (12) will converge to a fixed

point of T̄ k.

VI. EXPERIMENTS AND EVALUATIONS

A. Testbed

In order to test this method we use a physics engine-based

[36] high-fidelity model of a four wheel drive, 1
8

th
scale

vehicle. The dynamics of the system are given as:

x′(t) = Φ(x(t),F (t),u(t),p), (14)

in which Φ(·) is the dynamical model, x(t) ∈ R
n is the

state of the system, x′(t) is the derivative of the state, F (t)
consolidates external forces and collisions applied to the

system from e.g. the road surface, u(t) ∈ R
m is a control

input vector including steering and acceleration signals, and

p ∈ R
w is model parameter vector to be calibrated. In order

to simulate simulated the behavior of a physical system,

we calibrate model parameters p to the physical platform

by using an online calibration algorithm [37]. By achieving

low uncertainty on model parameters, it is observed that the

simulated vehicle can exhibit virtually identical behavior as

the actual vehicle.

By providing the actions based on learned policies πk(st)
for multiple simulated vehicles and stepping the simulator

forward, state updates can be obtained and update the ob-

servation st+1, which then propagate Q-value updates from

Eq. (12) leading to direct policy updates via Algorithm 2.





different training episodes are provided (V-B scheme link and

V-A scheme link). These results suggest that the synchronous

cooperative scheme has potential to assist autonomous ve-

hicles in finishing maneuvers strategically after sufficient

training.

VII. CONCLUSIONS

In our paper, we have introduced the proactive-passive

pair of vehicles with one reference vehicle as the lane

change structure. Because the non-coordination scheme for

lane change task does not give the expected performance,

we propose a scheme considering Deep Q-learning and

the Markov game together. The resulting performance on

the physics engine based high fidelity model shows that

the proposed scheme allows the vehicles reach the proper

merging configuration starting from different states. This

scheme could be used to build the model-free controller to

help autonomous vehicles finish tasks after training. In the

future, we are going to consider how to improve the training

process so that it can avoid obvious dangerous behaviors.

APPENDIX

To prove Theorem 5, we have the following assumptions

and result.

Assumption 6: The learning rates αt satisfy
∑

t αt =
∞,

∑

t α
2
t <∞.

Assumption 7: (Assumption 1 in [9]) Given a bimatrix

game (Q1(s), Q2(s)), its mixture Nash equilibrium is a

pair of probabilities (µ1∗ , µ2∗) satisfies one of the following

properties:

1) Property1: The equilibrium is social optimal:

µ1∗Qkµ2∗ ≥ µ1Qkµ2, ∀µ1 ∈ PD(A1), µ2 ∈ PD(A2).

2) Property2: The equilibrium is not social optimal:

µ1∗Q1µ2∗ ≤ µ1∗Q1µ2, ∀µ2 ∈ PD(A2),

µ1∗Q2µ2∗ ≤ µ1Q2µ2, ∀µ1 ∈ PD(A1).

Assumption 8: (Assumption 2 in [38]) For all bimatrix

game (Q1
t (s), Q

2
t (s)) in the Markov game G at time t, they

should all satisfy Property 1 in Assumption 7 or all satisfy

Property 2 in Assumption 7.

With these assumptions, we can prove that the Q value

update operation is a contraction mapping,

Theorem 9: (Lemma 3 in [9]) Define a mapping T k such

that T kQk(s) = r+γπ1(s)Qk(s)π2(s) where (π1(s), π2(s))
is the Nash equilibrium of the bimatrix game (Q1(s), Q2(s)).
Then T k is a contraction mapping.

Proof: Without loss of generality, consider two bi-

matrix games (Q1(s), Q2(s)) and (Q1′(s), Q2′(s)) with

T kQk(s) ≥ T kQk′

(s), and denote the correspond-

ing mixture Nash equilibriums by (π1(s), π2(s)) and

(π1′(s), π2′(s)) respectively. For agent k,

T kQk(s)− T kQk′

(s)

=(r + γπ1(s)Qk(s)π2(s))− (r + γπ1′(s)Qk′

(s)π2′(s))

=γ(π1(s)Qk(s)π2(s)− π1′(s)Qk′

(s)π2′(s))

By Assumption 8, we have two cases:

1) If (π1(s), π2(s)) and (π1′(s), π2′(s)) are social opti-

mal: we have π1′(s)Qk′

(s)π2′(s) ≥ π1(s)Qk′

(s)π2(s), so

that

T kQk(s)− T kQk′

(s)

≤γ(π1(s)Qk(s)π2(s)− π1(s)Qk′

(s)π2(s))

≤γ‖π1(s)‖‖Qk′

(s)−Qk′

(s)‖‖π2(s)‖

Notice that γ ∈ (0, 1) and ‖π1′(s)‖ ∈ [0, 1], ‖π2′(s)‖ ∈
[0, 1]. So T k is a contraction mapping.

2) If (π1(s), π2(s)) and (π1′(s), π2′(s)) are not social

optimal: We consider different agents separately:

• For agent-1. As (π1′(s), π2′(s)) is a Nash equilibrium,

we have π1′(s)Q1′(s)π2′(s) ≥ π1(s)Q1′(s)π2′(s).
Thus,

T 1Q1(s)− T 1Q1′(s)

≤γ(π1(s)Q1(s)π2(s)− π1(s)Q1′(s)π2′(s)).

Since (π1(s), π2(s)) is not social optimal, agent-1 will

receive higher payoff for any other policies of the agent-

2, which means

π1(s)Q1(s)π2(s) ≤ π1(s)Q1(s)π2′(s).

Thus,

T 1Q1(s)− T 1Q1′(s)

≤γ(π1(s)Q1(s)π2(s)− π1(s)Q1′(s)π2′(s))

≤γ(π1(s)Q1(s)π2′(s)− π1(s)Q1′(s)π2′(s))

≤γ‖π1(s)‖‖Qk′

(s)−Qk′

(s)‖‖π2′(s)‖.

• For agent-2. Similarly, We have

T 2Q2(s)− T 2Q2′(s)

≤γ(π1(s)Qk(s)π2(s)− π1′(s)Q2′(s)π2(s))

≤γ(π1′(s)Q2(s)π2(s)− π1′(s)Q2′(s)π2(s))

≤γ‖π1′(s)‖‖Qk′

(s)−Qk′

(s)‖‖π2(s)‖.

We see that T k is a contraction mapping.
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