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Abstract— Self-driving cars are being regularly deployed in
the wild, and with them has come the concern of how such
autonomous vehicles will cooperate. This is one of the most
important next hurdles for autonomous driving: how will such
vehicles optimally interact with one another and with their
surroundings? It is feasible that a well-developed strategy for
the interaction and collaboration of vehicles on the road will
bring more efficient performance of a system of cars as a whole.
In this work, we start with the lane change present to all
vehicles and develop the agent-environment and agent-agent
relationships through a combination of deep reinforcement
learning (DRL) and game theory. We introduce a passive-
proactive lane change framework and compare the independent,
asynchronous lane change scheme as in a single-agent RL
setting with a synchronous strategic scheme consisting of a
Markov game which is solved optimally in the framework
of DRL. In the synchronous scheme, the passive agent and
proactive vehicles are trained cooperatively based on the
hypothesized Nash equilibrium of the Markov game to finish
the lane changing maneuver. To test our approach, we apply
a physics engine over a high fidelity model that has previously
been shown to well-describe experimental four-wheeled vehicles.
The framework developed here demonstrates the potential of
using reinforcement learning to solve cooperative autonomous
vehicle tasks as they are posed as Markov games.

I. INTRODUCTION

The development of autonomous vehicles is in full swing,
concentrating largely on their ability to localize within an
environment, make safe decisions in reaching their destina-
tion, and many human-centered factors that are complex and
fundamentally difficult to enumerate. Some recent work has
focused on the fascinating topic of improving their traffic
performance and road space usage; this work aims to allow
autonomous vehicles to cooperate with traditional vehicles
while also optimizing road usage based on autonomous
vehicles’ potential capabilities to meaningfully interact with
one another. However, these challenges can be quite complex
due to numerous scenario-dependent factors. For example, a
vehicle might be more aggressive in overtaking others on
city streets compared to on the highway. As one of the basic
operations of a road-bound vehicle, the lane change task has
been studied for a long time; there is an incredible diversity
of strategies in this task, and many have analyzed it [1], [2],
(31, [4].

In traditional driving, the driver’s intent and predelictions
play a crucial role in lane change even in the presence of
driver assists such as lane-drift detection or adaptive cruise

This work was supported by NSF award No. 1646556.

All authors are with the Department of Computer Science, University of
Colorado, Boulder, CO 80309, USA

*Corresponding author;
colorado.edu

e-mail: lijun.chen at

Lane-4 - card Driving direction X'
Lane-3 - carl -carz Y

Fig. 1: A diagram of the lane change problem. The high-
lighted car0 is attempting to merge between carl and car2
while avoiding a collision with car3 and minimizing the
amount of slowing on the part of carb.

control. The subtle evaluation-action-correction interactions
between drivers are particularly ridden with complexities.
As a result of this, autonomous vehicles need well-designed
strategies and controllers to deal with the uncertainty and
human-executed optimization that occurs in the process of
merging lanes.

In this paper, we mainly consider two problems. The first
is developing a cooperative framework to characterize the
lane change process. This framework should consider the
interactions among vehicles actually involved in lane change
tasks and the vehicle-environment (e.g., other vehicles or
freeway/urban) connections. The second is determining the
proper moment to take merging actions in a multi-vehicle
scenario. In this case, a merging vehicle must determine the
proper actions to take based on its state so that it may adjust
its behavior to find the optimal moment to change lanes.

Since reliable and scalable models of human driving
patterns can be difficult to obtain, we pursue a model-free
approach to solve for actions given the observed states. We
apply deep reinforcement learning (DRL) [5] to solve the
multi-agent Markov game of three vehicles — a proactive-
passive pair, and a reference vehicle that provides the forward
boundary for the merge — that models the lane change
problem.

In this paper, we aim to enable vehicles to finish the lane
change process strategically by considering the following
problems: 1) how can we characterize the lane change
process, 2) what kind of schemes do vehicles select in order
to work strategically with respect to others’ schemes, and 3)
which moment is the proper one to finish adjustment and start
merging. In addressing these issues, the main contributions
of the paper are as follows:

e We build a passive-proactive multi-agent RL lane
change framework so that the roles of different vehicles
in the lane change process are clear.



o We propose a synchronous scheme for passive-proactive
lane changing.

e According to the requirements of the lane change
problem, we build a game theoretic deep Q-learning
algorithm to help autonomous vehicles successfully
complete lane change tasks.

II. RELATED WORK

Traditionally, reinforcement learning (RL) has exclusively
considered the optimization of single-agent policies in static
environments. Unfortunately, the lane change task on road-
ways, along with many other tasks in this environment,
is a multi-agent participation process. One challenge that
arises as a result of this multi-agent RL (MARL) problem is
that the environment will become non-stationary, rendering
algorithms seeking stationary solutions vulnerable to thrash-
ing. This is due to the fact that one agent’s policy update
will be considered as the non-stationary disturbance of the
environment by other agents. To remedy this, one intuitive
solution is to enforce that the current agent only consider
the other agents as part of the environment and use the
single-agent RL method directly. For example, Tan et al. [6]
analyzed the performance of collaboration vs. independent
action in a mixed-agent scenario. Matignon et al. [7] showed
that in the uncoordinated case, independent learning results
in non-stationary and shadowed equilibria. However, these
approaches generally result in the current agent not leverag-
ing all prior information when in cooperative or competitive
scenarios.

A significant amount of effort has been devoted to deter-
mining how best to optimize the value function approxima-
tion and how to overcome local minima or sluggish conver-
gence on the dynamic programming side of the problem. To
address this, Littman et al. [8], [9] proposed that Markov
games could be leveraged to address the MARL problem.
This minimax-Q algorithm focuses on the zero-sum game
of the agents such that agents policies will converge to a
fixed,“safe” strategy.

Separately from MARL, recent advances in DRL have
shown incredible utility on a variety of challenging RL
problems. DRL is an extension to classical reinforcement
learning where the policy, value function and/or underlying
model are replaced with a deep neural network. This method
has been applied to many different problems, including opti-
mizing dialogue management [10], governing a quadrupedal
trot gait [11], and designing a controller for helicopter with
inverted flight [12]. At the core of these methods is deep
learning (DL) [13], i.e. the use of deep neural networks
as data-driven high dimensional function approximations,
which have provided a computational method to represent
functions with a controllable complexity. Introducing DL
into reinforcement learning has generally provided greater
flexibility for the decision-making process and improved
computational efficiency through the leveraging of graphical
processing units (GPUs). For example, Mnih et al.[14] show
that deep Q-learning can be applied play Atari 2600 games

based only on the raw pixel data as input with amazing
performance.

Especially recent work has shown incredible promise in
the proliferation of these methods to achieve control prob-
lems. For example, [15] mapped raw RGB-D observations
directly to torques in order to assist the learning of control
inputs for manipulation. Others have also extended the utility
of DRL by both improvements on the optimization process
[16] and designing neural network architectures [17]. As part
of the former effort, Bahdanau et al. [18] proposed an actor-
critic algorithm to generate sequences in natural language
processing (NLP) problems. So-called Deep Q-Networks
(DQNs), named for their replacement of the Q function in
RL with a deep neural network, have even reached human-
level performance on some video games [19]. Recently this
has been extended to other problems via the AlphaGo [20]
and AlphaGo Zero [21] frameworks.

Very recently, Tampuu et al. [22] considered the two-
player pong game using DQN for learning collaborative
playing strategies. Building on these successes, Jakob et
al. built a general decentralized multi-agent actor-critic al-
gorithm called counterfactual multi-agent (COMA), which
considered a centralized critic function [23] to approximate
the Q-function and subsequently optimize agent policies.
COMA demonstrated impressive improvement of average
performance when tested in StarCraft unit micromanage-
ment. Meanwhile, Lowe et al. [24] proposed a general-
purpose multi-agent learning algorithm by considering the
one-to-one critic functions for each agent under the mixed
cooperative-competitive environment. Their work only used
local information to handle cooperative, competitive, or
mixed interaction behaviors of agents without assuming a
differentiable model. Other recent works [25], [26], [27],
[28] also considered these cooperative-agent problems in the
context of RL.

III. METHODOLOGY

In this section, we briefly review some background knowl-
edge on the method that we will use.

A. Single-agent RL

In the standard single-agent RL setting, one agent interacts
with the environment over discrete times. At time ¢, the
agent observes the state s, € S and executes the action
a; € A based on certain policy = : S — PD(A) where
PD(-) represents the probability distribution over a certain
space. The environment then transits to the next state sy ~
P(-|s¢,at) through transition function P : S x A — PD(S),
and the agent attains a reward 7, : S x A — R. Given an
initial state s at time ¢, we aim to find a policy 7 to maximize
the expected total rewards E[Zf;é YFreyr|sy = s] with a
discount factor v € (0,1). There are two general approaches
to solving a RL problem: policy optimization and dynamic
programming.

1) Policy Optimization:  This approach tries to
find the optimal policy through direct searching or
solving the corresponding optimization problem. For



instance, policy gradient method considers a class of
polices mp = m(als;0) that are parameterized by 6.
Denoted the total discounted reward under the policy
with parameter 6 by J(0) = E. pr0)D 5077
where p(7;60) is the distribution over the trajectory
7 = (80, a0,70,51,a1,71, - ). We can update and find the
optimal @ (i.e., the optimal policy) by the gradient method;
see, e.g., [29], [30], [15]. In particular, the REINFORCE
algorithm[29] uses the sample of trajectory directly to
update 6. To address the high variance brought by the
direct use of the gradient V,.J(#), Vanilla REINFORCE
introduces unbiased baseline b(s;) such that VyJ(0) =

B, [ X210 (S0 _n"fre = bls1)) Volog mo(arls:)]
low variance [30].

2) Dynamic Programming: We will use one of the
dynamic programming approaches — Q-learning method
(Watkins, 1989) and its variants in this paper. To maximize
the state-value function V;(s) = E[Zg;g VErk|se = s, 7
with the initial state s at time ¢, we define action-state
value function Q. (s,a) = E[X;_tvFriikls: = s,ar =
a,7]. Then for any (s,a) € S x A, a policy 7* maximiz-
ing Q- (s,a) also maximizes V. Furthermore, the optimal
Qr~(st, a) satisfies the following Bellman equation:

has

(D

which can be solved iteratively with certain deterministic
function ¢ : S — A according to

(1 — ay)Q(s¢, ar)
+ai[ry + 7Qe(s141, ¢(5141))]

under certain condition [5].

Mnih et al. recently developed deep Q-learning [14], [19]
that integrates neural networks with Q-learning method. They
introduced the approximation @« (s,a) = Q(s, a; ) includ-
ing additional replay buffer and target neural network. At
training iteration ¢ with current state s;, the objective is min-
imizing the loss function L;(0;) = Es, [(y; — Q(s¢, as;0;))?]
with y; = B, [r + ymax, Q(si41,a;60;—1)], and the
stochastic gradient descent is used to update neural network
weights 6; where the gradient is given by

Vo, L;i(6;) ZE[<Tt + ymax Q(5¢41,a;0;-1) — Q(5¢, as; 91‘))
Vo, Q(s¢, ar; 0;)]. 3)
B. Markov Game

A Markov game [8], also called stochastic game, is
defined as {N,S, (A%)renr, P, (r®) ke, (T%)kenr} where
N = {1,---,n} is the set of agents, S the set of states,
AF the set of actions available for agent k, P : S x
Al x ... x A" — PD(S) the state transition function,
rE . Sx Al x--- x A" — R the agent k’s reward function,
and 7F : S — PD(AF) the agent k’s policy. Each agent k
aims to maximize its expected discounted total rewards with
the starting state s at time ¢,

Qr~ (5t7 at) =r+ nyat+1N7r*7St+1 Qr= (St-‘rla at-‘rl)a

Qt+1(8t, at) =

2

T—t

Vﬂ'k' (S) =E ZwinJri‘St =S, (ﬂ—k)ke./\f .
=0

4)

In this paper, we will use a two-agent Markov game to model
the lane change problem, solve the resulting game based on
the deep Q-learning method.

I'V. LANE CHANGE PROBLEM

The lane change problem has received lots of research;
see, e.g., [31] that investigates how to adjust the actions in an
aggressive lane-change situation to improve the traffic flow,
[32] that introduces an integrated model to jointly consider
the mandatory and discretionary lane-change behaviors, and
[33] that proposes a data-driven model to simulate the lane
change process. In this paper, we will study the collaborative
lane change in a system of autonomous vehicles. We assume
that each vehicle can observe the states of other vehicles with
bounded errors, but no vehicle is at a position to (globally)
coordinate the lane change process. Instead, the vehicles will
cooperatively carry out the lane change through playing an
equivalent Markov game.

As shown in Fig. 1, we consider a simplified while realistic
lane change setting, where carO sends the signal to change
its lane into lane-3, car2 responds to this signal to create the
merging space, and other neighboring vehicles are assumed
to be not responsive (NR) to the signal. The lane change
process includes an adjustment stage and a merging stage.
During the adjustment stage, car0 will keep adjusting its
position and speed waiting for the merging moment, while
car2 is adjusting its position and speed to create the merging
space. When the adjustment is finished, carO will take the
merging action to complete the lane change process.

The above lane change setting results in a proactive-
passive system with one proactive agent (car0), one passive
agent (car2), and one reference agent (carl); see Table I.
We empower the vehicles with RL to guide their actions,
for instance, when the proactive agent switches from the
adjustment stage to the merging stage.

Characters Purpose Examples
Reference agent NR carl
Proactive agent | Learn to take actions to merge car0

Passive agent Learn to create merging space car2
Others NR car3, card, car5

TABLE I: Vehicle roles

Specifically, the set of agents N' = {1,2} corresponding
to the proactive and passive agents/vehicles. The state at
time ¢ is denoted by s; = (sF)renr, with sF = (zF, yk, oF)
where (zf,yF) denotes the 2D position/coordinate and
vF the linear velocity of agent k. At time t, vehicle
k’s action is denoted by a¥ = (s,u), where s €
{1 (acceleration),0 (keep),—1 (deceleration)} and u €
{1 (veer —left),0 (keep),—1 (veer — right)}. The basic
actions include acceleration (1, 0), deceleration (—1, 0), keep
(0,0), veer-left (0,1), and veer-right (0,—1). We assume
that merging action is either veer-left or veer-right. Since we
focus on the proper stage-switching moment, the vehicle will
keep on its lane before that and the basic operations include
speed up and slow down. When the merging configuration

is reached, the proactive vehicle takes the merging action.



As for the state dynamics of the vehicle, we use the double
integrator model:
yr
vf

yfﬂ _ L1
0 1
k

where u*(af) specifies the input magnitude upon action af
and ¢, is the disturbance. The transition function is s;11 ~
P(:|st, (a',a?)) follows from the above dynamics.

The reward function is built by considering the possible
risks and state changes, as follows:

} + { (1) }uk(af)At—i—eh 5)

dist(yF), otherwise,

2, if|dist(y¥)| < n,n > 0,
vt (se, (af, 7)) = 20 if succests

-10, if collision,

where, based on the lane change setting in Fig. 1,
dist(yt) = —c1 min{y; —y*?, 0} —co max{y; —;*"!, 0} -
czmax{y} — yf‘"‘g,()} and dist(y?) = —cymax{y? —
77,0} — esmax{y; — yo%,0}, with gF = yf —
dsafe Qf = yF + dsafe. Here, dsqpe is the safe distance
between vehicles, c; are weights to trade off among risks,
and 1 > 0 is a certain threshold to mark the expected zone or
not. The proactive and passive agents/vehicles will learn the
optimal policy 7% (-|s) that maximizes the total discounted
reward to guide the lane change. Notice that the reward of
each agent depends on the state (and thus action) of the
other agent, which effectively leads to a strategic interaction
among the agents and allows to study the cooperative lane
change using the Markov game framework.

V. LANE CHANGE SCHEMES

In the section, we consider two lane change schemes based
on RL. In the first one (called asynchronous scheme), each
vehicle treats the other vehicle as part of the environment
and carries out RL as in the standard single-agent RL
setting. Such a scheme often leads to vehicle collision, which
motivates us to consider another scheme (called synchronous
scheme) where vehicles carry out RL to solve for the
resulting Markov game. This scheme takes into consideration
the strategic behavior (being reward maximizer) of other
vehicles, and leads to safe lane change.

A. Asynchronous scheme

Each vehicle considers all other vehicles as part of the
environment, and carries out (single-agent) Deep Q-learning
as in Algorithm 1. As each vehicle’s action does not take
into account the strategic behavior of the other vehicle, the
asynchronous scheme may lead to vehicle collision. This is
confirmed by the experiments; see Section VI.

B. Synchronous scheme

Motivated by [9][8], we use Markov game to model and
guide the lane process.

Definition 1: A two-agent Markov game is defined as
G = N, S, (A")ren, P, (r*)kenr, (T")kenr}, where N =
{1,2}, S and (A*),er are the state space and action spaces,

Algorithm 1 Deep Q-learning algorithm [14]

1: Initialization of Q(s,a;#) and the replay buffer D.

2: for episode 1: M do

3: Randomly choose a starting state sg.

4 fort=1,---,T do

5 Choose action a; = argmax, Q(s:,a;0) with
probability 1 — e. Otherwise, make a random choice.

6: Take action a; in simulator and add
(8¢, at,7¢, S¢1) to the replay buffer.

Take a sample (s,a,r,s’) from D.

: Update neural network by 0 < 0 — aVyL(0)
where y = r + ymax, Q(s',a’;0) or y = r if the
process is terminated.

9: end for
10: end for

7% = {7F}i—1 .7 is the strategy of agent k., 7¥(s, (a',a?))
is the reward function of agent k and P(:|s, (a',a?)) is the
transition function.

At time t, agent k obseves state s;, takes action af ~
7F(+|s¢) according to its strategy 7* consisting of the policies
7F, and receives the reward 75 (s, (af,a?)), while the state
si+1 ~ P(‘s, (at,a?)). In Markov game, the agents will
adjust their strategies to reach an Nash equilibrium.

Definition 2: A Nash equilibrium of two-agent Markov
game G is a pair of strategy (7', 7' ) such that Vs € S,

Vislat,7?) > Vi(slat, 7)), v, (6)
Vi(s|nt",7%) > VE(s|r', 7%), Va2, (7)

where V¥ is the state value function defined by equation (4).

We see that at a Nash equilibrium each agent’s strategy is
the best response to the other’s strategy. We consider only
stationary strategies, and the existence of Nash equilibrium
is ensured by the following theorem.

Theorem 3: (Filar and Vrieze [34], Theorem 4.6.4) A
Markov game with stationary strategy has at least one Nash
equilibrium.

Further, consider the optimal action-state function

QF (se, (af,a7)) = rf (s, (af, a7))+

k 1 2
VEagHmrl* a2~ s Qe (st41, (ag11,0741))- (8)

The agent k will take action based on 7*(s;) and
QE (s, (a},a?)) at each time ¢, which leads to a bimatrix
game.

Definition 4: A bimatrix game is defined as
{N, (M®)en, (T¥)ren}, where the set of agents
N = {1,2}, payoff (MP")pcn are |A'| x |A%| matrices
with the (i,7)-th entry M*(i,j) = Q’;k(st,(a%,a?)), and
7% is the strategy of agent k. The mixed strategy Nash
equilibrium of this bimatrix game is a pair of probabilities

(u'", u?") satisfying
pt M > M vt € PD(AY), )
pt M2 >t M2 p? Yu? € PD(A?). (10)



By modeling each decision making step as a bimatrix
game, the whole Markov game consists of a sequence
of bimatrix games. Theorem 3 of [9] ensures that the
Nash equilibrium (7!(s;),72(s¢)) of the bimatrix game
(Q(st),Q?(s¢)) is also part of the Nash equilbrium of the
whole Markov game. If %" = {7 (5¢)},—1,... |g| is the
Nash equilibrium of the Markov game G, then there exists
one (7! (5'), 72 (5')) that is also the Nash equilibrium of
the bimatrix game (Q*(s;), Q*(s¢)) with s; = &'. The state
function value VF*(s|7!",72") = 7' (s)QF (s)7%(s) with
the starting state s, and the action-state function value (8) is
given by

Qﬁ* (Sta (a’%va’f)) :rf(sh (a%a a’?))—"_

VB [VE(sigaln 7)) A
k

After taking action a¥ ~ 7¥(s;), the updated payoff matrix
will be the Nash equilibrium (7! (sy11),7%(s¢41)) of the
bimatrix game (Q} (s1+1), @%(s¢+1)) instead of independent
update [9],

Qfﬂ(st,(al, az)) =(1- at)Qf(stv (ala 02))
+anrpr +m (s001)QF (se1)m (se41)]. (12)
Notice that the Q-values with different state-action pairs
are difficult to calculate directly. Instead, we can use neural
network as the estimator of the Q-table: Q% (s) ~ Q¥ (s; 6%).
This leads to the Algorithm 2.

St41

Algorithm 2 Deep bimatrix Q-learning for vehicle &

1: Build neural networks Q¥ (-; 0¥) with output size |A;| x
|Az| and replay buffer D.
Build the initial QV/*(-; \) for the other vehicle.
for episode 1: M do
Vehicle k chooses a starting state sk randomly.
fort=1,---,T do
Calculates (7' (s;), w2(s¢)).
Two vehicles reach (7!(s;), m2(s¢)) consensus.
Chooses action by 7% (s;) with probability 1 — .
Otherwise, vehicle k chooses action randomly.

e A i

9: Take actions in the simulator and add
(s¢, (a},a?),7¥ s;11) into replay buffer D.

10: while One minibatch sample from D do

11: For each (s, (a!,a?),7", s') in the minibatch,

calculate target y* as follows

. {rk +y7t(s") Q¥ (s';0%)7%(s’), not terminated,

k

T terminated.

7

12: Use stochastic gradient descent to update #*
with the cost function Syk —Q%(s, (at, a?);6%))2.

13: Update in k(s; A).

14: end while

15: end for

6: end for

—

Here (7!(s;), 72(s¢)) is the mixture Nash equilibrium of
bimatrix game (Q* (s;; %), QN/*(s; A)). We apply Lemke-
Howson algorithm to caculate the mixture Nash equilibrium

of the bimatrix game. QF(s;;6%) is the vehicle k’s Q-values
and QN/k(sy; A) is the estimate of the other vehicle’s Q-
values. QV/¥(s;; \) can be build by neural network and the
data (e.g., riwk or s; or QN/#(s,;6N/F)) sent by the other
vehicle N /k. Based on the received data, A can be updated
using the gradient method or replaced by the received value
of QV/¥(s,;6N/%) value. In our experiments, we use the
received QV/F(s,; 0V/F) from the other vehicle.

C. Convergence of Algorithm 2

Based on [9], the following theorem ensures the conver-
gence of the algorithm 2.

Theorem 5: (Theorem 4 in [9]) Given a Markov game
g:= {N7 S7 (Ak)k’GNa P, (Tk)kENa (ﬂ_k)kGN} as in Defini-
tion 1. If we take the iterative update (12) through Algorithm
2, it will converge to the Nash equilibrium (7', 72") of G.

Proof: By the Conditional Averaging Lemma in [35],
Qb (s, (al,a2) = (1 — a)QE(se, (ak,a2)) + alrk +
ymt(8641)QF (s¢41)72(s¢41)] will converge to

Tka(st’ (aiv a?))
= B, [rF 4+ 7t (se41) QF (Se41) 72 (5¢41)]

13)

= Y P(siialse, (af, ap)[rf + 7' (s141)QF (s141)7 (5141)]

St+1

= Z P(si41st, (a%’ a?))Tka(st)’
St+1
where THQF(s;) = rF + y7l(5441)QF (s¢41)72(5¢41). By
Theorem 9 in the Appendix, T* is a contraction mapping,
and so is_Tk. So the update (12) will converge to a fixed
point of T%.
|
VI. EXPERIMENTS AND EVALUATIONS
A. Testbed

In order to test this method we use a physics engine-based

[36] high-fidelity model of a four wheel drive, %th scale
vehicle. The dynamics of the system are given as:
o'(t) = ®(a(t), F(t), u(t), p), (14)

in which ®(-) is the dynamical model, () € R" is the
state of the system, @’(t) is the derivative of the state, F'(t)
consolidates external forces and collisions applied to the
system from e.g. the road surface, u(t) € R™ is a control
input vector including steering and acceleration signals, and
p € RY is model parameter vector to be calibrated. In order
to simulate simulated the behavior of a physical system,
we calibrate model parameters p to the physical platform
by using an online calibration algorithm [37]. By achieving
low uncertainty on model parameters, it is observed that the
simulated vehicle can exhibit virtually identical behavior as
the actual vehicle.

By providing the actions based on learned policies 7% (s;)
for multiple simulated vehicles and stepping the simulator
forward, state updates can be obtained and update the ob-
servation s;11, which then propagate Q-value updates from
Eq. (12) leading to direct policy updates via Algorithm 2.



B. Experiments

We implement the two schemes V-A and V-B using the
lane change structure in Fig. 1. In this diagram, car0 is
the proactive vehicle trying to change to lane-3, car2 is the
passive vehicle creating merging space, carl is the reference
vehicle, and car3, car4, car5 are neighbors. The neural
network settings of each agent are the same, using one hidden
layer consisting of 512 units. The training machine consists
of a 2.7GHz Intel Core i5 processor with 16GB of RAM.
car0 and car2 are trained by randomly assigning initial
configurations. After training, the tests call the learned policy
for determining the controls to be applied to the individual
vehicles.

The performance of this method is shown in Fig. 2. In
addition to the termination conditions like success and col-
lision, there are additional training constraints. For instance,
in our experiments, [v¥| is bounded and each vehicle has a
safety distance between its neighbors that must be upheld.
car?2 should not fall too far behind carb, otherwise it is
presumed that traffic would be deleteriously affected. The
merging moment configuration includes the safe relative
speed between carO/car2 and carl, while car2 keeps a
certain merging gap with carl.

Fig. 2a shows the state function values (V1(s),V?2(s))
starting from the state s of the two schemes. During training,
the random initialization for s was reused 5 times in each
episode. For V-B, both V*(s) reached a steady state policy
after ~40,000 training episodes. For V-A, V¥(s) reached
steady-state in fewer training episodes than scheme V-B.
Even so, both schemes eventually resulted in a stable policy
{wk}k:m. After ~20,000 episodes training, scheme V-
B achieved higher V*(s) values than V-A, meaning that
scheme V-B resulted in generally more optimal strategies.

Fig. 2b shows the mean of total reward Z?:o ~try per
episode for the same initial state s. We can see that, after
training, scheme V-A reaches stability faster than scheme
V-B; however, after 40,000 training episodes, scheme V-B
achieves higher total rewards, which suggests even stronger
preferences for scheme V-B.

Both of Fig. 2a and 2b show an advantage of scheme V-B.
One of the reasons is that each agent always tries to find the
best strategy corresponding to the other one’s strategy based
on the Q-tables {Q*(s; #%)}. The adjustment of equilibrium
solutions (7!, 72) will not stop until they reach the Nash
equilibrium. Compared with scheme V-A, the efficient usage
of the interaction in scheme V-B makes agents learn their
policies better.

Fig. 2c shows results for the successful merging ratio,
which is the ratio of the number of arrivals for expected
merging moment over the total number of tests. In each
episode, the tests were conducted 30 times with randomly
selected initial states. From this, it is clear that scheme V-B’s
successful ratio increases after 12k episodes training. After
that, this ratio begins to plateau after 20k episodes training.
Meanwhile, most of the tasks are failed for scheme V-A. It is
a more convincing proof for the advantages of scheme V-B.
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Fig. 2: Synchronous/Asynchronous scheme performance

Based on the above evaluation, scheme V-B appears to
bring higher state function values and total rewards. More
importantly, it brings bigger chance to find the proper merg-
ing moment. Videos demonstrating the performance among



different training episodes are provided (V-B scheme link and
V-A scheme link). These results suggest that the synchronous
cooperative scheme has potential to assist autonomous ve-
hicles in finishing maneuvers strategically after sufficient
training.

VII. CONCLUSIONS

In our paper, we have introduced the proactive-passive
pair of vehicles with one reference vehicle as the lane
change structure. Because the non-coordination scheme for
lane change task does not give the expected performance,
we propose a scheme considering Deep Q-learning and
the Markov game together. The resulting performance on
the physics engine based high fidelity model shows that
the proposed scheme allows the vehicles reach the proper
merging configuration starting from different states. This
scheme could be used to build the model-free controller to
help autonomous vehicles finish tasks after training. In the
future, we are going to consider how to improve the training
process so that it can avoid obvious dangerous behaviors.

APPENDIX

To prove Theorem 5, we have the following assumptions
and result.

Assumption 6: The learning rates oy satisfy >, a; =
00, Y, a7 < .

Assumption 7: (Assumption 1 in [9]) Given a bimatrix
game (Q'(s),Q%(s)), its mlxture Nash equilibrium is a
pair of probabilities (u L 2 ) satisfies one of the following
properties:

1) Propertyl: The equilibrium is social optimal:

pt QR p* > QR p?,vut € PD(AY), u? € PD(A?).

2) Property2: The equilibrium is not social optimal:
Pt QM < pt QP Vp? € PD(A?),
Pt QA < Q%P Yt € PD(AY).

Assumption 8: (Assumption 2 in [38]) For all bimatrix
game (Q}(s),Q?(s)) in the Markov game G at time ¢, they
should all satisfy Property 1 in Assumption 7 or all satisfy
Property 2 in Assumption 7.

With these assumptions, we can prove that the Q value
update operation is a contraction mapping,

Theorem 9: (Lemma 3 in [9]) Define a mapping T* such
that T*QF(s) = r+vy7!(s)Q% (s)m%(s) where (7! (s), 72(s))
is the Nash equilibrium of the bimatrix game (Q*(s), Q?(s)).
Then T is a contraction mapping.

Proof: Without loss of generality, consider two bi-
matrix games (Q!(s), Q%(s)) and (QY(s),Q%(s)) with
TEQF(s) > TFQ(s), and denote the correspond-
ing mixture Nash equilibriums by (7!(s),72(s)) and
(7Y (s), 7% (s)) respectively. For agent k,

TRQ"(s) — TFQ (s)
=(r + 7' (5)Q"(s)72(5)) — (r + 47 (5)Q¥ (s)7% (5))
=y (' (s)Q" (s)m%(s) — ' ()Q" (s)7% (s))

By Assumption 8, we have two cases:

1) If (' (s), 2(s)) and (m*

) are social opti-

(), 7 (s
()@ (s)m

mal: we have 7' (s)QF (s)n? (s) > = 2(s), so
that
Tka(S) —TRQM (s)
! (5)Q ()2 (s) — 7 (s)QY ()7 (s))
<7||7r ()IIQ¥ (s) = Q¥ (s) Il 7>(s)]

Notice that v € (0,1) and ||7¥ (s)|| € [0,1], [|#% (s)| €
[0,1]. So T* is a contraction mapping.

2) If (x'(s),7%(s)) and (7" (s),7% (s)) are not social

optimal: We consider different agents separately:

o For agent-1. As (7% (s),7% (s)) is a Nash equilibrium,
we have 7 (s)QY ()72 (s) > 7' (s)QY (s)n? (s).
Thus,

T'Q'(s) = T'Q"(s)
< (T (5)Q ()7 () = 7' (5)QY (5)7 (5)-

Since (7! (s),72(s)) is not social optimal, agent-1 will
receive higher payoff for any other policies of the agent-
2, which means

7 (5)Q (5)72(s) < 7 (5)Q ()7 (s).
Thus,
QY (s) —
< (s)Q' (s )W (s ' (5)Q (s)7% (s))
<A(wH (5)Q ()77 (5) — 7' (5)Q" ()7 (5))
<l (SIIRQY () = Q¥ (s) Il (s)]].
o For agent-2. Similarly, We have
T°Q%(s) - T°Q% (s)
<y(m 1( )Q"(s)m*(s) —
<y (7 (5)Q% ()7 (s) — 7" (5)Q% ()7 (s))
<7 (IR (s) — Q’“'(S)IIHW (s)II-

We see that T* is a contraction mapping. [ ]

1’( )Q? (s)72(s))
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