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ABSTRACT. In the 1970’s, Serre exploited congruences between g-
expansion coefficients of Eisenstein series to produce p-adic families
of Eisenstein series and, in turn, p-adic zeta functions. Partly through
integration with more recent machinery, including Katz’s approach to
p-adic differential operators, his strategy has influenced four decades
of developments. Prior papers employing Katz’s and Serre’s ideas
exploiting differential operators and congruences to produce families
of automorphic forms rely crucially on g-expansions of automorphic
forms.

The overarching goal of the present paper is to adapt the strategy to
automorphic forms on unitary groups, which lack g-expansions when
the signature is of the form (a,b), a # b. In particular, this paper
completely removes the restrictions on the signature present in prior
work. As intermediate steps, we achieve two key objectives. First,
partly by carefully analyzing the action of the Young symmetrizer on
Serre-Tate expansions, we explicitly describe the action of differen-
tial operators on the Serre-Tate expansions of automorphic forms on
unitary groups of arbitrary signature. As a direct consequence, for
each unitary group, we obtain congruences and families analogous to
those studied by Katz and Serre. Second, via a novel lifting argu-
ment, we construct a p-adic measure taking values in the space of
p-adic automorphic forms on unitary groups of any prescribed signa-
ture. We relate the values of this measure to an explicit p-adic family
of Eisenstein series. One application of our results is to the recently
completed construction of p-adic L-functions for unitary groups by
the first named author, Harris, Li, and Skinner.
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1 INTRODUCTION

1.1 MOTIVATION AND CONTEXT
1.1.1 INFLUENCE OF A KEY IDEA OF SERRE ABOUT CONGRUENCES

J.-P. Serre’s idea to exploit congruences between Fourier coefficients of Eisen-
stein series to construct certain p-adic zeta-functions continues to have a
far-reaching impact. His strategy has led to numerous developments, partly
through integration with more recent machinery. For example, his approach is
seen in work on the Iwasawa Main Conjecture (e.g. in [SU14]). Emblematic of
the reach of Serre’s idea to interpolate Fourier coefficients of Eisenstein series,
his p-adic families of Eisenstein series also occur even in homotopy theory, as
the Witten genus, an invariant of certain manifolds [Hop02, AHR10].

Serre’s idea in [Ser73] has been employed in increasingly sophisticated settings.
J. Coates and W. Sinnott extended it to construct p-adic L-functions over real
quadratic fields [CS74], followed by P. Deligne and K. Ribet over totally real
fields [DR80]. Developing it further, N. Katz handled CM fields K (when p
splits in K), using congruences between Fourier coefficients of Eisenstein series
in the space of Hilbert modular forms [Kat78]. Using Katz’s Eisenstein series,
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H. Hida produced p-adic L-functions of families of ordinary cusp forms [Hid91],
leading to A. Panchishkin’s p-adic L-functions of non-ordinary families [Pan03].
The p-adic families of Eisenstein series on unitary groups of signature (n,n)
in [Eisl5, Eisl4, Eis16] and related families of automorphic forms for arbi-
trary signature in Theorem 7.2.4 of this paper play a key role in the recent
construction of p-adic L-functions for unitary groups [EHLS16]. (The related
approach proposed in [HLS06], on which [EHLS16] elaborates, also inspired
work in [Bould, EW16, Hsil4, Liul6, Wan15].) These p-adic families also con-
jecturally give an analogue of the Witten genus, at least for signature (1,n)
[Beh09)].

1.1.2 AN INSPIRATION FOR FOUR DECADES OF INNOVATIONS AND THE NE-
CESSITY OF MORE

Most of the four decades of developments in Section 1.1.1 require increasingly
sophisticated methods, even though the overarching strategy (“find a family
of Eisenstein series, observe congruences, relate to an L-function”) is well-
established. The devil is in the details. We now highlight three ingredients
from the above constructions most relevant to the details of the present work:
(1) g-expansions; (2) differential operators; (3) Eisenstein series.

(1) ¢-EXPANSIONS. All prior papers employing Serre’s idea to exploit congru-
ences between Eisenstein series rely crucially on the g-expansions of automor-
phic forms. The key goal of the present paper is to extend the aforementioned
strategies to automorphic forms on unitary groups, which lack g-expansions
when the signature is not (n,n). In their place, we use Serre—Tate expansions
(or t-expansions), expansions at ordinary CM points (whose structure leads
to a natural choice of coordinates, Serre-Tate coordinates) and the Serre-Tate
Expansion Principle [CEF*16, Theorem 5.14, Proposition 5.5, Corollary 5.16].

(2) DIFFERENTIAL OPERATORS. A key innovation of Katz in [Kat78] is the con-
struction of p-adic differential operators (generalizing the Maass—Shimura oper-
ators studied extensively by Harris and Shimura [Har81, Shi97, Shi00, Shi84])
and a description of their action on g-expansions, when p splits in the CM
field. Lacking g-expansions, we compute the action of differential operators on
Serre-Tate expansions and, as a consequence, produce congruences and fami-
lies of p-adic automorphic forms. Our work builds on [Eis09, Eis12, CEF*16,
Kat81, Brol3] and requires careful analysis of the action of Schur functors (in
particular the Young symmetrizer) on Serre-Tate expansions. (In a different
direction, E. Goren and E. de Shalit recently constructed p-adic differential
operators for signature (2,1) with p inert [dSG16].)

(3) EISENSTEIN SERIES. The constructions in Section 1.1.1 rely on congruences
between g-expansion coefficients of Eisenstein series. For unitary groups of
arbitrary signature, we compensate with explicit computation of the action
of the Young symmetrizer on Serre-Tate coordinates. Also applying a novel
lifting argument to the Eisenstein series on unitary groups of signature (n,n)
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DIFFERENTIAL OPERATORS AND FAMILIES 449

constructed in [Eis15, Eis14] independently of Serre-Tate coordinates, we also
construct explicit p-adic families for arbitrary signature.

1.2 THIS PAPER’S MAIN RESULTS, INNOVATIONS, AND CONNECTIONS WITH
PRIOR WORK

As noted above, a key accomplishment of this work is that it produces families
without needing g-expansions and thus is applicable to unitary groups of all
signatures. The results and techniques in this paper carry over to the auto-
morphic forms in other papers extending Serre’s strategy (i.e. Siegel modular
forms, Hilbert modular forms, and modular forms) but are unnecessary in those
settings (since they have g-expansions).

As a consequence of the work in the first sections of this paper, we finish the
problem of constructing p-adic families sufficient for the p-adic L-functions in
[EHLS16], completely eliminating conditions on signatures. We also expect our
results on Serre—Tate expansions to have applications to the extension to the
setting of unitary groups of the results of A. Burungale and Hida on u-invariants
[BH14].

1.2.1 THREE MAIN RESULTS

Main Results 1, 2, and 3 below rely on a careful application of a combination
of arithmetic geometric, representation theoretic, and number theoretic tools.
We denote by V the space of p-adic automorphic forms (global sections of a
line bundle over the Igusa tower, as defined by Hida in [Hid04]) on a unitary
group G.

MAIN RESULT 1 (summary of Theorem 5.2.6 and Corollary 5.2.8). For each
classical or p-adic weight k (viewed as a character) meeting mild conditions,
there is a p-adic differential operator ©F acting on V', with the property that if
the weight of f € V isw, then the weight of ©" f is w-k, and if k = &' mod p® for
some e, then ©F f = @”,f mod p®. As a consequence, one can use the operators
to obtain p-adic families of forms (which are closely related to certain C*-
automorphic forms, e.g. those appearing in Main Result 3).

MAIN RESULT 2 (summary of Theorem 5.1.3 and Corollary 5.2.10). While con-
structing and explicitly describing the action of ©" on Serre—Tate expansions
(also called t-expansions), we compute the precise polynomials (in the proof of
Proposition 5.2.4) by which the coefficients in the expansion are multiplied upon
applying the differential operators.

MAIN RESULT 3 (summary of Theorem 7.2.4). There is a p-adic measure taking
values in V' and providing an explicit family of p-adic automorphic forms closely

related to the C™ Eisenstein series studied by Shimura in [Shi97].
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1.2.2 METHODS

The construction of the differential operators builds on earlier results on p-adic
differential operators in [Kat78] (for Hilbert modular forms), [Eis12, Eis16]
(for unitary groups of signature (n,n) and pullbacks to products of definite
unitary groups), and [Pan05] (for Siegel modular forms). Unlike in those ear-
lier cases, though, the lack of g-expansions in the case of unitary groups not of
signature (n,n) necessitates modifying the approach of those papers. Instead,
we take expansions at ordinary CM points (Serre-Tate expansions) and apply
the Serre-Tate Expansion Principle [CEF*16, Theorem 5.14, Proposition 5.5,
Corollary 5.16]. Also, unlike earlier constructions, by employing Hida’s den-
sity theorem, we extend the action of the operators to p-adic (not necessarily
classical) weights.

Our ability to establish congruences among differential operators depends on
appropriately choosing the p-adic integral models for the algebraic representa-
tions associated with dominant weights. In particular, our models are slightly
different from those considered in the work of Hida [Hid04], and our construc-
tion relies on the theory of Schur functors and projectors. The congruences
follow from a careful analysis of the action of Schur functions (and especially
the generalized Young symmetrizer) and rely on the description in Main Result
2.

In Section 6, we also extend Main Results 1 and 2 to the case of pullbacks
from a Shimura variety to a subvariety. While Main Results 1 and 2 focus
on the description of the operators on Serre-Tate expansions, the precision
with which we work out details for Serre-Tate expansions allows us also to
transfer some of our results to devise a novel lifting argument (in the proof of
Theorem 7.2.4) concerning only g-expansions that produces explicit families of
automorphic forms, summarized in Main Result 3. (The key idea is to apply a
lifting argument, together with the description of the action of the differential
operators and pullbacks developed in Section 6 and in the proof of Proposition
5.2.4 to the Eisenstein series constructed in [Eis15, Eis14].) These families feed
into the machinery of p-adic L-functions in [EHLS16].

Remark 1.2.1. Although there are no g-expansions in the setting of unitary
groups of arbitrary signature, these operators can naturally be viewed as the
incarnation of Ramanujan’s operator qd% in this setting. The families that can
be obtained by applying such operators are broader than what can be obtained
by tensoring with powers of a lift of the Hasse invariant, since our construction
allows, for example, non-parallel weights.

Remark 1.2.2. Tt would also be beneficial to have a p-adic Fourier—Jacobi ex-
pansion principle for unitary groups of arbitrary signature (which appears to
be possible to state and prove - via a lengthy, technical argument - building on
recent arithmetic geometric developments, e.g. [Lanl3]). This would provide
an alternate but ultimately more direct route (modulo the necessity of first
proving such an expansion principle) to the construction of families. On the
other hand, we also expect our work with the Serre—Tate expansions themselves

DOCUMENTA MATHEMATICA 23 (2018) 445-495
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to be useful in other applications, e.g. an extension of Burungale and Hida’s
work in [BH14].

1.3 STRUCTURE OF THE PAPER

Section 2 introduces our setup and recalls key facts about unitary Shimura
varieties, the Igusa tower, and p-adic and classical automorphic forms (following
[CEF*16, Sections 2 and 3]). It also provides necessary results on t-expansions
from [CEF*16] and an overview of Schur functors, on which our computations
rely crucially.

Sections 3 and 4 give global and local descriptions, respectively, of the dif-
ferential operators. In particular, Section 3 discusses differential operators of
integral (classical) weights that act on the automorphic forms introduced in
Section 2. Using Schur functors, we build these operators from the Gauss—
Manin connection and the Kodaira—Spencer morphism. In Section 4, via a
careful computation of the action of the Young symmetrizer, we describe the
action of the differential operators on Serre-Tate coordinates.

In Section 5, we use the description of the action of the differential operators on
t-expansions, and Hida’s density theorem, to prove the operators extend to the
whole space of p-adic automorphic forms. We then establish congruences among
operators of congruent weights, which we interpolate to differential operators
of p-adic weights on the space of p-adic automorphic forms, leading to Theorem
5.2.6 and Corollary 5.2.8 (summarized in Main Result 1 above) and Theorem
5.1.3 and Corollary 5.2.10 (summarized in Main Result 2 above).

Section 6 describes the behavior of the differential operators with respect to
restriction from one unitary group to a product of two smaller unitary groups.
Restrictions of p-adic automorphic forms play a crucial role in the construction
of p-adic L-functions in [EHLS16].

Section 7 constructs p-adic families of automorphic forms on unitary groups
of arbitrary signature, by applying a novel lifting strategy and our p-adic dif-
ferential operators to restrictions of p-adic families of Eisenstein series from
[Eis15, Eis14]. Theorem 7.2.4 (summarized in Main Result 3 above) produces
a p-adic measure taking values in the space of p-adic automorphic forms of
arbitrary signature related to the given family of Eisenstein series. This result
is in turn used in the construction of p-adic L-functions in [EHLS16].

1.4 NOTATION AND CONVENTIONS

Fix a totally real number field K* of degree r and an imaginary quadratic
extension Ky of Q. Define K to be the compositum of K* and Ky. Additionally,
we will fix a positive integer n, and a rational prime p > n that splits completely
in K/Q. If K is an imaginary quadratic field, we put further restrictions when
n =2 (see Remark 2.3.2).

The above assumptions ensure the following:
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e Our unitary group at p is a product of (restrictions of scalars of) general
linear groups

e The Shimura varieties of prime-to-p level we consider have smooth inte-
gral models (with moduli interpretations) after localizing at p

e Sections of automorphic bundles on open Shimura varieties coincide with
those on their compactifications, by Koecher’s principle.

e The ordinary locus of the reduction modulo p is not empty

e We can p-adically interpolate our differential operators (see Proposition
5.2.4 and Theorem 5.2.6).

We now discuss some notation used throughout the paper. For any field L, we
denote the ring of integers in L by Or. We use A to denote the adeles over Q,
and we write A* (resp. A*?) to denote the adeles away from the archimedean
places (resp. the archimedean places and p). For our CM field K, let ¢ denote
complex conjugation, i.e. the generator of Gal(K/K™*). We denote by ¥ the set
of embeddings of K* into @p, and we denote by X i the set of @p—embeddings
of K. Additionally, fix a CM type of K, i.e. for each 7 € ¥ choose exactly
one K-embedding 7 extending 7, and abusing notation, identify the set of 7
with ¥. Under this identification, note that ¥ u X¢ = ¥ . Additionally, fix an
isomorphism 2, : C 5 @p, and let Yo = z;lE and Xk o = z;lEK. We will often
identify Yo with ¥ and Y o with Y via the above isomorphism without
further mentioning.

The reflex field associated to our Shimura varieties will typically be denoted by
E (with subscripts to denote different reflex fields in Section 6). Additionally,
define the primes above p using the decomposition of pOx = [T;_; B P where
p; = P;P5 are the primes above p in Ok+.

We denote the dual of an abelian scheme A by AY. We also denote the dual
of a module M by MY. Given schemes S and T over a scheme U, we denote
the scheme S xyy T' by S7. When no confusion is likely to arise, we sometimes
use the same notation for a sheaf of modules and a corresponding module (e.g.
obtained by localizing at a point).

For any ring R, we denote by M, (R) the space of n xn matrices with entries
in R, and we denote by Herm, (K) the space of Hermitian matrices inside
Mypsn (K).

2 BACKGROUND AND SETUP

In this section, we recall facts about Shimura varieties, automorphic forms,
and p-adic automorphic forms that will play a key role in the rest of the paper.
Most of this material is covered in detail in [CEF*16, Sections 2.1 and 2.2].
Like in [CEF*16], the definitions of the PEL data and moduli problems follow
[Kot92, Sections 4 and 5] and [Lan13, Sections 1.2 and 1.4].
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2.1 UNITARY GROUPS AND PEL DATA
By a PEL datum, we mean a tuple (K,c, L, (,),h) consisting of
e the CM field K equipped with the involution ¢ introduced in Section 1.4,

e an Og-lattice L, i.e. a finitely generated free Z-module with an action of
Ok,

e a non-degenerate Hermitian pairing (-,-) : Lx L — Z satisfying (k-v1,vs) =
(v1,k° - vo) for all v1,v9 € L and k € Ok,

e an R-algebra endomorphism
h:C - Endp,e,r(L ®zR)
such that (vi,v2) — (v1,h(4) - v2) is symmetric and positive definite and
such that (h(z)v1,v2) = (v1, h(Z)va).
Furthermore, we require:

o L, := L®zZ, is self-dual under the alternating Hermitian pairing (-,-),
on L ®y @p.

Given a PEL datum (K, c¢,L,(,),h), we associate algebraic groups GU =
GU(L,{(,)), defined over Z, whose R-points (for any Z-algebra R) are given
by

GU(R) :={(g,v) € Endo,e,r(L®z R) x R* | {g-v1,9-v2) =v(v1,v2)}
U(R) ={g € Endoye,r(L®z R)[{(g-v1,9 v2) = (v1,v2)}

Note that v is called the similitude factor. Additionally, we can define the
R-vector space equipped with an action of K :

Vi=LegzR.

The endomorphism h¢ = h xg C gives rise to a decomposition Vg =V @g C =
V1 @ V2 (where h(z) x 1 acts by z on V] and by z on Va). The reflex field E of
(V,(,),h) is the field of definition of the GU(C)-conjugacy class of V5.

We have further decompositions Vi = ®@,ex, Vi and Vo = @,c5, Vo induced
from the decomposition of K ®p C = @,ex, C, where only the 7-th C acts
nontrivially on V. = Vi ® Vo -, and it acts via the standard action on Vj »
and via conjugation on V5 .. The signature of (V,{(,),h) is the tuple of pairs
(@4r,0-7) e, Where a,, =dimc Vi, and a-, = dimc Vz , for all 7€ ¥, The
sum a,, + a_, is independent of 7 € X, and so we define

n:=ay, +a_,.
(Note that a,,c = a_,.) Finally, we define an algebraic group

H = H GLg,, xGL,__
TEY
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over Z. Note that H(C) can be identified with the Levi subgroup of U(C)
that preserves the decomposition V¢ = Vi @ V5. Additionally, we will denote
the diagonal maximal torus of H by T, and the unipotent radical of the Borel
subgroup of upper triangular matrixes by N.

2.2 PEL MODULI PROBLEM AND SHIMURA VARIETIES

We now introduce the Shimura varieties associated to a given PEL datum
(K,c,L,{,),h). We will restrict our attention to the integral models (defined
over O ® Z(,)) of such PEL-type unitary Shimura varieties that have prime-
to-p level structure and good reduction at p.

Let U ¢ GU(A*) be an open compact subgroup. We assume U = UPU,, is neat
(as defined in [Lanl3, Definition 1.4.1.8]) and that U, c GU(Q,) is hyperspe-
cial. Consider the moduli problem (5,s) — {(A4,i,A,a)/ ~} which assigns to
every connected, locally noetherian scheme S over O ® Z(,) together with
a geometric point s of S, the set of equivalence classes of tuples (4,1, A, «),
where:

e A is an abelian variety over S of dimension g :=nr = n[K* : Q],
e i: Ok p) = (End(A4)) ®z Z() is an embedding of Z,)-algebras,

e \: A — AYis a prime-to-p polarization satisfying A oi(k¢) =i(k)" o A for
all k € Ok,

o «aisam (95, s)-invariant UP-orbit of K ®g AP *°-equivariant isomorphisms
L®y AP™ 5 VPA,

which takes the Hermitian pairing (-,-) on L to an (AP**)*-multiple of
the A\-Weil pairing (-,-)» on VA (the Tate module away from p).

In addition, the tuple (A, 4, A, &) must satisfy Kottwitz’s determinant condition:
detc(Ok|V1) = deto, (Ok|LicA).

Two tuples (A,i, A\, ) ~ (A',i', X, a’) are equivalent if there exists a prime-to-p
isogeny A — A’ taking ¢ to 7', A to a prime-to-p rational multiple of A" and «
to .

This moduli problem is representable by a smooth, quasi-projective scheme
My over Op ® Zp. (See [Lanl13, Corollary 7.2.3.10].) If we allow U” to vary,
the inverse system consisting of My, has a natural action of GU(A®?) (i.e.,
g € GU(A*™P) acts by precomposing the level structure o with it). For any
scheme S over Spec(Op ® Z(,)), we put

Mu7s = My XOg, () S.

When S = Spec(R) for a ring R, we will often write My r instead of
MM,Spec(R)-
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We denote by M7 the complex manifold of C-valued points of My, and by
My (C*°) the underlying C'*°-manifold. Given a sheaf F on My, we denote
by F(C*) the sheaf on My (C*) obtained by tensoring F with the C*-
structural sheaf on My, (C*°). In the sequel, we fix the level U and suppress it
from the notation.

2.3 AUTOMORPHIC FORMS

Let W := W (F,) denote the ring of Witt vectors; note that Frac(W) contains
all embeddings of K < @p, due to our assumptions on p. Let 7 : Auniv =
(A,i, N, @)™ - My denote the universal abelian scheme. Define WA M =
Ty /M 8BS the pushforward along the structure map of the sheaf of relative
differentials. It is a locally free sheaf of rank nr, equipped with the structure
of an Ok ® W-module induced by the action of Ok on Ay,iy. Hence, we obtain
the decomposition:

WA i /M = @Z(@tumw,r D WA e/ M,7) (1)
TE

where gjumv/M , hasrank a., and an element x € Ok acts on @;\um//vl . (resp.
W hmie /M ) via 7(x) (resp. 7¢(x)). We can then define & = £ as the sheaf:

= e@ Isomy  ((Oa)™ " wijair) @ eg Isome  ((Op)™ " W /atr) -
TE TE

Note there is a (left) action of H on £ arising from the action of GL
Isom ((OM)%T YW e /M T) for all K-embeddings 7 € Y.

Consider an algebraic representation p of H (over W) into a finite free W-
module M,. For any such p, we define the sheaf &, = &, , = & x” M, i.e. for
each open immersion Spec R = M, set £,(R) = (£(R) x M, ®w R) [ ({,m) ~
(9t p(*g™")m).

An automorphic form of weight p defined over a W-algebra R is a global section
of the sheaf £, on Mp.

ay, O

Remark 2.3.1. Usually, automorphic forms are defined as sections on a com-
pactification of M g,. By Koecher’s principle the two definitions are equivalent,
except when ¥ consists only of one place 7 and (a4-,a—,) = (1,1). For the re-
mainder of the paper, we exclude this case.

2.4 STANDARD REPRESENTATION, HIGHEST WEIGHTS, AND SCHUR FUNC-
TORS

We briefly recall some useful facts about H from the theory of algebraic (ra-
tional) representations of linear algebraic groups.

DOCUMENTA MATHEMATICA 23 (2018) 445-495



456 E. EiscHEN, J. FINTZEN, E. MANTOVAN, I. VARMA

2.4.1 HIGHEST WEIGHTS OF AN ALGEBRAIC REPRESENTATION OF H

The irreducible algebraic representations of H = [],.5; GLq4,  x GL4__ over any
algebraically closed field of characteristic 0 (up to isomorphism) are in one-
to-one correspondence with the dominant weights of its diagonal torus T =
HTEE Ta+7— X Ta—q—'

For 1<i<m,let ] in X(T):= Hom@p (T',Gyn )= Homgz, (T',G,,) be the charac-
ter defined by

el :T(@,) = [1 7, (@) x T (@) ~ Gn(@,)

oeXx

el (diag(V] 1,9 n)oes) = Vs

These characters form a basis of the free Z-module X (7). We choose A =
{of = €] —€],1}rex 1<i<n,iza,, as a basis for the root system of H. The set of
all dominant weights of T with respect to A is X(T): = {k € X(T)| (k,&) >
0Va e A}. Using the basis {] : 7€ X,1<i<n} of X(T'), we identify:

X(T)s 2 {(K], 6] )res € [[ 2™ k] > K]y Vi#aw, ),
TEX

where & = (k7),.., and &7 = [1;(¢])"7. For each dominant weight &, p,, : Hg -
P
M, denotes an irreducible algebraic representation of highest weight x. (See,

for example, [Jan03, Part II. Chapter 2].)

2.4.2 SCHUR FUNCTORS

We briefly recall the construction of Schur functors, adapted to our setting.
(We refer to [FH91, Sections 4.1 and 15.3] for the usual definitions).

For k a positive dominant weight, i.e. k= (k],...,k])rex € X(T'), satisfying
T T - : T+ _ T+ .— a+ T T— _
k] > Kk, >0 for all 7 €X and ¢ # ay,, we write d[,* = |7 == X7 k], d” =
T—| ._ |\ T T+ _ T T T— _ T T
|77 = X, 1k, and regard K77 = (K7,..., kg, ) and K77 = (K7, ,....Ky,

as a partition of d*. When there is an integer k such that k] =k for all ¢ and
T, we denote k = k.

To each x7*, there is an associated Young symmetrizer c[* € Z[&g4:+] in the
group algebra of the symmetric group G4-+ on d* symbols. If V' is any module
over a ring R, we let &4-+ act on the d*-th tensor power Ve on the right
by permuting factors. This action extends to give a right-Z[&gr+ ]-module
structure on V@4

We define the k™*-Schur functor on the category of R-modules

Sprs (V) 1= VO 7% c o4
We now assume R is a Zp-algebra or an algebraically closed field of characteris-

tic 0. Then for each k™*, S;r+ (R ) is an irreducible representation of GL,, _
with highest weight x™* ([FH91, Proposition 15.15 and Proposition 15.47]).
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Let V=@, (V""" ®V™") be an R-module, together with such a decomposi-
tion. We define the k-Schur functor, for k a positive dominant weight, by

Sk(V) = Rres (Ser+ (VPRS- (V7T))
_ (lZTEE ((V+,T)®d;+ = (Vf,'r)®d:;_)) € C V®d”,

where d,; = Zz: (di¥ +d.7) and ¢, = ®rex (cF ® ¢ 7). We call ¢, the generalized
TE
Young symmetrizer.

We now consider the case of non-positive dominant weight. If x™* is a dominant
weight, but k7 . <0 we define

T

Surs (V) 3= Sreu, oz, (V) @ det(V) oo

Similarly, if the weight x7* is dominant, but ] < 0, we define S;-:(V) :=
Skrs—(ny wr) (V) ® det(V)®n. This allows us to extend the definition of the
Schur functor S, to all dominant weights .

Throughout this paper, for each dominant weight s, we denote the irreducible
representation Sy (@rex (Zp* ® Z, 7)) of Hyz, of highest weight £ by p.. In
the following, we sometimes write (-)*~ for S,(-), and also &y, (resp. &) in
place of &y p,. (resp. &,.).

Remark 2.4.1. In [CEF*16] (see [CEF*16, Remark 3.5]) the symbol p,, is used

for the representation py := Indg%’) (=r) of Hz, of highest weight x, where B~
is the Borel subgroup containing 7" corresponding to lower triangular matrices
in Hz,. For each dominant weight x, the two representations p, and p, are
isomorphic over QQ,,, and by Frobenius reciprocity

~ Hy,
Homp, (px,px)=Homp, (mendBi” (—H)) ~Hompg- (px, k) (2 Zp).

The isomorphism between the left and right hand side is given by composi-

tion with ev,, where ev, is defined by ev,(f) = f(1) for f € Indg%”(—m). In

particular, a choice {¢f, } of a Z,-basis of Homp- (px, ) yields an injection
iy from p, into P, such that €5 =ev,oi,. (Note that ev, is denoted lcoy in
[CEF*16].)

2.4.3 PROJECTION ONTO HIGHEST WEIGHT REPRESENTATIONS

We will use the material from this section to construct and study differential
operators on p-adic automorphic forms. For comparison, we note that a dis-
cussion of differential operators on C'* automorphic forms and the description
of highest weights in that case is in [Shi00, Section 12.1] and [Shi84]; a related
(but briefer) description also is available in [Shi97, Section 23]. In this section,
we denote the standard representation @, s (Zy'™ @ Zy ") of Hz, by V.

Let B = U, {br1,-+,brn} be the standard basis of V', and B = u {b} ;,--,b} .}
be the corresponding dual basis. For each positive dominant weight «, we write

T VO p,
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for the surjection obtained from projecting onto summands and applying the
generalized Young symmetrizer.

DEFINITION 2.4.2. For each positive dominant weight «, we define ¢, to be
the Z,-basis of Homp- (px, k) such that
g'cgan : gcﬁan H H T' ® ® )®’Ii : . (2)

TeX 1=1 TeX 1=1

We have chosen the above normalization so that Remark 5.2.1 holds.

DEFINITION 2.4.3. A weight x = (k],-+-, K] )rex is called sum-symmetric if £ is
positive dominant and d* = d~ for all 7 € ¥, where d[* = 7 k] and d]” =
Z?:aﬁ +1 k1. A representation p is called sum-symmetric if it is 1somorph1c to
pr for some sum-symmetric weight . In this case we call e, = Y s dit = d,; /2

the depth of k or of the representation py.

DEFINITION 2.4.4. A weight k is called symmetric if x is sum-symmetric and
for all 7 € ¥ we have

T

. o
i =Ky, 4; forall1<i<min(a:,,a-,).

K Qg+

Remark 2.4.5. If k is sum-symmetric of depth e, then, by the Schur functor
construction, the representation p, of Hyz, of highest weight  is a quotient of
(Bres (Zp™ ®Zy77)) %%

LEMMA 2.4.6. Let k be a positive dominant weight, let k' be a sum-symmetric
weight. Then the projection Ty : V&' - p,..o factors through the map

T ® Tyt - V®dm¢’ ~ V®dm ® V®d~l > P ® Pror

Moreover, if we denote the resulting projection pi ® prr = Prwr bY T s, then

£§an ® g?an g?zfn O Tk, ks (3>
and
U ® 05, = 050 (4)

Proof. Recall the injection i, : p. = Py = Indg%p (-k) defined in Remark 2.4.1,
and note that (i.)g, is an isomorphism. Let 7y . : Px ® Pur = Prnr be the
projection obtained by f® f' ~ ff’, and define 7y x : pi ® prr = prr to be the
composition
(inn’)@i o T,wr © ((in)Q, ® (in')q,)-
Then we obtain after base change to Q, that
EH

can

® ﬂcan =@V Ol ® @Vyes Ollr = €V O v © (g ® ) = Lipy © T s

Using Equation (2) and the definition of the action of ¢,, we deduce that

KK
gcan O Mk’ © (Trl{ ® 7rl<a’) = Ecan O TMkw! -

Thus by Frobenius reciprocity my . 0 (7 ® Tpr) = Ty, and it only remains
to check that 7 ./ is defined over Z,. However, this follows from ., being
defined over Z, and the surjectivity of 7, ® 7. O
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2.5 THE IGUSA TOWER OVER THE ORDINARY LOCUS

In this section, we introduce the Igusa tower as a tower of finite étale Galois
covers of the ordinary locus of a Shimura variety. This construction is due to
Hida in [Hid04, Section 8.1] (see also [CEF*16, Section 4.1]). We recall that
our Shimura varieties have hyperspecial level at p and neat level away from p
(and that we suppressed the level from the notation).

We fix a place P of E above p and denote the residue field of Og, c Ep by k.
Abusing notation, we will still denote the base change of M to O, by M.

Let ﬂ‘”d over k be the ordinary locus of M = M ®0y, k, and M gver Og,
be the ordinary locus of M as defined in [Lanl4, Definition 3.4.1.1]. Then

—ord

M = Mo ®0y,, k. For each m > 1, the scheme Merd ®0y,, W/p™W agrees
with the locus where a lift of (a sufficiently large power of) the Hasse invariant
does not vanish. Since we assume p splits completely in K (which implies that
p splits in the reflex field E), M is nonempty, in fact it is open and dense.
We fix a connected component S°¢ of MG :=A0rd X0y, W. Equivalently,
8§94 is the ordinary locus of a fixed connected component S of Myy.

Let A% = A Jsera be the universal (ordinary) abelian variety over Sord,
Pick a W-point z of $°4, and denote by # the underlying F,-point. We can
identify the Z,-lattice L, (defined in Section 2.1) with the p-adic Tate module of
A9*d[p>=]. Choose such an identification L, ~ T},(A%"4[p>]), compatible with
the Og-action and identifying the Hermitian pairing with the Weil pairing.
Then, the kernel of the reduction map

T (AT [p]) > T (A [p™]%)

determines an Og-submodule £ c L,. Using the self-duality of L, under the
Hermitian pairing (-,-) and its compatibility with the A-Weil-pairing (-,-)x, we
can identify the dual £Y of £ with the orthogonal complement of £ inside L,,.
Note that £ decomposes as

L=@(LioL]).

In the sequel, we write
LP=@, L0 L]. (5)

We now introduce the Igusa tower over the p-adic completion of S°*4. For each
m € Zs1, we write anrd = 8O W/p™W. For each n,m € Zs1, consider the
functor

Ig, m: {Schemes/Sor!} — {Sets}
that takes an Sﬁ{d—scheme S to the set of Og-linear closed immersions
tn L ®z, ppn = As[p"],

where Ag = A% x goxa S. This functor is represented by an So*%-scheme, which
by abuse of notation we also denote by Ig,, ,,,. For each n>1, Ig,, ., is a finite
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étale and Galois cover of Sord, whose Galois group is the group of Og-linear
automorphisms of £/p™L.

For each n > 1, we define the formal scheme Ig,, := h_H)lm Ig,, ,,,- Equivalently,
we define Ig, as the formal completion along the special fiber of the scheme
representing the functor that takes a S°*d-schemes S to the set of Og-linear
closed immersions ¢y, : £ ®z ppn = Ag[p™].

Finally, we define the infinite Igusa tower Ig as Ig := lgln Ig,. Recall that in-
verse limit of projective system of formal schemes, with affine transition maps,
exists in the category of formal schemes (see [Far08, Proposition D.4.1].) Thus,
Ig exists as formal scheme, and is a pro-étale cover of the formal completion
of 8™ along its special fiber, with Galois group the group of O-linear auto-
morphisms of £, which we identify with H(Z,). For any point x¢ of the formal
completion of S° along its special fiber (e.g., 7o € S (W) or S*4(F,)), the
choice of a point = of Ig lying above z( is equivalent to the choice of an Igusa
structure of infinite level on A,,, i.e. of an Og-linear closed immersion of
Barsotti-Tate groups iy : £ ®z, fip= = Az, [p=]. In the following, we write

L £®Zp [ > Aord[poo]

for the universal Igusa structure of infinite level on A% over Ig.

2.6 p-ADIC AUTOMORPHIC FORMS

Following Hida [Hid04, Section 8.1], we define p-adic automorphic forms as
global functions on the Igusa tower (see also [CEF*16, Section 4.2]). For all
n,m € Zs1, let

Vn m = HO(Ign ,m? Olgn m)
we write Vo i 1= hm Viem, and Vi o0 i= hm Voo, m.-
Note that the space Voo w 18 endowed w1th a left action of H(Z,), f+~ g- f,
induced by the natural r1ght action of g € H(Z,) on the Igusa tower.

We call V¥V := VN(ZP) the space of p-adic automorphic forms.

The above deﬁnltlon is motivated by the existence of an embedding of the space
of p-adic automorphic forms, regarded as global sections of automorphic vector
bundles on S, into V. We briefly recall the construction ([Hid04, Section
8.1.2]) adapted to our setting.

Fixn >m >0, and x any dominant weight. Let anj[m[li] denote the x-eigenspace

of the action of torus on V,, N(Z2) We define a map

\I]fz,m : HO (Sgidﬂgﬂ) - ant[m [K]
as follows. We regard each f e H° (anrd,&g) as a function (A4,7) ~ f(A,j) €
(W) on pairs (A4,7), where A = Agrod is an abelian variety associated to a

point xg of SF d, and j is a the trivialization of WA = W gordjsord g - Using the
canonical isomorphism

~ #ord 5t
C_U_Aord/sgfd ~ AT [p"]e ® Osg{d,
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to each Igusa structure ¢ on A we associate a trivialization j, of w,. Finally,
we define W, ,,(f) € ;1 [] as the function (A,¢) = €5,,(f(A,4.)). As n,m

can
vary, with n > m, we obtain a map
U, : H° (Sord,g,.i) - VN[k], (6)

where V¥ [k] denotes the k-eigenspace of the action of the torus on V.
We define

Vi@ HS,E) - VY (7)
keX (T)+

to be the linear map whose restriction to H%(S'4,&,) is ¥,.

THEOREM 2.6.1. [Hid0/, Prop. 8.2 & Thm. 8.3] The map ¥, is injective, and
after inverting p, the image of ¥

1
vl @ HS™M.E) [—] vV
ReX(T)+, p

is p-adically dense in VN,

Proof. Proposition 8.2 and Theorem 8.3 in [Hid04] are conditional on the as-
sumption (given in [Hid04, Section 8.1.4]) that the following equality holds for
all k € X(T'), and all integers m > 1:

HO(Sord,gn)/pmHO(Sord7gn) — HO(szd,g,i).

Here, we prove that such equations hold in our settings.

Although they have not been introduced in this paper, Lan has constructed
partial toroidal and minimal compactifications Sord' and Sord™™ of gord (see
[Lanl4, Theorems 5.2.1.1 & 6.2.1.1]) as well as a canonical extension E:*" of
&, to the partial toroidal compactifications (see [Lanl4, Definition 8.3.3.1]).

Additionally, by [Lanl4, Proposition 6.3.2.4], for every m > 1, we have that
Sordmln

by [Lanl4, Proposition 5.2.3.18]) of £2*" to Sord™™ are quasi-coherent, we can
conclude that

HO (Sordtor, ggan) [p™ H° (Sordtor’ aian) - O (Sord“’f sy W/p™W, ggan) .

xy W/p™W is affine. Because the pushforwards (under a proper map

We could then conclude the theorem if we knew that Koecher’s Principle ap-
plied. By [Lanl6, Remark 10.2], the analogue of [Lan16, Theorem 2.3] holds
for the partial compactifications of ordinary loci and so we deduce

HO (Sordm1r

’(c/ﬁan) — HO(Sord’gn)-

O
The above statement implies that the p-adic closure of the space of integral
weight p-adic automorphic forms is the space of all p-adic automorphic forms.
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2.7 SERRE-TATE THEORY FOR UNITARY SHIMURA VARIETIES

We briefly recall the main results in [CEF*16].

2.7.1 LOCAL COORDINATES AT ORDINARY POINTS

For any zp € SY(W), we write Zp € S4(F,) for its reduction modulo p,

and denote by Sordgo the formal completion of S x Fp at Tg. We also write
A

8% = Spf(Rgord 4, ). The ring Rgora ,, is a complete local ring over W, with
residue field F,,, and we denote by mz, its maximal ideal.

Let Ag = A%gd denote the abelian variety over Fp attached to the point Zg, and
write T, Ao for the physical Tate module of Ay. It is a free Ok ®7 Z,-module,
which decomposes as

TpAo = @, Ty, Ao @ @], Type Ao,

where the decomposition is induced from the identification Ox ® Z, =
zT=1 (OK‘JBi @ OK‘IK;?)'

THEOREM 2.7.1. ([CEF* 16, Proposition 5.8]) Let xo € S (W). There exists
a canonical isomorphism of formal schemes

Sord/\

To

;@HomZP(TmiAotx)qung,(@m), T = Q.
i=1

In the following, we identify the space @;_; Homgz, (T, Ao ® Tye Ao, Gyn) with

the subspace of Homgz, (7,40 ® T, Ao, Gm) comnsisting of all symmetric (Ox ®7
Zy, c)-hermitian forms, and write

q= qA/Sordgo : TpAo ® TpAO - Gm (8)

for the universal symmetric (Ox ®z Zp, ¢)-hermitian form over Sordgo. This
implies that q satisfies q(Q,P) = q(P,Q) and q(kQ,P) = q(Q,k°P), for all
P,Q €T,Ap and k € Og. In particular, for any P € Ty, Ao, q(Q, P) = 0 unless
Q € T‘anO'

For any point z € Ig(W) above zg, we write Z for its reduction modulo p, and
tz for the Igusa structure of infinite level on Ay attached to the point Z. The
map (g : L ® pipe = Ao[p*>] induces an isomorphism of Ok ® Zyp-modules

Ty(ez) : TpAo ~ L7 9)

We denote by
te: @TgpiAo ®Tq3§A0 5 (£2)v,
i=1
the Z,-linear isomorphism induced by the restriction of T},(zz")®?.
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PROPOSITION 2.7.2. ([CEF* 16, Proposition 5.10]) Let xo € S (W). FEach
point x € Ig(W) above xo defines an isomorphism of formal schemes B, :

S 5 Gy e L2,
Remark 2.7.3. Let t denote the canonical formal parameter on @m, we write
B2 W © (£2)" 5 Rigora 2,

for the isomorphism of local rings induced by 3, where W[[t]]® (£?)Y denotes
the complete ring corresponding to the formal scheme G,, ® £2. A choice of a
Zy-basis € of (L£?)Y yields the isomorphism

B¢ WI[tll € €]] > Risora

which satisfies the equality 32 (#;) = q(¢;1(1)) - 1 e mg,, for all [ € €.

2.7.2 THE t-EXPANSION PRINCIPLE

Let = ¢ Ig(W). Recall that since Ig is a pro-finite étale cover of S, the
natural projection j : Ig - S°™¢ induces an isomorphism between the formal
completion of Ig at = and Sordgo, for 29 = j(x) € S®*Y(W). In particular, the
localization map at x induces a map loc, : Veo 0o = Rgord z4-

For any f e VN, the t-expansion (or Serre-Tate expansion) of f is defined as

Jo(t) = 827 (o (£)) e W[t] @ (£7)".
Recall that, for all g € H(Z,), we have fyq(t) = (id® g ) (g- f).(t) ((CEF*16,
Proposition 5.13]).
THEOREM 2.7.4. ([CEF* 16, Theorem 5.14, Proposition 5.5, Corollary 5.16])
1. For any weight k, and f € VN[k]: fo(t) =0 if and only if f = 0.

2. For any f € VN, f =0 if and only if f.(t) = 0 for at least one CM
point x in each connected component of the Igusa tower. In particular,
for a choice of a CM point x, f =0 if and only if (g- f)=(t) =0 (equiv.
fzo(t) =0) for all g e T(Zy).

3. Let meN. Let f,f" € VN be two p-adic automorphic forms of weight &
and k', respectively. Then f = f'modp™ if and only if for all g € T(Z,)

1(9) f2(t) = &' (g) f2(t) mod p™.
3 DIFFERENTIAL OPERATORS

In this section, we introduce differential operators similar to the ones in [Eis09,
Eis12]. Unlike [Eis09, Eis12] (which only explicitly handles unitary groups
whose signature is of the form (as,a-) with a, = a- at each archimedean
place), we place no restrictions on the signature of the unitary groups with
which we work.
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3.1 THE GAUSS—MANIN CONNECTION

We briefly review key features of the Gauss—Manin connection, which was first
introduced by Y. Manin in [Man58] and later extended and studied by N.
Katz and T. Oda [Kat70, KO68]. A detailed summary of the Gauss—Manin
connection also appears in [Eisl12, Section 3.1]. Below, we mostly follow the
approaches of [KO68, Section 2] and [Eis12, Section 3.1]. Throughout this
section, let S be a smooth scheme over a scheme T', and let 7 : X - S be a
smooth proper morphism of schemes. Define HJ,(X/S) to be the relative de
Rham sheaf in the complex Hj,(X/S), i.e. the quasi-coherent sheaf of graded
algebras on S given by

HIL(X/8) =Rim, (Q%s),
here R77, denotes the g-th hyper-derived functor of m,, and Q% /s denotes the
complex A°® Qﬁ( /s on X whose differentials are induced by the canonical Kahler

differential Ox /s — Qﬁ( /5" The de Rham complex (Q;( /T d) admits a canonical
filtration

Fil' ( 3(/T) = Im (W*Qg‘/T ®ox Q;(_/lT - QB{/T)v
with associated graded objects
Gr' (% r) 2 7 Qg0 ®0y Vs
(this follows from the exactness of the sequence 0 — ﬂ'*QlS/T - Qﬁ(/T - Qﬁ(/s -
0 for m smooth). Using the above filtration, one obtains a spectral sequence
(EP7) converging to qu(QB(/T), whose first page is

EPT = RP*r, (GrP) = Qg/T ®os Hip (X/S) (10)

and such that the Gauss—Manin connection V is the map d5'? : EYY — 9.
Using Equation (10), we regard V as a map

V:H](X]S) > Hip (X/S) @05 Q-

It is an integrable connection. In this paper, we shall be interested solely in
the case of ¢ = 1.

3.2 THE KODAIRA—SPENCER MORPHISM

We now briefly review the construction of the Kodaira—Spencer morphism,
focusing on the details we need for this paper. More detailed treatments than
we shall need for the present paper are available in [Eis12, Section 3.2}, [Lanl13,
Sections 2.1.6-7 & 2.3.5], and [CF90, Eis12]. Like in Section 3.1, we let S be
a smooth scheme over a scheme T', and we let 7: A - S be a smooth proper
morphism of schemes, and we require A to be an abelian scheme together with
a polarization A : A - AY. We define! Wyys = 77,,9114/5. The Kodaira—Spencer

'In [Lan13, Lanl4], Lan gives an equivalent definition for wy s as e*ﬂh/s, the pullback

via the identity section of the sheaf of relative differentials on A.
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morphism is a morphism of sheaves
KS:was ®wavys > Qgyr,
defined as follows. Consider the exact sequence
0—wy g = Hip(X/S) > H'(X,0x) =0 (11)

obtained by taking the first hypercohomology of the exact squence 0 — Q;?/ls -
0% /s~ Ox — 0 where we view Ox as a complex concentrated in degree 0. By
identifying H'(A4,04) 2 ng/s, we obtain:

OHQA/SHHle(A/S)—»QXV/S%O. (12)

The Kodaira—Spencer morphism KS is defined to be the composition of mor-
phisms:

(2] (3]
Hyp (A]S) ® wyvys == Hyp (A]S) ® Qgyp ® W avys = Whuys ® Lgyr ®Wav/s

[HJ ¢[4]

1
Wapg®Wyvyg ==~ -~ - - - - -~ - - - """ -~~~ > Qg

where [1] is the canonical inclusion from (12) tensored with the identity
map on wyvg, [2] is V®id [3] is the surjection in (12) tensored with
idgg/T ®id
ldQ}g/T.
By identifying w 4/g with w 4v,g via the polarization A : A — AV, we regard KS
as a morphism

Wavys?

Wav)s? and [4] is the pairing ng/s ® Wyv/g Ogs tensored with

KS: w5 ®05 ways > Lsyr- (13)

We now assume S is a scheme equipped with an étale morphism S — S$F4
where T is a scheme over W. We write A for the corresponding abelian scheme
over S; the action of Ok on A induces a decomposition

wass = D (Wiys,r ®Was,) (14)

TEX

defined as in (1). In the following, we write

whys = Orex (Whys,r ® Ways,r) - (15)

PROPOSITION 3.2.1. ([Lanlj, Proposition 3.4.8.3]) For any étale morphism
S — 8 over T, KS induces an isomorphism

ks:gi/s;ﬂéﬁ. (16)
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3.3 DEFINITIONS OF DIFFERENTIAL OPERATORS

We now define differential operators. The construction is the same as the one
in [Eis12, Sections 7-9], which follows the construction in [Kat78, Chapter II].
Unlike in [Eis09, Eis12], we place no conditions on the signature of the unitary
groups with which we work; but the construction is identical. The place the
generalization of the signature is apparent is in the explicit description of the
operators in terms of coordinates in Section 5.1.

Let A, S, and T/W be as in Proposition 3.2.1. We identify le/T with

Drex (gj‘/SJ ®ﬂ,_4/s,¢) via the isomorphism (16), and @ ex (@;1/5,7 ® @,_4/5,7)

with its image in Hj, (A/S)®2 via the inclusion (11). Applying Leibniz’s rule
(i.e. the product rule) together with the Gauss—-Manin connection V, we obtain
an operator

Ved: Hyp (A1S)®" — Hip (45)%"2)

for all positive integers d.
The Ok ® W-structure on A induces a decomposition

Hyp (A]S) = D, ex (Hip (A/S) @ Hyjf (A[S)),
such that w3 ¢ c H37 (AS) and V(HJ;, (AS)) € Hyf (A]S)®0, Qg/T, for
all 7 € ¥ ([Eis12, Equations (3.3)-(3.4)]). Thus, the image of Vg4 is contained
in H}p (A)9)%" © (@,ex (HS7 (A]S) ® HyiT (A]S))).
For all positive integers d and e, we define Vg, := Vg(ds2(e-1)) © Vo(d+2(e-2)) ©
e O v@d;

Ve Hin(A19)%" > HYp (A)9)* @ (@E (H;i7 (AlS)® HyjT (A/S))) .

ProrosIiTION 3.3.1. For each positive integer e and each positive dominant
weight K, the map Vg where d = d,; induces a map

Ve £S5, (Hin (A/5)) > S, <H;R<A/s>>®(ea (H37 (A1) @ <A/s>>) |

TEX

Proof. Note that by definition the operator Vgq is equivariant for the action
of &4 (where we consider the natural action on the d-th tensor power and
the action on the d + 2-th tensor power induced by the standard inclusion
Saq— S4i2). Le.,

Ved ((:)0) = (Ved(-)) o for all o € &y,

for all positive integers d. It follows from the definition that the same holds
for the operators Vg, for all positive integers d and e. Thus, in particular

Ve, ([ ¢x) = (Veaf) -

for all fe H)p (A/S)®d, and ¢, the generalized Young symmetrizer of k. [
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For a locally free sheaf of modules F, we sometimes write (F)” (resp. V) in
place S, (F) (resp. V&), for p = p,; the irreducible representation with highest
weight k.
Note that v, := V,l) decomposes a sum over T € ¥ of maps

Vo(7): (Hig (A]9))" - (Hin (A]S))" © (Hyi (A/S)®H; (A]S)).

For each nonnegative integer e, we define V{(7) to be the composition of V(1)
with itself e times (taking into account that the subscript changes with each
iteration).

3.3.1 (C* DIFFERENTIAL OPERATORS

The construction of the C* differential operators in this section is similar to
the one in [Kat78, Section 2.3] and [Eis12, Section 8]. As explained in [Eis12,
Section 8.3], these differential operators are the Maass—Shimura operators dis-
cussed in [Shi00, Section 12]. (The explanation in [Eis12] immediately extends
to all signatures.)
Let Hip (C®) := Hip (Auniv/M) (C®), and w (C*) := WA/t (CF). By
Equation (14), we have a decomposition

g(Cw)=@Z(£i(C°°)®£¥(C°°)) (17)

TE

and similarly for Hj,(C*).
The Hodge decomposition Hjp (C*) =w (C*®)@w (C=) over M (C™) (follow-
ing the convention in [Kat78, Section 1.8], the bar denotes complex conjugation)
induces decompositions

Hyi (C%) =w; (C7) &wE (C),
for all 7 € ¥, and the associated projections H3; (C™) - w*(C™) induce
projections

@p(C%) : Hyp (CF) > w(C™)",
for all irreducible representations p as above.
As in [Kat78, (1.8.6)] and [Eis12, Section 8], V(w(C>)) € w(C*=) ® Qpq(c=)/c-
We define

Dp(C%):w(C7)" = w(C™)’ @ P ren (wr(C7) @w (CT))

to be the restriction of (w,(C*) ®id) o V,, to w(C>)".

For each irreducible representation Z of H that is sum-symmetric of some depth
e, let mz be the projection of (B,ex; (W (C®) ®w;(C™)))" onto w(C*)Z de-
fined as in Section 2.4.3 (i.e. by projection onto summands and applying the
generalized Young symmetrizer cz).

We define

DZ(C) = (id®mz) 0 DY(C®) : w(C®)" = w(C®)’ ©u(C)7.
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As explained at the end of [Eis12, Section 8.1], the operators DPZ(C‘X’) canon-
ically induce operators, which we also denote by Dpz ,

DZ(C®):E£,(C%) > £,z (C™).

(Many additional details of these operators, explicitly for unitary groups of
signature (n,n) but which extend by similar arguments to the case of arbitrary
signature, which we do not need in the present paper, are discussed in [Eis12,
Section 8].)

Let x’ be a sum-symmetric weight of depth e, and x be a positive dominant
weight. Take p = p, and Z = p,s. By abuse of notation, we still denote by 7, s
the projection €,z — &,_,, induced by the projection 7y ./ : pr ® prr = Prr
defined in Lemma 2.4.6. We define

DE(C®) = My 0 DE(C) : £o(C®) = Er (C).

3.3.2 p-ADIC DIFFERENTIAL OPERATORS ON VECTOR-VALUED AUTOMOR-
PHIC FORMS

We now consider the pullback of the universal abelian scheme A°"4/S°™ over
Ig. In analogue with the Hodge decomposition of H},(C*), there is a decom-
position over Ig

Hyp(A”/1g) = w gorajry © U,

where U is Dwork’s unit root submodule, introduced in [Kat73]. By [Kat78,
Theorem (1.11.27)] and [Eis12, Proposition V.8], V(U) cU ® Qllg/w.
As before, for each irreducible representation p as above, we define

@ (A" 1g) + Hip(A™/18)" > Wl 1,

to be the projection induced by Dwork’s unit root decomposition after applying
the Schur functor ()”. Note that g;md /i is identified with the pullback of &,
over Ig via the definition of Schur functors.

Analogously to how we defined the C* differential operators Dj (C*),
Dpz (C*), and DF (C*) in Section 3.3.1, replacing w(C*) by U, we define
p-adic differential operators D, (A°rd/lIg), Df(Aord/Ig), and D* (A°/1g), for
all e, Z, k, k', and p as above.

In the sequel, for each sum-symmetric weight ' of depth e, and each positive
dominant weight k, we write

DF = DY (A Ig) : £ > .

4  LOCALIZATION AT AN ORDINARY POINT

The ultimate goal of this section is to describe the action of the differential oper-
ators on the t-expansions of p-adic automorphic forms. We start by describing
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the constructions of Section 3 in terms of Serre-Tate local parameters, now
taking S = S°™ the ordinary locus of a connected component S of the Shimura
variety M, and A/S the universal abelian scheme A = A°™ (as defined in the
beginning of Section 2.5).

Throughout the section, we fix a point x € Ig(W) lying above zg € S (W),
and denote by Z, % their reduction modulo p. In the following, we write R for

the complete local ring Rgora ,,, corresponding to Sordgo introduced in Section

2.7.1, and mg = mgz, for its maximal ideal. We denote by Aggd the universal
formal deformation of the abelian variety with additional structures Ag = Az,
i.e. A% is the base change of A°™ from S to R and has special fiber Ay.

By abuse of notation, we also abbreviate Aggd by A.

4.1 THE GAUSS—-MANIN CONNECTION

In [Kat81] Katz explicitly describes the Gauss—Manin connection and Dwork’s
unit root submodule in terms of the Serre-Tate coordinates. We recall his
results.

Let # be the formal relative de Rham cohomology bundle, # = Rz, (Y /R).

We write ® for the R-semilinear action of Frobenius on 7:1, and
0> war _’7'2_’£XV/R =0 (18)

for the (localized) Hodge exact sequence over R (where we identified H'(A4,04)
with wy r as in Equation (12)).

PROPOSITION 4.1.1. [Kat81, Cor. 4.2.2] Notation and assumptions are the
same as above.

1. There is a canonical Frobenius-equivariant isomorphism
a:Tp(Ag) @R ~ wy g

where the R-semilinear action of Frobenius on the left hand side is defined
by extending multiplication by p on T,(Ay).

2. There is a canonical Frobenius-equivariant isomorphism
a:Hom(T, A0, Zp) ® R = Wiv/r

where the R-semilinear action of Frobenius on the left hand side is defined
by extending the identity on Hom(T,A,Z,) ® R.

3. The surjection X
H = whv,r = Hom(T, A0, Zp) ® R

induces an isomorphism between the Z,-submodule L, 0f7:L where ® acts
trivially and Hom(Tp Ao, Zy). The inverse of such an isomorphism defines

a canonical splitting of the Hodge exact sequence over R, v :c_uXV/R - H,

i.e. there is a canonical R-linear decomposition H = War ® (Ly ®z, R).

DOCUMENTA MATHEMATICA 23 (2018) 445-495



470 E. EiscHEN, J. FINTZEN, E. MANTOVAN, I. VARMA

Remark 4.1.2. The submodule L; ®z, R agrees with the base change U, ~of
Dwork’s unit root submodule U to R introduced in Section 3.3.2. In the fol-
lowing, we write Uy ¢ # for the the submodule L; ®z, R c # and denote by
w:H > Wa/R the projection modulo U.

Remark 4.1.3. In our setting, the action of Ok on the abelian scheme A/R
induces natural structures of Ox-modules on T, (Ag), Hom(T, Ao, Zy), wy g
and wY,,p- It follows from the construction that the isomorphisms o and a
are Og-linear.

By abuse of notation we will still denote by V the Gauss—Manin connection on
HIR, o
V:H%H@RQ%/W.

In the following proposition, we denote by ¢ the universal bilinear form on R
introduced in Equation (8), and by T,(A) the isomorphism of physical Tate
modules, T,A¢ 2 T,(Ay), induced by the polarization A. Finally, for any
Zp-basis T of T,Aq, we denote by {dg|@ € T} the associated dual basis of
Hom(T,Ao,Zy).

PROPOSITION 4.1.4. ([Kat81, Thm. 4.3.1]) The notation is the same as in
Proposition 4.1.1.

1. For each 6 € Hom(TpAo,Zy), the differential ns := v(a(d)) € L1 satisfies
Vns = 0.

2. For each e € Tj,(Ay), the differentials we = a(e) € w 4/ satisfy
Vwe = Z 775@ ® leg q(Qan()‘)_l(e))a
Qe
for any Zy-basis T of T, Ao.
Note that Part (1) implies that V(Ug) c Ux ®r Q%z/w’ as stated in Section

3.3.2. Also, Part (2) implies that for each e € T),( Ay ), the differentials w, satisfy
Vwe € Ugp cH, ie., u(Vwe) =0.

4.2 THE KODAIRA—SPENCER MORPHISM

In this section, we explicitly describe the Kodaira—Spencer morphism in terms
of the Serre-Tate coordinates. By abuse of notation we will still denote by KS
the localization at the point xg € S®*4(W) of the Kodaira—Spencer morphism,
i.e.

KS TWaAR OR WA R = Q%/W.
PROPOSITION 4.2.1. For all P € T, Ag, let wp = a(T,(A)(P)). Then, for all
P,P' €T,Ay and any Z,-basis T of T, Ao,

KS(wpewp) = . (Q,P")rdlogq(Q, P),
QeT

where (, ) denotes the A\-Weil pairing on T,A,.
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Proof. By definition, for any wy,ws € Wa/R
KS(w1®ws) = (7 ®id) (Vw1 ), A(w2)) € Qrw,

where 7 : H — c_uiv/R is the projection in the Hodge exact sequence, A :
WaAR Sw Av/R 18 the isomorphism induced by the polarization A on A, and
(,) : (L_UXV/R®Q}4/R) X Wy R 9114/72 is the map obtained by extending the
natural pairing (, ) : (‘—UXV/R X w4 v/r ~ R by the identity map on 9114/7%'

Let us fix a basis T of T}, Ag; for all P € T, we write np =15, =v(a(dp)). We
deduce from the definitions and Proposition 4.1.4 that for all P,Q € ¥,

(W(nQ)’)‘(wP» = (QaP)/\a and Vwp = QZ(IUQ ®d10gq(QaP)'

Thus, for all P, P’ € T, we have
KS(wpewpr) = (7 ®id)V(wp), A(wpr))} =
=( > m(nQ), M(we))dloga(Q, P) = ) (Q, P')rdlogq(Q, P).

Qe% Qex
O

Remark 4.2.2. Theorem 2.7.1 implies that for any P € Tip, Ao, q(Q,P) = 0
unless () € Type Ag. Thus, the morphism KS factors via the quotient c_ui R =
Drex (g;/RJ ®gj4/R7T), and Proposition 3.2.1 implies that the induced map
is an isomorphism.

4.3 'THE DIFFERENTIAL OPERATORS

Finally, in this section we explicitly describe the differential operators in terms
of the Serre-Tate coordinates. By abuse of notation, we will still denote by D,
(resp. Dj) the localization at zq of the differential operators D, (resp. Dj)
introduced in Section 3.3, i.e. its base change to R.
We briefly recall the constructions. Let w : H->w AR denote the projection
modulo Uy, (as defined in Remark 4.1.2). We define

D:=(u®id)o V|£A/R ‘W~ Wasr OR Qs (19)

where id denotes the identity map on Q%z W
By abuse of notation, we still denote by ks™ : QlR/W 5 %24/71 c Q%R the local-
ization of the inverse of the Kodaira—Spencer isomorphism defined in Proposi-

tion 3.2.1.
For all positive integers d and e, we write

(0 ®d Y ®d 1
Dgg = (u®" ®id) o V@d@gtjn TWyR T WaR OR Qryw>
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Dgqy = (idﬁ‘fn ®ks™') 0 Dgg and Dgy = Dgg.pey 00 Dgy.
Let &£, 2, denote the localization of £,, i.e. the base change to R. For any irre-
ducible representation p = p,, and positive integer e, the differential operator

2
D5 Epao = Epwy ®R @A/R)®e

is induced by the restrictions of Dg,; to gi /R In the following, we also write
1

D, =D,.

4.3.1 LOCAL DESCRIPTION

We fix a point x € Ig(W) lying above x, and define o, to be the Ok ®7R-linear
isomorphism

ag = o (Tp(uy)' ®id): L&z, R > T, A5 ®2, R = wan,

where T),(ty) : TpAo — LY is defined as in (9) and o : T,,(A4g) ®z, R = war
as in Proposition 4.1.1(1), and we identify T,,(Agy) with (T,A40)" via the Weil
pairing.

By linearity, we deduce that the isomorphism «, induces isomorphisms

+ . pt ~ + - .- ~ -
Oy r i L7282, R>wyp,and oy - L2®2, R >WwWyr
for each 7€ X. We write

2 + ~N. p2 ~ 9
Qy = @(az,r ® am,'r) L ®Zp R~ QA/R’
)

(recall £L? = @, cx(LE ®z, L7)), and
ks, :=kso 04926 L2 ®z, R 5 Q'}z/w-

For any irreducible representation p, the map «, also induces an O ®7R-linear
isomorphism
al L ®z, R = &Ep )

via the identification of £, 2, with w’, . defined by .

Finally, for all e € N, we define ¢ := o ® (a2)®°,
al®: L@y, (L)% @z, R = (L @2, R)®R (L)% ®2,R) > &) 2, @R (whr) "
Let d: R - an/w denote the universal W-derivation on R. We define

Si=kslod:R->LZ®R.

x

For any integer e € N, we write

2°:= (id(g2yece-n) ®E) 00 E: R - (L)% @z, R.

P
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PROPOSITION 4.3.1. For any irreducible representation p, and any integer e €
N,

(a2 to Dy oal =id®=: L” ®7, R > L ®, (L)% &z, R,

Proof. Proposition 4.1.4 implies (a®id)™* o Do« = id ®d, with D defined as in
(19). We deduce that

(o ®id)_1 oDoa,=id®d: L&z, R > L®z, Q}%/W.
Therefore, for any representation p, we have
(a?®id) " oD,0al =ideks ' od: L° ®z, R > L’ ®z, QZ/R,

and thus also (a2')™' o D,0a” =id ®Z.
The general case, for e > 2, follows from the case e = 1. O

4.3.2 EXPLICIT DESCRIPTION OF Z IN TERMS OF SERRE-TATE COORDI-
NATES

We conclude this section with an explicit description of the map = in terms of
Serre-Tate coordinates. Let B be a Z,-basis of £ such that B = U s (BFUB;)
where, for all 7 € ¥, BF = {b,1,...,b;4,.} is a Zy-basis of LI and B =
{bra,,+1,...,b75} is a Z,-basis of L such that BF and BY. are dual to each
other under the Hermitian pairing on £. We denote by € = U &, (resp.
¢V, €, = Ex . x € e times, and €Y = €Y x -+ x € e times) the associated
bases of £? = @,x L ® L (vesp. (L£?)Y, (£2)®°, and ((£2)Y)®¢ = ((L?)®°)Y).
Explicitly,
¢, :{liij =b;;®b,;:0<i<a,, <j<n}

Note that the pairing on £ induces a canonical isomorphism £2 5 (£2)Y, which
identifies € with &Y. In the following, by abuse of notation we write [ ~ [, for
both the map € - &Y and its inverse.

Let B gv : W[[t]l € €7]] 5 R denote the Serre-Tate isomorphism associated
with the choice of z and &V, as defined in Remark 2.7.3. Recall that, for all
le €, we have 37 g () = q(t; (1)) - 1, with t, = T}, (1,")®2.

PROPOSITION 4.3.2. The notation is the same as above. For all f € R and
ke @&, we have

Brev (k@id)(E(£))) = (1 + )k Bi v (f) e W[[till € €]],

9

Br denotes the partial derivation with respect to the variable tj.

where O, :=

Proof. From the definition of = follows that it suffices to prove the equalities
B (k@id)(E(B; e (1)) = (1+11)du
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where d; j denotes the Kronecker symbol (i.e. d;; = 1 if | = k, and 0 otherwise),
for all k,l € €. We have (using Proposition 4.2.1)

E(Br e (1) = (a2) ks d(a(t;' (1)) ~ 1) = (a3) ks (da(t31 (1)) =

= (a2) ks~ (a8 () dloga(t7' (1)) = I @ (£ (1)),

which implies

Brev(k®id)(E(6; v (1))

Brev(koid) (1Y ®q(t;' (1))

Barev (Bura(tz (1))
(1 + tl)él,k.

5 MAIN RESULTS ON p-ADIC DIFFERENTIAL OPERATORS

In this section, we construct p-adic differential operators on Hida’s space V¥ of
p-adic automorphic forms by interpolating the differential operators defined in
Section 3. First, using the t-expansion principle and Theorem 2.6.1, we prove
that the p-adic differential operators on the space of classical automorphic form
extend uniquely to all of V¥V (Theorem 5.1.3). Secondly, we prove that p-adic
differential operators of congruent weights are congruent (Theorem 5.2.6). As
a corollary, we establish the existence of p-adic differential operators of p-adic
weights interpolating those of classical weights (Corollary 5.2.8).

5.1 p-ADIC DIFFERENTIAL OPERATORS OF CLASSICAL WEIGHTS

In this section we prove that the differential operators

Dy : &

K P

- &

Prton

(where x' is a positive dominant weight and  is a sum-symmetric weight)
induce differential operators ©X on the space of p-adic automorphic forms V=,
satisfying the property ©X (VN[x']) c VN[x' - x] for all p-adic weights x’.

In the following, we write &, (resp. L%, of, ...) in place of &, (resp. L=,

afs, ...). By abuse of notation, we still write D, in place of the map on global
sections

D:,(Sord) . HO(Sord’EKI) N HO(Sord, gn’.,g)-
For any weight x', we write ¥,» : H*(S',£) = VN[x'] ¢ V as in (6). By
definition, the localization of ¥, at the point = € Ig(W) agrees with the map
(45 @id) o () Epr gy = LT ®7, R > R.

can

where (% i LR - 7y, is defined as in Definition 2.4.2, and id denotes the

can

identity of R.
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By abuse of notation, for any sum-symmetric weight x of depth e, we still
denote by ~
/5. (£2)®e N Zp

can

the map induced by o5 s LB2% Z, as defined in Definition 2.4.2 (recall

can
that (£%)®¢ is a direct summand of £%*°, see also Remark 2.4.5). We write
05, ®id: (L£%)®° ®z, R — R for the associated R-linear map.

DEFINITION 5.1.1. For any positive integer e € N, and any sum-symmetric
weight k of depth e, we define

0" = (E’gan ®id)oZ°: R — (£2)®e ®z, R = R.

We call 0% the k-differential operator on Serre—Tate expansions.

We fix a point = € Ig(W), and write loc, : V¥ — R for the localization map at
x as introduced in Section 2.7.2.

LEMMA 5.1.2. For any weights k,k', where k' is positive dominant and K is
sum-symmetric, and for all f € HO(S°, &), we have

0" (locg (Wi (f))) =locy (Ve (D (f))-

Proof. Let my ;¢ L ® L5 > L5 be defined as in Lemma 2.4.6. By Equation
(3) we have 0% @05 =05 omy . L% ® L - L - R, and the lemma

can can can

then follows from Proposition 4.3.1. O

THEOREM 5.1.3. For each sum-symmetric weight k, there exists a unique op-
erator

er:yN LN

such that ©% oW :=Wo DF,.
The p-adic k-differential operator ©F satisfies the properties:

1. for all f e VN: loc, 0 ©F = 6% oloc,,
2. for all weights r': ©%(VN[k']) c VN[K' - k].

Proof. Using the fact that ¥ is an injection, we first define ©" on the image of
U in V by

O"(f) = o Dl o UL(f)
for each f € im(¥,) for all positive dominant weights «'. Since
1
vl @ HS™E) [—] vy
p

reX(T)+,
K positive
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is dense in V¥, it is clear that if ©F exists, then it is unique. In order to
prove that indeed ©% extends to all of V¥, it is sufficient to check that if
f1, f2,... € Im(¥) converge to an element f € V¥, then ©%(f1),0%(f2),...
converge in V¥ to ©%(f) e V.

By the Serre-Tate expansion principle (Theorem 2.7.4), one can check conver-
gence after passing to t-expansions, in which case the statement follows from
Lemma 5.1.2. Properties (1) and (2) follow immediately from the construc-
tion. O

Remark 5.1.4. The operators ©" play a role analogous to the role played by
Ramanujan’s theta operator in the theory of modular forms and Katz’s theta
operator in the theory of Hilbert modular forms (see [Kat78, Remark (2.6.28)]).

5.2  p-ADIC DIFFERENTIAL OPERATORS OF p-ADIC WEIGHTS

In this section we establish congruence relations for the differential operators
OF as k varies. As an application we deduce the existence of p-adic differen-
tial operators ©X for p-adic characters y, interpolating operators of classical
weights.

We fix a Z,-basis BY = u ({b) 1,...,67 . Ju{bl, .4,...,07,}) of LY as in

Section 4.3.2, and write €¥ (resp. €Y) for the associated basis of (£2)" (resp.
((£2)%4)").

Remark 5.2.1. For any sum-symmetric weight « = (K], k), Equation (2),
ie.

= TITIG) ™ @ ®(6Y.)° e, (20)

TeX 1=1 TeX1=1

implies that £7

can

[
with coefficients in {1}, for e= Y. Y ] the depth of k.
rex i=1

Forall [ = (l1,...,l.) € €/, we define a,;; € {0,+1} such that £, = Yjcey ani L

is a linear combination of elements of the basis &) of ((£?)¥)®¢

We choose a point z € Ig(W), and write 87 ¢ : W[[t|l € €"]] 5 R for the
Serre-Tate isomorphism at the point z, written with respect to the Z,-basis
&Y of (L?)V.

LEMMA 5.2.2. The notation is the same as above. For any sum-symmetric
weight k of depth e, and for all f € R, we have ﬁ;,’év(e“(f)) is equal to

> a1 (1+11)0;, (- (L4100, (1 +6,)0, (Bree(f))) )

1=(l1,....lc )€€y
Proof. The equality follows from the definitions and Proposition 4.3.2. O
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5.2.1 CONGRUENCES AND ACTIONS OF p-ADIC DIFFERENTIAL OPERATORS

We now prove a lemma describing properties of certain differential operators #¢
that are closely related to those appearing in the right-hand side of the equality
in Lemma 5.2.2. For each [ = (I1,...,l.) € €/, we define

oL W[[tille €¥]] - W[[ti]l € €"]]
ﬂ (=g (1+tle)ale(...(1+tl2)8lz((1+tll)811(ﬂ))...).

For convenience, we first introduce some more notation. For all [ ; € € as in
;
Section 4.3.2, we define

07 Wiltll € €)) > Wl e €] o (Lot )t (21

7

Note that these operators commute, i.e. for I7; and lZ—T,:j, e &Y 0] ;o0

’ ilﬁj, -
0k o 007 ;- )

For all d= (df,j)l;f@v € Zlfo ‘, we define ¢ as the composition of the d; ;-th
iterates of 67 ; for all [T, € € (we take (9%)0 =id). By commutativity, the
order does not matter. For each [ € &, we define d(I) to be the tuple of
non-negative integers such that

940 = gL, (22)

Remark 5.2.3. Let R denote the subring of polynomials in R, i.e. R:= W[¢]|l €
V] c R = W[[t;|l € €']]. The differential operators < on R are continuous for
the (#|l € €¥)-adic topology on R, and preserve the subring R, i.e. 04(R) c R.
In particular, congruences among the operators 64 on R can be detected by
studying congruences among their restrictions to R.

Furthermore, for all polynomials f(t) € R, if we write f(t) = ¥, ca(1 + 1)<,
vx}flhere (L+)* =TI, II,; (1 + tl;j)”‘;i for a collection of numbers a7 ; € Zso,
then

(64)(1) = 2 dala)ca(1+1)%, (23)

where ¢4 is a polynomial (in the numbers a7 ;) dependent on d. (We set
a:= (o)., with o = (a;z)) Therefore, congruences among the operators
62 on R can be detected by studying congruences among the polynomials ®d-

(Note that Formula (23) does not extend to R as in general an element of R
cannot be written as a power series in (1 +1t).)

PROPOSITION 5.2.4. Let k,k" be two symmetric weights (as in Definition 2.4.4)
and let m > 1 be an integer. Assume

k=K modp™(p-1)

n 2. Additionally, if
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(i) mln(n Kl KT =K' T.)>m forall TeX and 1<i<ay, for which
KT =KL, # K] - “’;17 and
(i1) mln(nah "er) >m for all T € X for which K, # k',

then 6% = 6% mod p™*L.

Proof. By Lemma 5.2.2 and Equation (22), we obtain

Bm e 0 gr OBI e = Z N ed(l) (24)
le€y

We assume without loss of generality that

m
r_ T_T T.T p"(p-1)
K =K (€1€a+7+1€2€a+,+2 5 €a+ +z)

for some 7 € ¥. (Recall that €] denotes the character of T'(Z,) given by

7 (diag(v7 1, Vmn)oes) = 71, i-e. such that k™ = 1'[]-(5]7)“;‘.) By combining
Equations (24) and (20), and analyzing the action of the generalized Young
symmetrizer, we obtain that

p" (p-1)
ﬂz eV 00" Oﬂz ev = Z amlod@( ( Z (- l)sgn(a) H J7a+T+U(J)))

le&y 0eS;

Z an,LGQ(D (26)

lecy

m+1

_ﬁz (S OGKOﬁm @VmOdp

where congruence (26) follows from the following observation.
In the notation of Remark 5.2.3,

p" (p-1)
(’L (ZG( 1)Sgn(0) HGJ ay, +0(j)))

has the effect of multiplying each polynomial ¢4(;)(cr) by

(z'! : ( S (-1 ] a;+f+a(j)7j)) P -1)
oeS; j=1

which is congruent to

o to (). is relatively prime to p

_ [ 1modp™*!' if each o
Omod p™ 0therw1se
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because p > n (though note that p > max,en{min(a,,,a_,)} is enough). If
some a;+f+o(j)7j is divisible by p, then ¢g(;) () = Omod p™*! by assumptions
(i) and (ii).

Hence, we conclude that 6" = 0~ mod p™*! for all symmetric weights & and x’
satisfying the above hypotheses. o

Remark 5.2.5. Note that if k is sum-symmetric, but not symmetric, then 8% = 0.
This follows by combining Equation (24) and 20 together with an analysis of
the action of the generalized Young symmetrizer c.

THEOREM 5.2.6. Let k,x’ be two symmetric weights and m > 1 be an integer.
Assume
k=K modp™(p-1)

in 2. Additionally, if

-
7.— K’/,. —,‘{,

LK -k )>m forall T€X and 1<i<ay, for which
1T

T A
Kiyp # K =K, and

e min(k] — K
T
K] —

1T

T 17
K a I
+

e min(rg, ,k'q, ;) >m for all T € for which kg, # K

then ©F = ©% mod p™*!.

Proof. By the p-adic Serre—Tate expansion principle (Theorem 2.7.4), combined
with Property (1) in Theorem 5.1.3, ©% = 0" modp™*! if and only if 6 =
0~ mod p™*1. Then the statement follows from Proposition 5.2.4. O

DEFINITION 5.2.7. We define a (symmetric) p-adic character to be a continuous
group homomorphism 7'(Z,) - Z, that arises as the p-adic limit of the Z,-
points of characters corresponding to (symmetric) weights.

Proposition 5.2.4 enables us to define by interpolation the differential operators
0% on R for all symmetric p-adic characters x. Note that in order to define 6%,
one should only take the limit over 6% for weights x that satisfy conditions (i)
and (ii) of Proposition 5.2.4 (without loss of generality, one may also choose
the weights k such that |k|e — o0). These conditions can always be achieved
by modifying the characters converging to x if necessary.

The following result is then an immediate consequence of Theorem 5.2.6.

COROLLARY 5.2.8. For all symmetric p-adic characters x, there exist p-adic
differential operators

ex: VN L yN

interpolating the p-adic k;-differential operators previously defined for classical
weights k;, and satisfying the following proerties:

1. for all f e VN : loc, 0 ©X(f) = 60X oloc,(f),
2. for all p-adic characters x': ©X(VN[x']) c VN [x" - x].

DOCUMENTA MATHEMATICA 23 (2018) 445-495



480 E. EiscHEN, J. FINTZEN, E. MANTOVAN, I. VARMA

5.2.2 POLYNOMIALS ¢y

The remainder of this section introduces some notation and results needed in
Section 7.

DEFINITION 5.2.9. For each sum-symmetric weight «, there is a unique polyno-
mial ¢, with integer coefficients such that for all polynomials f(t) € R = W[[¢]],
if we write f(2) = ¥, ca(1+1)® in the notation of Remark 5.2.3, then

(0" f)(1) = 2 dn(@)ea(l+1)".

From the description of the action of the differential operators described in
Equation (25) together with Equation (21), we deduce the following corollary
of the proof of Proposition 5.2.4.

COROLLARY 5.2.10. Let k be a sum-symmetric weight. Then

on(e) =] ((aw!mma))“g** I @ ~mz<a>>”*”?ﬂ)

TEX

where m] («) is (a determinant of) an i x i minor of the matriz o, for each i,
1<i<ay,, and T €X.

Remark 5.2.11. Let k and k' be two sum-symmetric weights satisfying the
conditions of Proposition 5.2.4. Then

br (@) = ¢ (o) mod p™*t.

We extend the definition of the polynomials ¢, as follows. We write Oc, for
the ring of integers of C,, the completion of an algebraic closure of Q,,.

DEFINITION 5.2.12. Let ¢ : T(Z,) — Otr*:,, be any continuous group homomor-

phism. We write ¢ = [T ex (IT71 ¢7 - €7 ), where the {] are continuous group

homomorphisms Z; — Oép (possibly including finite order characters). We
define

-1

dc(a) = T] ((g;f (acrt-mi, (@) T (<707 <i!~mz<a>)), (27)

TEX i=1
where the m] (a) are as in Corollary 5.2.10.

Remark 5.2.13. 1t follows from the defintion that, if ¢,(" : T(Z,) - O are

two continuous group homomorphisms satisfying ¢ = ¢’ mod p™*!, then ¢¢ (o) =
¢¢r (o) mod p™ 1.
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6 PULLBACKS

In this section, we discuss the composition of the differential operators with
pullbacks to a smaller group. This construction is similar to the one in [Eis16,
Section 3]. We further describe the action in terms of Serre-Tate coordinates
(which are absent from [Eis16]), and then we obtain formulas (in terms of Serre—
Tate coordinates) in the case of all signatures. (Using g-expansions, [Eis16] had
only obtained formulas when the signature at each archimedean place was one
of just two possibilities.) This section builds on [CEF*16, Section 6], which
provides details about pullbacks of automorphic forms in terms of Serre-Tate
coordinates.

6.1 PULLBACK AND RESTRICTION OF AUTOMORPHIC FORMS

We start by introducing the required notation. Let L = ®@;_; W; be a self-dual
Og-linear decomposition of the free Z-module L. For each i, 1 <4 < s, we denote

by (,); the pairing on W; induced by (,) on L, and define GU; = GU(W,, (, ):),
a unitary group of signature (a+$i),a,£i) We write v; : GU; - G,
(@ G )

for the similitude factor. Note that the signatures (a+T , At

)TEEK ’
form

i=1,...,s

a partition of the signature (a,,,a_,). We define G’ = 151 (G,,) c II, GU,,
where v := [];v;, and G,, c G}, is embedded diagonally. Then, there is a
canonical injective homomorphism G’ < GU, which induces a map ¢ between
the associated moduli spaces, ¢ : M’ - M. Let 8’ be a connected component of
M'’w. We can identify S’ with the cartesian product of connected components
of the smaller unitary Shimura varieties. We write S for the unique connected
component of M containing the image of &', and we still denote by ¢ : 8" - S
the restriction of ¢.

We assume the prime p splits completely over each of the reflex fields E;, i =
1,...,s, associated with the smaller Shimura varieties, and let ¢ : S'ord _, gord
also denote the restriction of ¢ to the ordinary loci. We denote respectively by
Ig', Ig the Igusa towers over S'ord sord “and define

= T[] GL,

T€X,1<i<s

(i) X GLa

F

@ -
N

We also write H' = []i;<s Hi, where H; = [],ex GLa+(f) xGL, @, for all i =
1,...,s. The algebraic group H’ can be identified over Z; with a Levi subgroup
of G'nU. Thus we have a closed immersion H' — H arising from the inclusion
of G' into GU and the identification over Z, of H with a Levi subgroup of
U. This allows us (by choosing without loss of generality a suitable basis) to
identify the maximal torus T of H with a maximal torus 7" in H'. In the

following, we denote by X (T”), the set of the weights in X (7”) = X (T') that
are dominant with respect to the roots of A that belong to the root system of

H'. We also write V'™ for the space of p-adic automorphic forms on H'.
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6.1.1 PULLBACKS

In [CEF*16, Proposition 6.2] we observed that the map ¢ : S’ — S°d lifts
canonically to a map between the Igusa covers, ® : Ig’ - Ig. As a consequence,
we are able to explicitly describe the pullback ¢* : VN — V' N"in the Serre—
Tate coordinates associated with a point z € Ig'(W) (and ®(z) € Ig(W)). To
recall the result we first establish some notation. For each 7 € ¥, we denote
by LT = @i, £}, the associated Z,-linear decompositions of the modules L3

(arising from the signature partition). We define £2 := ®;£?, where for each
i=1,...,s

,212 = @(2:7_ ®Zp 2;7)

TEX

In the following we denote by € : £2 < £2 the natural inclusion as a direct
summand.

We fix a point = € Ig’(W), and we write 2o € S 4 (W) for the point below
(thus the point ®(z)e Ig(W) is above ¢(xg) € S°™4(W)). Following the notation
of Section 2.7.1, we write

Baeey : Wt ® (L%)Y > Ri=Regera g(z,), and
Br:Wt]]®(£%)" > R =Rgow g,

for the corresponding Serre—Tate isomorphisms of complete local rings.
In [CEF*16, Proposition 6.8], we prove that the ring homomorphism ¢* : R —
R’ induced by the map ¢ : S'ord _, sord gatisfies the equality

0" 0 By(a) = By © (Id ®€). (28)

Remark 6.1.1. For a choice of compatible bases § ¢ & of £2 c £2, the pullback
map on local rings R - R’ described on coordinates as

idee”: W[[t]]® (£*)" = W[[till e €']] — W[[t]] ® (£*)" = W[[till ¢ F"]]
satisfies the equalities

tl ifle S’V
0 otherwise

(id®e")(t;) = { for all [ € ¢V,

In the following, with abuse of notations, we will identify R’ ~ W[[#|l € FV]]
via 87, and R~ W[[t,[l € €"]] via B3,

6.1.2 RESTRICTIONS OF p-ADIC AUTOMORPHIC FORMS

Finally, we recall the definition of restriction on the space of p-adic automorphic
forms.

Let x,x" be two characters of the torus 77 = T. Assume x € X(T),, and
k'€ X(T")4; i.e.,  is dominant for H, and x’ is dominant for H'. We say that
k' contributes to k if p,s is a quotient of the restriction of p, from H to H'.
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In the following, we denote by wy ' : pxly = pPw & projection of H%p—
representations. If k' € X(T"), satisfies (k)7 = k for some o € Wy (T), then
k' contributes to x and we choose @, . : pxly = pw to be the projection of
H%p—representations satisfying the equality

A

can can ° wn,n’ °go,

where g, € Ny (T)(Z,) is the elementary matrix lifting o (and Ny (T") denotes
the normalizer of T in H).

Remark 6.1.2. If k is a dominant weight of H, then & is also dominant for H'
and as a weight of H' it contributes to .

Remark 6.1.3. Assume k' is a weight of H' contributing to a weight x of H.
Then, for each weight A of H, the weight \-x’ of H' contributes to A - k.

For each k € X(T)4, let ¢*E, denote the pullback over M’ of the automorphic
sheaf over M. To avoid confusion, we will denote by £, the automorphic sheaf
of weight " over M’ for k" € X (T"),. For each weight x’ € X (T"), contributing
to &, the morphism wy , induces a morphism of sheaves over M/,

T 2 0 Ex > EL.

We define the (k, x")-restriction on automorphic forms to be the map of global
sections

€Sk, k! = Tr,r' © Qﬁ* : HO(Magﬁ) - HO(M,ag;’)‘

By abuse of notation we will still denote by res,; ,» the map induced by res,
between the spaces of sections of automorphic sheaves over the ordinary loci,
ie.

resy o HO(S,E,) — HO(S"d ).

In the following, we write res, := res, .
Finally, we define the restriction on p-adic automorphic forms as the pullback
on global functions on the Igusa tower under ® : Ig’ — Ig, i.e.

NI
res=®*: VN Sy

In [CEF*16, Propositions 6.5 and 6.6], we compare the two notions of restric-
tion. Again, to avoid confusion, for all weights x’ ¢ X (7"),, we denote by
¥’ the inclusion HO(S'd, £,) - V'™ to distinguish it from the inclusion
U, : HO(S E,) - VN for ke X(T),.

Then, for all dominant weights k € X (7).,

reso W, = U/ ores,. (29)
More generally, if ' € X (T"), satisfies (k')? = & for some o € Wy (T'), then
U/, ores, o =reso (go - Uy ). (30)

for g, € Nu(T)(Z,) lifting o as above.
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6.2 PULLBACKS AND DIFFERENTIAL OPERATORS

Let A e X(T)=X(T"). Tt follows from Definitions 2.4.3 and 2.4.4 that if X is
(sum-)symmetric for H' and dominant for H, then it is also (sum-)symmetric
for H, while the converse is false in general. In the following, we say that a
weight of H is H'-(sum-)symmetric if it is (sum-)symmetric for H'. Similarly,
we say that a p-adic character of H is H'-symmetric if it arises as the p-adic
limit of H'-symmetric weights.

For any weight (resp. p-adic character) A of H', and for all i = 1,...,s, we
write A; := Ay, for the restriction of A to H; c H'. Then, for each i, \; is a
weight (resp. p-adic character) of H;. We observe that a weight A is dominant
(resp. sum-symmetric) for H' if and only if, for each i = 1,..., s, the weight \;
is dominant (resp. sum-symmetric) for H;. Furthemore, if, for eachi=1,...s,
A; is sum-symmetric for H; of depth e;, then A is sum-symmetric for H of depth
e =Y e; if it is dominant.

DEFINITION 6.2.1. A sum-symmetric weight A of H' of depth e is called pure
if there exists i € {1,...,s} such that \; is sum-symmetric of depth e. Equiva-
lently, a weight A is pure sum-symmetric if there exists i € {1,...,s} such that
A; is trivial for all j # ¢ and is sum-symmetric for j = 1.

Similarly, a symmetric p-adic character x of H' is called pure if there exists
i€{l,...,s} such that x; := x|g, is trivial for all j # i and symmetric for j = .

Remark 6.2.2. If a sum-symmetric weight A of H' is pure, of depth e, then the
associated irreducible representation py of Hép is a quotient of (£2)®¢, for some

ie{l,...,s} (where ®;(£?)® is by definition a direct summand of (£2?)®°).

In the following, we say that a weight (resp. p-adic character) of H is pure
H'-sum-symmetric if it is a pure sum-symmetric for H'.

Note that if A is pure H'-sum-symmetric, with A; non-trivial of depth e, then
A is sum-symmetric of H also of depth e, if it is dominant (see Remark 6.2.5).

Remark 6.2.3. A weight A of H is both dominant for H and pure H’-sum-
symmetric if and only if A; is sum-symmetric for H; and A; is trivial for all
7>1.

Similarly, a p-adic character y of H is both pure and H'-symmetric if and only
if x1 is a p-adic symmetric character of H; and x; is trivial for all j > 1.

For each H'-sum-symmetric weight A of H and positive dominant weight " of
H', we write

D) HO(S £l - HO(S ™, &4 ,.),

for the associated differential operators on the automorphic forms of weight x'.
For each H'-symmetric p-adic character y of H, we write

/N’

@’X:V’N, -V

for the corresponding operator on the space of p-adic automorphic forms (as in
Theorem 5.1.3).
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PROPOSITION 6.2.4. For all pure H'-symmetric p-adic characters x of H that
are H-symmetric
reso X = © X ores.

Proof. By the t-expansion principle, it suffices to verify the above equality after
localizing at an ordinary point, i.e. as an equality of operators on t-expansions.
Moreover, by Theorem 5.2.6, it is enough to consider the case when x has
integral weight .

In view of Remark 6.1.1 (together with the formulas in Lemmas 5.1.2 and 5.2.2),
the statement is a consequence of the assumptions on A (which imply that the
coefficients ay; defined in Remark 5.2.1 satisfy ay; = 0 for all [ € €/ - )
together with the following general fact. For all positive integers n,m € N,
n > m, the homomorphism of W-algebras W[[t1,...,t,]] = W[[t1,...,tm]]
defined as

f=f1,... tn) = f(£,0):= f(t1,...,tm,0,...0)

satisfies the equalities

(1485 (F(600) = (1 +8) 3£ (2,0),

foralli=1,...,m. O

Remark 6.2.5. As an example, we consider the partition (1,1),(1,1) of the
signature (2,2), and weights A = (2,0,2,0) and A\ = (1,1,1,1). Note that
both A\, \" are dominant symmetric weights of both H = GL(2) x GL(2) and
H' =GL(1) x GL(1) x GL(1) x GL(1), but only A is H'-pure. Write ®* : R ~
W([t1,3,t1,4,t23,t2.4]] > R ~ W[[T13,T2.4]] for the map of complete local
rings at an ordinary point corresponding to the inclusion of Igusa varieties.
With our notations, ®*(t; ;) = T; ; for (¢,7) = (1,3),(2,4) and 0 otherwise. If
we compute the associated differential operators #* and 0N of R, we obtain
o = (01.3)% and o = 01,3024 — 01 402 3. If instead we compute the associated
differential operators 6* and 6*on R', we obtain 6> = (07 3)% and 0N =
01 305 4. Tt is easy to check that as maps on R’ 02 0d* =d* 0 but ¥ 0 d* =
d* 0N, An explanation comes from the fact that the weight A has depth 2 for
both H and H', while A’ should be regarded as of depth 2 for H and 1 for H'.

We now consider the case of a pure symmetric p-adic character y of H', which
is not a symmetric p-adic character of H (i.e., of x arising as the p-adic limit of
pure symmetric weights which are dominant for H' but not for H). For such p-
adic characters we have already defined a differential operator on automorphic
forms on H' but not on H, Proposition 6.2.6 explains how to extend it to H.

Note that for any weight A of H', there is a unique weight Ao which is dominant
for H and conjugate to A under the action of the Weyl group Wg(T), i.e.
Ao = A7 for some o € Wy (T). If X is a (sum-)symmetric weight of H', then \g
is a (sum-)symmetric weight of H. Furthermore, if A is pure sum-symmetric for
H', then the permutation o € Wy (T') can be chosen to arise from a permutation
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of {1,...,s}. More precisely, if ¢ € {1,..., s} is such that \; is trivial for all j # {,
then we can choose o = 0(q;y to correspond to the permutation (17). (Here, for
each permutation v on {1,...,s}, we define o, to be the element of Wg(T)
induced by the action of v on the partition {(a+$j),a,$j))762|j =1,...,s} of
the signature (a4,,a-;)rex.) In particular, we observe that Ag is pure sum-

symmetric for the subgroup H/, := [1y<;<s H.(;) of H, for v = (1i).

PROPOSITION 6.2.6. For all pure symmetric p-adic characters x of H', let
o =0y, forie{l,...,s} such that x; is trivial for all j #i. Then x7 is a
symmetric p-adic character of H and

© X ores =reso (9o 00X 0 g7h).

Proof. As in the proof of Proposition 6.2.4, we use Theorem 5.2.6 to reduce
to the case when x has integral weight A, and by the ¢-expansion principle it
suffices to establish the equality after localization at a point x of the smaller
Igusa tower Ig’. For all f € V¥, on one side we have

(0™ ores)(f)u(t) = 0 (res(f)u (1) = 8 0 &* (fa(u) (1)),

and on the other

(reso (95,00 0 7)) (f)x(t)

(9500 0 g, ) (o (1))
(2% 0 g5)((0* 0 9. ) (fa(aysr (1))
(2% 095 00" )((9:") () a(aysr (1))
(209500 0 g, ) (o) (1))

Thus, we have reduced the statement to an equality of two maps R ~ W[[t;]! €
EV]] > R = W[[|l € FV]], ie.

0200 =0"0g, 00" og.,

where ®* = id®e¢" is the map on complete local rings corresponding to the map
® between Igusa varieties described in Remark 6.1.1. Recall that the action of
9o on W[[t|l € €"]] is given by the formula g, (t;) =ty for all [ € €. Write
0N = Yieev (gl - 04 and define 6* = ¥ e (gl - 94eD) (note that here X is
possibly_ncft dominant for H). Then, on the right hand side, we have

(I)*ogaoe)‘gogglz(l)*oe’\ogoog(;l:(I)*OHA_

Finally, the same computation as in the proof of Proposition 6.2.4 implies
0o ®* =D* 0. O

Remark 6.2.7. Given a pure H'-(sum)-symmetric dominant weight A\ of H,
Proposition 6.2.4 together with Equation (29) imply the equality

resy.x © D,’{\ = ’D;\ o Tresy,
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for all positive dominant weights x of H. In fact, the same argument, combined
with Equation (30), also proves

TeS). ., \i! © D,’; = Dé, OTeSy k/,

for all dominat weights x of H, and &’ of H', such that (x')? = x for some
o € Wy (T), assuming A% = X. Similarly, given a pure sum-symmetric weight A
of H',if i e {1,...,s} is such that Ao = A09 is a (sum-symmetric) dominant
weight of H, then Proposition 6.2.6 and Equation (30) together imply that

T€S) -k, Ak O D;“’ o g;1 = ’Dé oresy,

for all positive dominant weights x of H, satisfying k709 = k.

Remark 6.2.8. Let s, k', A\, \g and 0,01y be as above. The choice of projection

’7
Wew * Prlpgr = Pwry satisfying €5, = €5 o @y w © gr, uniquely determines

one quotient of py|ps of weight x', even when the multiplicity of the H%p-
representation p. in p|rs (by which we mean the rank of Hompu; (pul|nr, pir))
P

is larger than 1. For a general A, the multiplicities of py.s in pax|m and of py
in pgle (resp. of payk in pax|rr and of p,; in p,|pr) might not agree. However,
our (uniform) choice of projections ensures the compatibility of the resulting
restrictions of automorphic forms with the differential operators.

7 p-ADIC FAMILIES OF AUTOMORPHIC FORMS

In this section, we construct p-adic families of automorphic forms on unitary
groups. To construct the families, we apply the differential operators intro-
duced above to the Eisenstein series constructed in [Eisl4, Eisl5] and then
apply Theorem 5.2.6. We also construct a p-adic measure by applying the
description of the differential operators in Section 5.2.1 (especially Equation

(27)).

7.1 PRIOR RESULTS ON FAMILIES FOR SIGNATURE (n,n)

We begin by recalling the Eisenstein series in [Eis14], which include the Eisen-
stein series in [Kat78, Eisl5] as special cases. Similarly to the notation in
[Eis14], for k € Z and v = (v(0)) .5, € Z*, we denote by Ny, the function

ke e (@)
Ny, :K*>K b g(b) (E(b)) :

Note that for all be O, Nk, (b) = Ny /g(b)F.

The theorem below gives explicit g-expansions of automorphic forms. Note that
as explained in [Hid04, Section 8.4], to apply the p-adic g-expansion principle
in the case of a unitary group U(n,n) of signature (n,n) at each place (for
some integer n), it is enough to check the cusps parametrized by points of
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GM, (Ag+), where GM, denotes a certain Levi subgroup of U(n,n). (More
details about cusps appear in [Hid04, Chapter 8] and, as a summary, in [Eis14];
we will not need the details here.)

THEOREM 7.1.1 (Theorem 2 in [Eisl4]). Let R be an Ok-algebra, let v =
(v(0)) € Z*, and let k > n be an integer. Let

F: (OK ®Zp) X Myxn (0K+ ®Zp) - R

be a locally constant function supported on (O ® Zy,)" x GL,, (Og+ ® Z;,) that
satisfies

F(ex,Ng/p(e)y) =Npy(e)F (z,y) (31)

forallee O, x e Ox®Zy, andy € Myxn (Or+ ® Zy). There is an automorphic
form Gy, r of parallel weight k on GU (n,n) defined over R whose q-expansion
at a cusp m € GM, (Ag+) is of the form Yocqer,, c(a)q® (where Ly, is a lattice
in Herm,,(K) determined by m), with c¢(«a) a finite Z-linear combination of
terms of the form

F(a, NK/E(a)_la) N (a_1 det ) Npq (deta) ™

(where the linear combination is a sum over a finite set of p-adic units a € K
dependent upon « and the choice of cusp m).

Let (R, te0) consist of an Opy (,)-algebra R together with a ring inclusion te
R - C. Given an automorphic form f defined over R, we view f as a p-adic
automorphic form via ¥ or as a C*-automorphic form after extending scalars
via loo : R = C.

Remark 7.1.2. The C*-automorphic forms G}, r are closely related to the
C*-Eisenstein series studied by Shimura in [Shi97]; the difference between
Shimura’s Eisenstein series and these ones is the choice of certain data at p,
which allows one to put Gj . r into a p-adic family. For R = C, these are
the Fourier coefficients at s = % of certain C*°-automorphic forms Gy, r (2, )
(holomorphic in z at s = g) of parallel weight k defined in [Eis14, Lemma 9.
We do not need further details about those C*°-Eisenstein series for the present

paper.

7.2 FAMILIES FOR ARBITRARY SIGNATURE

We use the notations introduced in Section 6.1, with GU = GU (n,n) and G’ of
arbitrary signature. In particular, we still denote by H and H' the associated
Levi subgroups.

For each symmetric weight x of H', we define an automorphic form of weight
k+k for G’

GruF i = Oresy G, F,
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where resy is the restriction on automorphic forms from GU(n,n) to G', (i.e.
the pullback followed by projection onto an irreducible quotient) as introduced
in Section 6.1.

Remark 7.2.1. Proposition 6.2.4 implies that if the weight s is pure H'-
symmetric and H-symmmetric, then the automorphic form Gy, ., .. agrees with
res©”Gy,, r, the restriction to G’ of the form ©*Gy, , r for U(n,n).

As an immediate consequence of Theorem 5.2.6 and Remark 6.1.1 applied to
res; G, r, We obtain the following result.

THEOREM 7.2.2. Let k and k' be two symmetric weights satisfying the condi-
tions of Proposition 5.2.6. Then Gy p.x = Giu F inside VN pmrty N

Proposition 7.2.3 below summarizes the relationship between the values at CM
points (together with a choice of trivialization) of the p-adic automorphic forms
obtained by applying p-adic differential operators to res;Gr ,,r and the values
of C'° automorphic forms obtained by applying C'*° differential operators to
reSEGk,V,F'

PROPOSITION 7.2.3. For each locally constant function F as in Theorem 7.1.1,
the values of G, Fx and ﬁfa'f] om0 D (C*)resgGr,u,r, where moy, denotes
the projection onto an irreducible subspace of highest weight K-k, agree at each
ordinary CM point A over R (together with a choice of trivialization of w ,/R)
up to a period.

Thus, as a consequence of Theorem 7.2.2, we can p-adically interpolate the
values of E%;fl o o D (C*°)respGr,v,r (modulo periods) at ordinary CM
points as x varies p-adically.

Proof. The proof is similar to [Kat78, Section 5], [Eisl15, Section 3.0.1], and
[Eis14, Section 5.1.1]. O

Let x = [I., xw be a Hecke character of type Ay. We obtain a p-adically
continuous character ¥ on X, where X, denotes the projective limit of the ray
class groups of K of conductor p", as follows. Let Yoo : (K ® Z,)™ — @; be the
p-adically continuous character such that

Xoo (@) = 1p © Xoo(a)

for all a € K. So the restriction of Yo to (Ox ® Z,)™ is a p-adic character. We
define a p-adic character x¥ on X, by X ((¢w)) = Xeo ((aw)wlp) [T too Xow (Gw)-
For each character ¢ on the torus T and for each type Ay Hecke charac-
ter x = xu| - [*/? with y, unitary, we define F\, ¢(x,y) on (Og ®7Z,)" x
GL, (Ok+ ®Zy) by Fy, ¢(z,y) = xu(z)o¢(Ng/p(z)'y) and extend by 0 to
a function on (Ok ® Zp) x Myxn (Ok+ ® Zy), with ¢ defined as in Equation
(27).

We now construct a certain p-adic measure.
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THEOREM 7.2.4. There is a measure ug: (dependent on the signature of the
group G") on X, xT (Zy) that takes values in the space of p-adic modular forms
on G’ and that satisfies

> = 1esO" Gy, 32
prxT(Zp)xwﬁuc 1es©" Gy v, Fy, o (32)

for each finite order character ¢ and H-symmetric weight k on the torus T and
for each type Ag Hecke character x = xu||™*/? of infinity type [yex 0 F (%)V(U)
with X, unitary.

In particular, for k pure H'-symmetric, we have

XUkpar = G .
/;(pr(Zp) X’l/) HG kv, Fy, 0,k

Equation (32) is analogous to [Kat78, Equations (5.5.7)], which concerns the
case of an Eisenstein measure for Hilbert modular forms. Theorem 7.2.4 also
extends the main results of [Eis15, Eisl4] to arbitrary signature.

The idea of the proof is similar to the idea of the construction of analogous
Eisenstein measures in [Kat78, Eisl5], i.e. it relies on the p-adic g-expansion
principle.

Proof. First, note that the measure ug: is uniquely determined by restricting
to finite order characters on X, x T (Z,) (by, for example, [Kat78, Proposition
(4.1.2)]). Now, Equation (32) follows from the p-adic g-expansion principle
([Hid05, Corollary 10.4]), as follows: First, note that the p-adic g-expansion
principle holds for all elements in Vi o, not just those in V. Now we apply the
differential operators from Section 3.3.2 to the automorphic form Gy, , on
the general unitary group G of signature (n,n). So the resulting automorphic
form takes values in a vector space that is a representation of H. We project
the image onto an irreducible representation for H'. So the pullback of this
automorphic form to G’ is res®" Gy, F,,.,- Note that the action of differential
operators on g-expansions is similar to the action on Serre—Tate expansions,
with the parameter (1+¢%) replaced by ¢. (In each case, it depends on the
existence of a horizontal basis. See [Kat78, Corollary (2.6.25)] for the case of
Hilbert modular forms, which is extended to unitary groups of signature (n,n)
in [Eis12].) In particular, we see from Definition 5.2.9 and Corollary 5.2.10 that
applying Dy and then projecting the image onto a highest weight vector results
in multiplying each g-expansion coefficient by the polynomial from Corollary
5.2.10. Equation (32) then follows immediately from Remark 5.2.11 together
with the abstract Kummer congruences (see [Kat78, Proposition (4.0.6)]), i.e.
the observation that for each integer m, whenever a linear combination of the
values of the product of characters on the left hand side is 0 mod p™, then the
corresponding linear combination of g-expansions of the automorphic forms on
the right hand side is also O mod p™.

The statement for pure weights x follows from Remark 7.2.1 o

DOCUMENTA MATHEMATICA 23 (2018) 445-495



DIFFERENTIAL OPERATORS AND FAMILIES 491

8 ACKNOWLEDGEMENTS

We would like to thank Ana Caraiani very much for contributing to initial
conversations about topics in this paper. We would also like to thank the
referee for a careful reading and helpful suggestions.

E.E.’s research was partially supported by NSF Grants DMS-1249384 and
DMS-1559609. J.F.’s research was partially supported by the Studienstiftung
des deutschen Volkes. E.M.’s research was partially supported by NSF Grant
DMS-1001077. 1.V.’s research was partially supported by a National Defense
Science and Engineering Fellowship and NSF Grant DMS-1502834.

REFERENCES

[AHR10]

[Beh09)

[BH14]

[Boul4]

[Brol3]

[CEF*16]

[CF90]

[CS74]

Matthew Ando, Michael Hopkins, and Charles
Rezk, Multiplicative orientations of KO-theory
and of the spectrum of topological modular  forms,
http://www.math.uiuc.edu/~mando/papers/koandtmf . pdf.

Mark Behrens, FEisenstein orientation, Typed notes available at
http://www-math.mit.edu/~mbehrens/other/coredump.pdf.

Ashay Burungale and Haruzo Hida, p-rigidity and Iwasawa u-
invariants, Algebra Number Theory 11 (2017), no. 8, 1921-1951.
MR 3720935

Thanasis Bouganis, Non-abelian p-adic L-functions and FEisen-
stein series of unitary groups—the CM method, Ann. Inst. Fourier
(Grenoble) 64 (2014), no. 2, 793-891. MR 3330923

Ernest Hunter Brooks, Generalized Heegner cycles, Shimura curves,
and special values of p-adic L-functions, 2013, Thesis (Ph.D.)-
University of Michigan.

Ana Caraiani, Ellen Eischen, Jessica Fintzen, Elena Mantovan, and
Ila Varma, p-adic q-expansion principles on unitary Shimura vari-
eties, Directions in Number Theory, vol. 3, Springer International,
2016, pp. 197-243. MR 3596581

Ching-Li Chai and Gerd Faltings, Degeneration of abelian vari-
eties, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Re-
sults in Mathematics and Related Areas (3)], vol. 22, Springer-
Verlag, Berlin, 1990, With an appendix by David Mumford. MR
MR1083353 (92d:14036)

J. Coates and W. Sinnott, On p-adic L-functions over real quadratic
fields, Invent. Math. 25 (1974), 253-279. MR 0354615

DOCUMENTA MATHEMATICA 23 (2018) 445-495


http://www.math.uiuc.edu/~mando/papers/koandtmf.pdf
http://www-math.mit.edu/~mbehrens/other/coredump.pdf

492

[DR80]

[dSG16]

[EHLS16]

[Eis09]

[Bis12]

[Bis14]

[Bis15]

[Bis16]

[EW16]

[Far08]

[FHO1]

[Har81]

E. EiscHEN, J. FINTZEN, E. MANTOVAN, I. VARMA

Pierre Deligne and Kenneth A. Ribet, Values of abelian L-functions
at negative integers over totally real fields, Invent. Math. 59 (1980),
no. 3, 227-286. MR 579702 (81m:12019)

Ehud de Shalit and Eyal Z. Goren, A theta operator on Picard
modular forms modulo an inert prime, Res. Math. Sci. 3 (2016),
Paper No. 28, 65. MR 3543240

Ellen Eischen, Michael Harris, Jian-Shu Li, and Christopher M.
Skinner, p-adic L-functions for unitary groups, 135 pages. Submit-
ted. http://arxiv.org/pdf/1602.01776.pdf.

Ellen E. Eischen, p-adic differential operators on automorphic forms
and applications, ProQuest LLC, Ann Arbor, MI, 2009, Thesis
(Ph.D.)-University of Michigan. MR 2713895

, p-adic differential operators on automorphic forms on uni-
tary groups, Ann. Inst. Fourier (Grenoble) 62 (2012), no. 1, 177-
243. MR 2986270

Ellen Eischen, A p-adic FEisenstein measure for vector-weight au-
tomorphic forms, Algebra Number Theory 8 (2014), no. 10, 2433—
2469. MR, 3298545

Ellen E. Eischen, A p-adic Eisenstein measure for unitary groups,

J. Reine Angew. Math. 699 (2015), 111-142. MR 3305922

Ellen Elizabeth Eischen, Differential operators, pullbacks, and fam-
ilies of automorphic forms on unitary groups, Ann. Math. Qué. 40
(2016), no. 1, 55-82. MR 3512523

Ellen Eischen and Xin Wan, p-adic Eisenstein series and L-
functions of certain cusp forms on definite unitary groups, J. Inst.
Math. Jussieu 15 (2016), no. 3, 471-510. MR 3505656

Laurent Fargues, L’somorphisme entre les tours de Lubin-Tate et
de Drinfeld et applications cohomologiques, L’isomorphisme entre
les tours de Lubin-Tate et de Drinfeld, Progr. Math., vol. 262,
Birkhauser, Basel, 2008, pp. 1-325. MR 2441312

William Fulton and Joe Harris, Representation theory. a first
course, Graduate Texts in Mathematics, vol. 129, Springer-Verlag,
New York, 1991, Readings in Mathematics. MR 1153249

Michael Harris, Special values of zeta functions attached to Siegel

modular forms, Ann. Sci. Ecole Norm. Sup. (4) 14 (1981), no. 1,
77-120. MR 618732 (82m:10046)

DOCUMENTA MATHEMATICA 23 (2018) 445-495


http://arxiv.org/pdf/1602.01776.pdf

[Hid91]

[Hid04]

[Hid05]

[HLS06]

[Hop02]

[Hsil4]

[Jan03]

[Kat70]

[Kat73]

[Kat78]

[Kat81]

[KOG8]

DIFFERENTIAL OPERATORS AND FAMILIES 493

Haruzo Hida, On p-adic L-functions of GL(2) x GL(2) over totally
real fields, Ann. Inst. Fourier (Grenoble) 41 (1991), no. 2, 311-391.
MR 1137290 (93b:11052)

, p-adic automorphic forms on Shimura varieties, Springer
Monographs in Mathematics, Springer-Verlag, New York, 2004. MR
2055355 (2005e:11054)

, p-adic automorphic forms on reductive groups, Astérisque
(2005), no. 298, 147-254, Automorphic forms. I. MR 2141703
(2006e:11060)

Michael Harris, Jian-Shu Li, and Christopher M. Skinner, p-adic
L-functions for unitary Shimura varieties. I. Construction of the
Eisenstein measure, Doc. Math. (2006), no. Extra Vol., 393-464
(electronic). MR 2290594 (2008d:11042)

Michael J. Hopkins, Algebraic topology and modular forms, Pro-
ceedings of the International Congress of Mathematicians, Vol. I
(Beijing, 2002) (Beijing), Higher Ed. Press, 2002, pp. 291-317. MR
1989190 (2004g:11032)

Ming-Lun Hsieh, Eisenstein congruence on unitary groups and Iwa-
sawa main conjectures for CM fields, J. Amer. Math. Soc. 27
(2014), no. 3, 753-862. MR, 3194494

Jens Carsten Jantzen, Representations of algebraic groups, sec-
ond ed., Mathematical Surveys and Monographs, vol. 107, Amer-
ican Mathematical Society, Providence, RI, 2003. MR 2015057
(2004h:20061)

Nicholas M. Katz, Nilpotent connections and the monodromy theo-
rem: Applications of a result of Turrittin, Inst. Hautes Etudes Sci.
Publ. Math. (1970), no. 39, 175-232. MR 0291177 (45 #271)

Nicholas Katz, Travauzr de Dwork, Séminaire Bourbaki, 24eme
année (1971/1972), Exp. No. 409, Springer, Berlin, 1973, pp. 167—
200. Lecture Notes in Math., Vol. 317. MR 0498577 (58 #16672)

Nicholas M. Katz, p-adic L-functions for CM fields, Invent. Math.
49 (1978), no. 3, 199-297. MR 513095 (80h:10039)

, Serre-Tate local moduli, Algebraic Surfaces (Orsay, 1976—
78), Springer, Berlin, 1981, pp. 138-202. Lecture Notes in Mathe-
matics, Vol. 868. MR 0638600 (83k:14039b)

Nicholas M. Katz and Tadao Oda, On the differentiation of de
Rham cohomology classes with respect to parameters, J. Math. Ky-
oto Univ. 8 (1968), 199-213. MR 0237510 (38 #5792)

DOCUMENTA MATHEMATICA 23 (2018) 445-495



494

[Kot92]

[Lan13]

[Lan14]

[Lan16]

[Liul6]

[Man58]

[Pan03]

[Pan05]

[Ser73]

[Shi84]

[Shi97]

[Shi00]

E. EiscHEN, J. FINTZEN, E. MANTOVAN, I. VARMA

Robert E. Kottwitz, Points on some Shimura varieties over finite
fields, J. Amer. Math. Soc. 5 (1992), no. 2, 373-444. MR 1124982
(93a:11053)

Kai-Wen Lan, Arithmetic compactifications of PEL-type Shimura
varieties, London Mathematical Society Monographs Series, vol. 36,
Princeton University Press, Princeton, NJ, 2013. MR 3186092

, Compactifications of PEL-type Shimura varieties and Kuga
families with ordinary loci, World Scientific Publishing Co. Pte.
Ltd., Hackensack, NJ, 2018. xi+-567 pp. MR 3729423

, Higher Koecher’s principle, Math. Res. Lett. 23 (2016),
no. 1, 163-199. MR 3512882

Zheng  Liu, p-adic  L-functions  for  ordinary  fam-
ilies of symplectic groups, preliminary version.
http://www.math.ias.edu/~z1liu/SLF%20IV.pdf.

Ju. I. Manin, Algebraic curves over fields with differentiation, Izv.
Akad. Nauk SSSR. Ser. Mat. 22 (1958), 737-756. MR 0103889 (21
#2652)

A. A. Panchishkin, Two wvariable p-adic L functions attached to
eigenfamilies of positive slope, Invent. Math. 154 (2003), no. 3,
551-615. MR 2018785 (2004k:11065)

, The Maass-Shimura differential operators and congruences
between arithmetical Siegel modular forms, Mosc. Math. J. 5 (2005),
no. 4, 883-918, 973-974. MR 2266464

Jean-Pierre Serre, Formes modulaires et fonctions zéta p-adiques,
Modular functions of one variable, III (Proc. Internat. Summer
School, Univ. Antwerp, 1972), Springer, Berlin, 1973, pp. 191-268.
Lecture Notes in Math., Vol. 350. MR 0404145 (53 #7949a)

Goro Shimura, On differential operators attached to certain rep-
resentations of classical groups, Invent. Math. 77 (1984), no. 3,
463-488. MR 759261 (86¢:11034)

, Euler products and Eisenstein series, CBMS Regional Con-
ference Series in Mathematics, vol. 93, Published for the Conference
Board of the Mathematical Sciences, Washington, DC, 1997. MR
1450866 (98h:11057)

, Arithmeticity in the theory of automorphic forms, Mathe-
matical Surveys and Monographs, vol. 82, American Mathematical
Society, Providence, RI, 2000. MR 1780262 (2001k:11086)

DOCUMENTA MATHEMATICA 23 (2018) 445-495


http://www.math.ias.edu/~zliu/SLF%20IV.pdf

DIFFERENTIAL OPERATORS AND FAMILIES 495

[SU14] Christopher Skinner and Eric Urban, The [wasawa main conjec-
tures for GLg, Invent. Math. 195 (2014), no. 1, 1-277. MR 3148103

an in Wan, Families of nearly ordinary Fisenstein series on unitary

Wanlb]  Xin Wan, Famili ly ordi Ei ' ' '
groups, With an appendix by Kai-Wen Lan. Algebra and Number
Theory 9 (2015), no. 9, 1955-2054. MR 3435811

ELLEN EISCHEN
Department of Mathematics
University of Oregon
Fenton Hall

Eugene, OR 97403-1222
USA
eeischen@uoregon.edu

ELENA MANTOVAN
Department of Mathematics
Caltech

Pasadena, CA 91125

USA

mantovanelena@gmail.com

JESSICA FINTZEN
Department of Mathematics
University of Michigan

2074 East Hall

530 Church Street

Ann Arbor, MI 48109

USA

fintzen@umich.edu

ILA VARMA

Department of Mathematics
Columbia University

MC 4436, 2990 Broadway
New York, NY 10027

USA

ila@math.columbia.edu

DOCUMENTA MATHEMATICA 23 (2018) 445-495


eeischen@uoregon.edu
fintzen@umich.edu
mantovanelena@gmail.com
ila@math.columbia.edu

496

DOCUMENTA MATHEMATICA 23 (2018)



	Introduction
	Motivation and context
	Influence of a key idea of Serre about congruences
	An inspiration for four decades of innovations and the necessity of more

	This paper's main results, innovations, and connections with prior work
	Three main results
	Methods

	Structure of the paper
	Notation and conventions

	Background and setup
	Unitary groups and PEL data
	PEL moduli problem and Shimura varieties
	Automorphic forms
	Standard representation, highest weights, and Schur functors
	Highest weights of an algebraic representation of H
	Schur functors
	Projection onto highest weight representations

	The Igusa tower over the ordinary locus
	p-adic automorphic forms
	Serre–Tate theory for unitary Shimura varieties
	Local coordinates at ordinary points
	The t-expansion principle


	Differential operators
	The Gauss–Manin connection
	The Kodaira–Spencer morphism
	Definitions of differential operators
	C differential operators
	p-adic differential operators on vector-valued automorphic forms


	Localization at an ordinary point
	The Gauss–Manin connection
	The Kodaira–Spencer morphism
	The differential operators
	Local description
	Explicit description of  in terms of Serre–Tate coordinates


	Main results on p-adic differential operators
	p-adic differential operators of classical weights
	p-adic differential operators of p-adic weights
	Congruences and actions of p-adic differential operators
	Polynomials 


	Pullbacks
	Pullback and restriction of automorphic forms
	Pullbacks
	Restrictions of p-adic automorphic forms

	Pullbacks and differential operators

	p-adic families of automorphic forms
	Prior results on families for signature (n,n)
	Families for arbitrary signature

	Acknowledgements

