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Abstract—Many modern parallel systems, such as MapRe-
duce, Hadoop and Spark, can be modeled well by the MPC
model. The MPC model captures well coarse-grained compu-
tation on large data — data is distributed to processors, each
of which has a sublinear (in the input data) amount of memory
and we alternate between rounds of computation and rounds
of communication, where each machine can communicate an
amount of data as large as the size of its memory. This model is
stronger than the classical PRAM model, and it is an intriguing
question to design algorithms whose running time is smaller
than in the PRAM model.

One fundamental graph problem is connectivity. On an
undirected graph with n nodes and m edges, O(logn) round
connectivity algorithms have been known for over 35 years.
However, no algorithms with better complexity bounds were
known. In this work, we give fully scalable, faster algorithms
for the connectivity problem, by parameterizing the time
complexity as a function of the diameter of the graph. Our main
result is a O(log D loglog,,,, n) time connectivity algorithm
for diameter-D graphs, using O(m) total memory. If our
algorithm can use more memory, it can terminate in fewer
rounds, and there is no lower bound on the memory per
processor.

We extend our results to related graph problems such as
spanning forest, finding a DFS sequence, exact/approximate
minimum spanning forest, and bottleneck spanning forest. We
also show that achieving similar bounds for reachability in di-
rected graphs would imply faster boolean matrix multiplication
algorithms.

We introduce several new algorithmic ideas. We describe
a general technique called double exponential speed problem
size reduction which roughly means that if we can use total
memory N to reduce a problem from size n to n/k, for
k = (N/n)®Y in one phase, then we can solve the problem in
O(loglogy,, ) phases. In order to achieve this fast reduction
for graph connectivity, we use a multistep algorithm. One key
step is a carefully constructed truncated broadcasting scheme
where each node broadcasts neighbor sets to its neighbors
in a way that limits the size of the resulting neighbor sets.
Another key step is random leader contraction, where we choose
a smaller set of leaders than many previous works do.

Keywords-MPC model; MapReduce; graph connectivity;
parallel algorithm; diameter;

I. INTRODUCTION

Recently, several parallel systems, including MapReduce
[DGO04], [DGO8], Hadoop [Whil2], Dryad [IBY"07], Spark
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[ZCF10], and others, have become successful in practice.
This success has sparked a renewed interest in algorithmic
ideas for these parallel systems.

One important theoretical direction has been to develop
good models of these modern systems and to relate them
to classic models such as PRAM. The work of [FMS110],
[KSV10], [GSZ11], [BKS13], [ANOY14] have led to the
model of Massive Parallel Computing (MPC) that balances
accurate modeling with theoretical elegance. MPC is a
variant of the Bulk Synchronous Parallel (BSP) model
[Val90]. In particular, MPC allows N° space per machine
(processor), where § € (0,1) and N is the input size,
with alternating rounds of unlimited local computation, and
communication of up to N°® data per processor. An MPC
algorithm can equivalently be seen as a small circuit, with
arbitrary, N°-fan-in gates; the depth of the circuit is the par-
allel time. Any PRAM algorithm can be simulated on MPC
in the same parallel time [KSV10], [GSZ11]. However, MPC
is in fact more powerful than the PRAM: even computing
the XOR of N bits requires near-logarithmic parallel-time
on the most powerful CRCW PRAMs [BH89], whereas it
takes constant, O(1/4), parallel time on the MPC model.

The main algorithmic question of this area is then:
for which problems can we design MPC algorithms that
are faster than the best PRAM algorithms? Indeed, this
question has been the focus of several recent papers, see,
e.g., [KSV10], [LMSV11], [EIM11], [ANOY14], [AG18],
[AK17], [IMS17], [CLM*18]. Graph problems have been
particularly well studied and one fundamental problem is
connectivity in a graph. While this problem has a standard
logarithmic time PRAM algorithm [SV82], we do not know
whether we can solve it faster in the MPC model.

While we would like fully scalable algorithms—which
work for any value of § > O—there have been graph
algorithms that use space close to the number of vertices
n of the graph. In particular, the result of [LMSVI11]
showed a faster algorithm for the setting when the space
per machine is polynomially larger than the number of
vertices, i.e., s > n'T?(1) and hence the number of edges is
necessarily m > piTeM) 1q fact, similar space restrictions
are pervasive for all known sub-logarithmic time graph algo-
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rithms, which require s = Q(logo%) [LMSV11], [AG18],
[AK17], [CLM*18] (the only exception is [ANOY14] who
consider geometric graphs). We highlight the work of
[CLM*18], who manage to obtain slightly sublinear space
of n/ logﬂ(l) n in logo(l) log n parallel time, for the approx-
imate matching problem and [ABB™ 17] who obtain slightly
sublinear space of n/ log™™® n in O(log log n) parallel time.
We note that the space of ~ n also coincides with the space
barrier of the semi-streaming model: essentially no graph
problems are solvable in less than n space in the streaming
model, unless we have many more passes; see e.g. the survey
[McGO09].

It remains a major open question whether there exist fully
scalable connectivity MPC algorithms with sub-logarithmic
time (e.g., for sparse graphs). There are strong indications
that such algorithms do not exist: [BKS13] show logarithmic
lower bounds for restricted algorithms. Alas, showing an
unconditional lower bound may be hard to prove, as that
would imply circuit lower bounds [RVW16].

In this work, we show faster, fully scalable algorithms
for the connectivity problem, by parameterizing the time
complexity as a function of the diameter of the graph. The
diameter of the graph is the largest diameter of its connected
components. Our main result is an O(log D loglog,,, ,, )
time connectivity algorithm for diameter-D graphs with m
edges. Parameterizing as a function of D is standard, say,
in the distributed computing literature [PRS16], [HHW18].
In fact, some previous MPC algorithms for connectivity in
the applied communities have been conjectured to obtain
O(log D) time [RMCS13]; alas, we show that the algorithm
of [RMCS13] has a lower bound of Q(logn) time (see the
full version [ASST18]).

Our algorithms exhibit a tradeoff between the total amount
of memory available and the number of rounds of computa-
tion needed. For example, if the total space is Q(n“‘”/) for
some constant 7' > 0, then our algorithms run in O(log D)
rounds only.

A. The MPC model

Before stating our full results, we briefly recall the
MPC model [BKS13]. A detailed discussion appears in
Section IV, along with some core primitives implementable
in the MPC model.

Definition 1.1 ((v,) — MPC model). Fix parameters vy >
0,0 > 0, and suppose N > 1 is the input size. There
are p > 1 machines (processors) each with local memory
size s = O(N?®), such that p-s = O(N'). The space
size is measured by words, each of ©(log(s - p)) bits. The
input is distributed on the local memory of ©(N/s) input
machines. The computation proceeds in rounds. In each
round, each machine performs computation on the data in
its local memory, and sends messages to other machines
at the end of the round. The total size of messages sent or
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received by a machine in a round is bounded by s. In the next
round, each machine only holds the received messages in its
local memory. At the end of the computation, the output is
distributed on the output machines. Input/output machines
and other machines are identical except that input/output
machine can hold a part of the input/output. The parallel
time of an algorithm is the number of rounds needed to
finish the computation.

In this model, the space per machine is sublinear in IV,
and the total space is only an O(N7) factor more than the
input size N. In this paper, we consider the case when §
is an arbitrary constant in (0, 1). Our results are for both
the most restrictive case of v = 0 (total space is linear in
the input size), as well as v > 0 (for which our algorithms
are a bit faster). The model from Definition 1.1 matches the
model MPC(e) from [BKS13] with e = v/(1 + v — §) and
the number of machines p = O(N'+779).

B. Our Results

While our main result is a ~ log D time connectivity MPC
algorithm, our techniques extend to related graph problems,
such as spanning forest, finding a DFS sequence, and
exact/approximate minimum spanning forest. We also prove
a lower bound showing that, achieving similar bounds for
reachability in directed graphs would imply faster boolean
matrix multiplication algorithms.

We now state our results formally. For all results below,
consider an input graph G = (V, E), with n = |V|, N =
|V|+|E|, and D being the upper bound on the diameter of
any connected component of G.

Connectivity: In the connectivity problem, the goal is to
output the connected components of an input graph G, i.e.
at the end of the computation, Vv € V, there is a unique
tuple (z,y) with x = v stored on an output machine, where
y is called the color of v. Any two vertices u,v have the
same color if and only if they are in the same connected
component.

Theorem 1.2 (Connectivity in MPC model). For any
v € [0,2] and any constant § € (0,1), there is a
randomized (v,8) — MPC algorithm which outputs the
connected components of the graph G in O(min(log D -
log bg&%, logn)) parallel time. The success probabil-
ity is at least 0.98. In addition, if the algorithm fails, then
it returns FAIL.

Notice that in the most restrictive case of v = 0 and m =
n, we obtain O(min(log D-loglogn,logn)) time. When the
total space is slightly larger, or the graph is slightly denser—
i.e. ¥ > corlog, m > ¢, where ¢ > 0 is an arbitrarily small
constant—then we obtain O(log D) time.

Remark 1.3. We note the concurrent and independent work
of [ASW18], who also give a connectivity algorithm in the
MPC model but with different guarantees. In particular,



their runtime is parameterized as a function of A, which
is a lower bound on the spectral gap' of the connected
components of G. For a graph G with n vertices and m =
O(n) edges, their algorithm runs in O(loglogn+log(1/)))
parallel time and uses O(n/\?) total space. In contrast, our
algorithm has a runtime of O(log D-loglogy,, n), where D
is the largest diameter of a connected component of G, and
N = Q(m) is the total space available. To compare the two
runtimes, we note that: 1) D < O(lo%) for any undirected
graph G, and 2) there exist sparse graphs G° with n, vertices
and O(n) edges such that + > D-n®*1) and D < O(logn).
Thus, our results subsume [ASWIS8] in the case when total
space is N = n*+tV) | but are incomparable otherwise.

We note another concurrent and independent work of
[EMWI18], who also give a graph connectivity algorithm
in the MPC model and with different guarantees. 1. Our
algorithm has O(log D -log logn/n n) parallel running time
for general undirected graphs while the analysis of their
algorithm can only achieve an O(logn) parallel time. 2.
Their algorithm has an O(loglogn) parallel time for ran-
dom graphs while the analysis of ours can only achieve
an O((loglogn)?) bound. However, we conjecture that our
algorithm can also achieve O(loglogn) parallel time for
such random graphs.

Spanning forest problem: In the spanning forest problem,
the goal is to output a subset of edges of an input graph
G such that the output edges together with the vertices of
G form a spanning forest of the graph G. In the rooted
spanning forest problem, in addition to the edges of the
spanning forest, we are also required to orient the edge from
child to parent, so that the parent-child pairs form a rooted
spanning forest of the input graph G.

Theorem 1.4 (Spanning Forest, restatement of Theo-
rem V.5). For any v € [0,2] and any constant ¢ € (0,1),
there is a randomized (v, 0) —MPC algorithm which outputs
the rooted spanning forest of the graph G in O(min(log D -
log bg(}\?{#ﬁ,/n), logn)) parallel time. The success probabil-
ity is at least 0.98. In addition, if the algorithm fails, then
it returns FAIL.

Our spanning forest algorithm can also output an approx-
imation to the diameter, as follows.

Theorem 1.5 (Diameter Estimator, restatement of Theo-
rem V.6). For any v € [0,2] and any constant 6 € (0,1),
there is a randomized (v,0) — MPC algorithm which
outputs a diameter estimator D' of the input graph G in

O(min(log D - log log(log” logn)) parallel time such

Tog(N1F7/n)
that D < D' < DO/ yphere o/ = 18N T1/n)
B B ’ logn

I'The spectral gap of a graph G is the second smallest eigenvalue of the
normalized Laplacian of G.

2We can construct G as the following: a bridge connects two 3-regular
expanders where each expander has n/2 vertices.
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The success probability is at least 0.98. In addition, if the
algorithm fails, then it returns FAIL.

Depth-First-Search sequence: If the input graph G is a tree,
then we are able to output a Depth-First-Search sequence of
that tree in O(log D) 4+ T parallel time, where T is parallel
time to compute a rooted tree (see Theorem 1.4 for our upper
bound of T') for G.

Theorem 1.6 (DFS Sequence of a Tree, restatement of The-
orem V.7). Suppose the graph G is a tree. For any v € [[3, 2]
and any constant § € (0, 1), there is a randomized (vy,0) —
MPC algorithm that outputs a Depth-First-Search sequence
for the input graph G in O(min(log D - log(1/7),logn))
parallel time, where 3 = ©(loglogn/logn). The success
probability is at least 0.98. In addition, if the algorithm fails,
then it returns FAIL.

Applications of DFS sequence of a tree include lowest
common ancestor, tree distance oracle, the size of every
subtree, and others.

Minimum Spanning Forest: In the minimum spanning for-
est problem, the goal is to compute the minimum spanning
forest of a weighted graph G.

Theorem 1.7 (Minimum Spanning Forest, restatement of
Theorem VI1.2). Consider a weighted graph G with weights
w : E — Z such that Ve € E,|w(e)| < poly(n). For any
~ € [0, 2] and any constant § € (0,1), there is a randomized
(v,9) —MPC algorithm which outputs a minimum spanning

forest of G in O(min(log Dysp - log(lﬁzglggn),logn) .
T J:fygl;; —) parallel time, where D sy is the diameter (with

respect to the number of edges/hops) of a minimum spanning
forest of G. The success probability is at least 0.98. In
addition, if the algorithm fails, then it returns FAIL.

We note that we require the bounded weights condition
merely to ensure that each weight is described by one word.

Theorem 1.8 (Approximate Minimum Spanning Forest,
restatement of Theorem VI1.3). Consider a weighted graph
G with weights w E — Zso such that Ve €
E |w(e)| < poly(n). For any € € (0,1), v € [5,2] and
any constant § € (0,1), there is a randomized (vy,0) —
MPC algorithm which can output a (1 + €) approximate
minimum spanning forest for G in O(min(log Dysp -
log(log(Nlﬂl/O&flnlogn))),log n)) parallel time, where § =
O(log(e~tlogn)/logn), and Dy sr is the diameter (with
respect to the number of edges/hops) of a minimum spanning
forest of G. The success probability is at least 0.98. In
addition, if the algorithm fails, then it returns FAIL.

Theorem 1.9 (Bottleneck Spanning Forest, restatement of
Theorem VI1.4). Consider a weighted graph G with weights
w : E — Z such that Ve € E,|w(e)| < poly(n). For
any v € [0,2] and any constant § € (0,1), there is a
randomized (v,6) — MPC algorithm which can output a



bottleneck spanning forest for G in O(min(log Dpysr -
log(%), logn) - log(%)) parallel time, where
Dyrsp is the diameter (with respect to the number of
edges/hops) of a minimum spanning forest of G. The success
probability is at least 0.98. In addition, if the algorithm fails,

then it returns FAIL.

Conditional hardness for directed reachability. We also
consider the reachability question in the directed graphs, for
which we show similar to the above results are unlikely.
In particular, we show that if there is a fully scalable
multi-query directed reachability (0,0) — MPC algorithm
with n°Y) parallel time and polynomial local running time,
then we can compute the Boolean Matrix Multiplication in
n2teto(l) time for arbitrarily small constant € > 0. We note
that the equivalent problem for undirected graphs can be
solved in O(log D loglogn) parallel time via Theorem 1.2.

Theorem 1.10 (Directed Reachability vs. Boolean Matrix
Multiplication, restatement of Theorem VII.1). Consider a
directed graph G = (V, E). If there is a polynomial local
running time, fully scalable (v, §) —MPC algorithm that can
answer |V |+|E| pairs of reachability queries simultaneously
for G in O(|V|*) parallel time, then there is a sequential
algorithm which can compute the multiplication of two n xn
boolean matrices in O(n? - n®>Y+t2+€) time, where € > 0 is
a constant which can be arbitrarily small.

C. Our Techniques

In this section, we give an overview of the various
techniques that we use in our algorithms. More details, as
well as some of the low level details of the implementation
in the MPC model, are defered to later sections.

Before getting into our techniques, we mention two stan-
dard tools to help us build our MPC subroutines. The first
one is sorting: while in the PRAM model it takes ~ log N
parallel time, sorting takes only constant parallel time in the
MPC model [Go099], [GSZ11]. The second tool is index-
ing/predecessor search [GSZ11], which also has a constant
parallel time in MPC model. Furthermore, these two tools
are fully scalable, and hence all the subroutines built on
these two tools are also fully scalable. See Section IV for
how to use these two tools to implement the MPC operations
needed for our algorithms.

Graph Connectivity: A natural approach to the graph
connectivity problem is via the classic primitive of con-
tracting to leaders: select a number of leader verteces, and
contract every vertex (or most vertices) to a leader from its
connected component (this is usually implemented by label-
ing the vertex by the corresponding leader). Indeed, many
previous works (see e.g. [KSV10], [RMCS13], [KLM™14])
are based on this approach. There are two general questions
to address in this approach: 1) how to choose leader vertices,
and 2) how to label each vertex by its leader. For example,
the algorithm in [KSV10] randomly chooses half of the
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vertices as leaders, and then contracts each non-leader vertex
to one of its neighbor leader vertex. Thus, in each round of
their algorithm, the number of vertices drops by a constant
fraction. At the same time, half of the vertices are leaders,
and hence their algorithm still needs at least £2(log n) rounds
to contract all the vertices to one leader. Note that a constant
fraction of leaders is needed to ensure that there is a constant
fraction of non-leader vertices who are adjacent to at least
one leader vertex and hence are contracted. This leader
selection method appears optimal for some graphs, e.g. path
graphs.

To improve the runtime to < logn, one would have to
choose a much smaller fraction of the vertices to be leaders.
Indeed, for a graph where every vertex has a large degree,
say at least d > logn, we can choose fewer leaders: namely,
we can choose each vertex to be a leader with probability
p = O((logn)/d). Then the number of leaders will be about
O(n/d), while each non-leader vertex has at least one leader
neighbor with high probability. After contracting non-leader
vertices to leader vertices, the number of remaining vertices
is only a 1/d fraction of original number of vertices.

By the above discussion, the goal would now be to modify
our input graph G so that every vertex has a uniformly large
degree, without affecting the connectivity of the graph. An
obvious such modification is to add edges between pairs of
vertices that are already in the same connected component.
In particular, if a vertex v learns of a large number of vertices
which are in the same connected component as v, then we
can add edges between v and those vertices to increase the
degree of v. A naive way to implement the latter is via
broadcasting: each vertex v first initializes a set .S, which
contains all the neighbors of v, and then, in each round,
every vertex v updates the set S, by adding the union of
the sets .S,, over all neighbors u of v (old and new). This
approach takes log-diameter number of rounds, and each
vertex learns all vertices which are in the same connected
component at the end of the procedure. However, in a single
round, the total communication needed may be as huge as
Q(n?3) since each of n vertices may have 2(n) neighbors,
each with a set of size Q(n).

Since our goal of each vertex v is to learn only d vertices
in the same component (not necessarily the entire compo-
nent), we can therefore implement a “truncated” version of
the above broadcasting procedure:

1) If S, already had size d, then we do not need any further
operation for S,.

If wis in S,, and S,, already has d vertices, then we can just
put all the elements from S, into S, and thus S, becomes
of size d.

If | Sy| < d, and for every u € S,, the set S, is also smaller
than d, then we can implement one step of the broadcasting
— add the union of S,,’s, for all neighbors u € Sy, to S,.

2)

3)

In the above procedure, if the number of vertices in S, is
smaller than d after the i round, then we expect S, to
contain all the vertices whose distance to v is at most 2°.



Thus, the above procedure also takes at most log-diameter
rounds. Furthermore, the total communication needed is at
most O(n - d?).

Our full graph connectivity algorithm implements the
above “truncated broadcasting” procedure iteratively, for
values d that follow a certain “schedule”, depending on
the available space. At the beginning of the algorithm, we
have an n vertex graph G with diameter D, and a total
of Q(m) space. The algorithm proceeds in phases, where
each phase takes O(log D) rounds of communication. In
the first phase, the starting number of vertices is n; = n.
We implement a truncated broadcasting procedure where
the target degree d is dy = (m/n1)'/2, using O(log D)
rounds and O(m) total space. Then we can randomly select
O(nq/dy) leaders, and contract all the non-leader vertices
to leader vertices. At the end of the first phase, the total
number of remaining vertices is at most ny = O(n1/d;) =
O(n15/m%?). In general, suppose, at the beginning of the
i phase, the number of remaining vertices is n;. Then we
use the truncated broadcasting procedure for value d set
to d; = (m/n;)'/?, thus making each vertex have degree
at least d; = (m/n;)'/? in O(log D) number of commu-
nication rounds and O(m) total space. Then we choose
O(n;/d;) leaders, and, after contracting non-leaders, the
number ;1 of remaining vertices is at most O(n}-®/m?%?).
Let us look at the progress of the value d;. We have that
dir = Q(m/nisn)2) = Q((m'? /nl5)1/2) = QL)
Thus, we are making double exponential progress on d;,
which implies that the total number of phases needed is at
most O(loglog,,/,, ), and the total parallel time is thus
O(log D - loglog,,, /,, n).

This technique of double-exponential progress is more
general and extends to other problems beyond connectivity.
In particular, for a problem, suppose its size is character-
ized by a parameter n (not necessarily the input size—
e.g. in connectivity problem, n is the number of vertices).
When n is a constant, the problem can be solved in O(1)
parallel time. If there is a procedure that uses total space
©(m) to reduce the problem size to at most n/k for
k = (m/n)¢, ¢ = Q(1), then we can repeat the procedure
O(loglog,,,, n) times to solve the overall problem. In
particular, after repeating the procedure ¢ times, the problem
size is n; < ni_1/(m/ni_1)° < n - (n/m)3+) "1 We
call this technique double-exponential speed problem size
reduction.

Remark L.11. For any problem characterized by a size
parameter n, if we can use parallel time T' and total space
O(m) to reduce the problem size such that the reduced
problem size is n/k for k = (m/n)*Y) | then we can solve
the problem in O(m) total space and O(T -loglog,, , )
parallel time.

Spanning Forest and Diameter Estimator: Extending
a connectivity algorithm to a spanning forest algorithm is
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usually straightforward. For example, in [KSV10], they only
contract a non-leader vertex to an adjacent leader vertex, thus
their algorithm can also give a spanning forest, using the
contracted edges. Here however, extending our connectivity
algorithm to a spanning forest algorithm requires several new
ideas. In our connectivity algorithm, because of the added
edges, we only ensure that when a vertex u is contracted to a
vertex v, u and v must be in the same connected component;
but v and v may not be adjacent in the original graph.
Thus, we need to record more information to help us build
a spanning forest.

We can represent a forest as a collection of parent pointers
par(v), one for each vertex v € V. If v is a root in the forest,
then we let par(v) = v. We use dep,,,(v) to denote the
depth of v in the forest, i.e. dep,, (v) is the distance from
v to its root. Let distg(u,v) denote the distance between
two vertices u and v in a graph G.

Our connectivity algorithm uses the “neighbor increment”
procedure described above. We observed that if the set .S,
has fewer than d vertices after the i™ round, then S, should
contain all the vertices with distance at most 2¢ to v. This
motivates us to maintain a shortest path tree for S, with
root v. In the " round, if we need to update S, to be
Uues, Sus then we can update the shortest path tree of .5,
in the following way:

1) For each = € S, for some u € S,, we can create a tuple
(z,u).

Then, for each z € (UuGSU Su) \ Sy, we can sort all the
tuples (z,u1), (x,u2),- -, (z,ur) such that u1 minimizes
minyeg, dista (v, u) + distg(u, z). Since u is in Sy,  is
in Sy, it is easy to get the value of distg (v, u), distg (u, x)
by the information of shortest path tree for S, and S,,. Then
we set the new parent of z in the shortest path tree for S,
to be the parent of x in the shortest path tree for Sy, .

2)

Since S, before the update contains all the vertices which
have distance to v at most 2:~!, the union of the shortest
path from x to u; and the shortest path from wu; to v must
be the shortest path from « to v. Then by induction, we can
show that the parent of x in the shortest path tree for S,
is also the parent of x in the shortest path tree for updated
Sy. Thus, this modified “neighbor increment” procedure can
find n local shortest path trees where there is a tree with root
v for each vertex v. Furthermore, the procedure still takes
O(log D) rounds. And we can still use O(nd?) total space
to make each shortest path tree have size at least d. Next, we
show how to use these n local shortest path trees to construct
a forest with the roots in the forest being the leaders.

As discussed in the connectivity algorithm, if every local
shortest path tree has size at least d, we can choose each
vertex as a leader with probability p = ©((logn)/d) and
then every tree will contain at least one leader with high
probability. Let L be the set of sampled leaders, and let
distg (v, L) be defined as min, ey, distg(v,u). Let v be a
non-leader vertex, i.e. v € V'\ L. According to the shortest



path tree for S, 3, since LN.S, # (), we can find a child u of
the root v such that distg (v, L) > distg(u, L); in this case
we set par(v) = u. For vertex v € L, we can set par(v) = v.
We can see now that par denotes a rooted forest where
the roots are sampled leaders. Furthermore, since Vv ¢ L,
(v, par(v)) is from the shortest path tree for S,, we know
that v and par(v) are adjacent in the original graph G.
After doing the above for all nodes v, the forest denoted
by the resulting vector par must be a subgraph of the
spanning forest of G. We then apply the standard doubling
algorithm to contract all the vertices to their leaders (roots),
in O(log D) rounds. Therefore, the problem is reduced
to finding a spanning forest in the contracted graph. The
number of vertices remaining in the contracted graph is
at most O(n/d), where d = (m/n)®("). By Remark L11,
we can output a spanning forest in O(log D - loglog,, /n n)
parallel time.

Although the above algorithm can output the edges of a
spanning forest, it cannot output a rooted spanning forest.
To output a rooted spanning forest, we follow a top-down
construction. Suppose now we have a rooted spanning forest
of the contracted graph. Since we have all the information
of how vertices were contracted, we know the contraction
trees in the original graph. To merge these contraction trees
into the rooted spanning forest of the contracted graph, we
only need to change the root of each contraction tree to a
proper vertex in that tree. This changing root operation can
be implemented by the doubling algorithm via a divide-and-
conquer approach.

Since  the  spanning forest algorithm  needs
O(loglog,, , n) phases to contract all vertices to a
single vertex, the total parallel time to compute a rooted
spanning forest is O(log D - loglog,,, /,, 7). Furthermore,
the depth of the rooted spanning forest will be at most
O(DOUos1o8n/m ™)) Thus, we can use the doubling
algorithm to calculate the depth of the tree, and output this
depth as an estimator of the diameter of the input graph.

Depth-First-Search Sequence: Here, when the input
graph G is a tree, our goal is to output a DFS sequence for
this tree. Once we have this sequence, it is easy to output
a rooted tree. Thus, computing a DFS sequence is at least
as hard as computing a rooted tree, and all the previous
algorithms need 2(logn) parallel time to do so.

First of all, we use our spanning forest algorithm to
compute a rooted tree, reducing the problem to computing
a DFS sequence for a rooted tree. The idea is motivated by
TeraSort [O’MOS]. If the size of the tree is small enough
such that it can be handled by a single machine, then
we can just use a single machine to generate its DFS
sequence. Otherwise, our algorithm can be roughly described

3 The construction of S, for spanning forest algorithm is slightly
different from that described in the connectivity algorithm. S, in spanning
forest algorithm has a stronger property: Vu € V' \ Sy, distg (u, v) must
be at least distg (u/,v) for any u’ € S,,.
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as follows. (Recall that ¢ is the parameter such that each
machine has ©(n°) local memory.)

1) Sample n%/? leaves li, 0oy, ls.

2) Determine the order of sampled leaves in the DFS sequence.

3) Compute the DFS sequence A of the tree which only
consists of sampled leaves and their ancestors.

Compute the DFS sequence A, of every root-v subtree
which does not contain any sampled leaf.

5) Merge A and all the A,.

The first and second steps go as follows. Since we only
sample n%/? leaves, we can send them to a single machine.
We generate queries for every pair of sampled leaves where
each query (l;,1;) queries the lowest common ancestor of
({3, 1;). We have n? such queries in total. Since the input tree
is rooted, we can use a doubling algorithm to preprocess a
data structure in O(log D) parallel time and answer all the
queries simultaneously in O(log D) parallel time. Thus, we
know the lowest common ancestor of any pair of sampled
leaves, and we can store this all on a single machine. Based
on the information of lowest common ancestors of each pair
of sampled leaves, we are able to determine the order of the
leaves.

For the third step, suppose the sampled leaves have order
1,12, 1. Let v be the root of the tree. Then the DFS
sequence A should be: the path from v to [, the path from [y
to the lowest common ancestor of (I1,[2), the path from the
lowest common ancestor of (I1,l2) to I, the path from 5 to
the lowest common ancestor of (l2,l3), ..., the path from [
to v. We can find these paths simultaneously by a doubling
algorithm together with a divide-and-conquer algorithm in
O(log D) parallel time.

In the fourth step, we apply the procedure recursively.
Suppose the total number of leaves in the tree is ¢ < n. Since
we randomly sampled n%/2 number of leaves, with high
probability, each subtree which does not contain a sampled
leaf will have at most O(q/n%/?) number of leaves. Thus,
the depth of the recursion will be at most a constant, O(1/4).

Minimum Spanning Forest and Bottleneck Spanning
Forest: Recall that the input is a graph G = (V,E =
(e1,€2, - ,em)) together with a weight function w on E.
Without loss of generality, we only consider the case when
all the weights of edges are different, i.e. w(e1) < w(ez) <

< w(en,). Since the weights of edges are different,
the minimum spanning forest of the graph is unique. By
Kruskal’s algorithm, the diameter of the graph induced by
the first ¢ edges for any 7 € [m] is at most the depth of the
minimum spanning forest. Now, let us use D to denote the
depth of the minimum spanning forest.

We first discuss the minimum spanning forest algorithm.
A crucial observation of Kruskal’s algorithm is: if we want
to determine which edges in e;,e;41, -+ ,e; are in the
minimum spanning forest, we can always contract the first
i — 1 edges to obtain a graph G’, run a minimum spanning
forest algorithm on the contracted graph G’, and observe
whether an edge is included in the spanning forest of G'.

4)



Thus, if the total space is ©(m!'™7), we can have m”
copies of the graph, where the i copy contracts the first
(i —1) -m!'~" edges. Thus, we are able to divide the edges
into m” groups where each group has m!'~Y number of
edges. We only need to solve the minimum spanning forest
problem for each group. Then in the second phase, we can
divide the edges into m?2Y groups where each group has
m' =27 number of edges. Thus, the total number of phases
needed is at most O(1/7). In each phase, we just need to
run our connectivity algorithm to contract the graph.

For the approximate minimum spanning forest algorithm,
we use a similar idea. If we want a (1 + €) approximation,
then we round each weight to the closest value (1 + ¢)* for
some integer ¢. After rounding, there are only O(1/e-logn)
edge groups. Since our total space is at least (mlog(n)/e),
we can make O(1/e-logn) copies of the graph. The i copy
of the graph contracts all the edges in group 1,2,--- ,7— 1.
Then, we only need to run our spanning forest algorithm on
each copy to determine which edges should be chosen in
each group.

Another application of our double exponential speed prob-
lem size reduction technique is bottleneck spanning forest.
For the bottleneck spanning forest, suppose we have O (km)
total space. We can have k copies of the graph where the i
copy contracts the first (i—1)-m/k number of edges. We can
determine the group of O(m/k) edges which contains the
bottleneck edge. Thus, we reduce the problem to O(m/k).
According to Remark 1.11, the number of phases is at most
O(loglog, m), and each phase needs T parallel time, where
T is the parallel time for spanning forest.

Directed Reachability vs. Boolean Matrix Multiplica-
tion: If there is a fully scalable multi-query directed reach-
ability MPC algorithm with almost linear total space, we
can simulate the algorithm in sequential model. Thus, it will
imply a good sequential multi-query directed reachability
algorithm which implies a good sequential Boolean Matrix
Multiplication algorithm.

II. NOTATIONS

[n] denotes the set {1,2,---,n}. Let G be an undirected
graph with vertex set V' and edge set E. For v € V, T'g(v)
denotes the set of neighbors of v in G, i.e. I'g(v) = {u €
V| (v,u) € E}. For any u,v € V, distg(u,v) denotes the
distance between u, v in graph G. If w, v are not in the same
connected component, then distg (u,v) = co. If u,v are in
the same connected component, then distg(u, v) < co. For
v eV, {ueV|distg(u,v) < oo} is the set of all the
vertices in the same connected component as v. The diameter
diam(G) of G is the largest diameter of its components, i.e.
dlam(G) = MaXy,veV:diste (u,v)<oco diStG(u7 U)'

III. GRAPH CONNECTIVITY

In this section, we describe a batch version of a graph
connectivity algorithm which can be easily implemented in
the MPC model.

680

Algorithm 1 Neighbor Increment Operation

1: procedure NEIGHBORINCREMENT(m, G = (V, E))

2: Tnitially, n = |V|, B = 0 and S = {v} forall v € V.
for v € V,u € Tg(v) do > Initialize S'* to be the set

(or a subset) of direct neighbors of v

W

4: 1f [ S| < [(m/n)/?], then let S5 « S U {u}.
5: end for

6: r <+ 1. > 7 denotes the number of iterations.
7: for true do

8: for v € V do

9: it Ju e STV STV > [(m/n)'/?] then

10: S =gy 1511}.

11: 1f |S57 ] > |8V, then S5« S5\ {u}.
12: else )

13: 5 = Upestn S,

14: end if

15: end for

16: it Yo € V, either [SS”| > [(m/n)"/?] or |S{"| =

1SS then Let E' = EUU,ev{(v,u) |ve S5 oru e
S w # v} return G = (V, E').

17: else

18: r<nr+1.
19: end if

20: end for

21: end procedure

A. Neighbor Increment Operation

In this section, we describe a procedure (see Algorithm 1)
which can increase the number of neighbors of every vertex
and preserve the connectivity at the same time. The input
of the procedure is an undirected graph G = (V, E) and
a parameter m which is larger than |V|. The output is a
graph G’ = (V, E’) such that for each vertex v, either the
connected component which contains v is a clique or v has
at least [(m/ |V|)1/ %] — 1 neighbors. Furthermore, the total
space of the procedure is O(m), and the number of iterations
is at most min([log(diam(G))], [log(m/n)]) + 1.

B. Random Leader Selection

Given an undirected graph G (V,E), to design a
connected component algorithm, a natural way is constantly
contracting the vertices in the same component. One way to
do the contraction is that we randomly choose some vertices
as leaders, then contract non-leader vertices to the neighbor
leader vertices. In this section, we show that if Yo € V|
the number of neighbors of v is large enough, then we can
just sample a small number of leaders such that for each
non-leader vertex v € V, there is at least one neighbor of v
which is chosen as a leader. A more generalized statement
is stated in the following lemma.

Lemma III.1. Let V be a vertex set with n vertices. Let
0<~v<n,d€(0,1). Foreachv € V, let S, be a subset of
V\{v} with size at least y—1. Let | : V' — {0, 1} be a ran-
dom hash function such that Yv € V,l(v) are i.i.d. Bernoulli



1  with probability p; I
0 otherwise.

p > min((10log(2n/d))/~,1), then, with probability at
least 1 — 0,

) ey 1) < gpns
2) Yv € V,3u € S, U{v} such that I(u) = 1.

random variables, i.e. l(v) =

If the number of neighbors of each vertex is not large,
then we can still have a constant fraction of vertices which
can contract to a leader.

Lemma IIL2. Let V be a vertex set with n vertices.
Let S, be a subset of V \ {v} with size at least 1. Let
Il :V — {0,1} be a random hash function such that
Yv € V,i(v) are iid. Bernoulli random variables, i.e.

__J1  with probability %; . .
l(v) = {O otherwise. Let L={veV|lv) =

1Yu{v eV |VueS,U{v}i(u) =0}. E(L) <0.75n.
C. Contraction Operation

In this section, we introduce the contraction operation.
Firstly, let us introduce the concept of the parent pointers
which can define a rooted forest.

Definition IIL3. Given a set of vertices V, let par : V — V
satisfy that Yv € V,3i > 0 such that par)(v) =
par(*+1 (v), where Vv € V,j > 0,parly) (v) is defined as
par(par? =1 (v)), and par®) (v) = v. Then, we call such
par a set of parent pointers on V. For v € V, if par(v) = v,
then we say v is a root of par. par can have more than
one root. The depth of v € V, dep,,,(v) is the smallest
i € Zso such that par®”(v) = par(*1(v). The root of
v € V, par(®) (v) is defined as par'3Prar(")) (v). The depth
of par, dep(par) is defined as max,cy dep,,, (v).

It is easy to see that a set of parent pointers par on V'
formed a rooted forest on V. For a vertex v € V if par(v) =
v, then v is a root in the forest. Otherwise par(v) is the
parent of v in the forest.

Now we focus on the parent pointers which can preserve
the connectivity of the graph.

Definition III4. Given a graph G = (V,E) and a
set of parent pointers par on V, if Yv € V, we have
distg (v, par(v)) < oo, then par is compatible with G.

It is easy to show the following fact:

Fact IIL5. Given a graph G = (V, E) and a set of parent
pointers par which is compatible with G, then Yu,v € V
with par(®) (u) = par(®)(v), we have distg(u,v) < co.

Now, we describe a procedure (see Algorithm 2) which
can contract vertices to reduce the number of vertices. The
input of the procedure is an undirected graph G = (V, E)
and a set of parent pointers par : V' — V, where par is com-
patible with GG. The output of the procedure will be the root
of each vertex in V' and an undirected graph G’ = (V', E’)
which satisfies V' = {v € V | par(v) = v}, B’ = {(u,v) €

Algorithm 2 Tree Contraction Operation

1: procedure TREECONTRACTION(G = (V, E),par : V — V)
2 Initially, Vo € V, ¢‘® (v) < par(v). Let V/ = 0, E' = 0.
3 [+ 0.

4 for Jv € V,par(¢® (v)) # ¢V (v) do

5: [+ 1+1.

6: For v € V, compute g (v) = g/~ (¢~ (v)).

7: end for

8 r <L > r denotes the number of iterations.
9: For v € V, if par(v) = v, let V' «+ V' U {v}.

10 For (u,v) € E, if ¢/ (u) # ¢ (v), let E' < E' U

{(9" (w),g" (v)}.
11: return ¢ (v) as par(®(v) for v € V, and G' =
(V',E")
12: end procedure

V' x V' | u+#v,3(p,q) € E,par®)(p) = u,par®)(q) =
v}. Notice that V’ only contains all the roots in the forest
induced by par, and |E’| < |E|. Furthermore, the number of
iterations is at most [log dep(par)], the total space is linear
in the input size, and diam(G’) < diam(G).

D. Connectivity Algorithm

In this section, we described a batch algorithm for graph
connectivity/connected components problem. The input is
an undirected graph G = (V, E), a space/rounds trade-
off parameter m, and the rounds parameter r < |V'|. The
output is a function col : V' — V such that Vu,v €
V, distg(u, v) < co < col(u) = col(v).

The algorithm is described in Algorithm 3. The following
theorem shows the correctness of Algorithm 3.

Theorem IIL6 (Correctness of Algorithm 3). Let G =
(V,E) be an undirected graph, m > 4|V|, and r < |V]|
be the rounds parameter. If CONNECTIVITY (G, m, ) (Al-
gorithm 3) does not output FAIL, then Yu,v € V, we have
distg(u,v) < 0o < col(u) = col(v).

Now let us consider the number of iterations of Algo-
rithm 3 and the success probability.

Definition IIL7 (Total iterations). Let G = (V,E)
be an undirected graph, poly(n) > m > 4n, and
r < mn be the rounds parameter where n is the
number of vertices in G. The total number of itera-
tions of CONNECTIVITY(G,m,r) (Algorithm 3) is de-
fined as >._,(k; + r}), where k; denotes the num-
ber of iterations of NEIGHBORINCREMENT(m, G;_1) (see
line 10), and v denotes the number of iterations of
TREECONTRACTION(GY , par;) (see line 21).

Theorem IIL.8 (Success probability and total itera-
tions). Let G = (V,E) be an undirected graph,
poly(n) > m > 4n, and r < n be the rounds
parameter where n = |V|. Let ¢ > 0 be a suf
ficiently large constant. If r > cloglog,,,(n), then
with probability at least 0.98, CONNECTIVITY(G,m,r)



Algorithm 3 Graph Connectivity

1: procedure CONNECTIVITY(G = (V, E), m, )

2: Output: FAIL or col : V — V.

3 n <+ |V|

4 Vv € V, ho(v) < null.

5: GQZ(Vo,Eo):G, ie. Vo=V, Ey=F.

6: ng = n.

7: for i =1—r do

8 Vv € V, h;i(v) < null.

9 //Neighbor Increment:

0 G; = (V{, E}) = NEIGHBORINCREMENT(m, G;_1).
> Algorithm 1

10:

1: V' ={ve V! [|lq (v)| > [(m/ni-1)"/*] = 1}.

12: E! ={(u,v) € Bi1 |ue V', veV/}

13: Gy = (V" EY).

14: //Random Leader Selection:

15: Set i = [(m/ni—1)"/*],p; = min((30log(n) +
100) /i, 1/2).

16: Let [; : V" — {0, 1} be a random hash function such

that Vv € V;/,1;(v) are i.i.d. Bernoulli random variables, and
Pr(li(v) = 1) = pi.

17: Let Ly = {v e V" | i(v) =1} U{v e V' |Vu €
Lgr(v) U{v},li(u) =0}, > Li is a set of all the leaders

18: Vv € V{’ with v € L;, let par,(v) = v.

19: Yo € V! with v ¢ L; let par,(v) =
minuGL,‘ﬁ(FG( (v)U{v}) U- > Non-leader finds a leader.

20: //Vertices Contraction:

21: ((v3, Ei),gyi)) = TREECONTRACTION(GY , par,).
> Algorithm 2

22: G, = (Vi, E;).

23: n; = “/7«‘

24: For v € V/ \ V", hi(v) ¢ minyer,, (v)u{v} U

25: For v € V" \ Vi, hi(v) + ggri)(v).

26: For v € ‘/, if hifl(v) 75 null, hz(’l)) — hifl(v).

27: end for
28: If n # 0, return FAIL.
29: ((V, E),col) = TREECONTRACTION(G, k).
> Algorithm 2
30: return col .
31: end procedure

(Algorithm 3) will not return FAIL. Furthermore, with
probability at least 0.98, the total number of itera-
tions (see Definition II1.7) of CONNECTIVITY (G, m,T) is
O(min(r log(diam(G)), logn)).

IV. THE MPC MODEL

In this section, let us introduce the computational model
studied in this paper. Suppose we have p machines indexed
from 1 to p each with memory size s words, where n is the
number of words of the input and p- s = O(n'tY), s =
O(n%). Here 6 € (0,1) is a constant, v € R>q, and a
word has O(log(s - p)) bits. Thus, the total space in the
system is only O(n”) factor more than the input size n,
and each machine has local memory size sublinear in n.
When 0 < v < O(1/logn), the total space is just linear in
the input size. The computation proceeds in rounds. At the
beginning of the computation, the input is distributed on the

local memory of ©(n/s) input machines. Input machines
and other machines are identical except that input machine
can hold a part of the input in its local memory at the
beginning of the computation while each of other machines
initially holds nothing. In each round, each machine per-
forms computation on the data in its local memory, and sends
messages to other machines (including the sender itself when
it wants to keep the data) at the end of the round. Although
any two machines can communicate directly in any round,
the total size of messages (including the self-sent messages)
sent or received of a machine in a round is bounded by s,
its local memory size. In the next round, each machine only
holds the received messages in its local memory. At the end
of the computation, the output is distributed on the output
machines. Output machines and other machines are identical
except that output machine can hold a part of the output in
its local memory at the end of the computation while each
of other machines holds nothing. We call the above model
(v,9) — MPC model. The model is exactly the same as the
model MPC(e) defined by [BKS13] with e = v/(1 4+~ —9)
and the number of machines p = O(n'*779). Since we
care more about the total space used by the algorithm, we
use (7, d) to characterize the model, while in [BKS13] they
use parameter e to characterize the repetition of the data.
The main complexity measure is the number of rounds R
required to solve the problem.

V. IMPLEMENTATIONS IN MPC MODEL

In this section, we show the theoretical guarantees of im-
plementations of previous batch algorithms in MPC model.

A. Graph Connectivity

The following lemma shows the number of rounds needed
to implement Algorithm 1 in MPC model.

Lemma V.1. Let graph G = (V,E),n = |V|,N =
V| + |E| and m = ©(N") for some arbitrary v € [0,2].
NEIGHBORINCREMENT(m, G) (Algorithm 1) can be imple-
mented in (v, ) — MPC model for any constant § € (0,1).
Furthermore, the parallel running time is O(r), where r
is the number of iterations (see line 6 of Algorithm 1) of
NEIGHBORINCREMENT(m, G).

As mentioned in Section III-A, the number of it-
erations of NEIGHBORINCREMENT(m,(G) is at most
min([log(diam(G))], [log(m/n)]) + 1. Thus, the num-
ber of rounds needed to implement the procedure
NEIGHBORINCREMENT(m, G) in MPC model is at most
O(min([log(diam(G))], [log(m/n)]))-

The following lemma shows the number of rounds needed
to implement Algorithm 2 in MPC model.

Lemma V2. Let graph G = (V,E) and par : V — V
be a set of parent points (see Definition I11.3) on the vertex
set V. TREECONTRACTION(G, par) (Algorithm 2) can be
implemented in (0,8) — MPC model for any constant § €



(0,1). Furthermore, the parallel running time is O(r), where
r is the number of iterations (see line 8 of Algorithm 2) of
TREECONTRACTION(G, par).

As mentioned in Section III-C, the number of iterations
of TREECONTRACTION(G, par) is O(log dep(par)) which
implies that it needs O(logdep(par)) rounds to implement
in MPC model.

By following Lemma V.1, Lemma V.2 and Theorem IIL.8§,
we can get the following theorem which shows the number
of rounds needed to implement Algorithm 3 in MPC model.

Theorem V.3. Let graph G = (V,E),n = |V|,N =
|V| + |E| and m = O(N") for some arbitrary v € [0, 2].
Let v > 0 be a round parameter. CONNECTIVITY (G, m, r)
(Algorithm 3) can be implemented in (v, 0)—MPC model for
any constant 6 € (0,1). Furthermore, the parallel running
time is O(R), where R is the total number of iterations (see
Definition 111.7) of CONNECTIVITY (G, m, ).

Here, we are able to conclude the following theorem for
graph connectivity problem.

Theorem V4. For any v € [0,2] and any constant § €
(0,1), there is a randomized (v,0) — MPC algorithm (see
Algorithm 3) which can output the connected components for
any graph G = (V, E) in O(min(log D - log(1/+"),1logn))
parallel time, where D is the diameter of G, n = |V/|,
N =|V|+|E| and v = (1 +v)log, nl/z(ijlvﬂ) The success
probability is at least 0.98. In addition, lf the algorithm fails,
then it will return FAIL.

B. Spanning Forest Algorithm

Our spanning forest algorithm was outlined a bit in
Section I. In the following, we just state our results. Please
see the full version [ASS™ 18] for details.

Theorem V.5. For any v € [0,2] and any constant § €
(0,1), there is a randomized (v, §) — MPC algorithm which
can output the rooted spanning forest for any graph G =
(V,E) in O(min(log D - log %, logn)) parallel time, where
D is the diameter of G, n = |V|, N = |V| + |E| and
v = (1 + v)log, n1/2<711\7+7) The success probability is at
least 0.98. In addition, if the algorithm fails, then it will
return FAIL.

A byproduct is an estimator of the diameter of the graph.

Theorem V.6. For any v € [0,2] and any constant § €
(0,1), there is a randomized (vy,6) — MPC algorithm which
can output an diameter estimator D' for any graph G =
(V, E) in O(min(log D-log(1/7),logn)) parallel time such
that D < D' < Do(k’g(l/'y/)), where D is the diameter of
G,n=|V|,N=|V|+|E| and v = (1+7)log, -7
The success probability is at least 0.98. In addition, if the
algorithm fails, then it will return FAIL.
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C. DFS Sequence

As stated in Section I, we can output a DFS sequence for
a tree graph in MPC model. In the following, we just state
our results. Please see the full version [ASS™ 18] for details.

Theorem V.7. For any v € [B3,2] and any constant § €
(0,1), there is a randomized (vy,0) — MPC algorithm which
can output a Depth-First-Search sequence for any tree graph
G = (V,E) in O(min(log D - log(1/'),logn)) parallel
time, where n = |V|, 8 = O(loglogn/logn), D is the
diameter of G, and ' = ~ + ©(1/logn). The success
probability is at least 0.98. In addition, if the algorithm
fails, then it will return FAIL.

VI. MINIMUM SPANNING FOREST

In this section, we discuss how to apply our connectiv-
ity/spanning forest algorithm to the Minimum Spanning For-
est (MSF) and Bottleneck Spanning Forest (BSF) problem.

The input of MSF/BSF problem is an undirected graph
G = (V, E) together with a weight function w : £ — Z,
where E contains m edges e, ea, -, e, with w(e;) <
w(ez) < -++ < w(ey,). The goal of MSF is to output a
spanning forest such that the sum of weights of the edges
in the forest is minimized. The goal of BSF is to output a
spanning forest such that the maximum weight of the edges
in the forest is minimized. D is the diameter (with respect to
the number of hops/edges) of the minimum spanning forest.
If there are multiple choices of the MSF, then let D be the
minimum diameter among all the MSFs.

Lemma VL1. Given a graph G = (V,E) for E
{e1,ea, - ,em} together with a weight function w which
satisfies w(er) < w(eg) < - <w(ey), V1 <i<j<m,
an edge e from {e;,e;41,--- ,e;} is in the minimum span-
ning forest of G if and only if €' from {€}, e} 1, e} isin
the minimum spanning forest of G', where the vertices of G’
is obtained by contracting all the edges ey, ea,--- ,€;—1 of
G,and €, e. e’; are the edges (or vertices) in G' which

J€fy el
corresponds to edges e, e;,- -+ ,e; before contraction.

A natural way to apply Lemma VI.1 to parallel min-
imum spanning forest algorithm is that we can divide
the edges into several groups, and recursively solve the
minimum spanning forest for each group of edges. More
precisely, suppose we have total space ©(km), we can
divide F into k groups Ej, Fs,---,FE, where F;
{ei—1)m/k+1s€(i—1)m/k+25 " s €im/k - We can compute
graph G1,Gs, -+ , G where the vertices of G; is obtained
by contracting all the edges from e; to eg_1y.m/k, the
edges of GG; are corresponding to the edges in E;. Then by
Lemma VI.1, we can obtain the whole minimum spanning
forest by solving these k size O(m/k) minimum spanning
forest problems. For each sub-problem, we can assign it
©(m) working space, so each sub-problem has ©(k) factor
more space. We can recursively apply the above argument.



Theorem VI.2. For any v € [0,2] and any constant
0 € (0,1), there is a randomized (vy,0) — MPC algo-
rithm which can output a minimum spanning forest for any
weighted graph G = (V, E) with weights w : E — Z in
O(min(log D -log(1/+"),logn) - 1/4") parallel time, where
n=|V|], Ve € E,|w(e)| < poly(n), D is the diameter of a
minimum spanning forest of G, and ' = v/2+0(1/logn).
The success probability is at least 0.98. In addition, if the
algorithm fails, then it will return FAIL.

In the following, we show that Lemma VI.1 can also be
applied in approximate minimum spanning forest problem.

Theorem V1.3. For any v € [$3,2] and any constant § €
(0,1), there is a randomized (vy,6) — MPC algorithm which
can output a (1 + €) approximate minimum spanning forest
for any weighted graph G = (V, E) with weights w : E —
Z>¢ in O(min(log D-log(1/+"),log n)) parallel time, where
n=|V], N = V| +|B|, § = O(log(e"logn)/ logn),
Ve € E,|w(e)| < poly(n), D is the diameter of a minimum
spanning forest of G, and v' = (1+~— 8)log,, %.
The success probability is at least 0.98. In addition, if the
algorithm fails, then it will return FAIL.

In the following, we show that if we only need to find the
largest edge in the minimum spanning tree, then we are able
to get a better parallel time. It is an another application of our
double exponential speed problem size reduction technique.

Theorem VI4. For any v € [0,2] and any constant
0 € (0,1), there is a randomized (v,) — MPC algorithm
which can output a bottleneck spanning forest for any
weighted graph G = (V, E) with weights w : E — 7 in
O(min(log D - log(1/4"),logn) - log(1/v")) parallel time,
where n = |V|, Ye € E,|w(e)] < poly(n), D is the
diameter of a minimum spanning forest of G, and ~' =
v/24 O(1/logn). The success probability is at least 0.98.
In addition, if the algorithm fails, then it will return FAIL.

VII. DIRECTED REACHABILITY VS. BOOLEAN MATRIX
MULTIPLICATION

Consider the multi-query directed graph reachability prob-
lem. In this problem, we are given a directed graph G =
(V, E) together with |V| + |E| queries where each query
queries the reachability from vertex w to vertex v. The
goal is to answer all these queries. A similar problem in
the undirected graph is called multi-query undirected graph
connectivity problem. According to Theorem V.4, there is a
polynomial local running time fully scalable ~ log D paral-
lel time (0, d) — MPC algorithm for multi-query undirected
graph connectivity problem. Here polynomial local running
time means that there is a constant ¢ > 0 (independent
from §) such that every machine in one round can only have
O((n?)¢) local computation. For multi-query directed graph
reachability problem, we show that if there is a polynomial
local running time fully scalable (v,0) — MPC algorithm
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which can solve multi-query reachability problem in O(n®)
parallel time, then we can solve all-pair directed graph
reachability problem in O(n? - n?YT2+¢) sequential running
time for any arbitrarily small constant € > 0.

Theorem VIL.1. If there is a polynomial local running time
fully scalable (vy,6) — MPC algorithm which can answer
|V |4+|E| pairs of reachability queries simultaneously for any
directed graph G = (V, E) in O(|V|*) parallel time, then
there is a sequential algorithm which can compute the mul-
tiplication of two n x n boolean matrices in O(n?-n?7+a+e)
time, where constant € € Rsg can be arbitrarily small.
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