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Abstract
We prove that, for a broad range of problems, maximum-a-posteriori (MAP) estimation and ap-
proximate sampling of the posterior are at least as computationally difficult as maximum-likelihood
(ML) estimation. By way of illustration, we show how hardness results for ML estimation of mix-
tures of Gaussians and topic models carry over to MAP estimation and approximate sampling under
commonly used priors.
Keywords: Hardness, reductions, sampling

1. Introduction

When learning a probabilistic model, there are three computational tasks that commonly arise: max-
imum likelihood (ML) estimation of the model given data, maximum a posteriori (MAP) estimation
when a prior distribution over models is specified, and (approximate) sampling of the posterior dis-
tribution over models. We are interested in the relative computational complexity of these three
tasks: what does the hardness—or tractability—of one imply about the others?

At a high level, MAP estimation is rather like ML, with the added complication of the prior; and
the two are known to converge to the same limit with infinite data, under certain conditions. Thus
one would intuitively expect the MAP problem to be at least as hard as the ML problem.

The situation of approximately sampling is not as immediately clear. Sampling is known to be
as hard as optimization for various statistical physics models with a “temperature” parameter: this
temperature can be adjusted so that a sampler is essentially forced to return optimal or near-optimal
solutions. In the usual setting of probabilistic learning, however, there is no such temperature knob.
Nonetheless, there are other ways to produce a similar effect, and thus one would again expect,
intuitively, that approximate sampling is no easier than ML estimation.

In this work, we make these intuitions precise. Considering probabilistic models in broad gen-
erality, we give simple conditions under which approximate MAP estimation and approximate pos-
terior sampling can be shown to be at least as hard as approximate ML estimation. A key challenge
here is formalizing issues of numerical precision.

We then illustrate these general reductions in two cases of interest. Starting from recent hardness
results for ML estimation of Gaussian mixture models (Tosh and Dasgupta, 2018) and topic mod-
els (Arora et al., 2012), we show how in both settings, the hardness extends also to MAP estimation
and approximate sampling.

c© 2019 C. Tosh & S. Dasgupta.
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1.1. Numerical precision

When discussing standard combinatorial optimization problems such as set cover or maximum cut,
the first step is to consider the exact version of the problem and, when that proves intractable, to
consider approximate solutions. For such problems, the exact solution lies in a discrete space and is
of polynomial size, but is difficult to find.

By contrast, many of the problems that we have in mind—such as estimation of Gaussian mix-
ture models or of topic distributions—take solutions in continuous spaces. The exact optimal solu-
tions may therefore not be compactly representable. The following lemma, whose proof appears in
the appendix, illustrates how this can happen even for extremely simple models.

Lemma 1 When fitting a mixture model 1
2N (−µ, 1) + 1

2N (µ, 1) to the data set of three points
{−2, 0, 2}, the maximum-likelihood choice of µ is irrational.

Thus, exact solutions are ruled out from the very beginning, and we are forced to restrict our-
selves to approximate versions of ML and MAP estimation. In particular, we need to characterize
the quality of polynomial-sized solutions.

The case of sampling is even more challenging, since we cannot hope to sample exactly from
continuous domains. Much of the work on Markov chain mixing has focused on the discrete setting,
and uses total variation distance to measure the difference between the target distribution µ, over a
space Θ, and the distribution ν from which samples are actually drawn:

dTV (µ, ν) = sup
measurable A⊂Θ

|µ(A)− ν(A)|.

In cases where µ has continuous support, ν must still be discrete because samples must have
bounded bit-length, and thus this distance will be identically 1.

To overcome this, we consider two notions of distribution approximation. The first is the
Wasserstein distance, a metric over distributions that has become an increasingly popular mea-
sure of convergence in the optimization and sampling literature (Raginsky et al., 2017; Cheng et al.,
2018). In the appendix, we also introduce a generalization of total variation distance that takes
the supremum over a subfamily of measurable sets that captures Θ at a certain granularity. We
show how to construct suitable families from ε-covers of Θ; our construction may be useful in other
contexts.

1.2. Overview of results

In Section 3, we show that under conditions on the prior, there is a generic polynomial-time reduc-
tion from ML estimation to MAP estimation.

In Section 4, we define a notion of approximate posterior sampling that makes sense in both
discrete and continuous domains and we then give a generic reduction from ML estimation to this
problem, again under conditions on the prior.

Sections 3 and 4 extend the hardness of ML estimation problems to their Bayesian counterparts
provided that the prior meets certain mild conditions. In these cases, we cannot hope for efficient
MAP estimation algorithms or rapidly mixing Markov chains unless the data is specially constrained
or NP = RP .

Throughout our exposition, topic modeling serves as a running example. In particular, we extend
a hardness result of Arora et al. (2012) for ML estimation of topic models to the corresponding
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Bayesian estimation problems. In Section 5, we do this also for the problem of estimating mixtures
of Gaussians.

1.3. Methodology

Our goal is to reduce arbitrary maximum-likelihood (ML) estimation problems to their Bayesian
counterparts. In the absence of special knowledge about the specific model under consideration, we
opt for the simplest type of reduction: duplication.

Let P = {p(· | θ) : θ ∈ Θ} be a family of parameterized probability densities and let a q0 be
a prior density over Θ. Consider a data sequence X = (x1, . . . , xn) and suppose that we replicate
this sequence k times, i.e., we make k copiesX(i) = (x1, . . . , xn). The posterior distribution, given
X(1), . . . , X(k), is of the form

1

Z
q(θ)p(X(1), . . . , X(k) | θ) =

1

Z
q(θ) (p(x1, . . . , xn | θ))k

where Z is the normalizing constant to make the density integrate to one. By simply replicating
the data, we get an exponential increase on the weight of the likelihood function over the prior
distribution. Thus, our general strategy will be to replicate the data until the posterior distribution is
suitably concentrated around the maximum likelihood estimate.

The success of this approach ultimately hinges on the relationship of the prior distribution
and the maximum likelihood estimate. If the prior distribution has very low density, say double-
exponentially small, on parameters that are close to the maximum likelihood estimate, then to get
large enough posterior weight on these parameters we need to duplicate the data a very large number
of times, possibly more than polynomial. On the other hand, many prior distributions, especially
those over unbounded parameter spaces, do put very small weight on some parameters. Thus the
data duplication technique can fail on instances whose maximum likelihood estimate lies in some
region of small prior density. How do we get around this?

The key observation is that many hardness reductions to ML estimation problems do not produce
arbitrary instances. Indeed, these reductions often create instances with a special structure. And in
many of these cases, the maximum likelihood solutions to these instances are themselves well-
structured and, as a consequence, often lie close to parameter regions with non-negligible weight
under many commonly-considered prior distributions. The upshot is that if we exploit the structure
of hard instances, then we can often avoid the only obstacle to our duplication technique.

1.4. Related work, including connection with statistical literature

Of the computational tasks discussed in this work, ML estimation has seen the lion’s share of hard-
ness results (Chor and Tuller, 2006; Guruswami and Vardy, 2005). This is possibly because ML
estimation does not have the additional complication of a prior distribution and can be easier to
work with than MAP estimation and sampling.

In the computational literature, several algorithmic connections have been made between sam-
pling and optimization. Kalai and Vempala (2006) showed that simulated annealing, a technique
that involves approximately sampling from a sequence of distributions, can be used for certain con-
vex optimization problems. Bubeck et al. (2015) used Langevin dynamics, a technique in which
Gaussian noise is added to each step of gradient descent, to sample efficiently from log-concave
distributions. What these, and other, works demonstrate is that certain optimization algorithms can
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be turned into sampling algorithms, and vice versa. What is lacking, however, is a generic reduction
between these two tasks.

In the statistical literature, there are many results to the effect that, under suitable conditions,
for data sampled from some model in Θ, the maximum likelihood estimate in Θ asymptotically
converges to this same model, and the posterior distribution asymptotically concentrates around it.
Examples include the classical work of Le Cam (1953). Our hardness results are in a different
setting—the data are arbitrary—but interestingly, require similar conditions on the prior. This is
because our duplication technique gives the problem a statistical aspect: the replicated data look
rather like multiple draws from an underlying distribution supported on the initial data points.

It is worth pointing out that the existence of efficient reductions from ML estimation to MAP es-
timation and posterior sampling, although intuitive, is by no means a foregone conclusion. There are
various conditions that need to hold, and this work provides a blueprint that boils these reductions
down to a few checks. Moreover, we illustrate how to apply this blueprint on two canonical exam-
ples, demonstrating hardness of MAP estimation and approximate sampling for topic modeling and
mixtures of Gaussians for the first time.

Finally, we mention a closely related task to our estimation setting, but one which is not consid-
ered in the present work: using a fitted model to infer latent variables in new data. Notably, Sontag
and Roy (2011) demonstrated that MAP estimation and posterior sampling for inference in LDA
topic models are NP-hard. This result is particularly interesting as the corresponding maximum
likelihood estimation problem is trivial.

2. Preliminaries and definitions

Let X be any data space. A parameterized probability model on X is a pair (p,Θ), where p(· | θ)
is a probability density over X for any θ ∈ Θ. We will be working with i.i.d. probability models,
where for any sequence X = (x1, . . . , xn) ∈ X n and any θ ∈ Θ,

p(X | θ) = p(x1, . . . , xn | θ) = p(x1 | θ) · · · p(xn | θ).

If we couple this probability model with a prior probability measure ν0 over Θ, then the resulting
triple (ν0, p,Θ) is a Bayesian parameterized probability model. Let q0 be a probability density
corresponding to measure ν0. The posterior density after observing X is then written as qX(θ) ∝
q0(θ)p(X | θ) and we denote the corresponding measure as νX .

This notation conceals problem size: in reality, each input instance has some dimension m (the
vocabulary size for documents, for instance) and requires parameters of corresponding dimension-
ality, in some Θm ⊂ Θ. We will suppress this dependence except where needed.

2.1. Maximum likelihood estimation

We formally define the maximum likelihood estimation problem as follows.

ML ESTIMATION: MLE-(p,Θ)
Input: A sequence of points X ∈ X n and an accuracy parameter b in unary.
Output: A parameter θ ∈ Θ satisfying log p(X | θ) ≥ sup

θ′∈Θ
log p(X | θ′)− 1/b.

It might also be reasonable to ask for precision 1/2b. We adopt this particular formulation because
it yields stronger hardness results.
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2.2. Topic modeling

We will use the problem of topic modeling as a running example. We follow the model of Arora et al.
(2012) where there is an unknown V ×K topic matrix Ψ such that each column Ψ(i) is a distribution
over a dictionary [V ], and there is a collection of D unknown, stochastically-generated distributions
θ(1), . . . , θ(D) over the topics [K]. The standard choice of prior on θ(1), . . . , θ(D) is a symmetric
Dirichlet(α) distribution. The generative process for a document d with words w(d)

1 , w
(d)
2 , . . . is

θ(d) ∼ Dirichlet(α)

zi | θ(d) ∼ Categorical(θ(d))

w
(d)
i | zi,Ψ

(zi) ∼ Categorical(Ψ(zi))

We observe the bags of words X = [X(1)| · · · |X(D)] where X(d)
i = |{j : w

(d)
j = i}| is the

number of occurrences of word i in document d. Since each document is generated independently
and θ(1), . . . , θ(D) are assumed to be i.i.d., the likelihood of the corpus under a topic matrix Ψ is

p(X |Ψ) =

D∏
d=1

Eθ(d)
[
p
(
X |Ψ, θ(d)

)]
=

D∏
d=1

Eθ(d)

 V∏
i=1

(
K∑
k=1

Ψ
(k)
i θ

(d)
k

)X(d)
i


How many bits does it take to approximate the maximum-likelihood Ψ? In the appendix, we show
that for any discrete distribution p = (p1, . . . , p`) and any ε > 0, there is a rounded distribution p̂
that uses dlog2(`/ε)e bits per entry and has p̂i ≥ pi(1 − ε). By applying this construction to each
individual topic distribution, we get the following.

Lemma 2 Consider any V ×K topic distribution matrix Ψ. For any ε > 0 and any integerm, there
is a topic matrix Ψ̂ that uses dlog2(mV/ε)e bits per entry, such that log p(x|Ψ) − log p(x|Ψ̂) ≤ ε
for all documents x of ≤ m words.

Thus, there exists a polynomially-sized solution to the problem of approximating the ML es-
timate of the topic modeling problem with a Dirichlet(α) prior on Θ, which we will refer to as
TM-MLE(α). Arora et al. (2012) demonstrated that TM-MLE(α) is NP-hard for α = 1. Their proof
method works for any α > 0; for completeness we present the following generalization of their
result in the appendix.

Theorem 1 [Implicit in Arora et al. (2012)] We say a topic matrix Ψ is c-smooth for c > 0 if
mini maxj Ψ

(j)
i ≥ c. Given α > 0, TM-MLE(α) is NP-hard when restricted to instances in which

K = 2, all the documents are restricted to have 2 words, and any topic matrix within 1
3(1+α) of

optimal is guaranteed to be 1/V -smooth.

The result in the appendix applies to all symmetric priors and not just the Dirichlet. However,
to keep our examples concrete we will only refer to the NP-hardness of TM-MLE(α). Given this
result, what can we say about the complexity of MAP estimation and sampling for topic modeling?
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3. MAP estimation is as hard as ML estimation

In this section we give a generic reduction from ML estimation to MAP estimation. For a fixed data
space X , let (p,Θ) be a parameterized probability model and let ν0 be a prior probability measure
with an associated density q0. Recall that we use the notation qX to denote the posterior density
given data X . We define the MAP estimation problem as follows.

MAP ESTIMATION: MAP-(p, q0,Θ)
Input: A sequence of points X ∈ X n and accuracy parameter b in unary.
Output: A parameter θ ∈ Θ satisfying log qX(θ) ≥ sup

θ′∈Θ
log qX(θ′)− 1/b.

For any instance X = (x1, . . . , xn) ∈ X n, let Z = (X(1), . . . , X(k)) be a sequence consisting of k
copies of X . The lemma below relates the MAP estimate for Z to the ML estimate for X .

Lemma 3 Pick any δ > 0 and any θ ∈ Θ within δ of the optimal MAP solution for Z, that is,

log qZ(θ) ≥ sup
θ′∈Θ

log qZ(θ′)− δ.

Then the log-likelihood of any θ′ ∈ Θ can exceed that of θ by at most

log p(X|θ′)− log p(X|θ) ≤ 1

k

(
δ + log q0(θ)− log q0(θ′)

)
.

Lemma 3 is a promising start to a reduction from ML estimation to MAP estimation, but it
requires the prior density q(·) to be bounded above and below, which is often not the case. Recall
our example of topic modeling, where we are given a matrix bag of words X ∈ ZV×D and the ML
goal is to find the topic matrix Ψ ∈ RV×K which maximizes the objective

log p(X |Ψ) =
D∑
d=1

logEθ(d)

 V∏
i=1

(
K∑
k=1

Ψ
(k)
i θ

(d)
k

)X(d)
i


where θ(d) ∼Dirichlet(α). A common choice of prior for Ψ is to assume that the columns of Ψ
are drawn i.i.d. from a symmetric Dirichlet(β) distribution. If we let q denote the density of the
Dirichlet(β) distribution, this prior density on Ψ can be written as

q0(Ψ) = q(Ψ(1)) q(Ψ(2)) · · · q(Ψ(K)).

We call the problem of maximizing the resulting posterior TM-MAP(α,β). For β < 1, the den-
sity q is not bounded from above, and TM-MAP(α,β) is consequently not well-defined: infinite
a-posteriori scores can be achieved. Hence we will focus on the case β ≥ 1. Here, however, q ap-
proaches 0 on the boundary of the simplex, which is problematic for the reduction because the ML
solutions Ψml of Theorem 1 contain topic distributions that are arbitrarily close to this boundary.
Thus, Lemma 3 cannot be straightforwardly applied using θ′ = Ψml. Instead, we need to ensure
that, for any data set, there is some intermediate Ψ that is far enough from the boundary to have
non-negligible probability mass under q0 but has high enough likelihood to be considered a good
estimate of Ψml.

In summary, we want to guarantee that there are good ML estimates with non-negligible weight
under the prior density. The following two sections will help us formalize these notions.
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3.1. Admissible distances

Given a likelihood function p, we define the log-likelihood distance between θ1, θ2 ∈ Θ as

dp(θ1, θ2) = sup
x∈X
| log p(x | θ1)− log p(x | θ2)|.

Note that for any data sequence X ∈ X n, we have

dp,X(θ1, θ2) := | log p(X | θ1)− log p(X | θ2)| ≤ ndp(θ1, θ2).

In our setting, where we are concerned with how close parameters are in terms of their log-likelihood,
dp is a natural distance to consider. However, it can be difficult to work with directly. Thus we would
like to upper-bound it—that is, upper-bound differences in log-likelihood—in terms of more conve-
nient distance functions on parameters, such as `p distance. Such upper bounds might hold only on
well-behaved subsets of parameter space.

Definition 2 Given λ ≥ 1 and S ⊂ Θ, we say a distance d(·, ·) is (λ, S)-admissible if for all
θ1, θ2 ∈ S,

(i) d(θ1, θ1) = 0 and d(θ1, θ2) = d(θ2, θ1), and

(ii) if d(θ1, θ2) < 1/λ, then dp(θ1, θ2) ≤ λd(θ1, θ2).

We call a λ satisfying (ii) an admissibility constant.

Returning to topic modeling, we define the max-norm distance between two topic matrices as

‖Ψ− Φ‖max = max
i,j
|Ψ(j)

i − Φ
(j)
i |.

The following lemma, combined with the fact that max-norm distance is a metric, demonstrates
that max-norm distance is admissible over the set of smooth topic matrices, where smoothness was
defined in Theorem 1.

Lemma 4 Pick c,m > 0 and define α0 =
∑
αi. Let X be the space of documents with length

bounded by m and S be the space of c-smooth matrices. If

λ =

(
2m

c
+ max

(
1,

(
α0 +m

K

)K) Kα0+2m−1/2

cm

)
,

then max-norm distance is (λ, S)-admissible.

Although our discussion of topic modeling has assumed a symmetric Dirichlet distribution, the
above lemma holds for non-symmetric Dirichlet distributions as well. Additionally, for the instances
produced in Theorem 1, K = m = 2 and c = 1/V ; thus the parenthesized term is polynomial in V .

Finally, for θ ∈ Θ and ε > 0, define the ball around θ of radius ε with respect to distance d as
the set Bd(θ, ε) = {θ′ ∈ Θ : d(θ, θ′) < ε}.
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3.2. Promise problems

When constructing polynomial time reductions from a language L to a language L′, the typical
approach is to demonstrate the existence of a polynomial-time computable function f : Σ∗ → Σ∗

such that x ∈ L if and only if f(x) ∈ L′. However, it is often the case that reductions only
demonstrate the hardness of certain well-behaved subsets of languages. Such subsets are captured
in the notion of promise problems. Given a function Π : Σ∗ → {0, 1}, known as the promise, and
a language L ⊂ Σ∗, the promise problem Π-L is the problem of determining if x ∈ L given input
instances with Π(x) = 1.

3.3. The reduction

To turn Lemma 3 into a generic reduction, we need to assert that for any valid data sequence X
and any ε > 0, there is some θε whose log-likelihood is within ε of θml such that q0(θε) is bounded
below from zero. Such a condition on θml is implicitly a restriction on valid inputs X and therefore
can be phrased as a promise.

Theorem 3 Let m be some measure of the size of an input instance, and λ(m) any function of this
size. Let S ⊂ Θ be some subset of parameters, and d be a (λ(m), S)-admissible distance function.
Suppose q0 satisfies two properties:

(i) it is bounded above by 2poly(λ(m)) and

(ii) given ε > 0 and θ ∈ S, there exists θε ∈ Bd(θ, ε)∩S such that log q0(θε) ≥ − poly(λ(m), 1/ε).

If Π is the promise that θml ∈ S, then there is a reduction that is polynomial in the input length and
λ(m) from Π-MLE-(p,Θ) to MAP-(p, q0,Θ).

Proof Let X = (x1, . . . , xn) and b = 1b be the input to MLE-(p,Θ) and let Z denote the sequence
consisting of k copies of X . Our input to MAP-(p, q0,Θ) will be the data sequence Z and the
accuracy parameter b. Suppose that the output of this call is θ.

Let ε = 1/(2bnλ(m)) and take θε ∈ S∩Bd(θml, ε) to be the point with q0(θε) ≥ 2− poly(λ(m),1/ε)

whose existence is given by assumption (ii). By Lemma 3,∣∣∣∣log
p(X | θml)
p(X | θ)

∣∣∣∣ ≤ ∣∣∣∣log
p(X | θml)
p(X | θε)

∣∣∣∣+

∣∣∣∣log
p(X | θε)
p(X | θ)

∣∣∣∣
≤ n · dp(θml, θε) +

∣∣∣∣log
p(X | θε)
p(X | θ)

∣∣∣∣
≤ n · λ(m)d(θml, θε) +

1

k

(
1

b
+ log

q0(θ)

q0(θε)

)
≤ λ(m)nε+

1

k

(
1

b
+ poly(λ(m), 1/ε)

)
.

By taking k to be a large enough polynomial in b, λ(m), and 1/ε, we can guarantee that θ is within
1/b of the ML solution.

Returning to topic modeling, let Π denote the promise that the data sequence has only 2 words
per document and the ML solution is 1/V -smooth. From Theorem 1, Π-TM-MLE(α) is NP-hard
for any fixed α > 0.
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Now take λ to be the admissibility constant from Lemma 4 with c = 1/V , m = K = 2. In
the appendix, we show that when the prior qo is Dirichlet(β) with β ≥ 1, then for any ε > 0 and
any input instance, there exists a 1/V -smooth Ψε that is within ε of Ψml in max-norm distance
and satisfies log q0(Ψε) ≥ − poly(λ, 1/ε). Letting S be the set of c-smooth matrices, Theorem 3
immediately gives us the following.

Theorem 4 For any fixed α > 0 and β ≥ 1, TM-MAP(α, β) is NP-hard.

4. Approximate sampling is as hard as ML estimation

We now turn to a reduction from ML estimation to posterior sampling. As pointed out in Section 1,
total variation distance is not a suitable metric for approximate sampling in continuous domains.
Thus we begin by describing a commonly-used alternative: Wasserstein distances. Afterwards, we
provide reductions from ML estimation to approximate sampling and demonstrate how it applies to
topic modeling.

4.1. Wasserstein approximate sampling

Given two probability distributions µ and ν and a metric d over Θ, the t-th Wasserstein distance is

Wt(µ, ν) :=

(
inf

γ∈Γ(µ,ν)
E(X,Y )∼γd(X,Y )t

)1/t

.

Here, Γ(µ, ν) is the space of all couplings of µ and ν, i.e. probability distributions over Θ × Θ
whose marginals are µ and ν.

When (Θ, d) is the trivial metric space, i.e. d(θ, θ′) = 1 whenever θ 6= θ′, then the t-th Wasser-
stein distance is just the t-th root of the total variation distance. In general, however, Wasserstein
distances differ from total variation distance. In particular, when (Θ, d) admits an ε-covering Θ̂,
any distribution ν can be approximated within Wasserstein distance ε by a discrete distribution.

Theorem 5 Let ε > 0 and ν be a distribution over a metric space (Θ, d). If Θ̂ is a countable
ε-cover of Θ then there exists a measure ν̂ over Θ̂ such that Wt(ν, ν̂) ≤ ε.

In particular, Theorem 5 demonstrates that when Θ is a bounded subset of Rk and d is an
`p norm,1 then any distribution ν over Θ has a discrete distribution within ε of ν in Wasserstein
distance that is supported on points which can be written using a polynomial number of bits. Given
this observation, we define the Wasserstein approximate posterior sampling problem as follows.

WASSERSTEIN APPROXIMATE POSTERIOR SAMPLING: Wt-APPROX-SAMPLING-(p, ν0,Θ)
Input: A sequence of points X ∈ X n, accuracy parameter b in unary.
Output: A random draw θ ∼ ν, whereWt(ν, νX) ≤ 1/b.

1. Alternatively Θ could be unbounded and d(x, y) = min{‖x− y‖p, B} for some B > 0.
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4.2. The reduction

Recall the definition of dp,X as

dp,X(θ1, θ2) = | log p(X|θ1)− log p(X|θ2)|

for a data sequence X ∈ X n and θ1, θ2 ∈ Θ. The following lemma tells us the rate at which the
posterior of a duplicated data sequence concentrates around the maximum likelihood solution.

Lemma 5 Take any ε, δ > 0 and X ∈ X n. If Z is the sequence created by duplicating X

k ≥ 2

ε

(
log

(
1

δ
− 1

)
+ log

(
1− ν0(Bdp,X (θml, ε))

ν0(Bdp,X (θml, ε/2))

))
times then νZ(Bdp,X (θml, ε)) ≥ 1− δ. (Recall θml is the maximum-likelihood solution for X .)

With this lemma in hand, the reduction from ML estimation to Wasserstein approximate sam-
pling can be given. The proof is deferred to the appendix.

Theorem 6 Letm be some measure of the size of an input instanceX , and let λ(m) be any function
of this size. Let d be a distance function and S ⊂ S′ ⊂ Θ be subsets satisfying

(i) if θ ∈ S then Bd(θ, 1/λ(m)) ⊂ S′ and

(ii) d is (λ(m), S′)-admissible.

If Π is the promise that Bdp,X (θml, 1/λ(m)) ⊂ S and ν0(Bd(θml, ε)) ≥ 2− poly(λ(m),1/ε) for all
ε > 0, then Π-MLE-(p,Θ) ≤P Wt-APPROX-SAMPLING-(p, ν0,Θ) under randomized reductions
which are polynomial in the input size and λ(m).

To see how this reduction applies to our topic modeling scenario, recall that our posterior was
formed by considering the likelihood in TM-MLE(α) and placing a Dirichlet(β) prior on each of the
columns of Ψ. We call the problem of sampling from this distribution TM-APPROX-SAMPLING(α, β).

Notice that Theorem 6 only requires a lower bound on the probability of neighborhoods of ML
solutions and not any type of upper bound as in Theorem 3. Thus, for approximate posterior sam-
pling in topic modeling, we do not need to place the same lower bound on β as in MAP estimation.
In particular, we prove the following in the appendix.

Theorem 7 There is no poly-time algorithm for TM-APPROX-SAMPLING(α, β) for any α, β > 0
unless NP=RP.

4.3. Discretized total variation distance

Wasserstein distance is not the only way to compare continuous and discrete distributions. In the
appendix, we introduce a generalization of total variation distance that captures the disagreement
between distributions at a specified granularity. Under the same conditions as Theorem 6, we show
ML estimation can be reduced to approximate posterior sampling with respect to this alternate
distance.

10
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5. Application: Mixtures of Gaussians

Consider the following maximum likelihood estimation problem for mixtures of k spherical Gaus-
sians with the same variance.

SAME VARIANCE MLE: MLE-MOG-SV(k)
Input: Points x1, . . . , xn ∈ Rd; unary parameter b.
Output: Parameters (π,µ, σ) such thatLL(π,µ, σ) =

∑n
i=1 log

(∑k
j=1 πjN(xi;µj , σ

2)
)

is within an additive factor 1/b of optimal.

In the above, we have used boldface symbols to pack parameters into vectors, i.e. µ = (µ1, . . . , µk)
and π = (π1, . . . , πk). Tosh and Dasgupta (2018) showed MLE-MOG-SV(k) is NP-hard for k ≥ 2.

In this section, we examine the complexity of Bayesian estimation for mixtures of Gaussians.
We consider common conjugate priors on the mixing weights, means, and variance. In particular, we
place a symmetric Dirichlet(γ) prior on the mixing weights and a Normal-Inverse-Gamma(α, β, µ0, n0)
prior on the means and variance, wherein the variance σ2 is first drawn from an inverse gamma dis-
tribution, IG(α, β), and the means are drawn i.i.d. from a normal distribution, N (µ0, σ

2/n0Id).
The full generative process is spelled out below.

(π1, . . . , πk) ∼ Dirichlet(γ) µj |σ2 ∼ N (µ0, σ
2/n0Id)

σ2 ∼ IG(α, β) xi|π,µ, σ2 ∼
k∑
i=1

πiN (µi, σ
2Id)

Let ω = (α, β, γ, µ0, n0) denote a fixed set of hyper-parameters. We call the corresponding
MAP estimation problem MAP-MOGS(k,ω) and the corresponding approximate sampling problem
APPROX-SAMPLING-MOGS(k,ω). We will show these problems are hard when k = 2.

As in the topic modeling setting, we cannot simply start with a reduction from MLE-MOGS-
SV(k). We will need a well-behaved promise version of this problem.

Theorem 8 Let Π be the promise that there exists a low-order polynomial ρ(·, ·, ·) such that all
input data points satisfy ‖x‖ ≤ ρ(n, d, k) and if θml = (π∗,µ∗, σ∗) is a maximum likelihood
solution and θ = (π,µ, σ) is within 1 of optimality, then

(i) ‖µj‖ ≤ ρ(n, d, k) for all j,

(ii) σ2 ≥ 1/ρ(n, d, k),

(iii) πj > 0 for all j, and

(iv) π∗j ≥ 1/ρ(n, d, k) for all j.

Then Π-MLE-MOGS-SV(k) is NP-hard for k ≥ 2.

The proof of Theorem 8 is deferred to the appendix. Theorem 8 implies, among other things,
that if we are reducing from Π-MLE-MOGS-SV(k), we may restrict our data space X to consist of
points x satisfying ‖x‖ ≤ ρ(n, d, k).

As before, we also need a suitable distance in parameter space. We will consider the following
distance between two parameters θ = (π,µ, σ) and θ̂ = (µ̂, π̂, σ̂):

d(θ, θ̂) = max
{
‖µi − µ̂i‖2, | log πi − log π̂i|, |σ2 − σ̂2|

}
.

11
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The following lemma, whose proof appears in the appendix, shows that this distance is admissible
for well-behaved parameters.

Lemma 6 Let θ = (π,µ, σ) and θ̂ = (π̂, µ̂, σ̂) be two parameter vectors satisfying πj , π̂j > 0 for
all j. If X = {x : ‖x‖ ≤ B} then dp(θ, θ̂) ≤ d(θ, θ̂) poly(1/σ2

i , 1/σ̂
2
i , ‖µi‖, ‖µ̂i‖, B).

The next lemma, whose proof appears in the appendix, provides bounds on the prior density.

Lemma 7 Let q and ν be the prior density and measure, respectively, for the Bayesian mixture
of two spherical Gaussians generative model with fixed parameters α, β, γ, µ0, n0. For any θ =
(π,µ, σ) and any ε > 0, we have

(i) log q(θ) ≥ − poly(1/πi, 1/σ, ‖µi‖, d),

(ii) log ν(Bd(θ, ε)) ≥ − poly(1/πi, 1/σ, ‖µi‖, d, 1/ε), and

(iii) if γ ≥ 1, then log q(θ) ≤ poly(d).

Given the above results, we can now demonstrate the hardness of MAP estimation and approx-
imate posterior sampling.

Theorem 9 Let ω = (α, β, γ, µ0, n0) for α, β, γ, n0 > 0 and µ0 ∈ Rd. Then

(a) MAP-MOGS(k = 2,ω) is NP-hard if γ ≥ 1.

(b) APPROX-SAMPLING-MOGS(k = 2,ω) is NP-hard for all γ > 0.

Proof We show (a) by reducing from Π-MLE-MOGS-SV(k) for k = 2 under the condition γ ≥
1. Since k is a constant, we may take the polynomial ρ from Theorem 8 to only have two free
arguments. Let q denote the prior density and let

S =

{
(π,µ, σ) :

1

σ2
,

1

πi
, ‖µi‖2 ≤ ρ(n, d) for all i

}
.

Then we have the following.

(i) log q(θ) ≤ poly(d, n0, α, β, γ, ‖µ0‖) for any parameter θ ∈ Θ (Lemma 7).

(ii) log q(θ) ≥ − poly(n, d, n0, α, β, γ, ‖µ0‖) for any parameter θ ∈ S (Lemma 7).

(iii) d is (poly(n, d), S)-admissible (Lemma 6).

(iv) Π guarantees that θml ∈ S.

Given the above, Theorem 3 implies (a). The proof for (b) is provided in the appendix.
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Appendix A. Proofs from Section 1

Lemma 8 When fitting a mixture model 1
2N (−µ, 1) + 1

2N (µ, 1) to the data set of three points
{−2, 0, 2}, the maximum-likelihood choice of µ is irrational.

Proof
Writing out the log-likelihood function,

ln p(−2, 0, 2 |µ) = ln

(
1

2
√

2π
e−µ

2/2 +
1

2
√

2π
e−µ

2/2

)
+ 2 ln

(
1

2
√

2π
e−(2−µ)2/2 +

1

2
√

2π
e−(2+µ)2/2

)
= −2 ln(2

√
2π)− 4− 3µ2

2
+ 2 ln

(
e2µ + e−2µ

)
.

Taking derivatives of the log-likelihood equation with respect to µ,

d

dµ
ln p(−2, 0, 2 |µ) = −3µ+ 4 tanh(2µ).

This has two non-negative roots, one of which is zero. Evaluating the second derivative at zero,
we have

d2

d2µ
ln p(−2, 0, 2 |µ)|µ=0 = 8 sech2(0)− 3 = 5.

Thus zero is a local minimum. Because−3µ+4 tanh(2µ) tends to−∞ as µ goes to∞, we can
conclude that the other nonnegative root is the maximum likelihood estimate. Expanding the tanh,
we see that this root satisfies (3µ − 4)e2µ + (3µ + 4)e−2µ = 0; an application of the Lindemann-
Weierstrass theorem (Baker, 1975, Chapter 1) then tells us that it must be transcendental, implying
it is also irrational.

Appendix B. Proofs from Section 2

We start with a general result about the polynomial approximability of discrete distributions, and
then consider an application to topic models.

Lemma 9 Consider any distribution with finite support, say p = (p1, . . . , p`). Pick any positive
integer M . Then there is a distribution p̂ = (p̂1, . . . , p̂`) such that:

• Each p̂i is a non-zero multiple of 1/M .

• For each i, we have p̂i ≥ (1− `/M)pi.

Proof First define an intermediate distribution p as follows:

pi = (1− `/M)pi, rounded up to the nearest multiple of 1/M.

14
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Therefore, (1− `/M)pi ≤ pi ≤ (1− `/M)pi + (1/M), and
∑

i pi is some multiple of 1/M that is
≤ 1. To get p̂, take p and add multiples of 1/M to any coordinate(s) until the sum of the coordinates
equals 1.

This construction can be used to show that the maximum-likelihood topic model admits a con-
cise approximation.

Lemma 10 Consider any V × K topic distribution matrix Ψ. For any ε > 0 and any integer m,
there is a topic matrix Ψ̂ that uses dlog2(mV/ε)e bits per entry, such that log p(x|Ψ)−log p(x|Ψ̂) ≤
ε for all documents x of ≤ m words.

Proof Obtain Ψ̂ by applying the previous lemma to each individual topic distribution, with M =
d2mV/εe. Pick any document x of length m. Letting q denote the prior on topic weights (that is,
a prior on the K-simplex), and letting z ∈ {1, . . . ,K}m denote the topic assignments to the words
xi, we have

Pr(x|Ψ) =

∫
q(θ)

∑
z

Pr(z|θ)Pr(x|z,Ψ) dθ

=
∑
z

(
m∏
i=1

Ψ(zi)
xi

)∫
q(θ)Pr(z|θ) dθ

By construction, for any z,

m∏
i=1

Ψ̂(zi)
xi ≥

m∏
i=1

(
(1− ε/2m)Ψ(zi)

xi

)
= (1− ε/2m)m

m∏
i=1

Ψ(zi)
xi ≥ e−ε

m∏
i=1

Ψ(zi)
xi ,

and thus Pr(x|Ψ) ≤ eεPr(x|Ψ̂), as claimed.

B.1. Proof of Theorem 1: hardness of finding the maximum-likelihood topic model

Our goal is to prove the following theorem.

Theorem 1 [Implicit in Arora et al. (2012)] We say a topic matrix Ψ is c-smooth for c > 0 if
mini maxj Ψ

(j)
i ≥ c. Given α > 0, TM-MLE(α) is NP-hard when restricted to instances in which

K = 2, all the documents are restricted to have 2 words, and any topic matrix within 1
3(1+α) of

optimal is guaranteed to be 1/V -smooth.

In fact, we will prove a more general result. Let ∆N be the N -simplex, i.e.

∆N =

{
θ ∈ RN :

N∑
i=1

θi = 1 and θi ≥ 0

}
.

Theorem 10 Let λS , λX ≥ 0 and ν0 be a distribution over ∆K such that for θ ∼ ν0

• E[θ2
1] = · · · = E[θ2

k] = λS and

15
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• E[θiθj ] = λX for all i 6= j.

Then TM-MLE-ν0, the problem of maximizing the same objective as TM-MLE(α) with the Dir(α)
prior replaced with ν0, is NP-hard when λS > λX ≥ 0 when K = 2, there are exactly two words
in each document, and any topic matrix within λS−λX

3λS
of optimal must be 1/|V |-smooth.

To see how this implies Theorem 1, note that for θ ∼ Dir(α) and i 6= j,

λS = E[θ2
i ] =

Γ(Kα)Γ(α+ 2)

Γ(Kα+ 2)Γ(α)
=

α+ 1

K(αK + 1)
>

α

K(αK + 1)

=
Γ(Kα)(Γ(α+ 1))2

Γ(Kα+ 2)(Γ(α))2
= E[θiθj ] = λX .

Further, we have

λS − λX
3λS

=

(
α+ 1

K(αK + 1)
− α

K(αK + 1)

)
K(αK + 1)

3(α+ 1)
=

1

3(α+ 1)
.

The proof of Theorem 10 follows the reduction from Arora et al. (2012) very closely. We start
with an instance of MINIMUM-BISECTION. Here the input is a graph G = (V,E) with |V | = n
even and |E| = m, and the goal is to find a cut (S, T ) such that |S| = n/2 = |T | and |E(S, T )| is
minimized.

Beginning with G, we construct our instance of TM-MLE-ν0 as follows. The vocabulary is the
set of vertices V . Our corpus will consist of the following documents:

• for each word i ∈ V , create N documents with only the word i repeated twice, and

• for each edge (i, j) ∈ E, create one document with only the word i and the word j.

Here N is a polynomial of n, m, λS , and λX to be determined later. Given a document with words
i and j (possibly equal) and a topic matrix Ψ = [Ψ(1)|Ψ(2)], what is the likelihood of the document
under Ψ? This is simply

p(i, j |Ψ) = E[θ2
1]Ψ

(1)
i Ψ

(1)
j + E[θ1θ2]

(
Ψ

(1)
i Ψ

(2)
j + Ψ

(1)
j Ψ

(2)
i

)
+ E[θ2

2]Ψ
(2)
i Ψ

(2)
j

= λS〈Ψi,Ψj〉+ λX

(
Ψ

(1)
i Ψ

(2)
j + Ψ

(1)
j Ψ

(2)
i

)
where Ψi = (Ψ

(1)
i ,Ψ

(2)
i ). Then the objective is to maximize the following function:

F (Ψ) =
∑

document=(i,j)

ln
(
λS〈Ψi,Ψj〉+ λX(Ψ

(1)
i Ψ

(2)
j + Ψ

(1)
j Ψ

(2)
i )
)

=
∑
i∈V

N ln
(
λS‖Ψi‖22 + 2λXΨ

(1)
i Ψ

(2)
i

)
+
∑

(i,j)∈E

ln
(
λS〈Ψi,Ψj〉+ λX(Ψ

(1)
i Ψ

(2)
j + Ψ

(1)
j Ψ

(2)
i )
)
.

For any bisection (S, T ), define the canonical solution Ψ = Ψ(S, T ) to be the topic matrix which
satisfies Ψ

(1)
i = 2/n and Ψ

(2)
i = 0 for all i ∈ S; and Ψ

(1)
i = 0 and Ψ

(2)
i = 2/n for all i ∈ T . We’ll
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see that the maximum-likelihood solution (or an approximation thereof) is approximately canonical,
and therefore uniquely specifies a cut.

Write F (Ψ) = G(Ψ) +H(Ψ), where

G(Ψ) =
∑
i∈V

N ln
(
λS‖Ψi‖22 + 2λXΨ

(1)
i Ψ

(2)
i

)
H(Ψ) =

∑
(i,j)∈E

ln
(
λS〈Ψi,Ψj〉+ λX(Ψ

(1)
i Ψ

(2)
j + Ψ

(1)
j Ψ

(2)
i )
)
.

When N is made large enough, G dominates H .
Each of the n rows of Ψ is a pair (Ψ

(1)
i ,Ψ

(2)
i ). We start by characterizing approximately optimal

solutions subject to specific row-sum constraints.

Lemma 11 Suppose the row-sums are constrained to be Ψ
(1)
i + Ψ

(2)
i = ri, for some r1, . . . , rn

summing to 2. Then:

(a) G is bounded as follows:

G(Ψ) ≤
n∑
i=1

N ln(λSr
2
i )−N

n∑
i=1

λS − λX
λS

min(Ψ
(1)
i ,Ψ

(2)
i )

ri

with equality if each row has min(Ψ
(1)
i ,Ψ

(2)
i ) = 0.

(b) H lies in a smaller range:

m lnλX ≤ H(Ψ)−
∑

(i,j)∈E

ln(rirj) ≤ m lnλS .

Proof To see (a), first note that

2Ψ
(1)
i Ψ

(2)
i

r2
i

=
2Ψ

(1)
i Ψ

(2)
i

(Ψ
(1)
i + Ψ

(2)
i )2

≥
min(Ψ

(1)
i ,Ψ

(2)
i )

Ψ
(1)
i + Ψ

(2)
i

=
min(Ψ

(1)
i ,Ψ

(2)
i )

ri
.

Therefore, we can write

G(Ψ) =
n∑
i=1

N ln
(
λS‖Ψi‖22 + 2λXΨ

(1)
i Ψ

(2)
i

)
=

n∑
i=1

N ln
(
λSr

2
i

)
+N

n∑
i=1

ln

(
r2
i − 2Ψ

(1)
i Ψ

(2)
i

r2
i

+
2λXΨ

(1)
i Ψ

(2)
i

λSr2
i

)

=
n∑
i=1

N ln
(
λSr

2
i

)
+N

n∑
i=1

ln

(
1−

2Ψ
(1)
i Ψ

(2)
i

r2
i

· λS − λX
λS

)

≤
n∑
i=1

N ln
(
λSr

2
i

)
−N

n∑
i=1

2Ψ
(1)
i Ψ

(2)
i

r2
i

· λS − λX
λS
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≤
n∑
i=1

N ln(λSr
2
i )−N

n∑
i=1

λS − λX
λS

min(Ψ
(1)
i ,Ψ

(2)
i )

ri
.

(b) follows directly from algebra and applying the inequality λS > λX .

This immediately gives us the following corollary.

Corollary 11 Fix any row-sums r1, . . . , rn, and any ∆ > 0. Let Ψ be any solution whose F (·)
value is within ∆ of optimal, subject to these constraints. Then for each i,

min(Ψ
(1)
i ,Ψ

(2)
i )

ri
≤ 1

N

(
mλS
λX

+
∆λS

λS − λX

)
.

Thus each row has one entry that is approximately zero, whereupon, returning to Lemma 11,
we see that G(·) is roughly 2N

∑
i ln ri, ignoring constants. The following technical lemma then

implies that in an approximately optimal solution, all row-sums must be roughly equal.

Lemma 12 Subject to the constraint that r1, . . . , rn are nonnegative and sum to 2:

(a) The quantity
∑

i ln ri is maximized when the ri are equal, in which case

n∑
i=1

ln ri = n ln
2

n
.

(b) Pick any ε > 0. If there is some ri 6∈ [ 2
n(1 − ε), 2

n(1 + ε)], then no matter how the other rj
are set,

n∑
i=1

ln ri ≤ n ln
2

n
− 1

4
ε2.

Proof (a) follows directly from Jensen’s inequality. To see (b), we make use of the following
logarithmic inequalities, which can be found in (Topsøe, 2004). For 0 ≤ x < 1,

ln(1 + x) ≤ x

2
· 2 + x

1 + x
and ln(1− x) ≤ −2x

2− x
.

Now let δ > 0 and suppose that there is some i such that ri = 2(1 + δ)/n. Then by (a),

n∑
j=1

ln rj = ln

(
2

n
(1 + δ)

)
+
∑
j 6=i

ln rj

≤ ln

(
2

n
(1 + δ)

)
+ (n− 1) ln

(
1

n− 1

(
2− 2

n
(1 + δ)

))
= n ln

2

n
+ ln(1 + δ) + (n− 1) ln

(
1− δ

n− 1

)
≤ n ln

2

n
+
δ

2
· 2 + δ

1 + δ
− 2δ(n− 1)

2(n− 1)− δ
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≤ n ln
2

n
− 1

4
δ2

They proof for the case where ri = 2(1− δ)/n is similar. Thus, we have (b).

The G(·) function dominates H(·) and forces (approximately) canonical solutions.

Lemma 13 Pick any 0 < ε < 1 and any ∆ > 0. Define

N0 =
2

ε2

(
∆ +m ln

(
λS
λX

n2

4

))
N1 =

1

ε

(
mλS
λX

+
∆λS

λS − λX

)
.

Let Ψ∗ be a maximizer of F (·). Then, if N ≥ max(N0, N1), any solution Ψ with F (Ψ) ≥ F (Ψ∗)−
∆ must satisfy the following conditions for each i:

(a) Ψ
(1)
i + Ψ

(2)
i ∈ [ 2

n(1− ε), 2
n(1 + ε)].

(b) min(Ψ
(1)
i ,Ψ

(2)
i ) ≤ ε · 2

n .

Proof Let Φ be any canonical solution (which trivially implies F (Ψ∗) ≥ F (Φ)), let Ψ be a solution
satisfying F (Ψ) ≥ F (Ψ∗) − ∆, and let r1, . . . , rn be the row sums of Ψ. Then because Φ is
canonical, we know from the above lemmas

∆ ≥ F (Φ)− F (Ψ)

= G(Φ)−G(Ψ) +H(Φ)−H(Ψ)

≥ G(Φ)−G(Ψ) +
∑

(i,j)∈E

ln

(
4

n2

)
+m lnλX −

∑
(i,j)∈E

ln(rirj)−m lnλS

= G(Φ)−G(Ψ)−m ln

(
n2

4
· λS
λX

)
−
∑

(i,j)∈E

ln(rirj)

≥ N

(
n ln

(
λS

4

n2

)
−

n∑
i=1

ln(λSr
2
i ) +

n∑
i=1

λS − λX
λS

min(Ψ
(1)
i ,Ψ

(2)
i )

ri

)

−m ln

(
n2

4
· λS
λX

)
−
∑

(i,j)∈E

ln(rirj).

Now suppose by contradiction that Ψ does not satisfy condition (a). We know that because the
columns of Ψ sum to 1, it must be the case that rirj ≤ 1. Applying Lemma 12(b),

∆ ≥ N

(
n ln

(
λS

4

n2

)
−

n∑
i=1

ln(λSr
2
i ) +

n∑
i=1

λS − λX
λS

min(Ψ
(1)
i ,Ψ

(2)
i )

ri

)
−m ln

(
n2

4
· λS
λX

)
> N

(
n ln

(
λS

4

n2

)
− n ln

(
λS

4

n2

)
+
ε2

2

)
−m ln

(
n2

4
· λS
λX

)
=
Nε2

2
−m ln

(
n2

4
· λS
λX

)
.
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But this implies that

N <
2

ε2

(
∆ +m ln

(
λS
λX

n2

4

))
= N0

which is a contradiction.
To see that Ψ must satisfy condition (b), note that by Corollary 11, if Ψ did not satisfy condition

(b), then F (Ψ) could not be within ∆ of F (Ψ∗).

Once we are within the realm of approximately canonical solutions, which uniquely designate a
bisection cut, the lower-order term H(·) serves to choose a cut of small size.

Lemma 14 Pick any 0 < ε < 1. We will describe any Ψ that satisfies conditions (a) and (b) of
Lemma 13 as being ε-approximately canonical.

(a) For any canonical solution Ψ,

H(Ψ) = m ln
4λS
n2
− |cut(Ψ)| · ln λS

λX
.

(b) For any ε-approximately canonical solution Ψ,

H(Ψ) ≤ m ln
4λS
n2
− |cut(Ψ)| · ln λS

λX
+ 2mε

λS
λX

.

Proof Recall that

H(Ψ) =
∑

(i,j)∈E

ln
(
λS〈Ψi,Ψj〉+ λX(Ψ

(1)
i Ψ

(2)
j + Ψ

(1)
j Ψ

(2)
i )
)
.

Therefore, if Ψ is a canonical solution corresponding to the bisection (S, T ), then ifE(S, T ) denotes
the subset of edges with one endpoint in S and the other in T we have

H(Ψ) =
∑

(i,j)∈E(S,T )

ln
4λX
n2

+
∑

(i,j)∈E\E(S,T )

ln
4λS
n2

= m ln
4λS
n2
− |cut(Ψ)| · ln λS

λX
.

Now let Ψ be an ε-approximately canonical solution. Use it to define a cut (S, T ) in the natural
way:

S = {i : Ψ
(2)
i ≤ 2ε/n}, T = [n] \ S.

Given an edge (i, j) ∈ E, how do we bound Qi,j(Ψ) = λS〈Ψi,Ψj〉 + λX(Ψ
(1)
i Ψ

(2)
j + Ψ

(1)
j Ψ

(2)
i )?

We consider two cases.
Case 1: (i, j) ∈ E\E(S, T ). Assume w.l.o.g. that i, j ∈ S. Then because Ψ is ε-approximately

canonical, we know ‖Ψi‖1, ‖Ψj‖1 ∈ [ 2
n(1− ε), 2

n(1 + ε)] and Ψ
(2)
i ,Ψ

(2)
j ≤

2
nε. Letting Ψ

(2)
i = 2

nδi

and Ψ
(2)
j = 2

nδj , we have

Qi,j(Ψ) = λS〈Ψi,Ψj〉+ λX(Ψ
(1)
i Ψ

(2)
j + Ψ

(1)
j Ψ

(2)
i )

≤ 4

n2
(λS((1 + ε− δi)(1 + ε− δj) + δiδj) + λX((1 + ε− δj)δi + (1 + ε− δi)δj))

=
4

n2

(
λS(1 + ε)2 + (λS − λX)(2δiδj − (1 + ε)(δi + δj)

)
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Since δi, δj ≤ ε < 1 and λS > λX , the above is maximized whenever δi = δj = 0. Thus,

Qi,j(Ψ) ≤ 4λS(1 + ε)2

n2
.

Case 2: (i, j) ∈ E(S, T ). Assume w.l.o.g. that i ∈ S and j ∈ T . Then because Ψ is ε-
approximately canonical, we know ‖Ψi‖1, ‖Ψj‖1 ∈ [ 2

n(1 − ε), 2
n(1 + ε)] and Ψ

(2)
i ,Ψ

(1)
j ≤ 2

nε.

Letting Ψ
(2)
i = 2

nδi and Ψ
(1)
j = 2

nδj , we have

Qi,j(Ψ) = λS〈Ψi,Ψj〉+ λX(Ψ
(1)
i Ψ

(2)
j + Ψ

(1)
j Ψ

(2)
i )

≤ 4

n2
(λS((1 + ε)δi + (1 + ε)δj) + λX((1 + ε− δi)(1 + ε− δj) + δiδj)

=
4

n2

(
λX(1 + ε)2 + (λS − λX)((1 + ε)(δi + δj)− δiδj

)
≤ 4

n2

(
λX(1 + ε)2 + 2(λS − λX)(1 + ε)ε

)
=

4λX
n2

(1 + ε)

(
1 +

ε(2λS − λX)

λX

)
Combining the above two cases, we can bound on H(Ψ) above by

∑
(i,j)∈E\E(S,T )

ln

(
4λS(1 + ε)2

n2

)
+

∑
(i,j)∈E(S,T )

ln

(
4λX
n2

(1 + ε)

(
1 +

ε(2λS − λX)

λX

))

= m ln
4λS
n2
− |cut(Ψ)| · ln λS

λX
+ |cut(Ψ)| ln

(
(1 + ε)

(
1 +

ε(2λS − λX)

λX

))
+ (m− |cut(Ψ)|) ln((1 + ε)2)

≤ m ln
4λS
n2
− |cut(Ψ)| · ln λS

λX
+mεmax

(
2, 1 +

2λS − λX
λX

)
.

Using the fact that λS > λX gives us the lemma.

Let ∆, ε,N0, N1, N > 0 satisfy the relationship specified in Lemma 13. We will argue that for
an appropriate, but polynomial setting, of these variables, any ∆-optimal solution must correspond
to the minimum bisection.

Let Ψ be a ∆-optimal solution. By Lemma 13, Ψ must be ε-approximately canonical. As in the
proof of Lemma 14, we can use Ψ to define a cut (S, T ). For ε < 1/(2n), this cut is a bisection.
Now let (S∗, T ∗) be an optimal bisection and let Ψ∗ be the solution corresponding to this. Then we
can say

∆ ≥ max
Ψ′

F (Ψ′)− F (Ψ) ≥ F (Ψ∗)− F (Ψ)

= G(Ψ∗)−G(Ψ) +H(Ψ∗)−H(Ψ) ≥ H(Ψ∗)−H(Ψ).
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Now by Lemma 14, we have

∆ ≥ H(Ψ∗)−H(Ψ)

≥ m ln
4λS
n2
− |cut(Ψ∗)| · ln λS

λX
−m ln

4λS
n2

+ |cut(Ψ)| · ln λS
λX
− 2mε

λS
λX

= (|cut(Ψ)| − |cut(Ψ∗)|) ln

(
λS
λX

)
− 2mε

λS
λX

≥ (|cut(Ψ)| − |cut(Ψ∗)|)
(
λS − λX
λS

)
− 2mε

λS
λX

.

Thus, if ∆ ≤ 1
3

(
λS−λX
λS

)
and ε ≤ 1

6m

(
λX
λS

)(
λS−λX
λS

)
, then we must conclude that

|cut(Ψ)| = |cut(Ψ∗)|.

These settings of ε and ∆, give us

N0 =
2

ε2

(
∆ +m ln

(
λS
λX

n2

4

))
= 72m2

(
λS
λX

)2( λS
λS − λX

)2(
(m+ 1/2) ln

(
λS
λX

)
+m ln

(
n2

4

))
and

N1 =
1

ε

(
mλS
λX

+
∆λS

λS − λX

)
= 6m

(
λS
λX

)(
λS

λS − λX

)(
mλS
λX

+
λS

2(λS − λX)
ln

(
λS
λX

))
.

Thus, we have that TM-MLE(α) is NP-hard when K = 2 and there are exactly two words in each
document.

Now suppose Ψ is a topic matrix within λS−λX
3λS

of optimal. Lemma 13 guarantees

min
i

max
{

Ψ
(1)
i ,Ψ

(2)
i

}
≥ 2

|V |
(1− 2ε) ≥ 2

|V |

(
1− 2

6|E|

(
λX
λS

)(
λS − λX
λS

))
≥ 1

|V |
.

Thus, Ψ must be 1/|V |-smooth.

Appendix C. Proofs from Section 3

C.1. Proof of Lemma 3

Lemma 15 Pick any δ > 0 and any θ ∈ Θ within δ of the optimal MAP solution for Z, that is,

log qZ(θ) ≥ sup
θ′∈Θ

log qZ(θ′)− δ.

Then the log-likelihood of any θ′ ∈ Θ can exceed that of θ by at most

log p(X|θ′)− log p(X|θ) ≤ 1

k

(
δ + log q0(θ)− log q0(θ′)

)
.
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Proof Note that since θ is within δ of the supremum of ln qZ , we have

−δ ≤ ln qZ(θ)− ln qZ(θ′) = ln
q0(θ)p(X | θ)k

q0(θ′)p(X | θ′)k
= ln

q0(θ)

q0(θ′)
− k ln

p(X | θ′)
p(X | θ)

.

Rearranging the above gives us

ln p(X | θ′)− p(X | θ) = ln
p(X | θ′)
p(X | θ)

≤ 1

k

(
δ + ln

q0(θ)

q0(θ′)

)
.

C.2. Proof of Lemma 4

The goal of this section is to prove the following lemma.

Lemma 16 Pick c,m > 0 and define α0 =
∑
αi. Let X be the space of documents with length

bounded by m and S be the space of c-smooth matrices. If

λ =

(
2m

c
+ max

(
1,

(
α0 +m

K

)K) Kα0+2m−1/2

cm

)
,

then max-norm distance is (λ, S)-admissible.

To do so, we need to introduce some notation. Suppose x = (i1, . . . , im) is some length m
document. Then z ∈ [K]m is a labeling of x, that is an assignment of each word in x to some
topic. For some fixed labeling z, let ni(z) = |{j : zj = i}| denote the number of times that topic i
appears in z. Define the likelihood of z under Ψ by

q(Ψ, z) =

(
K∏
i=1

Γ(αi + ni(z))

Γ(αi)

)
m∏
j=1

Ψ
(zj)
ij

.

Then we see that summing over all labelings gives us the likelihood of document x.

Lemma 17 For any length m document x and any topic matrix Ψ,

p(x|Ψ) =
∑

z∈[K]m

q(Ψ, z).

Proof To generate document x = (i1, . . . , im) given Ψ, we can first sample θ ∼ Dir(α1, . . . , αK).
Given θ, we can sample z1, . . . , zm independently from the distribution θ and then independently
sample each word j from the distribution Ψzj . Marginalizing over θ and z and recognizing that x is
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independent of θ given the z’s,

p(x |Ψ) = Eθ[p(x |Ψ, θ)]

=
∑

z∈[K]m

Eθ [p(z|θ)p(x|Ψ, θ, z)]

=
∑

z∈[K]m

Eθ

 m∏
j=1

θzj

 m∏
j=1

Ψ
(zj)
ij

=
∑

z∈[K]m

Eθ

[
K∏
i=1

θ
ni(z)
i

]
m∏
j=1

Ψ
(zj)
ij

The expectation in the last line deals with the moments of the Dirichlet distribution. Ng et al. (2011)
provides the following identity for the moments of the Dirichlet distribution

Eθ

[
k∏
i=1

θnii

]
=

Γ(
∑
αi)

Γ(
∑
αi + ni)

·
k∏
i=1

Γ(αi + ni)

Γ(αi)

for positive integers n1, . . . , nK . Plugging this into the above gives us the lemma.

Therefore, proving Lemma 4 amounts to getting a handle on the ratio

p(x |Ψ)

p(x |Φ)
=

∑
z∈[K]n q(Ψ, z)∑
z∈[K]n q(Φ, z)

,

for topic matrices Φ,Ψ that are close in max-norm distance. The next few technical lemmas deal
with bounding ratios of sums.

C.2.1. RATIOS OF SUMS

Lemma 18 Let a1, . . . , an, b1, . . . , bn, c > 0 such that ai/bi ≤ c, then
∑
ai∑
bi
≤ c.

Proof We have that ai ≤ cbi for all i. Thus,
∑
ai∑
bi
≤

∑
cbi∑
bi
≤ c.

Lemma 19 Suppose a, b, c, d, ε > 0, x, y ∈ [0, 1], and |x− y| ≤ ε then

a+ cx

b+ dy
≤ max

(
a+ cε

b
,

a+ c

b+ d(1− ε)

)
.

Proof There are two cases.
Case 1: y ≥ 1− ε. In this case we have

a+ cx

b+ dy
≤ a+ c

b+ d(1− ε)
.

Case 2: y ≤ 1− ε. In this case we have

a+ cx

b+ dy
≤ a+ c(y + ε)

b+ dy
=: f(y)
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Then it can be shown that the sign of f ′ is independent of y (since y ≥ 0). Therefore f is monotonic
in y and reaches the maximum at the boundary {0, 1− ε}.

Lemma 20 Let a, b, c, ε > 0 and x1, . . . , xn, y1, . . . , yn ∈ [0, 1] such that |xi − yi| < ε. Then

a+ c
∏n
i=1 xi

b+ c
∏n
i=1 yi

≤ max

(
a+ εc

b
,

a+ c

b+ (1− ε)nc

)
.

Proof The proof is by induction on n. The base case is simply an appeal to Lemma 19. Now assume
it holds for n− 1. There are three cases we need to consider.

Case 1: yn = 0. In this case we know xn ≤ ε, therefore

a+ c
∏n
i=1 xi

b+ c
∏n
i=1 yi

≤
a+ εc

∏n−1
i=1 xi

b
≤ a+ εc

b
.

Case 2: xn = 0. In this case,

a+ c
∏n
i=1 xi

b+ c
∏n
i=1 yi

≤ a

b
≤ a+ εc

b
.

Case 3: xn, yn > 0. In this case we can use our inductive assumption to see the following

a+ c
∏n
i=1 xi

b+ c
∏n
i=1 yi

=
xn
yn
·
a/xn + c

∏n−1
i=1 xi

b/yn + c
∏n−1
i=1 yi

≤ xn
yn

max

(
a/xn + εc

b/yn
,

a/xn + c

b/yn + (1− ε)n−1c

)
= max

(
a+ εxnc

b
,

a+ xnc

b+ yn(1− ε)n−1c

)
≤ max

(
a+ εc

b
,

a+ xnc

b+ yn(1− ε)n−1c

)
.

By appealing again to Lemma 19, we have

a+ xnc

b+ yn(1− ε)n−1c
≤ max

(
a+ εc

b
,

a+ c

b+ (1− ε)nc

)
.

Combining all of the above gives us the lemma.

Lemma 21 Let a, b, ci, ε > 0 and xi,j , yi,j ∈ [0, 1] such that |xi,j − yi,j | ≤ ε for i ∈ [m], j ∈ [n].
Then there exists a partition Ω1,Ω2 of [m] such that

a+
∑m

i=1 ci
∏n
j=1 xi,j

b+
∑m

i=1 ci
∏n
j=1 yi,j

≤
a+

∑
i∈Ω1

εci +
∑

i∈Ω2
ci

b+
∑

i∈Ω2
(1− ε)nci

.
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Proof We prove by induction on m. The base case of m = 1 follows directly from Lemma 20. We
can assume that the lemma holds for m− 1, then

a+
∑m

i=1 ci
∏n
j=1 xi,j

b+
∑m

i=1 ci
∏n
j=1 yi,j

=

a′︷ ︸︸ ︷
a+

m−1∑
i=1

ci

n∏
j=1

xi,j +cm
∏n
j=1 xm,j

b+

m−1∑
i=1

ci

n∏
j=1

yi,j︸ ︷︷ ︸
b′

+cm
∏n
j=1 ym,j

.

By applying Lemma 20, we have that this is bounded by

max

(
a′ + εcm

b′
,

a′ + cm
b′ + (1− ε)ncm

)
.

We will bound each of these quantities separately. Denoting a1 = a + εcm, then by induction we
have that there exists a partition Ω′1,Ω

′
2 of [m− 1] such that

a′ + εcm
b′

=
a1 +

∑m−1
i=1 ci

∏n
j=1 xi,j

b+
∑m−1

i=1 ci
∏n
j=1 yi,j

≤
a1 +

∑
i∈Ω′1

εci +
∑

i∈Ω′2
ci

b+
∑

i∈Ω′2
(1− ε)nci

=
a+

∑
i∈Ω′1∪{m}

εci +
∑

i∈Ω′2
ci

b+
∑

i∈Ω′2
(1− ε)nci

.

On the other hand, if we let a2 = a+ cm and b2 = b+ (1− ε)ncm, then by induction there exists a
partition Ω′′1,Ω

′′
2 of [m− 1] such that

a′ + cm
b′ + (1− ε)ncm

=
a2 +

∑m−1
i=1 ci

∏n
j=1 xi,j

b2 +
∑m−1

i=1 ci
∏n
j=1 yi,j

≤
a2 +

∑
i∈Ω′′1

εci +
∑

i∈Ω′′2
ci

b2 +
∑

i∈Ω′′2
(1− ε)nci

=
a+

∑
i∈Ω′′1

εci +
∑

i∈Ω′′2∪{m}
ci

b+
∑

i∈Ω′′2∪{m}
(1− ε)nci

.

By taking Ω1,Ω2 to be the partitions corresponding to the larger of these two scenarios (either
Ω′1 ∪ {m},Ω′2 or Ω′′1,Ω

′′
2 ∪ {m}), we have the lemma statement.

C.2.2. ACTUAL PROOF OF LEMMA 4

We are now ready to prove the main lemma of this section.
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Lemma 22 Pick c,m > 0 and define α0 =
∑
αi. Let X be the space of documents with length

bounded by m and S be the space of c-smooth matrices. If

λ =

(
2m

c
+ max

(
1,

(
α0 +m

K

)K) Kα0+2m−1/2

cm

)
,

then max-norm distance is (λ, S)-admissible.

Proof Let x = (i1, . . . , im) be a document of length m, and let Ω = [K]m denote the space of all
labelings. Pick Φ,Ψ ∈ S. From the smoothness condition, we see that there is a labeling z∗ ∈ Ω

such that Φ
(z∗j )

ij
≥ c for j = 1, . . . ,m. Recalling the definition of q(·, z) from Lemma 17 and

applying Lemma 21, we know that we can partition Ω \ {z∗} into Ω1,Ω2 such that

p(x |Ψ)

p(x |Φ)
=
q(Ψ, z∗) +

∑
z∈Ω\{z∗} q(Ψ, z)

q(Φ, z∗) +
∑

z∈Ω\{z∗} q(Φ, z)

=
q(Ψ, z∗) +

∑
z∈Ω\{z∗}

(∏K
i=1

Γ(αi+ni(z))
Γ(αi)

)∏m
j=1 Ψ

(zj)
ij

q(Φ, z∗) +
∑

z∈Ω\{z∗}

(∏K
i=1

Γ(αi+ni(z))
Γ(αi)

)∏m
j=1 Φ

(zj)
ij

≤
q(Ψ, z∗) +

∑
z∈Ω1

ε
∏K
i=1

Γ(αi+ni(z))
Γ(αi)

+
∑

S∈Ω2

∏K
i=1

Γ(αi+ni(z))
Γ(αi)

q(Φ, z∗) +
∑

z∈Ω2
(1− ε)m

∏K
i=1

Γ(αi+ni(z))
Γ(αi)

.

From Lemma 18 we know that we can separately bound

q(Ψ, z∗) +
∑

z∈Ω1
ε
∏K
i=1

Γ(αi+ni(z))
Γ(αi)

q(Φ, z∗)
and

∑
z∈Ω2

∏K
i=1

Γ(αi+ni(z))
Γ(αi)∑

z∈Ω2
(1− ε)m

∏K
i=1

Γ(αi+ni(z))
Γ(αi)

.

The second quantity is simply bounded above by (1− ε)−m ≤ exp
(
εm
1−ε

)
≤ exp(2εm).

By properties of the gamma function,
∏K
i=1 Γ(αi + ri) ≤ Γ(α0 + m) for any r1, . . . , rK ≥ 0

satisfying r1 + · · ·+ rK = m. Since ‖Φ−Ψ‖max ≤ ε and Φ
(z∗j )

ij
≥ c for all j, we have

q(Ψ, z∗) +
∑

z∈Ω1
ε
∏K
i=1

Γ(αi+ni(z))
Γ(αi)

q(Φ, z∗)

=

(∏K
i=1

Γ(αi+ni(z
∗))

Γ(αi)

)∏m
j=1 Ψ

(z∗j )

ij
+
∑

z∈Ω1
ε
∏K
i=1

Γ(αi+ni(z))
Γ(αi)(∏K

i=1
Γ(αi+ni(z∗))

Γ(αi)

)∏m
j=1 Φ

(z∗j )

ij

≤
∏m
j=1 Ψ

(z∗j )

ij∏m
j=1 Φ

(z∗j )

ij

+
ε|Ω1|Γ(m+ α0)(∏K

j=1 Γ(αj + nj(z∗))
)(∏m

j=1 Φ
(z∗j )

ij

)
≤ (1 + ε/c)m +

ε|Ω1|Γ(m+ α0)

cm
∏K
j=1 Γ(αj + nj(z∗))

≤ eεm/c +
εKmΓ(m+ α0)

cm
∏K
j=1 Γ(αj + nj(z∗))

.
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Where the last line follows by observing that |Ω1| ≤ |Ω| = Km.
Additionally, by the log-convexity of Γ on the positive reals, we know that for positive x1, . . . , xK ,

Γ(x1) · · ·Γ(xK) ≥ (Γ(x1/K + · · ·xK/K))K . Thus

p(x |Ψ)

p(x |Φ)
≤ eεm/c +

εKmΓ(m+ α0)

cm(Γ(α0/K +m/K))K
.

Taking logs and making use of ε < c/m, we have

ln
p(x |Ψ)

p(x |Φ)
≤ ln

(
eεm/c +

εΓ(α0 +m)Km

cm(Γ(α0/K +m/K))K

)
≤ ln

(
1 +

2mε

c
+

εΓ(α0 +m)Km

cm(Γ(α0/K +m/K))K

)
≤ ε

(
2m

c
+

(
K

c

)m Γ(α0 +m)

(Γ(α0/K +m/K))K

)
By Gauss’ multiplicative theorem and the log-convexity of Γ, we know for any positive integer k
and any a > 0,

Γ(ka)

Γ(a)k
≤ max(1, ak)kak−1/2.

Applying this to the above gives us the lemma statement.

C.3. Proof of Theorem 4

Define the TM-MLE(α,K,m) problem to be the TM-MLE(α) problem where the number of topics
is K and the number of words per document is bounded from above by m. TM-MAP(α, β,K,m)
and TM-APPROX-SAMPLING(α, β,K,m) are defined analogously.

Let ∆V denote the simplex of all probability distributions over V outcomes. For every c > 0,
define

Sc =
{

Ψ ∈ ∆V×K : Ψ is c-smooth
}
.

If m is the length of the longest document, then we have by Lemma 4 that the max-norm is
(g(K,m, c, α), Sc)-admissible for

g(K,m, c, α) =
2m

c
+ max

(
1,

(
α0 +m

K

)K) Kα0+2m−1/2

cm
.

The next thing we need to establish to apply our results from Sections 3 and 4 is that the prior
distribution is well-behaved on neighborhoods of the maximum likelihood estimate. The following
lemma gives us a handle on the Dirichlet distribution.

Lemma 23 Suppose that ν is the measure and q is the density associated with the symmetric
Dirichlet distribution over ∆N with parameter α. Then for any ε > 0 and any point x ∈ ∆N s.t.
mini xi ≥ ε we have

log q(x) ≥ − poly(N,α, 1/α, 1/ε)
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which implies for any x ∈ ∆N

log ν(B`2(x, ε)) ≥ − poly(N,α, 1/α, 1/ε).

Further, if α ≥ 1, we have
log q(x) ≤ poly(N,α).

Proof Recall that

q(x) =
Γ(Nα)

Γ(α)N
xα−1

1 · · ·xα−1
N .

We will first show that if α ≥ 1, then log q(x) ≤ poly(N,α). Note that when α ≥ 1, q is a
concave density with whose maximum is achieved at (1/N, . . . , 1/N). Thus,

q(x) ≤ Γ(Nα)

Γ(α)N
·NN(1−α) ≤ (Nα)Nα · 2N ·NN(1−α) ≤ 2poly(N,α)

where the last inequality follows from the bounds Γ(x) ≤ xx and Γ(x) ≥ 1/2 for x ≥ 1.
Now we turn to showing the first two inequalities. We consider two cases.

Case 1: α < 1. In this case q is a convex probability density with minimum at (1/N, . . . , 1/N).
Thus,

q(x) ≥ Γ(Nα)

Γ(α)N
·
(

1

N

)N(α−1)

≥ Γ(Nα)

Γ(α)N
.

Notice by Γ’s recurrence relation

Γ(α) =
Γ(1 + α)

α
≤ 1

α

for α ∈ (0, 1). Moreover, Γ(t) ≥ 3/4 for any real t > 0. Thus, we have

q(x) ≥ 3

4

( α
N

)N
≥ 2− poly(N,1/α).

Case 2: α ≥ 1. When xi ≥ ε for i = 1, . . . , n, we have

q(x) ≥ Γ(Nα)

Γ(α)N
εN(α−1) ≥ 2− poly(N,α,1/ε).

Then the inequalities dealing with the density q in the lemma statement can be gleaned from the
above two cases.

Now we turn to lower bounding ν(B`2(x, ε) ∩ ∆N ). First, note that vol(B`2(x, ε) ∩ ∆N ) is
minimized for x ∈ ∆N when x is a corner of ∆n. Thus we can consider x ∈ ∆n such that w.l.o.g.
x1 = 1 and xi = 0 for i = 2, . . . , N . We claim B`2(x, ε) ∩∆N contains a regular simplex S with
edge length ε/2N satisfying that mini xi ≥ ε/2N for all x ∈ S. To see this, let S be the simplex
created by the convex hull of x(1), . . . , x(N) ∈ ∆N where

x
(1)
i =

{
1− (N−1)ε

2N if i = 1
ε

2N o/w
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and

x
(k)
i =


1− ε

2N

(
N − 2 + 1+

√
2√

2

)
if i = 1

(1+
√

2)ε

2
√

2N
if i = k

ε
2N o/w

for k = 2, . . . , N . Then one can see that

• x(k) ∈ ∆N for k = 1, . . . , N ,

• ‖x(k) − x(k′)‖ = ε
2N for all k 6= k′,

• x(k) ∈ B`2(x, ε) for k = 1, . . . , N , and

• x(k)
i ≥

ε
2N for i, k = 1, . . . , N .

Then the simplex S lying in the convex hull of x(1), . . . , x(N) is a regular simplex with edge length
ε/2N satisfying that mini xi ≥ ε/2N for all x ∈ S. Therefore for any x ∈ ∆N ,

ν(B`2(x, ε) ∩∆N ) ≥ vol(S) · inf
x∈S

q(x) =

√
N + 1

N !2N/2
·
( ε

2N

)N
· inf
x∈S

q(x) ≥ 2− poly(N,α,1/α,1/ε).

We are now ready to apply Theorem 3.

Theorem 12 Let α > 0, c = 1/V , β ≥ 1, K,m ∈ N, and let Πc denote the promise that
Ψml ∈ Sc, then Πc-TM-MLE(α,K,m)≤P TM-MAP(α, β,K,m) where the reduction is polynomial
in the input size and (1/c)m, Km, and max{β, 1/β}.

Proof Suppose that q is the density associated with the symmetric Dirichlet distribution over ∆V

with parameter β. The prior density q0 we are interested in is the product distribution, i.e. for
Ψ ∈ RV×K ,

q0(Ψ) = q(Ψ(1)) · · · q(Ψ(K)).

From Lemma 23, we know that q is bounded above by 2poly(V,β). The density q0 of the product
distribution is thus bounded above by 2poly(V,K,β).

From Lemma 4, we know that max-norm is (g(K,m, c, α), Sc)-admissible. Thus, in order to
apply Theorem 3, we need to show the existence of a topic matrix Ψ̂ satisfying the following three
conditions. For small enough ε > 0,

(a) Ψ̂ ∈ Sc,

(b) ‖Ψ̂−Ψml‖max ≤ ε, and

(c) q0(Ψ̂) ≥ 2− poly(V,K,β,1/ε)
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To construct such a Ψ̂, let us first denote Ψ = Ψml and let s = min(ε, 1/V 2). Consider a particular
column j. If it is the case that Ψ

(j)
i ≥ s for all rows i, then we take Ψ̂(j) = Ψ(j). Otherwise, because

Ψ(j) is a distribution over V words and sums to one, this implies that there exists a row i∗ such that
Ψ

(j)
i∗ ≥

1
V + s

V . Then we take

Ψ̂
(j)
i =

{
Ψ

(j)
i −

s
V if i = i∗

Ψ
(j)
i + s

V (V−1) otherwise

Then Ψ̂ is a valid topic matrix. It is easy to check that it satisfies (a) and (b). To see (c), notice
that Ψ̂

(j)
i ≥

s
V (V−1) for all i, j. By Lemma 23, this implies that every column j satisfies q(Ψ̂(j)) ≥

2− poly(V,β,1/ε), which implies q0(Ψ) ≥ 2− poly(V,K,β,1/ε).

The ML estimate in the construction in Theorem 1 lies in Sc for c = 1/V . The construction
also satisfies that K = 2 and m = 2 (and that α is a constant), which means that the dominating
factor g(K,m, c, α) is bounded above by poly(V ). Theorem 4 follows as an immediate corollary.

Theorem 4 For any fixed α > 0 and β ≥ 1, TM-MAP(α, β) is NP-hard.

Appendix D. Proofs from Section 4

Theorem 5 Let ε > 0 and ν be a distribution over a metric space (Θ, d). If Θ̂ is a countable
ε-cover of Θ then there exists a measure ν̂ over Θ̂ such that Wt(ν, ν̂) ≤ ε.

Proof For every θ̂ ∈ Θ̂, define the inner Voronoi cell of θ̂ to be

Ci(θ̂) := {θ : d(θ, θ̂) < d(θ, θ̄) ∀θ̄ ∈ Θ̂ \ {θ̂}}.

The Voronoi cell C(θ̂) consists of Ci(θ̂) as well as part of its boundary. To ensure that these cells
are disjoint and cover all of Θ, we can order Θ̂ and adopt the convention that the boundary occurring
among any Voronoi cells belongs to the cell whose center comes earliest in the ordering.

Now take ν̂ to be the distribution over Θ̂ such that ν̂(θ̂) = ν(C(θ̂)). We will show that
Wt(ν, ν̂) ≤ ε. To see this, consider the following coupling (X,Y ) of ν and ν̂:

• Draw X ∼ ν.

• There exists a θ̂ ∈ Θ̂ such that X ∈ C(θ̂).

• Take Y = θ̂.

It is not hard to see that the marginal distributions of X and Y are ν and ν̂, respectively, making
this a valid coupling. Moreover, since Θ̂ is an ε-cover of Θ, we have d(X,Y ) ≤ ε with probability
1. Thus,

Wt(ν, ν̂) ≤ E[d(X,Y )t]1/t ≤ ε.
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Lemma 24 Take any ε, δ > 0 and X ∈ X n. If Z is the sequence created by duplicating X

k ≥ 2

ε

(
log

(
1

δ
− 1

)
+ log

(
1− ν0(Bdp,X (θml, ε))

ν0(Bdp,X (θml, ε/2))

))
times then νZ(Bdp,X (θml, ε)) ≥ 1− δ. (Recall θml is the maximum-likelihood solution for X .)

Proof For any measurable set B, we may write

νZ(B) =
Eθ∼ν0 [1[θ ∈ B]p(X|θ)k]

Eθ∼ν0 [p(X|θ)k]
.

Thus,

νZ(Bdp,X (θml, ε))

νZ(Θ \Bdp,X (θml, ε))
=

Eθ∼ν0 [1(θ ∈ Bdp,X (θml, ε))p(X|θ)k]
Eθ∼ν0 [1(θ 6∈ Bdp,X (θml, ε))p(X|θ)k]

≥
Eθ∼ν0 [1(θ ∈ Bdp,X (θml, ε/2))(e−ε/2p(X|θml))k]
Eθ∼ν0 [1(θ 6∈ Bdp,X (θml, ε))(e−εp(X|θml))k]

≥ ekε/2
Eθ∼ν0 [1(θ ∈ Bdp,X (θml, ε/2))]

Eθ∼ν0 [1(θ 6∈ Bdp,X (θml, ε))

= ekε/2
ν0(Bdp,X (θml, ε/2))

ν0(Θ \Bdp,X (θml, ε))

Note that if the above is greater than 1/δ − 1, we have

νZ(Bdp,X (θml, ε)) =
νZ(Bdp,X (θml, ε))

νZ(Bdp,X (θml, ε)) + νZ(Θ \Bdp,X (θml, ε))
≥ 1− δ.

However, this condition is satisfied when

k ≥ 2

ε

(
log

(
1

δ
− 1

)
+ log

(
ν0(Θ \Bdp,X (θml, ε))

ν0(Bdp,X (θml, ε/2))

))
.

D.1. Proof of Theorem 7

Theorem 6 Let m be some measure of the size of an input instance X , and let λ(m) be any
function of this size. Let d be a distance function and S ⊂ S′ ⊂ Θ be subsets satisfying

(i) if θ ∈ S then Bd(θ, 1/λ(m)) ⊂ S′ and

(ii) d is (λ(m), S′)-admissible.

If Π is the promise that Bdp,X (θml, 1/λ(m)) ⊂ S and ν0(Bd(θml, ε)) ≥ 2− poly(λ(m),1/ε) for all
ε > 0, then Π-MLE-(p,Θ) ≤P Wt-APPROX-SAMPLING-(p, ν0,Θ) under randomized reductions
which are polynomial in the input size and λ(m).
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Proof Let X = (x1, . . . , xn) ∈ X n and b be input to Π-MLE-(p,Θ). We may assume that b ≥
λ(m). If not, we can replace b with λ(m). Further, we may assume Π is true of X , since we can
return anything and terminate if it is not.

Pick any δ > 0. By Lemma 5, duplicating the data

k(b, δ) = 4b log

(
1

δ
− 1

)
− log ν0

(
Bd

(
θml,

1

4bnλ(m)

))
≥ 4b log

(
1

δ
− 1

)
− log ν0

(
Bdp,X

(
θml,

1

2b

))
times will ensure that νZ(Bdp,X (θml, 1/(2b))) ≥ 1− δ for Z = (X(1), . . . , X(k(b,δ))).

Set b′ = 4bλ(m)n/δ1/t to be the accuracy parameter for Wt-APPROX-SAMPLING-(p, ν0,Θ).
Let ν̂ be the distribution the sample is generated from. For any α > 0, we have from the definition
of Wasserstein distance that there is some coupling γ ∈ Γ(ν̂, νZ) satisfying(

E(θ,θ′)∼γ [d(θ, θ′)t]
)1/t ≤ 1/b′ + α.

Letting (θ, θ′) ∼ γ and α = 1/b′, we have

Pr

(
dp,X(θ, θml) ≥

1

b

)
≤ Pr

(
dp,X(θ, θml) ≥

1

b
, dp,X(θ′, θml) ≤

1

2b

)
+ Pr

(
dp,X(θ′, θml) >

1

2b

)
≤ Pr

(
dp,X(θ, θ′) ≥ 1

2b
, dp,X(θ′, θml) ≤

1

2b

)
+ δ

(1)

≤ Pr

(
d(θ, θ′) ≥ 1

2bλ(m)n
, dp,X(θ′, θml) ≤

1

2b

)
+ δ

≤ Pr

(
d(θ, θ′) ≥ 1

2bλ(m)n

)
+ δ

(2)

≤ (2bλ(m)n)t E
[
d(θ, θ′)t

]
+ δ

(3)

≤
(
4bλ(m)n/b′

)t
+ δ ≤ 2δ

where (1) follows from the fact that, if θ′ ∈ Bdp,X (θml, 1/(2b)) ⊂ S and d(θ, θ′) < 1/(2bλ(m)n),
then θ ∈ S′ and dp,X(θ, θ′) < 1/(2b); (2) is Markov’s inequality; and (3) follows from our choice
of b′.

Much of the proof of Theorem 7 is similar to the proof of Theorem 4. One key difference is that
we care about lower bounding the probability mass of balls with respect to the Dirichlet(β) distri-
bution. Because the `∞ and `2 norms are related by a factor which is polynomial in the dimension,
Lemma 23 also implies that

log ν(B`∞(x, ε)) ≥ − poly(N, β, 1/β, 1/ε)

for any x ∈ ∆N .

Theorem 7 There is no poly-time algorithm for TM-APPROX-SAMPLING(α, β) for any α, β > 0
unless NP=RP.
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Proof We will reduce from an instance of TM-MLE(α) from Theorem 1. In order to apply Theo-
rem 6, let S be the set of all 1/V -smooth matrices, S′ be the set of all 1/(2V )-smooth matrices, and
let d be the max-norm distance.Then

(ii) if Ψ ∈ S then Bd(Ψ, 1/(2V )) ⊂ S′ (max-norm distance),

(ii) d is (poly(V ), S′)-admissible (Lemma 4, K = m = 2, and α is a constant)

(iii) Bdp,X (Ψml, 1/(3(1 + α))) ⊂ S (a promise from Theorem 1), and

(iv) for all ε > 0 and all Ψ ∈ S, ν0(Bd(Ψ, ε)) ≥ 2− poly(V,K,α,1/α,1/ε) (Lemma 23).

Thus, Theorem 6 implies that TM-MLE(α) ≤P TM-APPROX-SAMPLING(α, β). From Theorem 1,
we know that there are no poly-time algorithms for TM-APPROX-SAMPLING(α, β) unless NP =
RP .

Appendix E. Proofs from Section 5

E.1. Proof of Theorem 8

To prove Theorem 8, we will reduce from the following problem.

k-MEANS

Input: Points x1, . . . , xn ∈ Rd; positive integer k.
Output: A collection of k “centers” µ = (µ1, . . . , µk) in Rd that minimize the cost
function

Φ(µ) =

n∑
i=1

min
1≤j≤k

‖xi − µj‖2.

Let Π′ denote the promise that there are low-order polynomials α(·) and β(·) such that

• For an instance containing n points, each point is unique and has dimension at most α(n),
with individual coordinates taking values in {−1, 0, 1}.

• Any set of means with k-means cost within a multiplicative factor 1 + 1/β(n) of optimal
induces an optimal k-means partition of the data.

The following was shown by Aloise et al. (2009).

Theorem 13 (Aloise et al. (2009)) Π′-k-MEANS is NP-hard.

Tosh and Dasgupta (2018) demonstrated that there is a simple reduction from Π′-k-MEANS to
MOGS-SV.

Lemma 25 (Tosh and Dasgupta (2018)) Let x1, . . . , xn ∈ Rdo be an instance of Π′-k-MEANS

and suppose we pad the points with 0’s until the dimension reaches

d ≥ max{16β(n) ln k, 2nα(n)
√

1 + 2 ln k}

If (π,µ, σ) satisfies LLOPT − LL(π,µ, σ) ≤ 1 then

Φ(µ) ≤
(

1 +
1

β(n)

)
ΦOPT .
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To prove our promise problem is NP-hard, we will utilize two results from Tosh and Dasgupta
(2018). The first relates the log-likelihood of a mixture model to the costs of certain partitions.

Lemma 26 (Tosh and Dasgupta (2018)) Pick any mixture (π,µ, σ) and data setX = {x1, . . . , xn}.
(a) For any partition (X ′1, . . . ,X ′k) of X , we have

LL(π,µ, σ) ≥
k∑
j=1

∑
x∈X ′j

ln(πjN(x;µj , σ
2)).

(b) Let (X1, . . . ,Xk) correspond to the partition

Xj =

{
x ∈ X : j = argmax

`
π`N(x;µ`, σ

2)

}
(breaking ties arbitrarily). Then

LL(π,µ, σ) ≤ n ln k +
k∑
j=1

∑
x∈Xj

ln(πjN(x;µj , σ
2)).

The second result shows that k-means cost of the means of a mixture can be related to its log-
likelihood.

Lemma 27 (Tosh and Dasgupta (2018)) Fix any data set x1, . . . , xn ∈ Rd and any positive in-
teger k. Let LLOPT denote the log-likelihood of the optimal solution to MOG-SV, and ΦOPT the
lowest achievable k-means cost. For any parameters (π,µ, σ), we have

ln
Φ(µ)

ΦOPT
≤ 4 ln k

d
+

2

nd
(LLOPT − LL(π,µ, σ)) .

Given the above, we are now ready to prove the main result of this section.

Theorem 8 Let Π be the promise that there exists a low-order polynomial ρ(·, ·, ·) such that all
input data points satisfy ‖x‖ ≤ ρ(n, d, k) and if θml = (π∗,µ∗, σ∗) is a maximum likelihood
solution and θ = (π,µ, σ) is within 1 of optimality, then

(i) ‖µj‖ ≤ ρ(n, d, k) for all j,

(ii) σ2 ≥ 1/ρ(n, d, k),

(iii) πj > 0 for all j, and

(iv) π∗j ≥ 1/ρ(n, d, k) for all j.

Then Π-MLE-MOGS-SV(k) is NP-hard for k ≥ 2.

Proof We will reduce from Π′-k-MEANS. Our reduction is to pad the points in the k-means instance
with zeros until the dimension d satisfies

d ≥ max{16β(n) ln k, 2nα(n)
√

1 + 2 ln k}

and solve the resulting MOGS-SV with b = 1. From Lemma 27 and the promise Π′, this solves the
original problem. Note that since we are reducing from Π′-k-MEANS and we are padding the data
points with 0’s, all the resulting points satisfy xi ∈ {−1, 0, 1}d. Thus, ‖xi‖ ≤

√
d for all i.

Now we need to demonstrate that conditions (i), (ii), (iii), and (iv) hold for any θ = (π,µ, σ)
satisfying dp,X(θ, θml) ≤ 1.
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Proof of (i) From the above, we know if (π,µ, σ) has log-likelihood on this data set within b = 1
of θml, then the partition (X ′1, . . . ,X ′k) induced by µ is an optimal k-means partition of the data set.
By a bias-variance decomposition, this implies

Φ(µ) =
k∑
j=1

∑
x∈X ′j

‖x−mean(X ′j)‖2 +
k∑
j=1

|X ′j |‖µj −mean(X ′j)‖2

= ΦOPT +

k∑
j=1

|X ′j |‖µj −mean(X ′j)‖2

where ΦOPT is the optimal k-means cost of this data set. If ‖µj‖ ≥ 2
√
d for some j, then we have

Φ(µ) ≥ ΦOPT + d,

since all points are in {−1, 0, 1}d and thus all means have length ‖mean(X ′j)‖ ≤
√
d. But Lemma 27

implies

dp,X(θml, θ) = LLOPT − LL(π,µ, σ)) ≥ nd

2
ln

(
Φ(µ)

ΦOPT

)
− 2n ln k.

Setting the left-hand side ≤ 1 and rearranging, we see

ΦOPT + d ≤ Φ(µ) ≤ ΦOPT

(
1 +

4

d
(1 + 2 ln k)

)
.

We know ΦOPT ≤ nα(n)2, since this is the cost of taking the origin to be the only center. Thus,
we have

d2 ≤ 4nα(n)2(1 + 2 ln k)

which is not possible by our choice of d. Therefore, we have ‖µj‖ < 2
√
d for all j.

Proof of (ii) Let (X1, . . . ,Xk) be the partition induced by the mixture (π,µ, σ). Taking σ2 =
γΦOPT

nd , Lemma 26 implies

LL(π,µ, σ) ≤ n ln k +
k∑
j=1

∑
x∈Xj

(
lnπj +

d

2
ln

(
1

2πσ2

)
− ‖x− µj‖

2

2σ2

)

≤ n ln k +
nd

2
ln

(
1

2πσ2

)
− 1

2σ2

k∑
j=1

∑
x∈Xj

‖x− µj‖2

≤ n ln k +
nd

2
ln

(
1

2πσ2

)
− ΦOPT

2σ2

= n ln k +
nd

2
ln

(
nd

2πγΦOPT )

)
− ndγ

2

Suppose the optimal k-means solution is given by centersµ′ = (µ′1, . . . , µ
′
k). Letπ′ = (1/k, . . . , 1/k)

and σ′2 = ΦOPT /nd. Note that the partition induced by the mixture (π′,µ′, σ′) is precisely the
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partition induced by the assigning each point to the closest center µ′j , which in turn is an optimal
k-means partition (X ′1, . . . ,X ′k). Thus, Lemma 26 tells us

LLOPT ≥ LL(π′,µ′, σ′) ≥
k∑
j=1

∑
x∈X ′j

(
lnπ′j +

d

2
ln

(
1

2πσ′2

)
−
‖x− µ′j‖2

2σ′2

)

= −n ln k +
nd

2
ln

(
1

2πσ′2

)
− 1

2σ′2

k∑
j=1

∑
x∈X ′j

‖x− µ′j‖2

= −n ln k +
nd

2
ln

(
1

2πσ′2

)
− 1

2σ′2
ΦOPT

= −n ln k +
nd

2
ln

(
nd

2πΦOPT

)
− nd

2

Rearranging, we have

dp,X(θml, θ) = LLOPT − LL(π,µ, σ) ≥ nd

2
ln γ +

nd

2γ
− nd

2
− 2n ln k ≥ nd

2

(
1

2γ
− 1

)
− 2n ln k

where the last inequality follows from 2x lnx > −1 for all x > 0. Utilizing dp,X(θml, θ) ≤ 1 and
γ = σ2nd

ΦOPT
, we have

σ2 ≥ ΦOPT

2nd(1 + 2
d(1 + 2 ln k))

.

Since all the data points are unique and at distance at least 1 from each other, there must be at least
one mean in any optimal solution that lies at least at distance 1/2 from one of the data points. Thus
ΦOPT ≥ 1/4 and

σ2 ≥ 1

16nd(1 + ln k)
.

Proof of (iii) Again, take (X1, . . . ,Xk) to be the partition induced by the mixture (π,µ, σ). As
pointed out above, (X1, . . . ,Xk) is an optimal k-means partition of the data, implying that no Xj is
empty. However, from the definition of (X1, . . . ,Xk) as

Xj =

{
x ∈ X : j = argmax

`
π`N(x;µ`, σ

2)

}
we know that if Xj 6= ∅, then πj > 0.

Proof of (iv) Now let θml = (π∗,µ∗, σ∗). From (iii), we know that the partition (X ∗1 , . . .X ∗k )
such that

X∗j = {x : j = argmax
i

π∗i N (x;µ∗i , σ
∗2)}

must satisfy that X∗j is non-empty for all j. Further, by the convergence of the EM algorithm, we
know that for any j,

π∗j =
1

n

∑
x∈X

π∗jN (x;µ∗j , σ
∗2)∑k

i=1 π
∗
iN (x;µ∗i , σ

∗2)
≥ 1

n

∑
x∈Xj

π∗jN (x;µ∗j , σ
∗2)∑k

i=1 π
∗
iN (x;µ∗i , σ

∗2)
≥ 1

kn
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To complete the proof, take ρ(n, d, k) to be some polynomial satisfying

ρ(n, d, k) ≥ max {16nd(1 + ln k), kn} .

E.2. Proof of Lemma 6

Recall that for two parameter vectors θ = (π,µ, σ) and θ̂ = (π̂, µ̂, σ̂), their parameter distance is
defined as

d(θ, θ̂) = max
i

(∣∣∣∣ln πiπ̂i
∣∣∣∣ , |σ2 − σ̂2|, ‖µi − µ̂i‖2

)
.

Lemma 28 Suppose π, π̂, σ2, σ̂2 > 0 and | ln(π/π̂)|, |σ2− σ̂2|, ‖µ−µ̂‖ ≤ ε. Then for any x ∈ Rd,∣∣∣∣ln πN (x |µ, σ2)

π̂N (x | µ̂, σ̂2)

∣∣∣∣ ≤ ε ·max

(
1 +

d

2σ2
+

2‖x− µ‖+ ε

2σ̂2
+
‖x− µ‖2

2σ2σ̂2
,

1 +
d

2σ̂2
+

2‖x− µ̂‖+ ε

2σ2
+
‖x− µ̂‖2

2σ2σ̂2

)
.

Proof
The proof consists of first demonstrating

ln
N (x |µ, σ2)

N (x | µ̂, σ̂2)
≤ ε

(
d

2σ2
+

2‖x− µ‖+ ε

2σ̂2
+
‖x− µ‖2

2σ2σ̂2

)
and then demonstrating

ln
N (x | µ̂, σ̂2)

N (x |µ, σ2)
≤ ε ·

(
d

2σ̂2
+

2‖x− µ̂‖+ ε

2σ2
+
‖x− µ̂‖2

2σ2σ̂2

)
.

Because the proofs are symmetric, we will only demonstrate the first inequality. To begin, note that
we can write out the likelihood ratio as follows.

N (x |µ, σ2)

N (x | µ̂, σ̂2)
=

(
σ̂2

σ2

)d/2
exp

[
‖x− µ̂‖2

2σ̂2
− ‖x− µ‖

2

2σ2

]
≤
(

1 +
ε

σ2

)d/2
exp

[
(‖x− µ‖+ ‖µ̂− µ‖)2

2σ̂2
− ‖x− µ‖

2

2σ2

]
≤ exp

[
dε

2σ2
+
‖x− µ‖2 + 2ε‖x− µ‖+ ε2

2σ̂2
− ‖x− µ‖

2

2σ2

]
= exp

[
dε

2σ2
+

2ε‖x− µ‖+ ε2

2σ̂2
+
‖x− µ‖2

2

(
1

σ̂2
− 1

σ2

)]
≤ exp

[
dε

2σ2
+

2ε‖x− µ‖+ ε2

2σ̂2
+
ε‖x− µ‖2

2σ2σ̂2

]
Taking logs and factoring out ε gives us the inequality.

Given the above, Lemma 6 follows immediately.

Lemma 29 Let θ = (π,µ, σ) and θ̂ = (π̂, µ̂, σ̂) be two parameter vectors satisfying πj , π̂j > 0

for all j. If X = {x : ‖x‖ ≤ B} then dp(θ, θ̂) ≤ d(θ, θ̂) poly(1/σ2
i , 1/σ̂

2
i , ‖µi‖, ‖µ̂i‖, B).
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E.3. Proof of Lemma 7

Before we prove Lemma 7, we need to bound quantities related to the Normal-Inverse-Gamma
distribution and the Beta distribution.

Lemma 30 Fix α, β, n0 > 0 and µ0 ∈ Rd. Let q and ν be the measure associated with the
Normal-Inverse-Gamma distribution with these parameters. Then for any µ ∈ Rd and σ2 > 0, we
have

− poly(α, 1/α, β, 1/β, n0, d, ‖µ‖, ‖µ0‖, σ2, 1/σ2) ≤ log q(µ, σ2) ≤ poly(α, 1/α, β, 1/β, n0, d).

Moreover, if d((µ, σ2), (µ̂, σ̂2)) = max{‖µ− µ̂‖, |σ2 − σ̂2|}, then

log ν(Bd((µ, σ
2), ε)) ≥ − poly(α, β, n0, d, ‖µ‖, ‖µ0‖, σ2, 1/ε).

Proof The density q can be written out as

q(µ, σ2) =
βα

Γ(α)

(
1

σ2

)α+1

exp

(
− β

σ2

)( n0

2πσ2

)d/2
exp

(
−‖µ− µ0‖2

2σ2/n0

)
.

To see the upper bound on the density, note that the mode of this distribution occurs at µ = µ0 and
σ2 = β

α+d/2+1 .
The lower bound on the density follows by noting that (i) ‖µ − µ0‖2 ≤ 2‖µ‖2 + 2‖µ0‖2 and

(ii) Γ(x) ≥ 3/4 for all x and

Γ(x) ≤

{
xx = 2x log x for x > 1
1
x for x ≤ 1

.

The lower bound on the measure follows by combining the lower bound on the density for any
point in Bd((µ, σ2), ε) along with the volume of Bd((µ, σ2), ε).

Lemma 31 Let γ > 0 and take ν be the measure and q be the density associated with the symmetric
Beta(γ, γ) distribution. For θ = (w, 1−w), θ̂ = (ŵ, 1−ŵ), let d(θ, θ̂) = max (| log(w/ŵ)|, | log((1− w)/(1− ŵ))|).
If w, 1− w ≥ δ > 0, we have

q(θ) ≥ 2− poly(1/γ,γ,1/δ)

and for ε ∈ (0, γ),
ν(Bd(θ, ε)) ≥ 2− poly(1/γ,γ,1/ε,1/δ).

Proof Writing out the density, we have

q(θ) =
Γ(2γ)

Γ(γ)2
θγ−1(1− θ)γ−1.

The bound on q(θ) follows from Lemma 23. To see the lower bound on ν(Bd(θ, ε)), assume w.l.o.g.
that w ≤ 1/2. For any ŵ > 0, if | log(w/ŵ)| ≤ ε, then | log((1−w)/(1− ŵ))| ≤ 2ε. This implies

I := {θ̂ = (ŵ, 1− ŵ) : e−ε/2w ≤ ŵ ≤ eε/2w} ⊂ Bd(θ, ε).
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Then we have

ν(Bd(θ, ε)) ≥ ν(I) ≥ (eε/2w − e−ε/2w) min
θ̂∈I

q(θ̂) ≥ δε

2
min
θ̂∈I

q(θ̂) ≥ 2− poly(γ,1/γ,1/δ,1/ε)

Given the above two lemmas, Lemma 7 follows immediately.

Lemma 32 Let q and ν be the prior density and measure, respectively, for the Bayesian mixture
of two spherical Gaussians generative model with fixed parameters α, β, γ, µ0, n0. For any θ =
(π,µ, σ) and any ε > 0, we have

(i) log q(θ) ≥ − poly(1/πi, 1/σ, ‖µi‖, d),

(ii) log ν(Bd(θ, ε)) ≥ − poly(1/πi, 1/σ, ‖µi‖, d, 1/ε), and

(iii) if γ ≥ 1, then log q(θ) ≤ poly(d).

E.4. Proof of Theorem 9

Theorem 9 Let ω = (α, β, γ, µ0, n0) for α, β, γ, n0 > 0 and µ0 ∈ Rd. Then

(a) MAP-MOGS(k = 2,ω) is NP-hard if γ ≥ 1.

(b) APPROX-SAMPLING-MOGS(k = 2,ω) is NP-hard for all γ > 0.

Proof Here we prove (b). We again reduce from Π-MLE-MOGS-SV(k) for k = 2. Define

S =

{
(π,µ, σ) :

1

σ2
, ‖µi‖2 ≤ ρ(n, d), πi > 0 for all i

}
S′ =

{
(π,µ, σ) :

1

σ2
, ‖µi‖2 ≤ 2ρ(n, d), πi > 0 for all i

}
S∗ =

{
(π,µ, σ) :

1

σ2
, ‖µi‖2,

1

πi
≤ ρ(n, d) for all i

}
Then we have the following.

(i) If θ ∈ S then Bd(θ, 1/2ρ(n, d)) ⊂ S′ (definition of distance d).

(ii) d is (poly(n, d), S′)-admissible (Lemma 6).

(iii) Π guarantees θml ∈ S∗ and Bdp,X (θml, 1) ⊂ S.

(iv) From (iii), log ν0(Bd(θml, ε)) ≥ − poly(n, d, 1/ε) for all ε > 0 (Lemma 7).

Putting the above together, Theorem 6 implies (b).
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Figure 1: Rounding our samples produces a gridding of Θ. The resulting distribution is indistin-
guishable from the original distribution with respect to any union of grid boxes.

Appendix F. Discretized total variation distance

Given measures µ and ν over a set Θ and a collection B of measurable subsets of Θ, define the
B-variation distance as

dB(µ, ν) = sup
B∈B
|µ(B)− ν(B)|.

When B is the collection of all measurable subsets, this is total variation distance. For smaller
collections, dB may differ significantly from dTV but is still a pseudometric.

What are minimal requirements on B to ensure that dB is a meaningful probability distance?
Suppose that Θ is equipped with a pseudometric d(·, ·); and, to avoid pathologies, assume (Θ, d) is
separable (has a countable dense subset). Define Bd(θ, r) = {θ′ ∈ Θ : d(θ, θ′) < r}. For ε > 0
and c ≥ 1, we say that a collection B is (d, c, ε)-fine if for every point θ ∈ Θ there exists a B ∈ B
such that Bd(θ, ε) ⊂ B ⊂ Bd(θ, cε). Intuitively, B captures the space Θ at a resolution of roughly
ε.

For total variation distance, the supremum is taken over all measurable sets, which are closed
under countable union and intersection. Likewise, we say B is a standard collection if it is closed
under countable union. Note that if we have a (d, c, ε)-fine collection and consider its closure under
countable union, the result remains (d, c, ε)-fine.

To understand the effect of choosing a family of sets B, consider a simple example: suppose we
sample from some distribution µ over Θ and then round the sample to r bits of precision. What is a
suitable family B? One option, illustrated in Figure 1, is to grid Θ with boxes of width O(2−r), and
let B be all unions of such boxes.

The following theorem generalizes this intuition and demonstrates the existence of standard
(d, c, ε)-fine collections as well as the existence of perfect discretizations of arbitrary distributions.

Theorem 14 Let ν be a distribution over a space Θ equipped with a pseudometric d(·, ·). For
ε > 0, suppose Θ̂ is a countable ε-cover of Θ with respect to d. Then there exists a standard
collection B of measurable subsets and a discrete measure ν̂ over Θ̂ such that

(i) B is (d, c, ε)-fine for c = 3,

(ii) dB(ν̂, ν) = 0, and

(iii) for any discrete distribution µ̂ over Θ̂, dB(µ̂, ν) = dTV (µ̂, ν̂).

Proof For every θ̂ ∈ Θ̂, define the inner Voronoi cell of θ̂ to be

Ci(θ̂) := {θ : d(θ, θ̂) < d(θ, θ̄) ∀θ̄ ∈ Θ̂ \ {θ̂}}.
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The Voronoi cell C(θ̂) consists of Ci(θ̂) as well as part of its boundary. To ensure that these cells
are disjoint and cover all of Θ, we can order Θ̂ and adopt the convention that the boundary occurring
among any Voronoi cells belongs to the cell whose center comes earliest in the ordering.

Define B to be the union-closure of the set of Voronoi cells:

B =
{
∪
θ̂∈IC(θ̂) : I ⊂ Θ̂

}
.

By the countability of Θ̂ we have that B is closed under countable union. To see that B is (d, c, ε)-
fine we need to show that for every θ ∈ Θ, there exists a B ∈ B such that

Bd(θ, ε) ⊂ B ⊂ Bd(θ, 3ε).

Let B be the union of Voronoi cells that intersect Bd(θ, ε). The first set inclusion follows immedi-
ately. To see the second set inclusion, note that because Θ̂ is an ε-covering, C(θ̂) ⊂ Bd(θ̂, ε). If
C(θ̂) ∩ Bd(θ, ε) 6= ∅, then we have d(θ̂, θ) ≤ 2ε. This implies that C(θ̂) ⊂ Bd(θ, 3ε). Thus, the
union of such sets must also be contained in Bd(θ, 3ε).

Now let ν̂ denote the discrete distribution over Θ̂ such that ν̂(θ̂) = ν(C(θ̂)). Then any B ∈ B
is the countable union of such sets, so we have ν̂(B) = ν(B), which implies dB(ν̂, ν) = 0.

Now consider µ̂ to be any other discrete distribution over Θ̂. For any δ > 0, there is some
Aδ ⊂ Θ̂ that achieves

|µ̂(Aδ)− ν̂(Aδ)| ≥ dTV (µ̂, ν̂)− δ.

If B = ∪
θ̂∈Aδ

C(θ̂), then

dTV (µ̂, ν̂) ≤ |µ̂(A)− ν̂(A)|+ δ = |µ̂(B)− ν(B)|+ δ ≤ dB(µ̂, ν) + δ.

But because dB is a pseudometric, we have

dB(µ̂, ν) ≤ dB(µ̂, ν̂) + dB(ν̂, ν) = dB(µ̂, ν̂) = dTV (µ̂, ν̂).

Since our choice of δ > 0 was arbitrary, we can conclude dTV (µ̂, ν̂) = dB(µ̂, ν).

Since c takes a constant value in Theorem 14, we will say a collection is (d, ε)-fine if it is
(d, c, ε)-fine for some constant c. With these notions in hand, we are ready to give the definition of
the approximate sampling problem.

DISCRETIZED VARIATION APPROXIMATE POSTERIOR SAMPLING: D-APPROX-SAMPLING-
(p, ν0,Θ)-d
Input: A sequence of points X ∈ X n, accuracy parameter b in unary.
Output: A random draw θ ∼ ν such that dB(ν, νX) ≤ 1/b where B is a standard
(d, 1/b)-fine collection.

When can we guarantee that a θ from the above problem will be polynomially sized? If we
take Θ̂ to be a 1/b-covering of Θ, then Theorem 14 guarantees the existence of a (d, 1/b)-fine
collection B and discrete distribution ν over Θ̂ such that dB(ν, νX) = 0. In the case where Θ is a
bounded subset of Rm and d is an `p norm, for example, every element of Θ̂ can be written using a
polynomial number of bits. Thus, every draw from ν will be polynomially sized.

Given this, we can provide a reduction similar to the one given in Theorem 5.
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Theorem 15 Letm, λ(m) and Π be as defined in Theorem 6, then Π-MLE-(p,Θ) ≤P APPROX-SAMPLING-(p,Θ, ν0)-d
under randomized reductions which are polynomial in the input size and λ(m).

Proof Let X = (x1, . . . , xn) ∈ X n and b be input to Π-MLE-(p,Θ) and let δ > 0. If Π is not true,
then we can return anything and terminate.

Otherwise, let ε > 0. By Lemma 5, we can duplicate the data

k(ε, δ) =
2

ε
log

(
1

δ
− 1

)
− log ν0

(
Bd

(
θml,

ε

2nλ(m)

))
times to ensure νZ(Bdp,X (θml, ε)) ≥ 1− δ for Z = (X(1), . . . , X(k(ε,δ))).

If our accuracy parameter given to APPROX-SAMPLING-(p,Θ, ν0)-d is b′, the collection B our
approximate distribution is measured against is a standard (d, c, 1/b′)-fine collection. Thus, for
every θ ∈ Θ, there exists a Bθ ∈ B such that Bd(θ, 1/b′) ⊂ Bθ ⊂ Bd(θ, c/b′). Since B is standard,
we also have the set

B =
⋃

θ∈Bdp,X (θml,ε)

Bθ

is in B. Therefore, if ν̂ satisfies dB(ν̂, νZ) ≤ δ, then

ν̂(B) ≥ ν(B)− δ ≥ 1− 2δ.

From this we know if θ ∼ ν̂, then θ ∈ B with probability 1−2δ. Let us condition on this occurring.
Then there exists θ′ ∈ Bdp,X (θml, ε) such that d(θ, θ′) ≤ c/b′. For ε < 1/nλ(m) and b′ ≥ c/ε, we
have θ′ ∈ S and θ ∈ S′ and∣∣∣∣log

p(X|θ)
p(X|θml)

∣∣∣∣ ≤ ∣∣∣∣log
p(X|θ)
p(X|θ′)

∣∣∣∣+

∣∣∣∣log
p(X|θ′)
p(X|θml)

∣∣∣∣
≤ ndp(θ, θ

′) +

∣∣∣∣log
p(X|θ′)
p(X|θml)

∣∣∣∣
≤ nλ(m)d(θ, θ′) +

∣∣∣∣log
p(X|θ′)
p(X|θml)

∣∣∣∣
≤ ε(nλ(m) + 1)

Let ε = 1/(nλ(m)+1), k = k(ε, δ), and b′ = cb/ε. If our input to APPROX-SAMPLING-(p,Θ, ν0)-d
is a k-fold replication of X and the accuracy parameter b′, then with probability at least 1− 2δ the
output of APPROX-SAMPLING-(p,Θ, ν0)-d is within 1/b of θml.
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