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Abstract

We prove that, for a broad range of problems, maximum-a-posteriori (MAP) estimation and ap-
proximate sampling of the posterior are at least as computationally difficult as maximum-likelihood
(ML) estimation. By way of illustration, we show how hardness results for ML estimation of mix-
tures of Gaussians and topic models carry over to MAP estimation and approximate sampling under
commonly used priors.

Keywords: Hardness, reductions, sampling

1. Introduction

When learning a probabilistic model, there are three computational tasks that commonly arise: max-
imum likelihood (ML) estimation of the model given data, maximum a posteriori (MAP) estimation
when a prior distribution over models is specified, and (approximate) sampling of the posterior dis-
tribution over models. We are interested in the relative computational complexity of these three
tasks: what does the hardness—or tractability—of one imply about the others?

At a high level, MAP estimation is rather like ML, with the added complication of the prior; and
the two are known to converge to the same limit with infinite data, under certain conditions. Thus
one would intuitively expect the MAP problem to be at least as hard as the ML problem.

The situation of approximately sampling is not as immediately clear. Sampling is known to be
as hard as optimization for various statistical physics models with a “temperature” parameter: this
temperature can be adjusted so that a sampler is essentially forced to return optimal or near-optimal
solutions. In the usual setting of probabilistic learning, however, there is no such temperature knob.
Nonetheless, there are other ways to produce a similar effect, and thus one would again expect,
intuitively, that approximate sampling is no easier than ML estimation.

In this work, we make these intuitions precise. Considering probabilistic models in broad gen-
erality, we give simple conditions under which approximate MAP estimation and approximate pos-
terior sampling can be shown to be at least as hard as approximate ML estimation. A key challenge
here is formalizing issues of numerical precision.

We then illustrate these general reductions in two cases of interest. Starting from recent hardness
results for ML estimation of Gaussian mixture models (Tosh and Dasgupta, 2018) and topic mod-
els (Arora et al., 2012), we show how in both settings, the hardness extends also to MAP estimation
and approximate sampling.

© 2019 C. Tosh & S. Dasgupta.
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1.1. Numerical precision

When discussing standard combinatorial optimization problems such as set cover or maximum cut,
the first step is to consider the exact version of the problem and, when that proves intractable, to
consider approximate solutions. For such problems, the exact solution lies in a discrete space and is
of polynomial size, but is difficult to find.

By contrast, many of the problems that we have in mind—such as estimation of Gaussian mix-
ture models or of topic distributions—take solutions in continuous spaces. The exact optimal solu-
tions may therefore not be compactly representable. The following lemma, whose proof appears in
the appendix, illustrates how this can happen even for extremely simple models.

Lemma 1 When fitting a mixture model %/\/' (—p, 1) + %./\/' (11, 1) to the data set of three points
{—2,0, 2}, the maximum-likelihood choice of y is irrational.

Thus, exact solutions are ruled out from the very beginning, and we are forced to restrict our-
selves to approximate versions of ML and MAP estimation. In particular, we need to characterize
the quality of polynomial-sized solutions.

The case of sampling is even more challenging, since we cannot hope to sample exactly from
continuous domains. Much of the work on Markov chain mixing has focused on the discrete setting,
and uses fotal variation distance to measure the difference between the target distribution u, over a
space ©, and the distribution v from which samples are actually drawn:

drv(pv) = swp  |u(A) = v(A).

measurable ACO
In cases where p has continuous support, v must still be discrete because samples must have
bounded bit-length, and thus this distance will be identically 1.

To overcome this, we consider two notions of distribution approximation. The first is the
Wasserstein distance, a metric over distributions that has become an increasingly popular mea-
sure of convergence in the optimization and sampling literature (Raginsky et al., 2017; Cheng et al.,
2018). In the appendix, we also introduce a generalization of total variation distance that takes
the supremum over a subfamily of measurable sets that captures © at a certain granularity. We
show how to construct suitable families from e-covers of ©; our construction may be useful in other
contexts.

1.2. Overview of results

In Section 3, we show that under conditions on the prior, there is a generic polynomial-time reduc-
tion from ML estimation to MAP estimation.

In Section 4, we define a notion of approximate posterior sampling that makes sense in both
discrete and continuous domains and we then give a generic reduction from ML estimation to this
problem, again under conditions on the prior.

Sections 3 and 4 extend the hardness of ML estimation problems to their Bayesian counterparts
provided that the prior meets certain mild conditions. In these cases, we cannot hope for efficient
MAP estimation algorithms or rapidly mixing Markov chains unless the data is specially constrained
or NP = RP.

Throughout our exposition, topic modeling serves as a running example. In particular, we extend
a hardness result of Arora et al. (2012) for ML estimation of topic models to the corresponding
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Bayesian estimation problems. In Section 5, we do this also for the problem of estimating mixtures
of Gaussians.

1.3. Methodology

Our goal is to reduce arbitrary maximum-likelihood (ML) estimation problems to their Bayesian
counterparts. In the absence of special knowledge about the specific model under consideration, we
opt for the simplest type of reduction: duplication.

Let P = {p(-]0) : 6 € ©} be a family of parameterized probability densities and let a gy be
a prior density over ©. Consider a data sequence X = (z1,...,,) and suppose that we replicate
this sequence k times, i.e., we make k copies X (V) = (21, ...,2y). The posterior distribution, given
XM X®) s of the form

ZAOp(XD, L XO0) = Zg(0) (b, 2] )

Z
where Z is the normalizing constant to make the density integrate to one. By simply replicating
the data, we get an exponential increase on the weight of the likelihood function over the prior
distribution. Thus, our general strategy will be to replicate the data until the posterior distribution is
suitably concentrated around the maximum likelihood estimate.

The success of this approach ultimately hinges on the relationship of the prior distribution
and the maximum likelihood estimate. If the prior distribution has very low density, say double-
exponentially small, on parameters that are close to the maximum likelihood estimate, then to get
large enough posterior weight on these parameters we need to duplicate the data a very large number
of times, possibly more than polynomial. On the other hand, many prior distributions, especially
those over unbounded parameter spaces, do put very small weight on some parameters. Thus the
data duplication technique can fail on instances whose maximum likelihood estimate lies in some
region of small prior density. How do we get around this?

The key observation is that many hardness reductions to ML estimation problems do not produce
arbitrary instances. Indeed, these reductions often create instances with a special structure. And in
many of these cases, the maximum likelihood solutions to these instances are themselves well-
structured and, as a consequence, often lie close to parameter regions with non-negligible weight
under many commonly-considered prior distributions. The upshot is that if we exploit the structure
of hard instances, then we can often avoid the only obstacle to our duplication technique.

1.4. Related work, including connection with statistical literature

Of the computational tasks discussed in this work, ML estimation has seen the lion’s share of hard-
ness results (Chor and Tuller, 2006; Guruswami and Vardy, 2005). This is possibly because ML
estimation does not have the additional complication of a prior distribution and can be easier to
work with than MAP estimation and sampling.

In the computational literature, several algorithmic connections have been made between sam-
pling and optimization. Kalai and Vempala (2006) showed that simulated annealing, a technique
that involves approximately sampling from a sequence of distributions, can be used for certain con-
vex optimization problems. Bubeck et al. (2015) used Langevin dynamics, a technique in which
Gaussian noise is added to each step of gradient descent, to sample efficiently from log-concave
distributions. What these, and other, works demonstrate is that certain optimization algorithms can
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be turned into sampling algorithms, and vice versa. What is lacking, however, is a generic reduction
between these two tasks.

In the statistical literature, there are many results to the effect that, under suitable conditions,
for data sampled from some model in ©, the maximum likelihood estimate in © asymptotically
converges to this same model, and the posterior distribution asymptotically concentrates around it.
Examples include the classical work of Le Cam (1953). Our hardness results are in a different
setting—the data are arbitrary—but interestingly, require similar conditions on the prior. This is
because our duplication technique gives the problem a statistical aspect: the replicated data look
rather like multiple draws from an underlying distribution supported on the initial data points.

It is worth pointing out that the existence of efficient reductions from ML estimation to MAP es-
timation and posterior sampling, although intuitive, is by no means a foregone conclusion. There are
various conditions that need to hold, and this work provides a blueprint that boils these reductions
down to a few checks. Moreover, we illustrate how to apply this blueprint on two canonical exam-
ples, demonstrating hardness of MAP estimation and approximate sampling for topic modeling and
mixtures of Gaussians for the first time.

Finally, we mention a closely related task to our estimation setting, but one which is not consid-
ered in the present work: using a fitted model to infer latent variables in new data. Notably, Sontag
and Roy (2011) demonstrated that MAP estimation and posterior sampling for inference in LDA
topic models are NP-hard. This result is particularly interesting as the corresponding maximum
likelihood estimation problem is trivial.

2. Preliminaries and definitions

Let X be any data space. A parameterized probability model on X is a pair (p, ©), where p(- | 0)
is a probability density over X for any f € ©. We will be working with i.i.d. probability models,
where for any sequence X = (x1,...,2,) € X" and any 0 € O,

p(X10) =p(z1,...,20]0) = p(x1]0) - p(zn | 0).

If we couple this probability model with a prior probability measure v over ©, then the resulting
triple (v, p, ©) is a Bayesian parameterized probability model. Let gy be a probability density
corresponding to measure 1. The posterior density after observing X is then written as ¢x (6) o
q0(0)p(X | 0) and we denote the corresponding measure as vx.

This notation conceals problem size: in reality, each input instance has some dimension m (the
vocabulary size for documents, for instance) and requires parameters of corresponding dimension-
ality, in some ©,, C ©. We will suppress this dependence except where needed.

2.1. Maximum likelihood estimation

We formally define the maximum likelihood estimation problem as follows.

ML ESTIMATION: MLE-(p, ©)

Input: A sequence of points X € X" and an accuracy parameter b in unary.

Output: A parameter 6 € O satisfying log p(X |0) > sup logp(X |6") — 1/b.
0'cO

It might also be reasonable to ask for precision 1/2°. We adopt this particular formulation because
it yields stronger hardness results.
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2.2. Topic modeling

We will use the problem of topic modeling as a running example. We follow the model of Arora et al.
(2012) where there is an unknown V' x K topic matrix ¥ such that each column U () is a distribution
over a dictionary [V], and there is a collection of D unknown, stochastically— generated distributions
0 ..., 0() over the topics [K]. The standard choice of prior on 0, ..., 0P) is a symmetric

Dirichlet(c) distribution. The generative process for a document d with words wg ), wéd), ... 18

6@) ~ Dirichlet(c)
2 | 9D ~ Categorical(e(d))
? | 2, W) ~ Categorical(\ll(zi))

We observe the bags of words X = [X(|...|X ()] where X = |{j : wj = i}| is the
number of occurrences of word ¢ in document d. Since each document is generated independently

and ), ... (D) are assumed to be i.i.d., the likelihood of the corpus under a topic matrix W is

D V /K X
p(X | W) HEM[ (X\q/ﬁ(d)ﬂ = [IEsw H(ngk)e,@)
d=1 i=1 \k=1

How many bits does it take to approximate the maximum-likelihood ¥? In the appendix, we show
that for any discrete distribution p = (p1,...,p¢) and any € > 0, there is a rounded distribution p
that uses [logy(¢/€)] bits per entry and has p; > p;(1 — €). By applying this construction to each
individual topic distribution, we get the following.

Lemma 2 Consider any V x K topic distribution matrix V. For any € > 0 and any integer m, there
is a topic matrix U that uses [logy(mV/e€)] bits per entry, such that log p(x|¥) — logp(z|¥) < €
for all documents x of < m words.

Thus, there exists a polynomially-sized solution to the problem of approximating the ML es-
timate of the topic modeling problem with a Dirichlet(c) prior on ©, which we will refer to as
TM-MLE(«). Arora et al. (2012) demonstrated that TM-MLE(«) is NP-hard for o = 1. Their proof
method works for any @ > 0; for completeness we present the following generalization of their
result in the appendix.

Theorem 1 [Implicit in Arora et al. (2012)] We say a topic matrix V¥ is c-smooth for ¢ > 0 if
min; max; \I/( 7 > c. Given o« > 0, TM-MLE(«) is NP-hard when restricted to instances in whlch
K =2 all the documents are restricted to have 2 words, and any topic matrix within 30Ta) +a) of
optimal is guaranteed to be 1/V -smooth.

The result in the appendix applies to all symmetric priors and not just the Dirichlet. However,
to keep our examples concrete we will only refer to the NP-hardness of TM-MLE(«). Given this
result, what can we say about the complexity of MAP estimation and sampling for topic modeling?
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3. MAP estimation is as hard as ML estimation

In this section we give a generic reduction from ML estimation to MAP estimation. For a fixed data
space X, let (p, ©) be a parameterized probability model and let v/ be a prior probability measure
with an associated density gg. Recall that we use the notation ¢x to denote the posterior density
given data X. We define the MAP estimation problem as follows.

MAP ESTIMATION: MAP-(p, qo, ©)

Input: A sequence of points X € X™ and accuracy parameter b in unary.

Output: A parameter 6 € O satisfying log gx (6) > sup log gx (0') — 1/b.
0'cO

For any instance X = (z1,...,2,) € X" let Z = (X ... X*)) be a sequence consisting of k
copies of X. The lemma below relates the MAP estimate for Z to the ML estimate for X.

Lemma 3 Pick any § > 0 and any 6 € © within 0 of the optimal MAP solution for Z, that is,
log qz(8) > sup logqz(0) — 0.
0'cO
Then the log-likelihood of any 0’ € © can exceed that of 6 by at most

1
log p(X16') —log p(X1) < + (6 +log qo(#) —log qo(6')) .

Lemma 3 is a promising start to a reduction from ML estimation to MAP estimation, but it
requires the prior density ¢(-) to be bounded above and below, which is often not the case. Recall
our example of topic modeling, where we are given a matrix bag of words X € Z"*? and the ML
goal is to find the topic matrix ¥ € RY*X which maximizes the objective

D V /K X\
logp(X | W) = "logEyw | ][ (Z ‘I’f-k)9/5;d)>
d=1

i=1 \k=1

where (9 ~Dirichlet(c). A common choice of prior for ¥ is to assume that the columns of ¥
are drawn i.i.d. from a symmetric Dirichlet(3) distribution. If we let ¢ denote the density of the
Dirichlet(3) distribution, this prior density on ¥ can be written as

qo(¥) = q(TM) g(¥@) .. (),

We call the problem of maximizing the resulting posterior TM-MAP(«,3). For 5 < 1, the den-
sity ¢ is not bounded from above, and TM-MAP(«,/3) is consequently not well-defined: infinite
a-posteriori scores can be achieved. Hence we will focus on the case 8 > 1. Here, however, g ap-
proaches 0 on the boundary of the simplex, which is problematic for the reduction because the ML
solutions ¥,,; of Theorem 1 contain topic distributions that are arbitrarily close to this boundary.
Thus, Lemma 3 cannot be straightforwardly applied using ' = W,,;. Instead, we need to ensure
that, for any data set, there is some intermediate W that is far enough from the boundary to have
non-negligible probability mass under go but has high enough likelihood to be considered a good
estimate of W,,,;.

In summary, we want to guarantee that there are good ML estimates with non-negligible weight
under the prior density. The following two sections will help us formalize these notions.
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3.1. Admissible distances

Given a likelihood function p, we define the log-likelihood distance between 61, 05 € © as
dp(01,02) = sup [log p(x | 61) — log p(x | 62)].
[AS

Note that for any data sequence X € X", we have
dp,X(Hl, 92) = | logp(X ’ 91) — logp(X ’ 92)’ S ndp(Hl, 92).

In our setting, where we are concerned with how close parameters are in terms of their log-likelihood,
dy is a natural distance to consider. However, it can be difficult to work with directly. Thus we would
like to upper-bound it—that is, upper-bound differences in log-likelihood—in terms of more conve-
nient distance functions on parameters, such as ¢, distance. Such upper bounds might hold only on
well-behaved subsets of parameter space.

Definition 2 Given A > 1 and S C O, we say a distance d(-,-) is (\,S)-admissible if for all
01,02 € S,

(i) d(01,01) = 0and d(0:,02) = d(02,0,), and
(ii) ifd(91,92) < 1/)\, then dp(ﬁl,é?g) < /\d(91,02).
We call a X satisfying (ii) an admissibility constant.

Returning to topic modeling, we define the max-norm distance between two topic matrices as

)

W — @[]0, = max ]\Ilgj) _ @Q)‘,
23¥)

The following lemma, combined with the fact that max-norm distance is a metric, demonstrates
that max-norm distance is admissible over the set of smooth topic matrices, where smoothness was
defined in Theorem 1.

Lemma 4 Pick ¢c,m > 0 and define ag = Y o;. Let X be the space of documents with length
bounded by m and S be the space of c-smooth matrices. If

K 2m—1/2
2m ag+m Koot
A:<C+max<l,< K > ) om >,

then max-norm distance is (A, S)-admissible.

Although our discussion of topic modeling has assumed a symmetric Dirichlet distribution, the
above lemma holds for non-symmetric Dirichlet distributions as well. Additionally, for the instances
produced in Theorem 1, K = m = 2 and ¢ = 1/V; thus the parenthesized term is polynomial in V.

Finally, for # € © and € > 0, define the ball around 6 of radius e with respect to distance d as
the set By(0,¢) = {0 € © : d(0,0') < €}.
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3.2. Promise problems

When constructing polynomial time reductions from a language L to a language L', the typical
approach is to demonstrate the existence of a polynomial-time computable function f : ¥* — »*
such that © € L if and only if f(z) € L’. However, it is often the case that reductions only
demonstrate the hardness of certain well-behaved subsets of languages. Such subsets are captured
in the notion of promise problems. Given a function IT : ¥* — {0, 1}, known as the promise, and
a language L C X*, the promise problem II-L is the problem of determining if € L given input
instances with IT(z) = 1.

3.3. The reduction

To turn Lemma 3 into a generic reduction, we need to assert that for any valid data sequence X
and any € > 0, there is some 6. whose log-likelihood is within € of 6,,,; such that go(6,) is bounded
below from zero. Such a condition on 6,,,; is implicitly a restriction on valid inputs X and therefore
can be phrased as a promise.

Theorem 3 Let m be some measure of the size of an input instance, and \(m) any function of this
size. Let S C © be some subset of parameters, and d be a (\(m), S)-admissible distance function.
Suppose qq satisfies two properties:

(i) it is bounded above by 2P°Y M) and
(ii) givene > 0and® € S, there exists 0. € Bq(0, €)NS such thatlog qo(0c) > — poly(A(m),1/e).

If 11 is the promise that 0, € S, then there is a reduction that is polynomial in the input length and
A(m) from II-MLE-(p, ©) to MAP-(p, qo, ©).

Proof Let X = (z1,...,7,) and b = 1° be the input to MLE-(p, ©) and let Z denote the sequence
consisting of k copies of X. Our input to MAP-(p, qo, ©) will be the data sequence Z and the
accuracy parameter b. Suppose that the output of this call is 6.

Lete = 1/(2bnA(m)) and take 6, € SNBy(f,1, €) to be the point with go(6) > 27 PO (A(m).1/€)
whose existence is given by assumption (ii). By Lemma 3,

log p(X |0 < ‘1 g p(X 16, —f—‘l gp(X|9)
<n - dp(Or, 0e) + 1ogm
< 1 Nm)d(Oma, 0.) + % (2 log j&%)

< A(m)ne+ % <ll) + poly(A(m), 1/6)) :

By taking k to be a large enough polynomial in b, A(m), and 1/¢, we can guarantee that 6 is within
1/b of the ML solution. [ |

Returning to topic modeling, let II denote the promise that the data sequence has only 2 words
per document and the ML solution is 1/V-smooth. From Theorem 1, II-TM-MLE(«) is NP-hard
for any fixed o > 0.
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Now take A to be the admissibility constant from Lemma 4 with ¢ = 1/V, m = K = 2. In
the appendix, we show that when the prior g, is Dirichlet(5) with 8 > 1, then for any ¢ > 0 and
any input instance, there exists a 1/V-smooth ¥, that is within ¢ of ¥,,; in max-norm distance
and satisfies log go(¥.) > — poly(A, 1/e€). Letting S be the set of c-smooth matrices, Theorem 3
immediately gives us the following.

Theorem 4 For any fixed o > 0 and 5 > 1, TM-MAP(«, 3) is NP-hard.

4. Approximate sampling is as hard as ML estimation

We now turn to a reduction from ML estimation to posterior sampling. As pointed out in Section 1,
total variation distance is not a suitable metric for approximate sampling in continuous domains.
Thus we begin by describing a commonly-used alternative: Wasserstein distances. Afterwards, we
provide reductions from ML estimation to approximate sampling and demonstrate how it applies to
topic modeling.

4.1. Wasserstein approximate sampling

Given two probability distributions x and v and a metric d over O, the ¢-th Wasserstein distance is

1/t

Wt(,u, 7/) = < inf ]E(X7y)N7d(X,Y)t> .
e (1,v)

Here, T'(u, v) is the space of all couplings of x and v, i.e. probability distributions over © x ©

whose marginals are p and v.

When (O, d) is the trivial metric space, i.e. d(6,60') = 1 whenever 6 # ¢’, then the ¢-th Wasser-
stein distance is just the ¢-th root of the total variation distance. In general, however, Wasserstein
distances differ from total variation distance. In particular, when (O, d) admits an e-covering o,
any distribution v can be approximated within Wasserstein distance € by a discrete distribution.

Theorem 5 Let ¢ > 0 and v be a distribution over a metric space (©,d). If © is a countable
e-cover of © then there exists a measure U over © such that Wy(v,vV) < e.

In particular, Theorem 5 demonstrates that when © is a bounded subset of R* and d is an
4y norm,' then any distribution v over © has a discrete distribution within € of v in Wasserstein
distance that is supported on points which can be written using a polynomial number of bits. Given
this observation, we define the Wasserstein approximate posterior sampling problem as follows.

WASSERSTEIN APPROXIMATE POSTERIOR SAMPLING: Wt—APPROX—SAMPLING—(p, o, @)
Input: A sequence of points X € X", accuracy parameter b in unary.
Output: A random draw 6 ~ v, where Wy (v, vx) < 1/b.

1. Alternatively © could be unbounded and d(z, y) = min{||z — y||», B} for some B > 0.
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4.2. The reduction

Recall the definition of d), x as
dp,x(01,02) = |logp(X|61) — log p(X|62)|

for a data sequence X € X" and 61,60; € ©. The following lemma tells us the rate at which the
posterior of a duplicated data sequence concentrates around the maximum likelihood solution.

Lemma 5 Take any e, d > 0and X € X". If Z is the sequence created by duplicating X

o2t ()

times then vz (By, (O, €)) > 1 — 4. (Recall 0, is the maximum-likelihood solution for X.)

With this lemma in hand, the reduction from ML estimation to Wasserstein approximate sam-
pling can be given. The proof is deferred to the appendix.

Theorem 6 Let m be some measure of the size of an input instance X, and let \(m) be any function
of this size. Let d be a distance function and S C S’ C © be subsets satisfying

(i) if 0 € S then By(60,1/\(m)) C S’ and
(ii) dis (\(m), S")-admissible.

If 1L is the promise that By, (O, 1/N(m)) C S and vo(Bg(Opu,€)) > 27 poly(A(m),1/€) for gl]
€ > 0, then II-MLE-(p, ©) <p W;-APPROX-SAMPLING-(p, 1/, ©) under randomized reductions
which are polynomial in the input size and \(m).

To see how this reduction applies to our topic modeling scenario, recall that our posterior was
formed by considering the likelihood in TM-MLE(«) and placing a Dirichlet(/3) prior on each of the
columns of W. We call the problem of sampling from this distribution TM-APPROX-SAMPLING(«, 3).

Notice that Theorem 6 only requires a lower bound on the probability of neighborhoods of ML
solutions and not any type of upper bound as in Theorem 3. Thus, for approximate posterior sam-
pling in topic modeling, we do not need to place the same lower bound on 3 as in MAP estimation.
In particular, we prove the following in the appendix.

Theorem 7 There is no poly-time algorithm for TM-APPROX-SAMPLING(«, 8) for any o, f > 0
unless NP=RP.

4.3. Discretized total variation distance

Wasserstein distance is not the only way to compare continuous and discrete distributions. In the
appendix, we introduce a generalization of total variation distance that captures the disagreement
between distributions at a specified granularity. Under the same conditions as Theorem 6, we show
ML estimation can be reduced to approximate posterior sampling with respect to this alternate
distance.

10
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5. Application: Mixtures of Gaussians

Consider the following maximum likelihood estimation problem for mixtures of k spherical Gaus-
sians with the same variance.

SAME VARIANCE MLE: MLE-MOG-SV (k)
Input: Points x1,...,x, € RY; unary parameter b.

Output: Parameters (7, i, o) such that LL(7, p,0) = Y 1, log (Z§:1 i N (xi; pj, 02)>
is within an additive factor 1/b of optimal.

In the above, we have used boldface symbols to pack parameters into vectors, i.e. & = (1, - .., fik)
and w = (m, ..., ). Tosh and Dasgupta (2018) showed MLE-MOG-SV (k) is NP-hard for k& > 2.

In this section, we examine the complexity of Bayesian estimation for mixtures of Gaussians.
We consider common conjugate priors on the mixing weights, means, and variance. In particular, we
place a symmetric Dirichlet(~y) prior on the mixing weights and a Normal-Inverse-Gamma(c, (3, 10, 7o)
prior on the means and variance, wherein the variance o is first drawn from an inverse gamma dis-
tribution, IG(c, 3), and the means are drawn i.i.d. from a normal distribution, N (pq, 02 /ngly).
The full generative process is spelled out below.

(71, ...,m) ~ Dirichlet(y) i | o ~ N (o, 02 /noly)
k
0? ~1G(a, B) x|,y 0% ~ Zm N (i, 0*14)
i=1
Let w = (a,f,7,1o,no) denote a fixed set of hyper-parameters. We call the corresponding

MAP estimation problem MAP-MOGS(k, w) and the corresponding approximate sampling problem
APPROX-SAMPLING-MOGS(k, w). We will show these problems are hard when k = 2.

As in the topic modeling setting, we cannot simply start with a reduction from MLE-MOGS-
sV (k). We will need a well-behaved promise version of this problem.

Theorem 8 Let 11 be the promise that there exists a low-order polynomial p(-,-,-) such that all
input data points satisfy ||z|| < p(n,d,k) and if 0,y = (w*, u*, 0*) is a maximum likelihood
solution and 0 = (7, u, o) is within 1 of optimality, then

(i) llpsll < p(n,d, k) for all j,
(ii) 0% > 1/p(n,d, k),
(iii) m; > 0 for all j, and
(iv) 75 > 1/p(n,d, k) forall j.
Then II-MLE-MOGS-SV (k) is NP-hard for k > 2.

The proof of Theorem 8 is deferred to the appendix. Theorem 8 implies, among other things,
that if we are reducing from II-MLE-MOGS-SV(k), we may restrict our data space X" to consist of
points x satisfying ||z|| < p(n,d, k).

As before, we also need a suitable distance in parameter space. We will consider the following
distance between two parameters § = (7, p, o) and 6 = (f,7,5):

d(0,0) = max {||u; — fui||% |log m; — log 7|, |o* — 52|} .

11
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The following lemma, whose proof appears in the appendix, shows that this distance is admissible
for well-behaved parameters.

Lemma 6 Letf = (mw,p,o0) and 0 = (&, i, &) be two parameter vectors satisfying w;, w; > 0 for
0) < d(0,0) poly(1/0?,1/67, |uill, |l fuill, B).

(
all j. If X ={x : ||z|| < B} then d,(6,0)
The next lemma, whose proof appears in the appendix, provides bounds on the prior density.
Lemma 7 Let q and v be the prior density and measure, respectively, for the Bayesian mixture

of two spherical Gaussians generative model with fixed parameters o, 3,7, 19, no. For any 0 =
(7, 1, 0) and any € > 0, we have

(i) logq(9) > —poly(1/m;,1/0, ||mill, d),
(ii) logv(By(0,€)) > —poly(1/m, 1/o, |||, d, 1/€), and

(iii) if v > 1, thenlog q(0) < poly(d).

Given the above results, we can now demonstrate the hardness of MAP estimation and approx-
imate posterior sampling.

Theorem 9 Let w = (o, 3,7, po, no) for a, 8,7, ng > 0 and pig € R%. Then
(a) MAP-MOGS(k = 2,w) is NP-hard if v > 1.
(b) APPROX-SAMPLING-MOGS(k = 2,w) is NP-hard for all v > 0.

Proof We show (a) by reducing from II-MLE-MOGS-SV (k) for & = 2 under the condition v >
1. Since k is a constant, we may take the polynomial p from Theorem 8 to only have two free
arguments. Let ¢ denote the prior density and let

1 1 .
S = {(ﬂ-,u,a) B Tt | i]|* < p(n, d) for all 7,}.
7

Then we have the following.
(i) logq(0) < poly(d,ng, «, 3,7, ||io]|) for any parameter § € © (Lemma 7).
(ii) logq(0) > — poly(n,d, ng, a, 8,7, ||io||) for any parameter § € S (Lemma 7).
(iii) dis (poly(n,d), S)-admissible (Lemma 6).
(iv) II guarantees that 6,,; € S.

Given the above, Theorem 3 implies (a). The proof for (b) is provided in the appendix. |
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Appendix A. Proofs from Section 1

Lemma 8 When fitting a mixture model %N (—p, 1) + %N (1, 1) to the data set of three points
{—2,0, 2}, the maximum-likelihood choice of y is irrational.

Proof
Writing out the log-likelihood function,

1 2 2
—pu?/2 + —p/2
2\/27re 24/ 27re )
1 2 1 2
+21 ~ew22 L e /2)
N <2\/27T€ 2\/2776

= —2In(2v2m) —4 — 7+21m( e 4 e

lnp(_2a Oa 2 | lu’) =In (

Taking derivatives of the log-likelihood equation with respect to p,

d
Tu Inp(—2,0,2|pu) = —3p + 4 tanh(2u).
w

This has two non-negative roots, one of which is zero. Evaluating the second derivative at zero,
we have

d2
2u

Thus zero is a local minimum. Because —3p + 4 tanh(2p) tends to —oo as i goes to 0o, we can
conclude that the other nonnegative root is the maximum likelihood estimate. Expanding the tanh,
we see that this root satisfies (3 — 4)e?* + (3u + 4)e=2* = 0; an application of the Lindemann-

Weierstrass theorem (Baker, 1975, Chapter 1) then tells us that it must be transcendental, implying
it is also irrational. n

Inp(—2,0,2| )| =0 = 8sech?(0) — 3 = 5.

Appendix B. Proofs from Section 2

We start with a general result about the polynomial approximability of discrete distributions, and
then consider an application to topic models.

Lemma 9 Consider any distribution with finite support, say p = (p1,...,p¢). Pick any positive
integer M. Then there is a distribution p = (D1, . .., pg) such that:

e Each p; is a non-zero multiple of 1 /M.
e For each i, we have p; > (1 — {/M)p;
Proof First define an intermediate distribution p as follows:

p; = (1 — £/M)p;, rounded up to the nearest multiple of 1/M.

14
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Therefore, (1 —¢/M)p; <p; < (1 —£€/M)p; + (1/M), and ) _, p; is some multiple of 1/M that is
< 1. To get p, take p and add multiples of 1 /M to any coordinate(s) until the sum of the coordinates
equals 1. |

This construction can be used to show that the maximum-likelihood topic model admits a con-
cise approximation.

Lemma 10 Consider any V x K topic distribution matrix V. For any € > 0 and any integer m,
there is a topic matrix V that uses [log,(mV/€)] bits per entry, such that log p(x|¥)—log p(z|¥) <
€ for all documents x of < m words.

Proof Obtain ¥ by applying the previous lemma to each individual topic distribution, with M =
[2mV/e]. Pick any document z of length m. Letting ¢ denote the prior on topic weights (that is,
a prior on the K -simplex), and letting z € {1, ..., K} denote the topic assignments to the words
x;, we have

Pr(z| V) :/ ZPr z|0)Pr(z|z, ¥) df

- (o) fromens

By construction, for any z,

[]o¢) > H ( 1 — ¢/2m)¥ >) = (1—c/2m)" [ &) > e H Wi,
i=1 i=1 i=1
and thus Pr(z|¥) < e“Pr(z|T), as claimed. [

B.1. Proof of Theorem 1: hardness of finding the maximum-likelihood topic model

Our goal is to prove the following theorem.

Theorem 1 [Implicit in Arora et al. (2012)] We say a topic matrix U is c-smooth for ¢ > 0 if
min; max; \I/( 7 > c. Given v > 0, TM-MLE(«) is NP-hard when restricted to instances in whlch
K =2, all the documents are restricted to have 2 words, and any topic matrix within I0Fa) +a) of
optimal is guaranteed to be 1/V -smooth.

In fact, we will prove a more general result. Let A be the N-simplex, i.e.

N
AN = {HERN : Zﬂlzlandelzo}

=1

Theorem 10 Ler \g, A\x > 0 and vy be a distribution over A such that for 6 ~ vy

o E[0?] =--- =E[0?] = \s and

15
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o E[@ZHJ] = )\Xfor all 1 7& j

Then TM-MLE-vy, the problem of maximizing the same objective as TM-MLE(«) with the Dir(«)
prior replaced with vy, is NP-hard when \g > )\ X > 0 when K = 2, there are exactly two words
in each document, and any topic matrix within 252X X of optimal must be 1/|V |-smooth.

To see how this implies Theorem 1, note that for 8 ~ Dir(«) and i # j,

B _TP(Ea(a+2) a+l a
As = Bl = N(Ra o)l (a) ~ K(akK + 1)~ K@K 1 1)
_ T(Ko)(T(a+1))?

= E[6:6;] = Ax.

(
- T(Ka+2)(T(a))?
Further, we have

As —Ax a+1 o' K(aK +1) 1
s (K(aK+1)_K(aK—|—1)> 3a+1) 3la+1)

The proof of Theorem 10 follows the reduction from Arora et al. (2012) very closely. We start
with an instance of MINIMUM-BISECTION. Here the input is a graph G = (V, E) with |[V| = n
even and | E| = m, and the goal is to find a cut (S, T") such that |S| = n/2 = |T| and |E(S,T)| is
minimized.

Beginning with G, we construct our instance of TM-MLE-vy as follows. The vocabulary is the
set of vertices V. Our corpus will consist of the following documents:

e for each word ¢ € V, create N documents with only the word ¢ repeated twice, and

e for each edge (7, j) € F, create one document with only the word i and the word j.

Here N is a polynomial of n, m, A\g, and Ax to be determined later. Given a document with words
i and j (possibly equal) and a topic matrix ¥ = [¥(1)|W(2)], what is the likelihood of the document
under U? This is simply

p(i,j | ©) = EG30 V0D 1 E[0,0,) (\115.1)\1/;.2’ + \115.1)\115.2)> +E[637 g

= As(Wi, ) + Ax (900 wVu)
where ¥; = (\111(1)7 \1152)). Then the objective is to maximize the following function:

1 2
FO)= > I (Asupi, 7))+ Ax (T 4w >))
document=(%,5)
=3 N (s w3 + 22wV e?)
1<%
1 2 1 2
+ Y (As(q/i,\m +Ax (e e? oy ))).
(3,5)EE
For any bisection (.S, T), define the canonical solution ¥ = W (S, T) to be the topic matrix which
satisfies U!") = 2/n and U = 0 foralli € S;and U\" = 0 and U\¥) = 2/n forall i € T. We'll
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see that the maximum-likelihood solution (or an approximation thereof) is approximately canonical,
and therefore uniquely specifies a cut.
Write F(V) = G(V) + H(¥), where

G(w) = 3" N (A w3 + 22wV 0 ?)
eV

HW)= > In (/\5(\112-, ;) + Ax (U w4 @§1)qf§2))) ,
(i.j)ek

When N is made large enough, G’ dominates H.
Each of the n rows of W is a pair (\IIZ(.l), \112(2)). We start by characterizing approximately optimal

solutions subject to specific row-sum constraints.

Lemma 11 Suppose the row-sums are constrained to be \I’El) + \1’52) = 1y, for some r1,...,Tn

summing to 2. Then:
(a) G is bounded as follows:
(2))

n n . (1)

As — A v W

GO¥) < 3 Nin(wsrd) =N 32 L
i=1 i=1 ’

with equality if each row has min(\lf(l), \1152)) =0.

)

(b) H lies in a smaller range:

mlnAx < H(¥) — Z In(ryr;) < mlnAg.
(¢,5)EE

Proof To see (a), first note that

2p(Vp?) 20 g min(T 0?)  minw v?)
) |

Therefore, we can write

G(w) =3 Nin (Aslwillf + 220w )

=1

n n 2 1) g, () 1) ,(2)
B ) r? — 20 o 2Ax U0
- Z} Nln (Agr}) + N;m ( 2 + Nor?

m n PN AR WY
J— 2 7 7 S X
_;Nln()\gri)ﬁ—]\f;ln(l— 2 T

n n 1) g2

20,7, Asg — A
< g Nln ()\Sr?) - N E o v X
i=1 i=1 3
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NZ": As — Ax min(¥'V] \1/52))'

As T

< Z NIn(Agr?) —
i=1 i=1

(b) follows directly from algebra and applying the inequality Ag > Ax. |
This immediately gives us the following corollary.

Corollary 11 Fix any row-sums r1,...,ry, and any A > 0. Let U be any solution whose F(-)
value is within A of optimal, subject to these constraints. Then for each 1,

min(¥, gl \I/(Q)) < 1 m)\5+ Alg
T - N Ax Ag — Ax

Thus each row has one entry that is approximately zero, whereupon, returning to Lemma 11,
we see that G(-) is roughly 2V ), In 7, ignoring constants. The following technical lemma then
implies that in an approximately optimal solution, all row-sums must be roughly equal.

Lemma 12 Subject to the constraint that r1, . . . , T, are nonnegative and sum to 2:

(a) The quantity ), Inr; is maximized when the r; are equal, in which case
n
2
Z Inr; = nln—.
, n
i=1
(b) Pick any € > 0. If there is some r; & [2(1 — €), 2(1 + €)], then no matter how the other r;

are set,
Zlnn < nln— — *6

Proof (a) follows directly from Jensen’s inequality. To see (b), we make use of the following
logarithmic inequalities, which can be found in (Topsge, 2004). For 0 < z < 1,
242 —2z

In(l—2) < .
and n( x)_z_x

Now let § > 0 and suppose that there is some ¢ such that ; = 2(1 4 §) /n. Then by (a),

znjlnrj ( 1+5>+Zln7“]
j=1

J#i

<In (Z(Ha)) +(n—1)In <ni1 (2—2(1%)))

2 J
—nlnn—l—ln(1+5)—|—(n—1)ln<1—nl>

2 5 2446  20(n-1)

<nlh=+?
T T s T2 =0
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2
<npln= — 24§?
_nnn 4
[ |

They proof for the case where r; = 2(1 — §)/n is similar. Thus, we have (b)

The G(-) function dominates H (-) and forces (approximately) canonical solutions

Lemma 13 Pickany 0 < € < 1 and any A > 0. Define
2 Ag n?
No=—<1[A In| ——

o= (2 (57))

1 /mlg Alg
N, == .
! e()\x +)\S—)\X>

Let U* be a maximizer of F(-). Then, if N > max(Ny, N1), any solution U with F(V) > F(¥*)

A must satisfy the following conditions for each i

(@) O + 0P e [2(1—€),2(1 4 ).

S\N’

(b) min(¥Y v?) < ¢
Proof Let ® be any canonical solution (which trivially implies F'(¥*) > F(®)), let ¥ be a solution
ry, be the row sums of W. Then because P is

satisfying F'(¥) > F(U*) — A, and let rq, ...,
canonical, we know from the above lemmas

A>F(®)—F (D)
=G(P)-G(V)+ H(P) — H(V)
Z In <n2)—|—mln)\x— Z In(rrj) —minAg

> G(P) —
(i,J)eE

(i,5)EE
L ) Z In(r;7;)

=G(?) - G(¥) —mln < I
(i.j)eE

_ ) v
2N<n ( ) Zln)\sr +Z)\S Ax min(¥; ", U, ))
T

As— 3
—mln (4 )\X> Z In(rirj).
(i.j)eE
Now suppose by contradiction that ¥ does not satisfy condition (a). We know that because the
columns of ¥ sum to 1, it must be the case that r;7; < 1. Applying Lemma 12(b),
n? g
4 Ay

A>N|nl )\i —Zn:l (A 2)+Zn:)\s—)\xmm ), z2)) |
AN i=1 e = s T -
4 4 €2 n? g
> N <n1n (Asn2> —nln <A3n2) n 2) —mn (4 . Ax)
—N—GQ—mln n’ s
2 4 Ay
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But this implies that
2 g n?
N<—= (A In[ —=— = N,
<z (a+mm(3)) -
which is a contradiction.

To see that ¥ must satisfy condition (b), note that by Corollary 11, if ¥ did not satisfy condition
(b), then F'(¥) could not be within A of F'(U*). [ |

Once we are within the realm of approximately canonical solutions, which uniquely designate a
bisection cut, the lower-order term H (-) serves to choose a cut of small size.

Lemma 14 Pick any 0 < € < 1. We will describe any WV that satisfies conditions (a) and (b) of
Lemma 13 as being e-approximately canonical.

(a) For any canonical solution W,

A\
H(V) = mlnn—j— cut(¥)| - In =2,

(b) For any e-approximately canonical solution U,

H(U) < mln —= — )| -1ln =2 + 2me—2.
(¥) < mln n? jeut(D)) ax T 9%
Proof Recall that
H ( l) = Z In ()\S<\I/i, \I/j> + Ax(\l’gl)\l’;?) + \115,1)\1/22))) .

(i,9)EF

Therefore, if ¥ is a canonical solution corresponding to the bisection (S, T'), then if (S, T") denotes
the subset of edges with one endpoint in S and the other in 7" we have

4\ 4\
(3,5)€EE(S,T) (3,7)EE\E(S,T)
4)g Ag
= mlnﬁ — Jcut(¥)] - In o

Now let ¥ be an e-approximately canonical solution. Use it to define a cut (S,7) in the natural
way:
S={i: U <2/n}, T=1n\S.
Given an edge (7, j) € E, how do we bound Q; ;(¥) = Ag(¥;, V) + )\X(\Ill(.l)\lff) + \Ifg-l)\lll(?))?
We consider two cases.
Casel: (i,7) € E\ E(S,T). Assume w.l.o.g. thati, 7 € S. Then because W is e-approximately

canonical, we know | ;1,1 € [2(1—¢), 2(1+¢)] and W), 0 < 2¢. Letting W) = 2o

i T on

and \115-2) = %5j, we have
Qi (0) = As(¥;, ) + Ax (U0l + ooy

1 As((T+e—=6;)(14+€—05) +0i6;) + Ax (1 +€—6;)6; + (1 4+ € — 0;)05))

< —
_n2

= % ()\s(l + )2+ (\s — Ax)(26;0; — (1 +€)(8; + 5].))
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Since 9;,0; < € < 1 and Ag > Ay, the above is maximized whenever J; = J; = 0. Thus,

g (1 +€)?
—

Qi (V) <

n

Case 2: (i,j) € E(S,T). Assume w.l.o.g. thati € S and j € T. Then because U is e-
approximately canonical, we know [|¥;|[1,]|¥;[1 € [2(1 —¢€), 2(1 + ¢€)] and \I/EQ),\IIED < 2e
Letting \I/Z(.Q) = %(51- and \Ilg-l) = %5]-, we have

Qi () = As (s, U) + Ax (00l 1+ oM gy

IN

,j ()\5((1 + 6)5i + (1 + 6)5j) + Ax((l +€— 51)(1 +€— 5j) + (Si(Sj)

"2
iz( (1+ €)%+ (Ag = Ax)((1 4 €) (& + &;) — 6:;)

| /\

- ( (146 +2(As — Ax)(1 + €)e)

_ AX(1+ ) <1+ (2Ai; AX))

Combining the above two cases, we can bound on H (V) above by

> IH<W>+ 3 1n<‘z\;((1+6)<1+w>>

(i,j)EE\E(S,T) (i,j)€E(S,T)
4 2Xg —
— i 25 w10 2 4 jout(®) [ (1 +e) (14 L2 =AY
n? Ax Ax
+ (m — |eut(®)[) In((1 + €)?)
4N A 2 s — A
< mlnn—zs — |cut(¥)] ~lnﬁ + memax (2, 1+ S)\XX) .
Using the fact that A\g > Ax gives us the lemma. |

Let A, e, Ng, N1, N > 0 satisfy the relationship specified in Lemma 13. We will argue that for
an appropriate, but polynomial setting, of these variables, any A-optimal solution must correspond
to the minimum bisection.

Let ¥ be a A-optimal solution. By Lemma 13, ¥ must be e-approximately canonical. As in the
proof of Lemma 14, we can use ¥ to define a cut (S, 7). For e < 1/(2n), this cut is a bisection.
Now let (S*, T*) be an optimal bisection and let ¥* be the solution corresponding to this. Then we
can say

A > max F(V) = F(¥) > F(¥) = F(¥)
= G(U*) — G(V) + H(I*) — H(V) > H(T*) — H(T).
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Now by Lemma 14, we have

A= H(W) - H(Y)

4\ A A\ A A
> mlnn—f — |cut(¥™)| - lni — mlnn—f + [cut(¥)] ~ln§ — 2mei
A A

= (leut(T)] — |cut(T*))In [ 22 ) — 2me=2
Ax Ax

> (|eut(T)| — [cut(T*))) AS ZAXY g AS
As Ax

Thus, if A < % (%) and € < (%) (%), then we must conclude that

6m
|cut(W)| = |cut(*)|.

These settings of € and A, give us

2 Ag n?
No=—= | A In{—=>—
o= (2rmm (555))

oo (22) (1250) (e m (32) +min (5))

1 /mAg Alg
N, ==
! 6<AX +)\S)\X>

= () ) G e (52)
Ax As — Ax Ax 2(As — Ax) AXx '

Thus, we have that TM-MLE(«) is NP-hard when K = 2 and there are exactly two words in each
document.
Now suppose V is a topic matrix within

and

AS{% of optimal. Lemma 13 guarantees

S

9 9 2 (A As — A 1
milnmax{ i Y } = |V\( €) = V| 6|E| \ \s As — |V

Thus, ¥ must be 1/|V|-smooth.

Appendix C. Proofs from Section 3
C.1. Proof of Lemma 3

Lemma 15 Pick any § > 0 and any 6 € © within § of the optimal MAP solution for Z, that is,
log qz(6#) > sup log qz(8") — d.
0'cO

Then the log-likelihood of any 0" € © can exceed that of 6 by at most
1
log p(X160") —log p(X10) < (0 + log qo(0) — log qo(6"))
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Proof Note that since 6 is within § of the supremum of In ¢z, we have

wOP(X (08 wl®) , p(X|0)

—0 <Ingz(f) —Ingz(¢') =1In 20(0)p(X |0 q0(0") p(X1[0)

Rearranging the above gives us

"N _ Py 1 L, 90(0)
p(X10) = p(X16) =" ) §k<5“ qow'))'

C.2. Proof of Lemma 4

The goal of this section is to prove the following lemma.

Lemma 16 Pick ¢,m > 0 and define ag = Y «v;. Let X be the space of documents with length
bounded by m and S be the space of c-smooth matrices. If

K 2m—1/2
2m ag+m Kaot2m
A= — 1
<C+max<,< % )) o ),

then max-norm distance is (\, S)-admissible.

To do so, we need to introduce some notation. Suppose z = (i1, ...,%,) is some length m
document. Then z € [K]™ is a labeling of z, that is an assignment of each word in z to some
topic. For some fixed labeling z, let n;(2) = |{j : z; = i}| denote the number of times that topic ¢
appears in z. Define the likelihood of z under ¥ by

K m

_ (i 4 ni(z)) ()

q(V,2) = (H () H \I/ij .
=1 7j=1

Then we see that summing over all labelings gives us the likelihood of document .

Lemma 17 For any length m document x and any topic matrix VU,

p(a¥) = D q(¥,2).

z€[K]™
Proof To generate document = = (i1, ..., 4,,) given ¥, we can first sample § ~ Dir(aq,...,ak).
Given 6, we can sample z1, ..., 2, independently from the distribution # and then independently

sample each word j from the distribution W#/. Marginalizing over # and z and recognizing that x is
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independent of 6 given the 2’s,
p(x | V) = Eolp(z| ¥, 0)]
= > Eolp(zl0)p(z|¥,0,2)]

z€[K]™
= Z Eg HQZ] H\I/(ZJ)
ze[K]™ | /=1 j=1
[ K m
_ Z E, He;u(z) H\I,S])
ze[K]m Li=1 j=1

The expectation in the last line deals with the moments of the Dirichlet distribution. Ng et al. (2011)
provides the following identity for the moments of the Dirichlet distribution

k
. a;) I« —|— n;)
0 H 0i'| = Z H T(a :
Pl 'O o +ni) Pl
for positive integers n1, . . . , nx. Plugging this into the above gives us the lemma. |

Therefore, proving Lemma 4 amounts to getting a handle on the ratio
p(z|¥) Zzg[mn q(V, 2)
p@|®) g a(®,2)

for topic matrices ®, U that are close in max-norm distance. The next few technical lemmas deal
with bounding ratios of sums.

C.2.1. RATIOS OF SUMS

Lemma 18 Letay,...,an,b1,...,by,c > 0suchthat a;/b; < c, then %Z; <ec
Proof We have that a; < c¢b; for all 7. Thus, %ZZ < ZZ::CIZZ' <ec |

Lemma 19 Suppose a,b,c,d,e > 0, z,y € [0,1], and |z — y| < € then

a+cgc<ma a + ce a-+c
X
b+dy — b 'b+d(l—e)

Proof There are two cases.
Case 1: y > 1 — €. In this case we have

a+cx a—+c
b+dy — b+d(l—e)

Case 2: y < 1 — e. In this case we have

atcr _ a+c(y+e)
b+dy — b4+dy

=: f(y)
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Then it can be shown that the sign of f’ is independent of y (since y > 0). Therefore f is monotonic
in y and reaches the maximum at the boundary {0,1 — €}. [ |

Lemma 20 Leta,b,c,e > 0and x1,...,Zn,Y1,--.,Yn € [0,1] such that |x; — y;| < e. Then

a+cH?:1xi<maX<a+ec a+c )
b+elli vy — e

Proof The proof is by induction on n. The base case is simply an appeal to Lemma 19. Now assume
it holds for n — 1. There are three cases we need to consider.
Case 1: y,, = 0. In this case we know x,, < ¢, therefore

a+clli x < a+ e[} o catfec
b+elli,vi b - b

Case 2: x,, = 0. In this case,

a+c[li, g<a+ec
b+cHi:1yz b b

Case 3: z,,, y, > 0. In this case we can use our inductive assumption to see the following

atellige _ an ofantcllis; o
b+cllis iy yn b/yn+CHi:1 Yi
< Tn o (a/xn—i-ec a/z, +c )

yin b/yn ’ b/yn + (1 - e)n_lc

a+ expc a—+ Tpc
= max ,
b b+ yn(1 —e)nle

< ma a—+ ec a+ xTpc
max .
- b bty (1—e)n e

By appealing again to Lemma 19, we have

a+ xyce < a—+ €c a—+c
max .
b+ yn(l—€)"lec — b b+ (1—¢e)c

Combining all of the above gives us the lemma. |

Lemma 21 Let a,b,c;, e > 0and x; j,y;; € [0,1] such that |z; j — y; ;| < efori € [m],j € [n].
Then there exists a partition 1, Qs of [m| such that

a+ " e[l @iy L Ot Dicq, €6t Dien, G
b+Ytallimiviy = b+ Xien,(1— €
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Proof We prove by induction on m. The base case of m = 1 follows directly from Lemma 20. We
can assume that the lemma holds for m — 1, then

3
L

IS

_l_
i

D

:]:

[
Il
—

n
Tij +Cm Hj:l Lm,j

Q+Zz 1CZH =1 Ti,j

b+ 320 ai Il vig a

3
L

A:lz

b+ G| Yijteim H] 1Ym,j

s
Il

—
<
Il

—

b/

By applying Lemma 20, we have that this is bounded by

a’ + ecp, a +cm
max )
VooV +(1— €)%y

We will bound each of these quantities separately. Denoting a; = a + €c¢;,, then by induction we
have that there exists a partition ], 2 of [m — 1] such that

a +ec, @ + >0 1 czH] 1 %i,j
o b+ CZH =1Yij
< ai + Zieﬂg €ci + Zieﬂg Ci
- b+ Zie%(l — )¢
@+ D iequimy) €Ci T Dicqy Ci
b+ Sy (L=

On the other hand, if we let as = a + ¢, and be = b+ (1 — €)"¢;y,, then by induction there exists a
partition 7, 4 of [m — 1] such that

a+cm G2t Y eIl iy
VA1 =erem b+ X0 e [T5=1 v
- az + D ieqr €Ci + D iequ Ci
T bat Y eqp(l—€)e
a+ Y icqr €Ci T Xicqyufmy Ci
b+ 2 icayumy(l — €)¢

By taking €21, ()5 to be the partitions corresponding to the larger of these two scenarios (either
QLU {m}, Q, or QF, Q5 U {m}), we have the lemma statement. [ |

C.2.2. ACTUAL PROOF OF LEMMA 4

We are now ready to prove the main lemma of this section.
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Lemma 22 Pick ¢,m > 0 and define ag = ) ov;. Let X be the space of documents with length
bounded by m and S be the space of c-smooth matrices. If

K 2m—1/2
2m ag+m Koot
A=| — 1
<C+max<,< % >> o >,

then max-norm distance is (\, S)-admissible.

Proof Let x = (i1, ...,4,) be a document of length m, and let 2 = [K]™ denote the space of all
labelings. Pick @, ¥ € S. From the smoothness condition, we see that there is a labeling z* € )
such that (I)Sj )

applying Lemma 21, we know that we can partition 2 \ {z*} into {21, Q9 such that

plx W) (¥, 2") + 3 ca\ay 4V, 2)

> cfor j = 1,...,m. Recalling the definition of ¢(-, z) from Lemma 17 and

p(x]®)  q(®2%) + X con oy 4P, 2)
B q(¥,2") + Zzeﬂ\{z*} (Hllil F(a%;;)@)) H;n 1 ‘I'(ZJ)
(@) + e\ (=4} (Hfil W) II75 ‘I)(%J)
_ 9, 2*) + .o, € I1L, Dol aﬁozz)(z) + Yseq, [Tict 7F(af?$)(z)) '

Q((I)v < ) + 22692(1 o 6) Hfil W

From Lemma 18 we know that we can separately bound

a0, 2%) + 3 cq, €I15, M%;)(D " >.ca, IT5, M
T(a;+ni(2)) °
q(®, z*) > ca,(1—e)m Hfil%

The second quantity is simply bounded above by (1 — €)™ < exp ( ) < exp(2em).
By properties of the gamma function, HzK (o + 1) < F(ao +m) forany r1,...,7x >0
(25

satisfying 71 + - - - + rx = m. Since ||® — U||,p0r < € and <I> > c for all j, we have

G0, 2) + e, €11, Pz
g(®, %)

(T, oD T, w450, g, €T, Ml
K T(a;+n;(z m (Z )
(Hi:l w) HJ 1

!
| F €| |T(m + ag)

P B B 5
@ (TS ey + i) (T @)
€| |T(m + ap)

™ [T Ty +ny(2))
eK™T'(m + )

e TTjmy Doy +n(2%)

< (1+¢/0)"

< 6em/c
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Where the last line follows by observing that || < [Q] = K™.
Additionally, by the log-convexity of I' on the positive reals, we know that for positive 1, ..., Tk,
[(z1) - T(zg) > (T(z1/K + -2 /K))K. Thus

p(.%' ‘ \Il) < eem/c 6I(WLF(WL + CM())
p(z|®) — c™(I(ao/K +m/K))*

Taking logs and making use of € < ¢/m, we have

p(l’ | \II) < em/c
<Infe +
p(z | ®)

In

el'(ag +m)K™ >
c™((ao/K +m/K))¥

2me el'(ag +m)K™
=t (1 T oo/ K £ m/K))K)

2m K\™ I'(ag +m)
el —+ | —
c c (T(ap/K +m/K))E
By Gauss’ multiplicative theorem and the log-convexity of I', we know for any positive integer k
and any a > 0,

T(a)f < max(1,a?)k*1/2,

Applying this to the above gives us the lemma statement. |

C.3. Proof of Theorem 4

Define the TM-MLE(«, K, m) problem to be the TM-MLE(«) problem where the number of topics
is K and the number of words per document is bounded from above by m. TM-MAP(«, 3, K, m)
and TM-APPROX-SAMPLING(«, 3, K, m) are defined analogously.
Let AV denote the simplex of all probability distributions over V outcomes. For every ¢ > 0,
define
S, = {\IJ e AVXE . g c—smooth}.

If m is the length of the longest document, then we have by Lemma 4 that the max-norm is
(9(K,m,c,a), Sc)-admissible for

Cm

2 K Ka0+2m—1/2
g(K,m,c,a):—m—i—max (1,<a0;m) > _
Cc

The next thing we need to establish to apply our results from Sections 3 and 4 is that the prior
distribution is well-behaved on neighborhoods of the maximum likelihood estimate. The following
lemma gives us a handle on the Dirichlet distribution.

Lemma 23 Suppose that v is the measure and q is the density associated with the symmetric
Dirichlet distribution over A with parameter o. Then for any € > 0 and any point v € AN s.t.
min; x; > € we have

logg(x) > —poly(N,a,1/a,1/e¢)
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which implies for any x € AN
log v(Be,(x,€)) > —poly(N,a,1/a,1/e).

Further, if « > 1, we have
logq(z) < poly(N, ).
Proof Recall that

oy = T s

We will first show that if & > 1, then log g(z) < poly(NN,«). Note that when o > 1, ¢ is a
concave density with whose maximum is achieved at (1/N,...,1/N). Thus,

I'(Na)

F( )N . NN(I—a) < (NO&)NQ . 2N . NN(I—a) < 2poly(N,oz)
«

q(z) <
where the last inequality follows from the bounds I'(z) < z® and I'(x) > 1/2 for x > 1.
Now we turn to showing the first two inequalities. We consider two cases.

Case 1: @ < 1. In this case ¢ is a convex probability density with minimum at (1/N,...,1/N).
Thus,

o) > LN ( ! >N(a_1) > [iNa)

L)V \ N T(a)N’

Notice by I'’s recurrence relation

1 1
I(a) = Ml +a) <=
« o'
for o € (0, 1). Moreover, I'(t) > 3/4 for any real ¢ > 0. Thus, we have

N
q(z) > 3 (g) > 9= poly(N,1/a)

=4 \N

Case2: > 1. Whenz; >efori=1,...,n, we have

—

(Na) 6N(Ol,l) > 9~ poly(N,a,l/E)'

1) = Ty
Then the inequalities dealing with the density ¢ in the lemma statement can be gleaned from the
above two cases.

Now we turn to lower bounding v/(By, (x,¢) N AN). First, note that vol(By, (z,¢) N AY) is
minimized for x € AY when z is a corner of A™. Thus we can consider z € A™ such that w.l.o.g.
1 =1landz; = 0fori=2,...,N. We claim By, (x,¢e) N AN contains a regular simplex S with
edge length €/2N satisfying that min; x; > €¢/2N for all z € S. To see this, let S be the simplex
created by the convex hull of :c(l), ey W) e AN where

(U_{1—“5W ifi=1

5N o/w
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and
- :f;i(N—quf) ?fz:zl
i = 3VIN ifi =k
N o/w
for k = 2,..., N. Then one can see that

o zM e ANfork=1,...,N,
o |20 — z(K)|| = < forall k # K,

e 20 ¢ By, (x,€)fork=1,...,N,and

° gzgk) > 55 fori,k=1,...,N.

Then the simplex S lying in the convex hull of (), ... (™) is a regular simplex with edge length

€¢/2N satisfying that min; z; > €/2N for all z € S. Therefore for any z € AY,

. N +1 e\N . _ .
v(Bey(a,€) NAN) 2 vol(S) - inf q(w) = Sot - (557) - inf g(e) = 27PN /e1/o),

|
We are now ready to apply Theorem 3.

Theorem 12 Let o« > 0, ¢ = 1/V, 8 > 1, K,m € N, and let 11, denote the promise that
U, € Se, then I1.-TM-MLE(«v, K, m) <p TM-MAP(c, 3, K, m) where the reduction is polynomial
in the input size and (1/¢)™, K™, and max{f3,1/3}.

Proof Suppose that ¢ is the density associated with the symmetric Dirichlet distribution over AY

with parameter 5. The prior density ¢y we are interested in is the product distribution, i.e. for
U e RVX K ,

qo(¥) = g(¥W) .- g(vH)),

From Lemma 23, we know that ¢ is bounded above by 2P°Y(V:8) | The density g of the product
distribution is thus bounded above by 2Pl (V:K6)

From Lemma 4, we know that max-norm is (g(K,m, ¢, ), S¢)-admissible. Thus, in order to
apply Theorem 3, we need to show the existence of a topic matrix T satisfying the following three
conditions. For small enough € > 0,

@ Ve s,
(b) H\/I} - qjml”ma:c <€, and

(©) qo(V) > 2 Poly(V.K,B,1/¢)
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To construct such a ¥, let us first denote ¥ = W,,; and let s = min(e, 1/V2). Consider a particular

column j. If it is the case that \Ilgj ) > s for all rows 7, then we take TO) = w0, Otherwise, because
W) is a distribution over V words and sums to one, this implies that there exists a row i* such that

\Ifl(f) > % + % Then we take

G0 _ vl if i = i*
! \I/EJ) V(Vil) otherwise

<\°J

Then W is a valid topic matrix. It is easy to check that it satisfies (a) and (b). To see (c), notice
)
2~ Poly(V:8:1/€) " which implies qo(¥) > 2~ poly(V,K,3,1/€) [

for all 7, j. By Lemma 23, this implies that every column j satisfies q(\f/(j )) >

The ML estimate in the construction in Theorem 1 lies in S, for ¢ = 1/V. The construction
also satisfies that ' = 2 and m = 2 (and that « is a constant), which means that the dominating
factor g(K, m, ¢, «) is bounded above by poly(V'). Theorem 4 follows as an immediate corollary.

Theorem 4 For any fixed o > 0 and 5 > 1, TM-MAP(«, ) is NP-hard.

Appendix D. Proofs from Section 4

Theorem 5 Let € > 0 and v be a distribution over a metric space (0,d). If © is a countable
e-cover of © then there exists a measure U over O such that Wy (v,v) < e.

Proof For every fe O, define the inner Voronoi cell of f to be
Ci(B) := {6 : d(0,0) < d(6,0) V8 € O\ {}}.

The Voronoi cell C(8) consists of C?(8) as well as part of its boundary. To ensure that these cells
are disjoint and cover all of ©, we can order © and adopt the convention that the boundary occurring
among any Voronoi cells belongs to the cell whose center comes earliest in the ordering.

Now take 7 to be the distribution over © such that 1/(9) = v(C (9)) We will show that
Wi (v, V) < e. To see this, consider the following coupling (X,Y") of v and v:

e Draw X ~ v.
e There exists a § € O such that X € C (@\)
o Take Y = 6.

It is not hard to see that the marginal distributions of X and Y are v and v, respectively, making
this a valid coupling. Moreover, since O is an e-cover of O, we have d(X,Y’) < e with probability
1. Thus,

W, (v, D) < E[d(X, Y)Y <.

31



RELATING ML ESTIMATION, MAP ESTIMATION, SAMPLING

Lemma 24 Tuake any €,0 > 0 and X € X™. If Z is the sequence created by duplicating X

o i) ()

times then vz(Bg, « (Omi, €)) > 1 — 4. (Recall 0y is the maximum-likelihood solution for X.)

Proof For any measurable set B, we may write

Eovo[1[0 € Blp(X1]6)"]

V2B = (X 0]
Thus,
vz(Ba, x (Omi,€))  Eguy[1(0 € Ba, (0, €))p(X]0 )]
vz(©\ By, x (Omi,€))  Eour[1(0 & Ba, x (0, €))p(X10)*]
o Eonw[1(6 € Bay,x (O, €/2))(e ~2p(X ()]
— Eou[1 (9€Bd  (Omi, €))(e=p(X[01))¥]
> ekg/QEeNVO[ (CAs de,x( m176/2))]

E9~V0 [1(9 g de,x (emb E))
eke/2 I/O(de,x (amla 6/2>)
1/0(@ \ Bdnx (emla 6))

Note that if the above is greater than 1/J — 1, we have

vz (de,X (emla 6))

> 1-4.
VZ(de,X (Gml, 6)) + Vz(@ \ de,x (Gml, 6)) -

vz(Ba, x (Omi €)) =

However, this condition is satisfied when

= () e (i)

D.1. Proof of Theorem 7

Theorem 6 Let m be some measure of the size of an input instance X, and let \(m) be any
function of this size. Let d be a distance function and S C S’ C © be subsets satisfying

(i) if 0 € S then By(60,1/\(m)) C S’ and
(ii) dis (A\(m),S’)-admissible.

If IL is the promise that By, y (0, 1/A(m)) C S and vo(Ba(Opu, €)) > 2= Poly(A(m).1/€) for qll
€ > 0, then II-MLE-(p, ©) <p W;-APPROX-SAMPLING-(p, vy, ©) under randomized reductions
which are polynomial in the input size and \(m).
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Proof Let X = (z1,...,2,) € X™ and b be input to II-MLE-(p, ©). We may assume that b >
A(m). If not, we can replace b with A\(m). Further, we may assume II is true of X, since we can
return anything and terminate if it is not.

Pick any 6 > 0. By Lemma 5, duplicating the data

R R )

1 1
> 4blog <(5 — 1> —log 1y <de,x <9ml7 2b>>

times will ensure that vz (Bg,  (0mi,1/(20))) > 1 -6 for Z = (XM, X EG0))),

Set b = 4bA\(m)n/5'/* to be the accuracy parameter for WW;-APPROX-SAMPLING-(p, vy, ©).
Let v be the distribution the sample is generated from. For any o > 0, we have from the definition
of Wasserstein distance that there is some coupling v € I'(V, vy) satisfying

1/t

(E(G,G’)N'y [d(&, 9')t]) < 1/[?/ + a.

Letting (6,60') ~ ~ and o = 1/b/, we have

1 1 1 1
Pr (dp,X(ev eml) > b> <Pr <dp,X(07 eml) > 57dp,X(9/7 9ml> < > +Pr (dp,X(elyeml) > 2b>

1
< Pr <d,,,X(0,9’) >

1
2b7dp,X(‘9/79ml) < > +9

1 1
< N> __ - ! < —
= (d(&,@) - 2b>\(m)n’dp’X(9 Oi) < > i

<Pr <d(9,9’) > W) +0

% (2bA(m)n) E [d(0,0')"] + 6

—
~

3
< (4bA(m)n/¥)' +6 < 26

—
=

where (1) follows from the fact that, if ' € By,  (65,1/(2b)) C S and d(6,6") < 1/(2bA(m)n),
then 0 € S” and d, x(0,60") < 1/(2b); (2) is Markov’s inequality; and (3) follows from our choice
of V. [ |

Much of the proof of Theorem 7 is similar to the proof of Theorem 4. One key difference is that
we care about lower bounding the probability mass of balls with respect to the Dirichlet(3) distri-
bution. Because the ¢, and ¢» norms are related by a factor which is polynomial in the dimension,
Lemma 23 also implies that

IOgZ/(BgOO(:U,E)) > _pOIY(Nvﬁa 1//371/6)
for any z € AN,

Theorem 7 There is no poly-time algorithm for TM-APPROX-SAMPLING(«, 3) for any o, 8 > 0
unless NP=RP.
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Proof We will reduce from an instance of TM-MLE(«) from Theorem 1. In order to apply Theo-
rem 6, let S be the set of all 1/V-smooth matrices, S’ be the set of all 1/(2V")-smooth matrices, and
let d be the max-norm distance.Then

(i) if ¥ € S then By(¥,1/(2V)) C S’ (max-norm distance),

(i) dis (poly(V),S’)-admissible (Lemma 4, K = m = 2, and « is a constant)
(i) By, x (Wi, 1/(3(1 4+ «))) C S (a promise from Theorem 1), and

(iv) foralle > 0 and all U € S, vo(By(¥,€)) > 2~ Py (ViKal/es1/€) (] emma 23).

Thus, Theorem 6 implies that TM-MLE(a) <p TM-APPROX-SAMPLING(q, ). From Theorem 1,
we know that there are no poly-time algorithms for TM-APPROX-SAMPLING(«, ) unless NP =
RP. |

Appendix E. Proofs from Section 5
E.1. Proof of Theorem 8

To prove Theorem 8, we will reduce from the following problem.

k-MEANS
Input: Points 1, ...z, € R% positive integer k.
Output: A collection of k “centers” p = (u1,...,pg) in R? that minimize the cost
function
n
. 2
P(p) = 2 in, [l — pus|*.

Let IT' denote the promise that there are low-order polynomials a(-) and 3(+) such that

e For an instance containing n points, each point is unique and has dimension at most «(n),
with individual coordinates taking values in {—1,0,1}.

e Any set of means with k-means cost within a multiplicative factor 1 + 1/3(n) of optimal
induces an optimal k-means partition of the data.

The following was shown by Aloise et al. (2009).
Theorem 13 (Aloise et al. (2009)) II'-k-MEANS is NP-hard.

Tosh and Dasgupta (2018) demonstrated that there is a simple reduction from IT'-k-MEANS to
MOGS-SV.

Lemma 25 (Tosh and Dasgupta (2018)) Let x1,...,x, € R% be an instance of II'-k-MEANS
and suppose we pad the points with 0’s until the dimension reaches

d > max{165(n)Ink,2na(n)vV1+2Ink}
If (7, u, o) satisfies LLopr — LL(m, p,0) < 1 then

D(p) < (1+5(1n)
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To prove our promise problem is NP-hard, we will utilize two results from Tosh and Dasgupta
(2018). The first relates the log-likelihood of a mixture model to the costs of certain partitions.

Lemma 26 (Tosh and Dasgupta (2018)) Pick any mixture (m, p, o) and data set X = {x1,...,x,}.
(a) For any partition (X7, ..., X]) of X, we have

k
LL(7,p,0) > Z Z In(m; N (25 115, 02)).

j=1 CCEX]/-
(b) Let (X1,...,X) correspond to the partition
X, = {1: € X : j = argmax WgN(x;W,Jz)}
)4

(breaking ties arbitrarily). Then

k
LL(w,p,0) < nlnk+ Z Z In(m; N (2; 115, 02)).
7j=1 xGXj

The second result shows that k-means cost of the means of a mixture can be related to its log-
likelihood.

Lemma 27 (Tosh and Dasgupta (2018)) Fix any data set x1,...,x, € R? and any positive in-
teger k. Let LLopr denote the log-likelihood of the optimal solution to MOG-SV, and ®opr the
lowest achievable k-means cost. For any parameters (7, i, 0 ), we have

D(p) < 4dlnk 2

1 — (LL — LL .
n d + nd ( OPT (ﬂ-) M, J))

Porr —
Given the above, we are now ready to prove the main result of this section.

Theorem 8 Let I be the promise that there exists a low-order polynomial p(-,-,-) such that all
input data points satisfy ||z|| < p(n,d,k) and if 0,y = (7*, u*,0%) is a maximum likelihood
solution and 0 = (7, p, o) is within 1 of optimality, then

(i) |l < p(n, d, k) for all j,
(ii) 0% > 1/p(n,d, k),
(iii) m; > 0 for all j, and
(iv) 77 > 1/p(n,d, k) for all j.
Then TI-MLE-MOGS-SV (k) is NP-hard for k > 2.

Proof We will reduce from IT'-k-MEANS. Our reduction is to pad the points in the k-means instance
with zeros until the dimension d satisfies

d > max{165(n)Ink,2na(n)Vv1+ 2Ink}

and solve the resulting MOGS-SV with b = 1. From Lemma 27 and the promise IT’, this solves the
original problem. Note that since we are reducing from IT'-k-MEANS and we are padding the data
points with 0’s, all the resulting points satisfy z; € {—1,0,1}%. Thus, ||z;|| < v/d for all i.

Now we need to demonstrate that conditions (i), (ii), (iii), and (iv) hold for any 0 = (7, u, o)
satisfying d;, x (0, 0,) < 1.
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Proof of (i) From the above, we know if (7, i, o) has log-likelihood on this data set within b = 1
of 6,1, then the partition (X7, ..., X)) induced by p is an optimal k-means partition of the data set.
By a bias-variance decomposition, this implies

k k
®(p) =) D o —mean(X)|* + ) |X][lln; — mean(X;)]

J=1lzeX] Jj=1

k
= Dopr + Y |X]|lp; — mean(X))|”
=1

where @0 pr is the optimal k-means cost of this data set. If ||zz;|| > 2+/d for some j, then we have
d(p) > Popr +d,

since all points are in {—1,0, 1} and thus all means have length || mean (X’ Dl < v/d. But Lemma 27

implies

@
dp,X(Gml,G) = LLOPT*LL(T&',[L,O')) > nleIl< (N)> —2nlnk.

- Qopr
Setting the left-hand side < 1 and rearranging, we see

4
Sopr+d < ®(p) < Popr <1+d(1+21nk)>.

We know ®ppr < na(n)?

we have

, since this is the cost of taking the origin to be the only center. Thus,

d? < 4na(n)*(1+2Ink)
which is not possible by our choice of d. Therefore, we have ||| < 2v/d for all 5.

Proof of (ii) Let (X1,...,A&}) be the partition induced by the mixture (7, p, o). Taking 02 =
’yq)?l%, Lemma 26 implies

: d (1 |z — ]2
i <t - 5 o ) )

j=1z€X;
k

< nlnk—i—%lln (27302) —%;Z Z 2 — pjf?
j=1 z€X;

< nlnk—i—%dln (27302> — (I)QCLI;T

= nlnk+ %lln <27WgCOlPT)> N n;lfy

Suppose the optimal k-means solution is given by centers ' = (14, ..., p). Letw’ = (1/k,...,1/k)
and 0> = ®ppr/nd. Note that the partition induced by the mixture (7', p’, 0’) is precisely the
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partition induced by the assigning each point to the closest center ,u;-, which in turn is an optimal

k-means partition (X7, ..., X}). Thus, Lemma 26 tells us
Lorr > Lowied) 2 30 Y (mrs (1) - Lol
OFPT = e T 72 2mo’? 202
J=1zeX]
nd 1 1<
_ 1112
=-nlnk+ ?ln (27“7/2> - FZ Z |z — w5l
J=lzeX]
nd 1 1
nd nd nd
=-nhnk+—n|—| - —
nink o <27T(I)OPT> 2
Rearranging, we have
nd nd nd nd (1
dp.x(0m1,0) = LLopr — LL(7w,p,0) > ?lny—i— PR 2nlnk > o (27 - 1) —2nlnk
where the last inequality follows from 2z Inz > —1 for all z > 0. Utilizing d;, x (61,60) < 1 and
= gzgi, we have

25 Popr
T 2nd(1+ 2(1+2Ink))’

Since all the data points are unique and at distance at least 1 from each other, there must be at least
one mean in any optimal solution that lies at least at distance 1/2 from one of the data points. Thus
‘I’O pr>1 / 4 and

1
2
> .
7 = 16nd(1 + Ink)
Proof of (iii) Again, take (X, ..., X)) to be the partition induced by the mixture (7, g, o). As

pointed out above, (X7, ..., X)) is an optimal k-means partition of the data, implying that no X is
empty. However, from the definition of (X7, ..., X)) as

X = {:1: € X : j = argmax mN(x;,ug,oz)}
1

we know that if X; # (), then 7; > 0.
Proof of (iv) Now let 0,,; = (7*, u*,0*). From (iii), we know that the partition (X7}, ... X))
such that

X]i* ={z:j= argmaxwf/\/‘(x;,ujvaﬂ)}
(2

must satisfy that X7 is non-empty for all j. Further, by the convergence of the EM algorithm, we
know that for any j,

* R *2 * Lk %2
1 WjN(xa:ujvo- ) > 1 WjN(l“ijaU ) > i

T o= — —
F = > " >
n zEX Zi:1 W:N(x§li;ka 0*2) n TEX, ZZ‘:1 TF:N(ﬁ /12‘,0*2) kn
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To complete the proof, take p(n, d, k) to be some polynomial satisfying
p(n,d, k) > max{16nd(1+Ink),kn}.
|

,\02—&2\,\m—mrr2).

E.2. Proof of Lemma 6
Recall that for two parameter vectors 6 = (7, pu, o) and 0 = (7, fr, 5), their parameter distance is

Ty
In -
Ur

defined as
d9,6) = max(

Lemma 28 Suppose 7, 7,02,6% > 0 and | In(n/7)|,|0% — 62|, |u—fi|| < €. Then for any x € RY,
d 2|lx — pf| + € x — pl)?
lz = pl+e o —pl

Se-max(

’1 N (@] g, 0?)

Y AN (@767
1+

Proof
The proof consists of first demonstrating
< d

2
N(z|p,62) 202

and then demonstrating

Neli) (4

1 -
+202+
d 2lx — ]| + €
Iz~ +e

262

)

20262
o — f]?
20262 )

262

+ 202

262

2w —pll e, Jlz— pl?
20262

262

2z —pll +e , llz— Al
20262 )

202

In
N(@|p,0%) ~
Because the proofs are symmetric, we will only demonstrate the first inequality. To begin, note that

we can write out the likelihood ratio as follows.

—? e MHZ]

Nlpo?) _ (2N [l
N |62~ \o? P 252 202
€ \4? (lz = pll + o = pl)? o = pl?
= (1 - ?) P [ 262 T 202
< exp de Nz —pl* +2¢llz —pl| +€ |z —p?
- | 202 262 202
[ 2o+ o—pl? (11
202 262 2 52 o2
Cde | e —pll+ € | ello— gl
< -
=P 952 2572 0252
m

Taking logs and factoring out € gives us the inequality.

Given the above, Lemma 6 follows immediately.

Lemma29 Ler 0 = (m,pu,0) and 0 = (
. ||z|| < B} then d,(

forall j. If X = {z :

7, 1, 5) be two parameter vectors satisfying m;, w; > 0
0,0) < d(0,0) poly(1/0,1/67, | ill, lluill, B)-
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E.3. Proof of Lemma 7

Before we prove Lemma 7, we need to bound quantities related to the Normal-Inverse-Gamma
distribution and the Beta distribution.

Lemma 30 Fix o,3,n9 > 0 and uy € R% Let ¢ and v be the measure associated with the
Normal-Inverse-Gamma distribution with these parameters. Then for any i € R* and o > 0, we
have

- pOIY(a7 1/05, 67 1/67 no, d7 HMH? HMOHa 027 1/02) < IOg Q(Ma 02) < poly(a, 1/0(, /Ba 1/67 o, d)
Moreover, if d((p,0°), (f1,6%)) = max{||u — fil|, |0® — 67|}, then
IOg V(Bd((”a 02)7 6)) > - pOlY(OK,ﬁ, n07da ||/'LH7 HNOHa 027 1/6)

Proof The density ¢ can be written out as

~ ﬁa 1 a+1 ﬁ no d/2 ||ﬂ_/'50||2
1= () e 2 ) o)

To see the upper bound on the density, note that the mode of this distribution occurs at © = g and
2
g~ =

a+d/2+1"
The lower bound on the density follows by noting that (i) ||z — pol|? < 2||p||? + 2||xol|? and
(ii) I'(x) > 3/4 for all = and

forx <1

]|

T _ 9rlogx
F(x)g{x 2 for:z:>1'

The lower bound on the measure follows by combining the lower bound on the density for any
point in By((i, 02), €) along with the volume of By((u, 02), €). [

Lemma 31 Let~ > 0and take v be the measure and q be the density associated with the symmetric
Beta(vy, ) distribution. For = (w,1—w), 0 = (0, 1—w), let d(6,0) = max (|log(w/w)],|log((1 —w)/(1 — w))|).
Ifw,1 —w > 4§ >0, we have

q(6) > 2~ Poly(1/v7,1/9)

and for e € (0, ),
v(Bg(0,€)) > 27 Poy1/vm1/e1/0)

Proof Writing out the density, we have

(0) = oy

The bound on ¢(6) follows from Lemma 23. To see the lower bound on v/(By4(0, €)), assume w.l.0.g.
that w < 1/2. For any w > 0, if | log(w/w)| < ¢, then |log((1 — w)/(1 — w))| < 2e. This implies

T:={0=(0,1-0): e“?w<w<e’?w} C By(h,e).
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Then we have
v(By(0,€) > v(I) > (¢*w — e ?w) min¢(f) > — ming(f) > 9~ Poly(v,1/7,1/8,1/¢)

Given the above two lemmas, Lemma 7 follows immediately.

Lemma 32 Let q and v be the prior density and measure, respectively, for the Bayesian mixture
of two spherical Gaussians generative model with fixed parameters o, 3,7, 19, no. For any 0 =
(7, p, o) and any € > 0, we have

(i) logq(0) > —poly(1/mi, 1/a, ||l d),
(ii) logv(By(0,¢)) > —poly(1/m;,1/0, ||uill, d, 1/€), and
(iii) if v > 1, thenlog q(0) < poly(d).
E.4. Proof of Theorem 9
Theorem 9 Let w = (a, 3,7, 1o, no) for o, B,v,n9 > 0 and pg € R Then
(a) MAP-MOGS(k = 2,w) is NP-hard if v > 1.
(b) APPROX-SAMPLING-MOGS(k = 2,w) is NP-hard for all v > 0.

Proof Here we prove (b). We again reduce from II-MLE-MOGS-sV (k) for k = 2. Define
1 9 .
S=1<(m o) =, wll* < pn,d),m > 0foralli
o

1
S = {(w,p,a) 2 | :]|* < 2p(n,d), m; > 0 for allz’}

5= {(mno) s il < plod) foran i}
Then we have the following.
(i) If 0 € S then By(0,1/2p(n,d)) C S’ (definition of distance d).
(i) dis (poly(n,d),S")-admissible (Lemma 6).
(iii) IT guarantees 0,y € S* and By, y (01, 1) C S.
(iv) From (iii), log v9(Bg(0mi, €)) > — poly(n,d, 1/¢) for all € > 0 (Lemma 7).

Putting the above together, Theorem 6 implies (b). |
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Figure 1: Rounding our samples produces a gridding of ©. The resulting distribution is indistin-
guishable from the original distribution with respect to any union of grid boxes.

Appendix F. Discretized total variation distance

Given measures p and v over a set © and a collection B of measurable subsets of ©, define the
B-variation distance as

dp(p,v) = sup [uW(B) —v(B)].

When B is the collection of all measurable subsets, this is total variation distance. For smaller
collections, dg may differ significantly from d7y but is still a pseudometric.

What are minimal requirements on B to ensure that dg is a meaningful probability distance?
Suppose that © is equipped with a pseudometric d(+, -); and, to avoid pathologies, assume (O, d) is
separable (has a countable dense subset). Define By(0,7) = {6’ € © : d(0,0') < r}. Fore > 0
and ¢ > 1, we say that a collection B is (d, ¢, €)-fine if for every point § € O there exists a B € B
such that B;(0,¢) C B C By(, ce). Intuitively, 3 captures the space © at a resolution of roughly
€.

For total variation distance, the supremum is taken over all measurable sets, which are closed
under countable union and intersection. Likewise, we say B is a standard collection if it is closed
under countable union. Note that if we have a (d, ¢, €)-fine collection and consider its closure under
countable union, the result remains (d, ¢, €)-fine.

To understand the effect of choosing a family of sets B, consider a simple example: suppose we
sample from some distribution 1 over © and then round the sample to  bits of precision. What is a
suitable family B? One option, illustrated in Figure 1, is to grid © with boxes of width O(27"), and
let BB be all unions of such boxes.

The following theorem generalizes this intuition and demonstrates the existence of standard
(d, ¢, €)-fine collections as well as the existence of perfect discretizations of arbitrary distributions.

Theorem 14 Let v be a distribution over a space © equipped with a pseudometric d(-,-). For
€ > 0, suppose © is a countable e-cover of © with respect to d. Then there exists a standard
collection B of measurable subsets and a discrete measure U over © such that

(i) Bis (d,c,e)-fine for c = 3,
(ii) dg(v,v) =0, and
(iii) for any discrete distribution fi over ©, dg(p,v) = drv (i, v).
Proof For every g (:), define the inner Voronoi cell of 8 to be

Ci(B) := {6 : d(0,0) < d(6,0) V8 € O\ {}}.
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The Voronoi cell C(6) consists of C?(8) as well as part of its boundary. To ensure that these cells
are disjoint and cover all of ©, we can order © and adopt the convention that the boundary occurring
among any Voronoi cells belongs to the cell whose center comes earliest in the ordering.

Define B to be the union-closure of the set of Voronoi cells:

B = {uggc*(@) T C @}.

By the countability of © we have that B is closed under countable union. To see that B is (d,c,e)-
fine we need to show that for every 6 € ©, there exists a B € B such that

By(0,e) € B C By(0,3e).

Let B be the union of Voronoi cells that intersect By(6, e) The first set inclusion follows 1mmed1—
ately. To see the second set inclusion, note that because O is an e- covering, C (6) C By(B,¢). 1
C(0) N By(0,€) # 0, then we have d(f,0) < 2e. This implies that C(6) C By(6, 3¢). Thus, the
union of such sets must also be contained in By(6, 3¢).

Now let 7 denote the discrete distribution over © such that D(é\) =v(C (5)) Then any B € B
is the countable union of such sets, so we have 7(B) = v(B), which implies dg(v,v) = 0.

Now consider 1 to be any other discrete distribution over ©. For any 0 > 0, there is some
As C O that achieves

A(As) = D(A5)| = dry (71, ) - 0.

~

If B=U;_ , C(0), then

0eAs
dpy (1, v) < |i(A) =v(A)[+6 = [u(B) —v(B)|+d < dp(,v) + 6.
But because dp is a pseudometric, we have

dB(ﬁv V) < dB(:U’a ) + dB(V V) = dB(ﬁa /V\) = dTV(//L I//\)
Since our choice of § > 0 was arbitrary, we can conclude dry (i1, V) = dg(u, v). [

Since ¢ takes a constant value in Theorem 14, we will say a collection is (d, €)-fine if it is
(d, c, €)-fine for some constant c. With these notions in hand, we are ready to give the definition of
the approximate sampling problem.

DISCRETIZED VARIATION APPROXIMATE POSTERIOR SAMPLING: D-APPROX-SAMPLING-
(pa o, 6)_d

Input: A sequence of points X € X", accuracy parameter b in unary.

Output: A random draw 6 ~ v such that dp(v,vx) < 1/b where B is a standard
(d,1/b)-fine collection.

When can we guarantee that a € from the above problem will be polynomially sized? If we
take © to be a 1/b-covering of ©, then Theorem 14 guarantees the existence of a (d, 1/b)-fine
collection B and discrete distribution v over © such that dp(v,vx) = 0. In the case where O is a
bounded subset of R and d is an £, norm, for example, every element of © can be written using a
polynomial number of bits. Thus, every draw from v will be polynomially sized.

Given this, we can provide a reduction similar to the one given in Theorem 5.
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Theorem 15 Let m, A\(m) and Il be as defined in Theorem 6, then II-MLE-(p, ©) <p APPROX-SAMPLING-(p, ©, 1)-d
under randomized reductions which are polynomial in the input size and \(m).

Proof Let X = (z1,...,x,) € X™ and b be input to II-MLE-(p, ©) and let 6 > 0. If II is not true,
then we can return anything and terminate.
Otherwise, let e > 0. By Lemma 5, we can duplicate the data

S e o )

times to ensure vz(By, « (Omi,€)) > 1 — 4§ for Z = (XM X KR(0))),

If our accuracy parameter given to APPROX-SAMPLING-(p, ©, 1)-d is b/, the collection B our
approximate distribution is measured against is a standard (d, ¢, 1/b')-fine collection. Thus, for
every 0 € O, there exists a By € B such that By4(0,1/V') C By C By(f,¢/b'). Since B is standard,
we also have the set

B = U By

96de7x (9771176)
is in B. Therefore, if v satisfies dp(V, vz) < 9, then
v(B) > v(B)—9d > 1—26.

From this we know if § ~ 7, then § € B with probability 1 — 2. Let us condition on this occurring.
Then there exists 0’ € Bg, (0, €) such that d(0,0") < c/V. For e < 1/n\(m) and b’ > c/e, we
have #’ € S and 6 € S’ and

p(X1) | _ |, p(X10)| | p(X])
ot 50| < o= R * e e
< nd,(6,0") + logm
< nA(m)d(0,0") + ‘loglm

< e(nA(m) +1)

Lete = 1/(nA(m)+1), k = k(e,0), and b’ = cb/e. If our input to APPROX-SAMPLING-(p, ©, 1)-d
is a k-fold replication of X and the accuracy parameter ', then with probability at least 1 — 24 the
output of APPROX-SAMPLING-(p, O, 1)-d is within 1/b of 6,,;. [
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