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Abstract

Many modern machine learning models are trained to achieve zero or near-zero
training error in order to obtain near-optimal (but non-zero) test error. This phe-
nomenon of strong generalization performance for “overfitted” / interpolated clas-
sifiers appears to be ubiquitous in high-dimensional data, having been observed in
deep networks, kernel machines, boosting and random forests. Their performance
is consistently robust even when the data contain large amounts of label noise.
Very little theory is available to explain these observations. The vast majority of
theoretical analyses of generalization allows for interpolation only when there is
little or no label noise. This paper takes a step toward a theoretical foundation
for interpolated classifiers by analyzing local interpolating schemes, including
geometric simplicial interpolation algorithm and singularly weighted k-nearest
neighbor schemes. Consistency or near-consistency is proved for these schemes in
classification and regression problems. Moreover, the nearest neighbor schemes
exhibit optimal rates under some standard statistical assumptions.
Finally, this paper suggests a way to explain the phenomenon of adversarial ex-
amples, which are seemingly ubiquitous in modern machine learning, and also
discusses some connections to kernel machines and random forests in the interpo-
lated regime.

1 Introduction

The central problem of supervised inference is to predict labels of unseen data points from a set
of labeled training data. The literature on this subject is vast, ranging from classical parametric
and non-parametric statistics [48, 49] to more recent machine learning methods, such as kernel
machines [39], boosting [36], random forests [15], and deep neural networks [25]. There is a
wealth of theoretical analyses for these methods based on a spectrum of techniques including non-
parametric estimation [46], capacity control such as VC-dimension or Rademacher complexity [40],
and regularization theory [42]. In nearly all of these results, theoretical analysis of generalization
requires “what you see is what you get” setup, where prediction performance on unseen test data
is close to the performance on the training data, achieved by carefully managing the bias-variance
trade-off. Furthermore, it is widely accepted in the literature that interpolation has poor statistical
properties and should be dismissed out-of-hand. For example, in their book on non-parametric
statistics, Györfi et al. [26, page 21] say that a certain procedure “may lead to a function which
interpolates the data and hence is not a reasonable estimate”.

Yet, this is not how many modern machine learning methods are used in practice. For instance, the
best practice for training deep neural networks is to first perfectly fit the training data [35]. The
resulting (zero training loss) neural networks after this first step can already have good performance
on test data [53]. Similar observations about models that perfectly fit training data have been
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made for other machine learning methods, including boosting [37], random forests [19], and kernel
machines [12]. These methods return good classifiers even when the training data have high levels of
label noise [12, 51, 53].

An important effort to show that fitting the training data exactly can under certain conditions be
theoretically justified is the margins theory for boosting [37] and other margin-based methods [6,
24, 28, 29, 34]. However, this theory lacks explanatory power for the performance of classifiers that
perfectly fit noisy labels, when it is known that no margin is present in the data [12, 51]. Moreover,
margins theory does not apply to regression and to functions (for regression or classification) that
interpolate the data in the classical sense [12].

In this paper, we identify the challenge of providing a rigorous understanding of generalization in
machine learning models that interpolate training data. We take first steps towards such a theory by
proposing and analyzing interpolating methods for classification and regression with non-trivial risk
and consistency guarantees.

Related work. Many existing forms of generalization analyses face significant analytical and
conceptual barriers to being able to explain the success of interpolating methods.

Capacity control. Existing capacity-based bounds (e.g., VC dimension, fat-shattering dimension,
Rademacher complexity) for empirical risk minimization [3, 4, 7, 28, 37] do not give useful
risk bounds for functions with zero empirical risk whenever there is non-negligible label noise.
This is because function classes rich enough to perfectly fit noisy training labels generally have
capacity measures that grow quickly with the number of training data, at least with the existing
notions of capacity [12]. Note that since the training risk is zero for the functions of interest, the
generalization bound must bound their true risk, as it equals the generalization gap (difference
between the true and empirical risk). Whether such capacity-based generalization bounds exist is
open for debate.

Stability. Generalization analyses based on algorithmic stability [8, 14] control the difference
between the true risk and the training risk, assuming bounded sensitivity of an algorithm’s output
to small changes in training data. Like standard uses of capacity-based bounds, these approaches
are not well-suited to settings when training risk is identically zero but true risk is non-zero.

Regularization. Many analyses are available for regularization approaches to statistical inverse
problems, ranging from Tikhonov regularization to early stopping [9, 16, 42, 52]. To obtain a
risk bound, these analyses require the regularization parameter � (or some analogous quantity)
to approach zero as the number of data n tends to infinity. However, to get (the minimum norm)
interpolation, we need � ! 0 while n is fixed, causing the bounds to diverge.

Smoothing. There is an extensive literature on local prediction rules in non-parametric statistics [46,
49]. Nearly all of these analyses require local smoothing (to explicitly balance bias and variance)
and thus do not apply to interpolation. (Two exceptions are discussed below.)

Recently, Wyner et al. [51] proposed a thought-provoking explanation for the performance of Ad-
aBoost and random forests in the interpolation regime, based on ideas related to “self-averaging” and
localization. However, a theoretical basis for these ideas is not developed in their work.

There are two important exceptions to the aforementioned discussion of non-parametric methods.
First, the nearest neighbor rule (also called 1-nearest neighbor, in the context of the general family
of k-nearest neighbor rules) is a well-known interpolating classification method, though it is not
generally consistent for classification (and is not useful for regression when there is significant
amount of label noise). Nevertheless, its asymptotic risk can be shown to be bounded above by
twice the Bayes risk [18].1 A second important (though perhaps less well-known) exception is the
non-parametric smoothing method of Devroye et al. [21] based on a singular kernel called the Hilbert
kernel (which is related to Shepard’s method [41]). The resulting estimate of the regression function
interpolates the training data, yet is proved to be consistent for classification and regression.

The analyses of the nearest neighbor rule and Hilbert kernel regression estimate are not based on
bounding generalization gap, the difference between the true risk and the empirical risk. Rather, the
true risk is analyzed directly by exploiting locality properties of the prediction rules. In particular, the

1More precisely, the expected risk of the nearest neighbor rule converges to E[2⌘(X)(1� ⌘(X))], where ⌘
is the regression function; this quantity can be bounded above by 2R⇤(1�R⇤), where R⇤ is the Bayes risk.
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prediction at a point depends primarily or entirely on the values of the function at nearby points. This
inductive bias favors functions where local information in a neighborhood can be aggregated to give
an accurate representation of the underlying regression function.

What we do. Our approach to understanding the generalization properties of interpolation methods
is to understand and isolate the key properties of local classification, particularly the nearest neighbor
rule. First, we construct and analyze an interpolating function based on multivariate triangulation
and linear interpolation on each simplex (Section 3), which results in a geometrically intuitive and
theoretically tractable prediction rule. Like nearest neighbor, this method is not statistically consistent,
but, unlike nearest neighbor, its asymptotic risk approaches the Bayes risk as the dimension becomes
large, even when the Bayes risk is far from zero—a kind of “blessing of dimensionality”2. Moreover,
under an additional margin condition the difference between the Bayes risk and our classifier is
exponentially small in the dimension.

A similar finding holds for regression, as the method is nearly consistent when the dimension is high.

Next, we propose a weighted & interpolated nearest neighbor (wiNN) scheme based on singular
weight functions (Section 4). The resulting function is somewhat less natural than that obtained
by simplicial interpolation, but like the Hilbert kernel regression estimate, the prediction rule is
statistically consistent in any dimension. Interestingly, conditions on the weights to ensure consistency
become less restrictive in higher dimension—another “blessing of dimensionality”. Our analysis
provides the first known non-asymptotic rates of convergence to the Bayes risk for an interpolated
predictor, as well as tighter bounds under margin conditions for classification. In fact, the rate
achieved by wiNN regression is statistically optimal under a standard minimax setting3.

Our results also suggest an explanation for the phenomenon of adversarial examples [44], which
are seemingly ubiquitous in modern machine learning. In Section 5, we argue that interpolation
inevitably results in adversarial examples in the presence of any amount of label noise. When these
schemes are consistent or nearly consistent, the set of adversarial examples (where the interpolating
classifier disagrees with the Bayes optimal) has small measure but is asymptotically dense. Our
analysis is consistent with the empirical observations that such examples are difficult to find by
random sampling [22], but are easily discovered using targeted optimization procedures, such as
Projected Gradient Descent [30].

Finally, we discuss the difference between direct and inverse interpolation schemes; and make some
connections to kernel machines, and random forests in (Section 6).

Proofs of the main results, along with an informal discussion of some connections to graph-based
semi-supervised learning, are given in the full version of the paper [11] on arXiv.4

2 Preliminaries

The goal of regression and classification is to construct a predictor f̂ given labeled training data
(x1, y1), . . . , (xn, yn) 2 Rd

⇥R, that performs well on unseen test data, which are typically assumed
to be sampled from the same distribution as the training data. In this work, we focus on interpolating
methods that construct predictors f̂ satisfying f̂(xi) = yi for all i = 1, . . . , n.

Algorithms that perfectly fit training data are not common in statistical and machine learning literature.
The prominent exception is the nearest neighbor rule, which is among of the oldest and best-
understood classification methods. Given a training set of labeled example, the nearest neighbor rule
predicts the label of a new point x to be the same as that of the nearest point to x within the training
set. Mathematically, the predicted label of x 2 Rd is yi, where i 2 argmini0=1,...,n kx�xi0k. (Here,
k · k always denotes the Euclidean norm.) As discussed above, the classification risk of the nearest
neighbor rule is asymptotically bounded by twice the Bayes (optimal) risk [18]. The nearest neighbor

2This does not remove the usual curse of dimensionality, which is similar to the standard analyses of k-NN
and other non-parametric methods.

3An earlier version of this article paper contained a bound with a worse rate of convergence based on a loose
analysis. The subsequent work [13] found that a different Nadaraya-Watson kernel regression estimate (with a
singular kernel) could achieve the optimal convergence rate; this inspired us to seek a tighter analysis of our
wiNN scheme.

4https://arxiv.org/abs/1806.05161
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rule provides an important intuition that such classifiers can (and perhaps should) be constructed
using local information in the feature space.

In this paper, we analyze two interpolating schemes, one based on triangulating and constructing the
simplicial interpolant for the data, and another, based on weighted nearest neighbors with singular
weight function.

2.1 Statistical model and notations

We assume (X1, Y1), . . . , (Xn, Yn), (X,Y ) are iid labeled examples from Rd
⇥ [0, 1]. Here,

((Xi, Yi))ni=1 are the iid training data, and (X,Y ) is an independent test example from the same
distribution. Let µ denote the marginal distribution of X , with support denoted by supp(µ);
and let ⌘ : Rd

! R denote the conditional mean of Y given X , i.e., the function given by
⌘(x) := E(Y | X = x). For (binary) classification, we assume the range of Y is {0, 1}
(so ⌘(x) = P(Y = 1 | X = x)), and we let f⇤ : Rd

! {0, 1} denote the Bayes opti-
mal classifier, which is defined by f⇤(x) := 1{⌘(x)>1/2}. This classifier minimizes the risk
R0/1(f) := E[1{f(X)6=Y }] = P(f(X) 6= Y ) under zero-one loss, while the conditional mean
function ⌘ minimizes the riskRsq(g) := E[(g(X)� Y )2] under squared loss.

The goal of our analyses will be to establish excess risk bounds for empirical predictors (f̂ and ⌘̂, based
on training data) in terms of their agreement with f⇤ for classification and with ⌘ for regression. For
classification, the expected risk can be bounded as E[R0/1(f̂)]  R0/1(f

⇤) + P(f̂(X) 6= f⇤(X)),
while for regression, the expected mean squared error is precisely E[Rsq(⌘̂(X))] = Rsq(⌘) +

E[(⌘̂(X)� ⌘(X)2]. Our analyses thus mostly focus on P(f̂(X) 6= f⇤(X)) and E[(⌘̂(X)� ⌘(X))2]
(where the probability and expectations are with respect to both the training data and the test example).

2.2 Smoothness, margin, and regularity conditions

Below we list some standard conditions needed for further development.

(A,↵)-smoothness (Hölder). For all x, x0 in the support of µ, |⌘(x)� ⌘(x0)|  A · kx� x0
k
↵.

(B,�)-margin condition [31, 45]. For all t � 0, µ({x 2 Rd : |⌘(x)� 1/2|  t})  B · t� .
h-hard margin condition [32]. For all x in the support of µ, |⌘(x)� 1/2| � h > 0.
(c0, r0)-regularity [5]. For all 0 < r  r0 and x 2 supp(µ), �(supp(µ)\B(x, r)) � c0�(B(x, r)),
where � is the Lebesgue measure on Rd, and B(c, r) := {x 2 Rd : kx� ck  r} denotes the ball
of radius r around c.

The regularity condition from Audibert and Tsybakov [5] is not very restrictive. For example, if
supp(µ) = B(0, 1), then c0 ⇡ 1/2 and r0 � 1.

Uniform distribution condition. In what follows, we mostly assume uniform marginal distribution
µ over a certain domain. This is done for the sake of simplicity and is not an essential condition.
For example, in every statement the uniform measure can be substituted (with a potential change of
constants) by an arbitrary measure with density bounded from below.

3 Interpolating scheme based on multivariate triangulation

In this section, we describe and analyze an interpolating scheme based on multivariate triangulation.
Our main interest in this scheme is in its natural geometric properties and the risk bounds for
regression and classification which compare favorably to those of the original nearest neighbor rule
(despite the fact that neither is statistically consistent in general).

3.1 Definition and basic properties

We define an interpolating function ⌘̂ : Rd
! R based on training data ((xi, yi))ni=1 from Rd

⇥R and
a (multivariate) triangulation scheme T . This function is simplicial interpolation [20, 27]. We assume
without loss of generality that the (unlabeled) examples x1, . . . , xn span Rd. The triangulation
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scheme T partitions the convex hull bC := conv(x1, . . . , xn) of the unlabeled examples into non-
degenerate simplices5 with vertices at the unlabeled examples; these simplices intersect only at
<d-dimensional faces. Each x 2 bC is contained in at least one of these simplices; let UT (x) denote
the set of unlabeled examples (x(1), . . . , x(d+1)) that are vertices for a simplex containing x. Let
LT (x) be the corresponding set of labeled examples ((x(1), y(1)), . . . , (x(d+1), y(d+1))).6 For any
point x 2 bC, we define ⌘̂(x) to be the unique linear interpolation of LT (x) at x (defined below). For
points x /2 bC, we arbitrarily assert UT (x) = LT (x) = ?, and define ⌘̂(x) := 1/2.

x1

x3x2

0

0 1

x1

x3x2

0

0 1

Nearest neighbor Simplicial interpolation

Figure 1: Comparison of nearest neighbor
and simplicial interpolation. Consider three
labeled examples from R2

⇥ {0, 1}: (x1, 0),
(x2, 0), (x3, 1). Depicted in gray are the re-
gions (within conv(x1, x2, x3)) on which the
nearest neighbor classifier and simplicial in-
terpolation classifier predict 1.

Recall that a linear (affine) interpolation of
(v1, y1), . . . , (vd+1, yd+1) 2 Rd

⇥ R at a new point
x 2 Rd is given by the system of equations �̂0+xT�̂,
where (�̂0, �̂) are (unique) solutions to the system of
equations �̂0 + vT

i �̂ = yi for i = 1, . . . , d+ 1.

The predictions of the plug-in classifier based on
simplicial interpolation are qualitatively very differ-
ent from those of the nearest neighbor rule. This is
true even when restricting attention to a single sim-
plex. Suppose, for example, that ⌘(x) < 1/2 for
all x 2 conv(x1, . . . , xd+1), so the Bayes classifier
predicts 0 for all x in the simplex. On the other hand,
due to label noise, we may have some yi = 1. Sup-
pose in fact that only yd+1 = 1, while yi = 0 for all
i = 1, . . . , d. In this scenario (depicted in Figure 1
for d = 2), the nearest neighbor rule (erroneously) predicts 1 on a larger fraction of the simplex
than the plug-in classifier based on ⌘̂. The difference can be striking in high dimensions: 1/d for
nearest neighbor versus 1/2d for simplicial interpolation in d-dimensional version of Figure 1. This
provides an intuition why, in contrast to the nearest neighbor rule, simplicial interpolation can yield
to classifiers that are nearly optimal in high dimensions.
Proposition 3.1. Suppose v1, . . . , vd+1 are vertices of a non-degenerate simplex in Rd, and x
is in their convex hull with barycentric coordinates (w1, . . . , wd+1). The linear interpolation of
(v1, y1), . . . , (vd+1, yd+1) 2 Rd

⇥ R at x is given by
Pd+1

i=1 wiyi.

One consequence of Proposition 3.1 for ⌘̂ is that if x is contained in two adjacent simplices (that
share a <d-dimensional face), then it does not matter which simplex is used to define UT (x); the
value of ⌘̂(x) is the same in any case. Geometrically, we see that the restriction of the interpolating
linear function to a face of the simplex coincides with the interpolating linear function constructed on
a sub-simplex formed by that face. Therefore, we deduce that ⌘̂ is a piecewise linear and continuous
interpolation of the data (x1, y1), . . . , (xn, yn) on conv(x1, . . . , xn).

We note that our prediction rule requires only locating the vertices of the simplex containing a
given point, rather than the considerably harder problem of constructing a full triangulation. In fact,
locating the containing simplex in a Delaunay triangulation reduces to solving polynomial-size linear
programs [23]; in contrast, computing the full Delaunay triangulation has complexity exponential in
the (intrinsic) dimension [2].

3.2 Mean squared error

We first illustrate the behavior of simplicial interpolation in a simple regression setting. Here,
(X1, Y1), . . . , (Xn, Yn), (X,Y ) are iid labeled examples from Rd

⇥ [0, 1]. For simplicity, we assume
that µ is the uniform distribution on a full-dimensional compact and convex subset of Rd.

In general, each Yi may deviate from its conditional mean ⌘(Xi) by a non-negligible amount,
and hence any function that interpolates the training data is “fitting noise”. Nevertheless, in high
dimension, the mean squared error of such a function will be quite close to that of the (optimal)
conditional mean function.

5We say a simplex in Rd is non-degenerate if it has non-zero d-dimensional Lebesgue measure.
6Of course, some points x have more than one containing simplex; we will see that the ambiguity in defining

UT (x) and LT (x) for such points is not important.
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Theorem 3.2. Assume µ is the uniform distribution on a full-dimensional compact and convex
subset of Rd; ⌘ satisfies the (A,↵)-smoothness condition; and the conditional variance function x 7!

var(Y | X = x) satisfies the (A0,↵0)-smoothness condition. Let �̂T := supx2 bC diam(conv(UT (x)))
denote the maximum diameter of any simplex in the triangulation T derived from X1, . . . , Xn. Then

E[(⌘̂(X)� ⌘(X))2] 
1

4
E[µ(Rd

\ bC)] +A2E[�̂2↵T ] +
2

d+ 2
A0E[�̂↵

0

T ] +
2

d+ 2
E[(Y � ⌘(X))2].

Corollary 3.3. In addition to the assumptions in Theorem 3.2, assume supp(µ) is a simple polytope
in Rd and T is constructed using Delaunay triangulation. Then lim supn!1

E[(⌘̂(X)� ⌘(X))2] 
2

d+2E[(Y � ⌘(X))2].

3.3 Classification risk

We now analyze the statistical risk of the plug-in classifier based on ⌘̂, given by f̂(x) := 1{⌘̂(x)>1/2}.
As in Section 3.2, we assume that µ is the uniform distribution on a full-dimensional compact and
convex subset of Rd.

We first observe that under the same conditions as Corollary 3.3, the asymptotic excess risk of f̂ is
O(1/

p
d). Moreover, when the conditional mean function satisfies a margin condition, this 1/

p
d

can be replaced with a quantity that is exponentially small in d, as we show next.
Theorem 3.4. Suppose ⌘ satisfies the h-hard margin condition. As above, assume µ is the uniform
distribution on a simple polytope in Rd, and T is constructed using Delaunay triangulation. Further-
more, assume ⌘ is Lipschitz away from the class boundary (i.e., on {x 2 supp(µ) : |⌘(x)�1/2| > 0})
and that the class boundary @ has finite d�1-dimensional volume7. Then, for some absolute constants
c1, c2 > 0 (which may depend on h), lim supn!1

E[R0/1(f̂)]  R0/1(f
⇤) · (1 + c1e�c2d).

Remark 3.5. The asymptotic risk bounds show that the risk of f̂ can be very close to the Bayes risk in
high dimensions, thus exhibiting a certain “blessing of dimensionality". This stands in contrast to the
nearest neighbor rule, whose asymptotic risk does not diminish with the dimension and is bounded
by twice the Bayes risk, 2R0/1(f

⇤).

4 Interpolating nearest neighbor schemes

In this section, we describe a weighted nearest neighbor scheme that, like the 1-nearest neighbor rule,
interpolates the training data, but is similar to the classical (unweighted) k-nearest neighbor rule in
terms of other properties, including convergence and consistency. (The classical k-nearest neighbor
rule is not generally an interpolating method except when k = 1.)

4.1 Weighted & interpolated nearest neighbors

For a given x 2 Rd, let x(i) be the i-th nearest neighbor of x among the training data ((xi, yi))ni=1

from Rd
⇥ R, and let y(i) be the corresponding label. Let w(x, z) be a function Rd

⇥ Rd
! R. A

weighted nearest neighbor scheme is simply a function of the form

⌘̂(x) :=

Pk
i=1 w(x, x(i))y(i)
Pk

i=1 w(x, x(i))
.

In what follows, we investigate the properties of interpolating schemes of this type.

We will need two key observations for the analyses of these algorithms.

Conditional independence. The first key observation is that, under the usual iid sampling assump-
tions on the data, the first k nearest neighbors of x are conditionally independent given X(k+1).
That implies that

Pk
i=1 w(x,X(i))Y(i) is a sum of conditionally iid random variables8. Hence,

under a mild condition on w(x,X(i)), we expect them to concentrate around their expected value.

7I.e., lim✏!0 µ(@ +B(0, ✏)) = 0, where “+” denotes the Minkowski sum, i.e., the ✏-neighborhood of @.
8Note that these variables are not independent in the ordering given by the distance to x, but a random

permutation makes them independent.
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Assuming some smoothness of ⌘, that value is closely related to ⌘(x) = E(Y | X = x), thus
allowing us to establish bounds and rates.

Interpolation and singular weight functions. The second key point is that ⌘̂(x) is an interpolating
scheme, provided that w(x, z) has a singularity when z = x. Indeed, it is easily seen that if
limz!x w(x, z) = 1, then limx!xi ⌘̂(x) = yi. Extending ⌘̂ continuously to the data points
yields a weighted & interpolated nearest neighbor (wiNN) scheme.

We restrict attention to singular weight functions of the following radial type. Fix a positive integer k
and a decreasing function � : R+ ! R+ with a singularity at zero, �(0) = +1. We take

w(x, z) := �

 
kx� zk

kx� x(k+1)k

!
.

Concretely, we will consider � that diverge near t = 0 as t 7! � log(t) or t 7! t�� , � > 0.
Remark 4.1. The denominator kx � x(k+1)k in the argument of � is not strictly necessary, but it
allows for convenient normalization in view of the conditional independence of k-nearest neighbors
given x(k+1). Note that the weights depend on the sample and are thus data-adaptive.
Remark 4.2. Although w(x, x(i)) are unbounded for singular weight functions, concentration only
requires certain bounded moments. Geometrically, the volume of the region around the singularity
needs to be small enough. For radial weight functions that we consider, this condition is more easily
satisfied in high dimension. Indeed, the volume around the singularity becomes exponentially small
in high dimension.

Our wiNN schemes are related to Nadaraya-Watson kernel regression [33, 50]. The use of singular
kernels in the context of interpolation was originally proposed by Shepard [41]; they do not appear
to be commonly used in machine learning and statistics, perhaps due to a view that interpolating
schemes are unlikely to generalize or even be consistent; the non-adaptive Hilbert kernel regression
estimate [21] (essentially, k = n and � = d) is the only exception we know of.

4.2 Mean squared error

We first state a risk bound for wiNN schemes in a regression setting. Here,
(X1, Y1), . . . , (Xn, Yn), (X,Y ) are iid labeled examples from Rd

⇥ R.
Theorem 4.3. Let ⌘̂ be a wiNN scheme with singular weight function �. Assume the following:

1. µ is the uniform distribution on a compact subset of Rd and satisfies the (c0, r0) regularity
condition for some c0 > 0 and r0 > 0.

2. ⌘ satisfies the (A,↵)-smoothness for some A>0 and ↵>0.

3. �(t) = t�� for some 0 < � < d/2.

Let Z0 := �(supp(µ))/�(B(0, 1)), and assume n > 2Z0k/(c0rd0). For any x0 2 supp(µ), let
rk+1,n(x0) be the distance from x0 to its (k + 1)st nearest neighbor among X1, . . . , Xn. Then

E
⇥
(⌘̂(X)� ⌘(X))2

⇤
 A2E[rk+1,n(X)2↵] + �̄2

⇣
ke�k/4 +

d

c0(d� 2�)k

⌘
,

where �̄2 := supx2supp(µ) E[(Y � ⌘(x))2 | X = x].

The bound in Theorem 4.3 is stated in terms of the expected distance to the (k+1)st nearest neighbor
raised to the 2↵ power; this is typically bounded by O((k/n)2↵/d). Choosing k = n2↵/(2↵+d) leads
to a convergence rate of n�2↵/(2↵+d), which is minimax optimal.

4.3 Classification risk

We now analyze the statistical risk of the plug-in classifier f̂(x) = 1{⌘̂(x)>1/2} based on ⌘̂.

As in Section 3.3, it is straigtforward obtain a risk bound for f̂ under the same conditions as
Theorem 4.3. Choosing k = n2↵/(2↵+d) leads to a convergence rate of n�↵/(2↵+d).
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We now give a more direct analysis, largely based on that of Chaudhuri and Dasgupta [17] for the
standard k-nearest neighbor rule, that leads to improved rates under favorable conditions. Our most
general theorem along these lines is a bit lengthy to state, and hence we defer it to the full version of
the paper. But a simple corollary is as follows.

Corollary 4.4. Let ⌘̂ be a wiNN scheme with singular weight function �, and let f̂ be the correspond-
ing plug-in classifier. Assume the following:

1. µ is the uniform distribution on a compact subset of Rd and satisfies the (c0, r0) regularity
condition for some c0 > 0 and r0 > 0.

2. ⌘ satisfies the (A,↵)-smoothness and (B,�)-margin conditions for some A>0, ↵>0, B>0, �� 0.

3. �(t) = t�� for some 0 < � < d/2.

Let Z0 := �(supp(µ))/�(B(0, 1)), and assume k/n < p  c0rd0/Z0. Then for any 0 < � < 1/2,

P(f̂(X) 6= f⇤(X))  B

 
� +A

✓
Z0p

c0

◆↵/d
!�

+ exp

 
�
np

2

✓
1�

k

np

◆2
!

+
d

4k�2c0(d� 2�)
.

Remark 4.5. For consistency, we set k := n(2+�)↵/((2+�)↵+d), and in the bound, we plug-in
p := 2k/n and � := A(Z0p/c0)↵/d. This leads to a convergence rate of n�↵�/(↵(2+�)+d).
Remark 4.6. The factor 1/k in the final term in Corollary 4.4 results from an application of Chebyshev
inequality. Under additional moment conditions, which are satisfied for certain functions � (e.g.,
�(t) = � log(t)) with better-behaved singularity at zero than t��, it can be replaced by e�⌦(�2k).
Additionally, while the condition �(t) = t�� is convenient for analysis, it is sufficient to assume that
� approaches infinity no faster than t�� .

5 Ubiquity of adversarial examples in interpolated learning

The recently observed phenomenon of adversarial examples [44] in modern machine learning has
drawn a significant degree of interest. It turns out that by introducing a small perturbation to the
features of a correctly classified example (e.g., by changing an image in a visually imperceptible way
or even by modifying a single pixel [43]) it is nearly always possible to induce neural networks to
mis-classify a given input in a seemingly arbitrary and often bewildering way.

We will now discuss how our analyses, showing that Bayes optimality is compatible with interpolating
the data, provide a possible mechanism for these adversarial examples to arise. Indeed, such examples
are seemingly unavoidable in interpolated learning and, thus, in much of the modern practice. As we
show below, any interpolating inferential procedure must have abundant adversarial examples in the
presence of any amount of label noise. In particular, in consistent on nearly consistent schemes, like
those considered in this paper, while the predictor agrees with the Bayes classifier on the bulk of the
probability distribution, every “incorrectly labeled” training example (i.e., an example whose label is
different from the output of the Bayes optimal classifier) has a small “basin of attraction” with every
point in the basin misclassified by the predictor. The total probability mass of these “adversarial”
basins is negligible given enough training data, so that a probability of misclassifying a randomly
chosen point is low. However, assuming non-zero label noise, the union of these adversarial basins
asymptotically is a dense subset of the support for the underlying probability measure and hence
there are misclassified examples in every open set. This is indeed consistent with the extensive
empirical evidence for neural networks. While their output is observed to be robust to random feature
noise [22], adversarial examples turn out to be quite difficult to avoid and can be easily found by
targeted optimization methods such as PCG [30]. We conjecture that it may be a general property or
perhaps a weakness of interpolating methods, as some non-interpolating local classification rules can
be robust against certain forms of adversarial examples [47].

To substantiate this discussion, we now provide a formal mathematical statement. For simplicity, let
us consider a binary classification setting. Let µ be a probability distribution with non-zero density
defined on a compact domain⌦ ⇢ Rd and assume non-zero label noise everywhere, i.e., for all x 2 ⌦,
0 < ⌘(x) < 1, or equivalently, P(f⇤(x) 6= Y | X = x) > 0. Let f̂n be a consistent interpolating
classifier constructed from n iid sampled data points (e.g., the classifier constructed in Section 4.3).
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Let An = {x 2 ⌦ : f̂n(x) 6= f⇤(x)} be the set of points at which f̂n disagrees with the Bayes
optimal classifier f⇤; in other words,An is the set of “adversarial examples” for f̂n. Consistency of f̂
implies that, with probability one, limn!1 µ(An) = 0 or, equivalently, limn!1 kf̂n � f⇤

kL2
µ
= 0.

On the other hand, the following result shows that the sets An are asymptotically dense in ⌦, so that
there is an adversarial example arbitrarily close to any x.
Theorem 5.1. For any ✏ > 0 and � 2 (0, 1), there exists N 2 N, such that for all n � N , with
probability � �, every point in ⌦ is within distance 2✏ of the set An.

Proof sketch. Let (X1, Y1), . . . , (Xn, Yn) be the training data used to construct f̂n. Fix a finite
✏-cover of ⌦ with respect to the Euclidean distance. Since f̂n is interpolating and ⌘ is never
zero nor one, for every i, there is a non-zero probability (over the outcome of the label Yi) that
f̂n(Xi) = Yi 6= f⇤(Xi); in this case, the training point Xi is an adversarial example for f̂n. By
choosing n = n(µ, ✏, �) large enough, we can ensure that with probability at least � over the random
draw of the training data, every element of the cover is within distance ✏ of at least one adversarial
example, upon which every point in ⌦ is within distance 2✏ (by triangle inequality) of the same.

A similar argument for regression shows that while an interpolating ⌘̂ may converge to ⌘ in L2
µ, it is

generally impossible for it to converge in L1 unless there is no label noise. An even more striking
result is that for the Hilbert scheme of Devroye et al., the regression estimator almost surely does
not converge at any fixed point, even for the simple case of a constant function corrupted by label
noise [21]. This means that with increasing sample size n, at any given point x misclassification will
occur an infinite number of times with probability one. We expect similar behavior to hold for the
interpolation schemes presented in this paper.

6 Discussion and connections

In this paper, we considered two types of algorithms, one based on simplicial interpolation and
another based on interpolation by weighted nearest neighbor schemes. It may be useful to think of
nearest neighbor schemes as direct methods, not requiring optimization, while our simplicial scheme
is a simple example of an inverse method, using (local) matrix inversion to fit the data. Most popular
machine learning methods, such as kernel machines, neural networks, and boosting, are inverse
schemes. While nearest neighbor and Nadaraya-Watson methods often show adequate performance,
they are rarely best-performing algorithms in practice. We conjecture that the simplicial interpolation
scheme may provide insights into the properties of interpolating kernel machines and neural networks.

To provide some evidence for this line of thought, we show that in one dimension simplicial in-
terpolation is indeed a special case of interpolating kernel machine. We will briefly sketch the
argument without going into the details. Consider the spaceH of real-valued functions f with the
norm kfk2

H
=
R
(df/dx)2 + 2f2 dx. This space is a reproducing kernel Hilbert Space correspond-

ing to the Laplace kernel e�|x�z|. It can be seen that as  ! 0 the minimum norm interpolant
f⇤ = argminf2H,8if(xi)=yi

kfkH is simply linear interpolation between adjacent points on the line.
Note that this is the same as our simplicial interpolating method.

Interestingly, a version of random forests similar to PERT [19] also produces linear interpolation
in one dimension (in the limit, when infinitely many trees are sampled). For simplicity assume
that we have only two data points x1 < x2 with labels 0 and 1 respectively. A tree that correctly
classifies those points is simply a function of the form 1{x>t}, where t 2 [x1, x2). Choosing a
random t uniformly from [x1, x2), we observe that Et2[x1,x2] 1{x>t} is simply the linear function
interpolating between the two data points. The extension of this argument to more than two data
points in dimension one is straightforward. It would be interesting to investigate the properties of
such methods in higher dimension. We note that it is unclear whether a random forest method of
this type should be considered a direct or inverse method. While there is no explicit optimization
involved, sampling is often used instead of optimization in methods like simulated annealing.

Finally, we note that while kernel machines (which can be viewed as two-layer neural networks) are
much more theoretically tractable than general neural networks, none of the current theory applies in
the interpolated regime in the presence of label noise [12]. We hope that simplicial interpolation can
shed light on their properties and lead to better understanding of modern inferential methods.
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