The proceedings version of this paper appears at CRYPTO ’19. This is the full version.

Security in the Presence of Key Reuse:
Context-Separable Interfaces and their Applications

Christopher Patton and Thomas Shrimpton

Florida Institute for Cybersecurity Research
Computer and Information Science and Engineering
University of Florida

{cjpatton,teshrim}@ufl.edu

Abstract

Key separation is often difficult to enforce in practice. While key reuse can be catastrophic for security,
we know of a number of cryptographic schemes for which it is provably safe. But existing formal models,
such as the notions of joint security (Haber-Pinkas, CCS ’01) and agility (Acar et al., EUROCRYPT ’10),
do not address the full range of key-reuse attacks—in particular, those that break the abstraction of the
scheme, or exploit protocol interactions at a higher level of abstraction. This work attends to these
vectors by focusing on two key elements: the game that codifies the scheme under attack, as well as its
intended adversarial model; and the underlying interface that exposes secret key operations for use by
the game. Our main security experiment considers the implications of using an interface (in practice, the
API of a software library or a hardware platform such as TPM) to realize the scheme specified by the
game when the interface is shared with other unspecified, insecure, or even malicious applications. After
building up a definitional framework, we apply it to the analysis of two real-world schemes: the EADSA
signature algorithm and the Noise protocol framework. Both provide some degree of context separability,
a design pattern for interfaces and their applications that aids in the deployment of secure protocols.

Keywords: Key reuse, APIs, Diffie-Hellman, EADSA, Noise

Contents

1

2

3

Introduction
Pseudocode and Conventions
Interfaces and Games

Security Under Exposed Interface Attack
4.1 Simulatability of an Interface L
4.2 The Composition Theorem

Discrete Log Interfaces
51 Diffie-Hellman L
5.2 EADSA . . . e

Noise

6.1 Handshake and Message Patterns L
6.2 The Interface e
6.3 Security e
6.4 Composition with EADSA
6.5 Conclusion e

Proofs

A1 Theorem 1 (composition)
A.2 Theorem 2 (necessity of wGAP2 for Theorem 1(ii))
A.3 Theorem 4 (wGAP2 insecurity of functional DH)
A4 Theorem 5 (GAP1 security of EADSA)
A5 Theorem 6 (GAP2 security of EADSA)
A.6 Theorem 7 (GAP1 security of Noise)
A.7 Sketch of Theorem 8 (GAP2 security of Noise)

Indifferentiability of HKDF

14
15
17

19
20
21
24
25
26

31
31
33
34
36
38
39
44

44

1 Introduction

The principle of key separation, or ensuring that distinct cryptographic functionalities use distinct keys, is
a widely accepted tenet of applied cryptography. It appears to be difficult to follow, however, as there are
many instances of key reuse in deployed cryptosystems, some having significant impact on the security of
applications. There are a number of practical matters that lead to key resuse. First, operational requirements
of the system often demand some degree of it. For example, it is common to use a signing key deployed for
TLS [54] in other protocols, as this is permitted by certificate authorities and avoids the cost of certifying a
distinct key for each protocol. But doing so has side effects that must be addressed in the design of these
protocols, as well as the interface that exposes the key to applications [15]. Second, it is often not clear what
constitutes a “distinct functionality”. Intel’s Trusted Platform Module (TPM) standard [60] supports a
variety of protocols for remote attestation that use an Intel-certified key stored on chip. The TPM exposes a
core set of operations involving this key via its application-programming interface (API), which applications
make calls to in order to implement attestation schemes. But the requirement to support so many protocols
has lead to a flexibile API with subtle vulnerabilities [3, 20].

Prior work sheds light on when key reuse is safe among specific primitives. Haber and Pinkas [34]
introduce the notion of joint security, which captures the security of a target cryptosystem (say, a digital
signature scheme) in the presence of an oracle that exposes a related secret-key operation (say, the decryption
operation of a public-key encryption scheme). Many widely used primitives are jointly secure, including RSA-
PSS/OAEP [34] and Schnorr signatures/hybrid encryption [22]. Acar et al. [2] address the related problem
of agility, where the goal is to identify multiple instantiations of a particular primitive (e.g., sets of AEAD
schemes, PRF's, or signature schemes) that can securely use the same key material. But the range of potential
key-reuse attacks goes well beyond what these works cover; attack vectors sometimes break the intended
abstraction boundary of the scheme by exposing lower level operations [19, 3], or involve unforeseen protocol
interactions at a higher level of abstraction [36, 15]. We believe that a comprehensive treatment of key reuse
can and should account for these attack vectors as well.

To this end, we propose to surface the API as a first class security object. For our purposes, the API
(or just “interface”) is the component of a system that exposes to applications a fixed set of operations
involving one or more secret keys. APIs are often the root-of-trust of applications: TPM, Intel’s Software
Guard Extensions (SGX), hardware security modules (HSMs), and even chip-and-pin credit cards all provide
cryptographic APIs that aim to be trustworthy-by-design. But pressure to meet operational requirements,
while exporting interfaces that are suitable for a variety of applications, often leads to vulnerabilities [17,
22, 41, 3]. An analogous situation arises in the development of software that uses a cryptographic library;
software engineers tend to trust that any use case permitted by an API is secure, without fully grasping its
side-effects [50]. This phenomenon tends to lead to vulnerable code [4, 51].

In light of these issues, this work seeks to develop security-oriented design principles for interfaces and
their applications. We devise a definitional framework for reasoning about the security of an application
when the interface it consumes is used in other, perhaps unintended or even insecure ways. We model these
“other applications” very conservatively, as follows: to assist it in its attack against the target application,
we assume the adversary has direct access to the underlying interface, allowing it to mount exposed interface
attacks on a target application. We apply this framework to the design and analysis of two real-world
cryptosystems: the EADSA signature algorithm [35] and the Noise protocol framework [52]. In doing so, we
elicit a property of interfaces and their applications we call context separability, which we will show to be an
invaluable tool for secure protocol design.

The framework. We begin by motivating our definitional viewpoint, which draws abstraction boundaries a
bit differently than usual. Game-based notions of security [12] typically specify (in pseudocode) a game G that
makes calls to a cryptographic scheme IT (a primitive or protocol, also specified in pseudocode). The game
captures an attack model—that is, the capabilities and goal of the adversary—and establishes boundaries on
the permitted uses of II. Model-specific adversarial capabilities are captured as oracle procedures specified
by G, which the adversary may query during its attack. Its goal is formalized by an explicit winning condition
that depends on its queries and the random choices of the game. The security of the scheme, when used as
specified by G, is measured by executing an adversary with G.

Suppose that II is specified in terms of calls to an underlying interface Z, which defines the set of
operations that can be performed on the secret key. Our goal is to measure the security of Il in the sense

sk sk

win
—~

\/
\

\J

G.Init G.Call G.Final |

A A A

Init(x) y Call

pk A

Figure 1: Illustration of the SEC/I experiment, which has three “phases”: first, the adversary A chooses the game
context « and initializes the game G; second, A plays G and interacts with Z; and third, A finalizes G and the
experiment outputs the outcome win.

Final

Op (ctz # @)

A * A

vy

\/

of G when the adversary playing the game is also provided direct access to Z, i.e., when the adversary is able
to mount exposed interface attacks on the security of II that G codifies.

We formalize our syntax for interfaces and games in Section 3. Rather than refer explicitly to I, we
allow the game G to realize II as pseudocode that makes calls to Z. Interfaces may expose conventional
primitive operations like signing or decryption, or they may expose lower level operations that are composed
into higher level ones by the game. (This is precisely what TPM does; more on this in Section 5.1.) Our
syntax for interfaces admits operations on symmetric and asymmetric keys. In the latter case, all secret-key
operations are handled by the interface, and all public-key operations are specified by the game.

Security under exposed interface attack. The objects of our study are an interface and a target application;
we formalize the latter as a game that defines the scheme, how it is used, and what is its goal. With some
details suppressed, Figure 1 visualizes the execution flow of our main security experiment SEC/I, which acts
as an analysis harness for an interface Z, game G, and adversary A. The experiment first generates the
public and secret keys (pk, sk) as specified by Z, then runs A on input of pk and with access to oracles Init,
Call, and Final used to “play” the game G. The game is comprised of three algorithms: the first, G.Init,
takes pk as input and outputs the game’s initial state; the second, G.Call, specifies the capabilities of A
in the game and advances the state in response to its queries; and the last, G.Final, computes the game’s
winning condition and outputs a bit win. Both G.Call and G.Final are given access to Z for performing
secret key operations, and the adversary is given direct access to Z via a fourth oracle Op. As usual [12],
the adversary must call Init first and Final last; the outcome of the experiment is the value of win.

The central goal of our work is to measure the security “gap” between this and the “usual setting” in
which the underlying interface is only used for the target application. This setting is formalized by the SEC
experiment, which is defined just like SEC/I, except the adversary is denied access to Op. We will formalize
both experiments in Section 4.

Context separability. Security in our setting often requires a property we call context separability. Loosely,
a context-separable interface is one whose operations can be bound to the context in which they are used.
When context separation is enforced, this binding prevents context-separable games from interacting in
unintended ways. Let us consider an illustrative example. TLS is designed to prevent signatures produced
in the context of the protocol from being used in other applications, and vice versa. To accomplish this,
whenever a message is to be signed, it is signed together with a short context string that uniquely identifies
the protocol version and the signer (i.e., the client or server, see [54, Section 4.4.3]). This makes it unlikely
that another protocol would inadvertently produce a signature that could be used in TLS, but nothing about
the protocol or the signature scheme ensures this; depending on how signing operations are exposed and
whether key separation is enforced, this could lead to practical cross-protocol attacks [15].

As reflected in both our syntax and security notions, our framework sheds formal light on the affect of
these design challenges on security. In addition to the secret key and operand, an interface is formalized
to take as input a context string ctz, which is meant to uniquely identify the application making the
API call; correspondingly, a game is initialized with context that is meant to uniquely identify it. In the
SEC/I experiment, the game G is initialized with an adversarially chosen game context string a, which the

adversary may not use for its interface queries. (See Figure 1.) This is akin to enforcing non-repeating
nonces in the security experiment for symmetric encryption; in practice, it is an operational requirement
that the environment must enforce.

On the role of context separation. The high-level goal of our work is to provide a framework for reasoning
about the security of interfaces that expose secrets to applications. We uncover context separability as a
useful design pattern for achieving security in the presence of key reuse. In fact, this operational requirement
can be seen as a generalization of key separation; an interface could enforce key separation by generating a
unique key for each unique application (identified by a context string) it intends to support. But when doing
so is infeasible, interfaces and their applications can be designed so that reuse is secure as long as context
separation is enforced.

We stress that context separation is not essential to security in the presence of key reuse. We could
have formalized other operational requirements; it may suffice to ensure that no single operation is used
in multiple applications, or that distinct applications provide distinct inputs, etc. However, our choice to
enforce context separation in the SEC/I experiment was not arbitrary. First and foremost, it reflects a
design pattern often explicit (but sometimes implicit) in real standards, two of which we analyze in this
paper (EADSA and Noise). Second, it is our hope that clarifying this simple requirement will reduce some
of the complexity inherent to protocol design.

A composition theorem. To measure the “gap” between SEC and SEC/I—that is, to measure the security
impact of exposing the underlying interface—in Section 4.2 we formulate and prove sufficiency of a condition
under which security in the former sense implies security in the latter. The GAP1 experiment is associated
to an interface Z, a game G, a simulator S, and a distinguisher D. The experiment allows D to play the
game via Init, Call, and Final as above; likewise, the adversary can query the interface via Op. In the
“real” world, Op exposes Z, but in the “simulated” world, the distinguisher’s queries are evaluated by S,
which is given the public key but no access to Z. The adversary’s goal is to distinguish between these two
worlds. We show that for any Z and G, if Z is both SEC and GAP1 secure for G, then 7 is also SEC/I secure
for G (Theorem 1(i)). Thus, proving GAP1 security of Z for G will be our primary goal, as it succinctly
characterizes conditions under which it is safe to compose applications that share the same interface.

We also consider the security impact of changing an interface, by, for example, exposing additional
operations on the key. The GAP2 experiment is similar to GAP1, except it involves a pair of interfaces
(Z1,7°). In the “real” world, both the game and distinguisher are given oracle access to Z!; in the “simulated”
world, the game is given an oracle for Z° and the distinguisher’s Op queries are answered by the simulator,
which is also given an oracle for Z°. We prove that if (Z',Z°) is GAP2 secure for G and Z° is SEC/I secure
for G, then so is Z' (Theorem 1(ii)). We also formulate a necessary condition, wGAP2, that allows us to
characterize key operations that are not generally safe to expose in an interface.

Application to discrete log interfaces. We apply our framework to various discrete log (DL) interfaces,
whose key pairs are (p = ¢°,s) where g is the generator of a finite, cyclic group. They are so named
because the security of their applications is predicated on the hardness of computing discrete logarithms
(in particular, s = log, p) in the given group. They are particularly interesting in our setting because they
admit a wide variety of primitives and protocols.

Diffie-Hellman and EdDSA. A well-known design challenge for DL interfaces is avoiding accidental ex-
posure of a static Diffie-Hellman (DH) oracle [3, 20]: given p and an oracle that on input of ¢ returns ¢*,
there is an algorithm [19] for computing s that is much faster than generic DL [53]. As a first exercise of our
framework, we rule out the security of (inadvertently) exposing static DH in any DL interface by proving
wGAP2 insecurity of their composition (Section 5.1). We then consider the security of the EdADSA signature
scheme [14] in our setting (Section 5.2). The standardized version of this algorithm [35] admits variants
that are context separable, allowing us to prove in the random oracle model (ROM) [11] that the signing
operation is GAP1 secure for any game in which all signing and verification operations use the game context.
We also show (in the ROM) that exposing the signing operation of any EADSA variant in a DL interface
that meets certain requirements is GAP2 secure in general.

Noise. Having addressed the security of these relatively simple operations, in Section 6 we turn to
analyzing Noise [52], a framework for designing two-party secure-channel protocols. Participants in these
protocols negotiate and execute handshake patterns, which define the sequence of messages sent between
them and thereby the security of the communication channel they establish. We specify as an interface the

set of processing rules that determine how each party consumes and produces messages, and how their state
is updated as a side-effect. This allows handshake patterns to be executed by making calls to this interface.

Our results for Noise are largely positive. With a simple tweak of the processing rules, we are able to
prove GAP1 security of our interface while making only minimal (and natural) assumptions about the target
application. This implies, in particular, that all handshake patterns that can be executed by our interface are
jointly secure (up to context separation). We cannot support all patterns, however, because some give rise
to GAP1 distinguishing attacks in any interface that could be used to implement them. As a result of these
limitations, our analysis leaves the security of key-reuse in Noise as it is an open question. Nevertheless, our
work shows that Noise’s approach to protocol design makes it possible to reason about protocol interactions
in a very general way.

Finally, Section 6.4, we will directly address the composition of the security of using a key deployed for
EdDSA in Noise (and vice versa).

Limitations of the framework. Our syntax for games is such that a wide variety of security goals can be
expressed with them. However, the execution semantics of games in the SEC/I experiment excludes some
important settings, including the multi-user setting [13] and those captured by multi-stage adversaries [55].
In Section 4 we will briefly discuss how to formalize these settings as extensions to the SEC/I experiment.
In addition, our interfaces are all stateless, which we found necessary for composition in general. (This is in
line with prior works that address related problems [55].)

Related work. Our framework generalizes the setting of Shrimpton, Stam, and Warinschi [59], who study
HSMs implementing the PKCS#11 standard for cryptographic APIs [31]. Their formulation of a “primitive”
is closely related to our formulation of interfaces, and their framework allows for expressing arbitrary security
goals for primitives, as ours does for interfaces. One important distinction is that our interfaces are only
meant to expose operations on secret keys; public key operations such as encryption or signature verification
are specified as part of the game. Our attack model is also much stronger than theirs, since it exposes the
interface used in the game to the adversary.

Our security goals are reminiscent of joint security, and many of the proof techniques we use are borrowed
from that area [34, 22]. However, our notions are ultimately incompatible with theirs. To adapt our
framework to the consideration of joint security, one would partition the set of operations exposed by the
interface into those available to the target system (i.e., the game) and those available to the adversary.

The GAP2 notion can be viewed as a restricted form of indifferentiability [47]. In particular, the GAP2
experiment for (Z1,Z), G, adversary A, and simulator S is equivalent to the indifferentiability of (Z1, Z°) with
respect to the specific distinguisher D that is the composition of G and A prescribed by the GAP2 experiment.
To be clear, this does not allow us to directly use the indifferentiability composition theorem. Our own result
is about composing game G with interfaces Z' and, separately, Z°; and although our composition theorem
looks quite similar to [55, Theorem 1], the things being composed are not the same.

Examples of API-design flaws. There are several, well-documented examples of API-design flaws leading
to vulnerabilities in deployed systems. Degabriele et al. [22] provide an analysis of the EMV standard for
credit-card payments. To reduce overhead in this highly constrained environment, the interface permits
signing and decryption operations involving the same RSA secret key. Degabriele et al. exhibit a practical
forgery attack that uses the decryption operation.

An analysis by Kiinnemann et al. [41] points out a flaw in the API for Yubico’s YubiHSM that admits
an oracle for a blockcipher keyed by the same key used to encrypt in CBC mode, leading to a simple
plaintext-recovery attack.

In recent years, Intel and other chip manufacturers have moved to develop, implement, and deploy
protocol standards allowing for remote attestation of the state of a host, often called trustworthy computing.
Since the host is often an end-user system (e.g., a laptop or cellphone), performing an attestation in a privacy-
preserving manner is paramount. The TPM (“trusted platform module”) standard exposes an interface for
direct anonymous attestation (DAA) [18] in a variety of protocols. The is made possible by a very flexible
APIT that, unfortunately, leads to security issues [3]. Designing an interface for TPM that is both sufficiently
flexible and secure has proved challenging. A solution was recently devised by Camenish et al. [20]. Their
contribution is two-fold: first, they modify the protocol so that it can be proven secure (analyses of prior
versions of TPM remote attestation were erroneous); and second, they redesign the interface to mitigate the
static DH oracle.

Keyless SSL is a protocol deployed by Cloudflare used to proxy TLS connections between clients and
servers without the need to have the server’s signing key on premise. In this protocol, the server exposes
a signing API to mutually authenticated peers. To sign a handshake with a client, the server sends the
message to be signed to the server, who responds with the signature. Instead of operating on the message M
itself, the API operates on a hash of the message H (M), which is an intermediate value in certain signature
schemes. Bhargavan et al. [15] show that this interface admits a cross-protocol attack with QUIC, another
widely-deployed transport-security protocol. In the absence of mutual authentication of the peer (which
Keyless SSL provides), their attack would allow anyone to impersonate a QUIC server.

API usability. The current work could be viewed as a formal treatment of a small piece of the much larger
problem of APT usability. Since Adams and Sasse’s seminal work “Users are not the Enemy” [5], usability
being necessary for the deployment of secure systems has emerged as an axiom in the research community.
Recently, this focus on usability has shifted from the end user to the developer of the system [33]: specifically,
towards understanding how developers think about and use APIs, how API misuse leads to vulnerabilities,
and how to design APIs that are easy to use securely and hard to use insecurely. Much of this work has
been catalyzed by vulnerabilities that are generally believed to result from the complexity and poor quality
of existing cryptographic APIs [30, 27, 26]. User studies have been especially fruitful in corroborating this
belief [4, 51]. In their study of the psychological factors involved in the development of vulnerable code,
Oliviera et al. [50] point out that developers tend to trust that APIs are secure, which leads to blind spots
in their mental model of how the API is to be used securely.

2 Pseudocode and Conventions

This section enumerates our conventions for pseudocode, algorithms, adversaries, and experiments. The
reader may wish to skip this section and refer to it later as needed.

Pseudocode. Our pseudocode is based on Rogaway and Stegers [56]. Variables are statically typed.
Available types are set (a set), tup (a tuple), bool (an element of {0,1}), int (an element of Z), and str
(an element of {0,1}*). In general, if X € X, then we say that X has type elemy. Variables are declared
with the keyword dec, e.g., dec int x; str A. Variables need not be explicitly declared, in which case
their type must be inferable from their initialization (i.e., the first use of the variable in an assignment
statement). There are two compound types. The first is associative arrays, denoted by “[]”, which map
tuples (that is, a finite sequence of quantities of any type) to values of a specific type. For example, dec
str 7r[] declares an associative array m whose values are strings. We let 7[k] and 7, denote the value in 7
associated with k. The second is struct, which is used to recursively define new types; see Figure 7 for an
example. We will also refer to the type of a procedure (i.e., an algorithm) by its interface. For instance, the
type A(str X,Y) — (int i, str A) indicates that A takes as input a pair of strings (X,Y) and outputs an
integer ¢ and a string A.

Nil and bottom. Uninitialized variables implicitly have the value ¢, read “nil”. If a variable of one type
is set to a value of another type, then the variable takes the value ¢. The symbol ¢ is interpreted as () in
an expression involving sets, as the 0O-length tuple in an expression involving tuples, as 0 (i.e., false) in a
boolean expression, as 0 in an expression involving integers, and as € in an expression involving strings. A
non-bool variable X is interpreted as “(X # ©)” (i.e., “X is defined”) in a boolean expression. If X is an
associative array, then X < ¢ “resets” the array so that X, = o for all k. Likewise, if X is a struct, then
X + o sets each field of X to ¢. The symbol L, read “bottom”, can be assigned to any variable regardless
of type. Unlike ¢, its interpretation in an expression is always undefined, except that X = | and L = X
should evaluate to true just in case the previous assignment to X was L. (We remark that | has the usual
semantics in cryptographic pseudocode.)

Represented groups. We say that a group G is represented if © ¢ G. We define an additional type, elemg,
parameterized by a represented group G. We emphasize that, unlike set, tup, bool, int, or str, using the
symbol ¢ in an expression involving values of this type is not well-defined, since ¢ has no interpretation as
an element of G.

Refined types. Variable declarations may be written as set-membership assertions. For example, dec
int s; elemg P may be written like dec s € Z; P € G. Where appropriate, these types may also be refined,
e.g. dec s € N.

String and tuple operations. Let |X| denote the length of a string (or tuple) X. We denote the i-th
element of X by X; or X[i]. We define X || Y to be the concatenation of X with string (or tuple) Y. Let
X[i:j] denote the sub-string (or sub-tuple) X; || --- || X; of X. If ¢ & [1..5j] or j & [i..|X]], then define
X[i:j] = ¢. Let X[i:] = X[::|X]] and X[:5] = X[1:]].

Encoding of types. A value of any type can be encoded as a string. We will not define this encoding

explicitly, but assume it possesses the following properties. Let z1,...,z,, denote the encoding of a tuple
(x1,...,2m) as a string. Decoding is written as x1....,2, + X and works like this (slightly deviating

from [56, Section 2]): if there exist y1,...y, such that X = y3.....y,, m = n, and each y; has the same
type as x;, then set x; < y; for each 1 <7 < m. Otherwise, set x; <— ¢ for each 1 < ¢ < m. Let z,, denote
the encoding of an integer > 0 as an n-bit string. We write z,, < X to denote decoding X as an n-bit,
non-negative integer and assigning it to x. Finally, we say that a group G is v-encoded if it is represented
and for all X € G it holds that | X| = v.

Passing variables by reference. It is customary in cryptographic pseudocode to pass all variables by
value; we also permit variables to be passed by reference. (This idea is due to Rogaway and Stegers [56],
but our semantics deviates from theirs.) Specifically, variables passed to procedures may be embellished
with the symbol “«”. If the variable appears on the left hand side of an assignment statement, then this
immediately changes the value of the variable; when used in an expression, the variable is treated as its value.
A procedure’s interface makes explicit each input that is passed by reference. For example, in a procedure
A(eint z, int y) — int 2, variable y is passed by value, while x is passed by reference. For example, after
executing z,y < 0; z «— A(ux,y), the value of x may be non-0, but y is necessarily equal to 0.

Algorithms, experiments, and adversaries. Algorithms are randomized unless stated otherwise. An
algorithm is t-time if for every choice of random coins, the algorithm halts in at most ¢ time steps.! When
an algorithm A is deterministic we write y + A(x) to denote executing A on input of x and assigning its
output to y; if A is randomized, then we write y «— A(z). Let [A(z)] denote the set of possible outputs
of A when run on input . Algorithms may have access to one or more oracles, written as superscripts, e.g.,
y 4 A% (x). When this notation becomes cumbersome we may write y «— (A: O,...)(x) instead. When
we specify a procedure, if the procedure halts without an explicit ret-statement (i.e., a “return” statement),
then it returns L.

We regard security experiments as algorithms whose output is always a bit. If “XXX” is an experiment
associated with an adversary A, we write Exp**(.A) to denote the event that the experiment is run with 4
and the output is 1, i.e., Pr[EprXX(A)] denotes the probability that XXX run with A outputs 1, where
the probability is over the coins of XXX and A. An adversary is an algorithm associated to a security
experiment in which it is executed exactly once. (Thus, in this paper we restrict ourselves to the single-stage
adversary setting [55].) Our convention will be that an adversary is ¢t-time if its experiment is ¢-time. That
is, an XXX-adversary A is t-time if Exp**(A) is ¢-time.

Miscellaneous. Logarithms are base-2 unless the base is given explicitly. If X is a set, then we write
x 4 X to denote sampling x randomly from X according to some distribution associated to X’; if X is
finite and the distribution is unspecified, then it is uniform. For every integer n > 1 let [n] denote the set
{1,...,n}. Let Dom f denote the domain of function f and let Rng f denote its range. Let A(U, V) denote
the statistical distance between random variables U and V. We write X < Y if string (or tuple) X is a
prefix of string (or tuple) Y (i.e., 3T) X ||T =Y). We write S ~ X if |S| > 0 and S is a sub-string (or
sub-tuple) of X (i.e., |S] < |X| and (34) X[i:i + |S|] = 9).

Pseudocode in this paper implicitly treats strings over the alphabet ¥ = {A,...,Z;a,...,2,0,...9, } as
bit strings (i.e., of type str). We do so by fixing an injection f : ¥* — {0,1}* and write s instead of f(s). For
example, when we write “dh” or “sig”, we really mean “f(dh)” or “f(sig)”. Such an f is easy to construct;
it might map each element of ¥ to its ASCII encoding.

3 Interfaces and Games

In this section we define the syntax for interfaces and games, the fundamental components of our framework.
A game captures an attack model (the capabilities and goals of an adversary) as well as an intended use of

1What constitutes a “time step” depends on the model of computation, which we leave implicit.

sec/i sec Final(in)
Expz g (A)|/ ExpTg(A)
e win 4— G.FinalZ-OPk:) (st in)

dec str sk, st, a; bool win

ret win
(pk, sk) «— Z.Gen()
\ (A: Init, Final, Call, Op)(pk) \ Call(in)
. ret Q.CallI‘Op(Sk""")(st,in)
(A: Init, Final, Call)(pk)
ret win Op(ctz, op,in)
Init (ctz) if ¢tz = o then ret L

ret Z.0p(sk, ctx, op,in
(st, out) «— G.Init(pk, ctx) P P, in)

a < ctx; ret out

Figure 2: The SEC/I and SEC experiments for interface Z, game G, and adversary A.

cryptographic operations that are provided (via black-box calls) by an interface. Typically, this use will be
to realize some cryptographic scheme (i.e., primitive or protocol) that is under attack.

Definition 1 (Interfaces). An interface is a pair of algorithms Z = (Gen, Op) defined as follows:
e Gen() — str pk, sk. The key generator outputs pair of key strings.

e Op(str sk, ctz, op,in) — str out. The key operator exposes operations involving the key sk. It takes
as input the context ctz, the operation identifier op, and the operand in, and it outputs the result out.

For compactness, we may denote Z.0Op(sk, ctz, op, in) by Zs;(ctz, op, in) in the remainder. ¢

In our security experiments, the “public key” pk will be made available to all parties, but the “secret key” sk
will be kept private by the interface. We note that pk = ¢ is allowed, so that symmetric-key operations are
within scope.

Definition 2 (Games). A game is a triple of algorithms G = (Init, Call, Final) defined as follows:

e Init(str pk,a) — str st, out. This is the game initiator. It takes as input the public key pk and game
context a and outputs the initial state st and a string out.

e Call® (usstr st, str in) +— str out. The caller is used to advance the state of an already initialized game.
It abstracts all oracle queries except initialization and finalization. The first input is a reference to
the game state, which may be updated as a side-effect of invoking the caller; the interpretation of
the second input is up to the game. The caller expects access to an oracle O, which we will call the
interface oracle. It takes as input three strings and returns one.

e Final©(str st,in) — boolr. The finalizer is used to decide if a game is in a winning state. Its inputs
are the game state st and a string in, which is used to compute the winning condition. Oracle O is as
defined for the caller.

For compactness, we occasionally denote G.Call®(ust,in) by G (in). We say that G is c-bound if the caller
and finalizer each make at most ¢ calls to O during any one execution of the algorithm. ¢

4 Security Under Exposed Interface Attack

The goal of this work is to understand the security of cryptographic schemes when they are realized by
an interface that may also be exposed to other, possibly insecure or (or even malicious) applications. The
following experiment (SEC/I) captures this formally, allowing us prove or disprove security of a scheme (both
codified by a game G) when a given interface Z is callable by both the game G and the adversary A. An
adversary in this experiment is said to be mounting an ezposed interface attack on G. We define another
experiment (SEC) that captures the usual setting in which the adversary does not have this access.

Definition 3 (SEC/I and SEC security). Figure 2 defines two security experiments: SEC/I includes the
boxed statement (but not the shaded one), and SEC includes the shaded statement (but not the boxed one).
Both experiments begin by running the key generator Z.Gen and executing the adversary A on input of the
public key and with access to four oracle procedures:

e Init initializes G by calling the initiator G.Init on the public key and the game context chosen by A
and returns the output out of the initiator.

e Call advances the game by invoking the caller G.Call on input in provided by A and with oracle access
to the interface Z.Op(sk, -, -,). It returns the output out of the caller.

e Op exposes Z.0p(sk, -, -, -) to A directly with the restriction that each query use a context string ctx
that is different from the game context used to initialize the game.

e Final finalizes G by running the finalizer G.Final on input in provided by A and setting win to the
output and returning the value of win to A.

The outcome of the experiment is the value of win when A halts. A valid SEC/I adversary makes a single
query to Init, this being its first; it may then make any number of queries to Call and Op.? It completes
its execution by making a single query to Final. We define the advantage of a (valid) SEC/I-adversary A
in attacking Z with respect to G as

Advsicg/i(A) =Pr [Exp;ficg/i(A)] .

We call a SEC/I adversary (t,qq,qr)-resource if it is t-time and makes at most gg and ¢; queries to Call

and Op respectively. We define the maximum advantage of any r-resource SEC/I-adversary as Adv}efg/1 (r).
SEC security of Z with respect to G is defined in kind, except that Op is not given to A. We denote the
advantage of SEC-adverseary A in attacking Z with respect to G by Advy5(A) = Pr [Exp%efg (A)], and
we define Advg(r) as above. Informally, we say that Z is SEC/I (resp. SEC) secure for G if every efficient
SEC/I (resp. SEC) adversary has small advantage.

Finally, if each of G.Call’s and G.Final’s interface queries is a triple (o, op, in) such that « is the context
with which the game was initialized, then we say G is regular for SEC/I (resp. SEC). ¢

Regular games and context separation. We remark that a game being regular is a property of the execution
semantics of the game in the experiment, and not a syntactic property of the game itself. This is because
an experiment might execute the game differently; for example, instead of invoking the initiator before the
caller, the experiment could invoke the caller with state st = € each time. This may sound silly, but we have
not given a syntactic condition on games that excludes this execution semantics. Because all experiments
will run the game in the same way, we silently extend this definition of regularity to all experiments in the
remainder of the paper. In our analyses in Sections 5 and 6, we will prove SEC/I security with respect to
regular games. This condition is sufficient for ensuring context sepparability between operations performed
by the adversary via direct access to the interface and those performed by the game.

Indistinguishability variants. We note that our definitions of SEC/I and SEC advantage are not ap-
propriate for every game. For example, G might be a bit-guessing game (e.g., IND-CCA) in which the
initiator flips a coin and the finalizer interprets its input as the adversary’s guess. In order to normalize
the adversary’s advantage in such games, we define the IND-SEC/I advantage of SEC/I-adversary A as
Adv 5 (A) = 2AdvET (A) — 1. (Similarly for IND-SEC.)

Limitations of the SEC/I experiment. The execution semantics of our experiments restrict our setting to
single-staged games as defined by Ristenpart, Shacham and Shrimpton [55]. In particular, the adversary may
keep arbitrary state throughout its run. This means that we cannot address, for example, the SEC/I security
of certain games capturing properties of deterministic or hedged public-key encryption [8, 9], key-dependent
message security [16], or security against related-key attacks [10] when one allows related-key functions that
can depend on some ideal primitive [6]. Modeling multi-stage adversaries would require defining a new
experiment in which the execution semantics of each stage is precisely defined. That said, many important

2Disallowing Op queries prior to Init is necessary for enforcing context separation. This restriction could be lifted by, say,
allowing pre-Init access to Op, but demanding that none of these queries uses the (adversarially chosen) game context a.

10

Expiilgl (8,D) Expiall?;oyg (8,D)
dec str sk, st, o, a; b« {0,1} dec str sk, st,o,a; b« {0,1}
(pk, sk) = Z.Gen(); o «— S.Init(pk) (pk, sk) «— Z°.Gen(); o «— S.Init(pk)
d «— (D: Init, Final, Call, Op)(pk) d «— (D: Init, Final, Call, Op)(pk)
ret (d =) ret (d =)
Init(ctz) Init(ctz)
(st, out) «— G.Init(pk, clz) (st, out) «— G.Init(pk, ctz)
o < ctx; ret out o 4 ctx; ret out
Fina](zn) Final(m)
ret G.Final®s (st, in) ret g.FinaIIS’c(st, in)
Call(in) Call(in)
ret G.Call%s (ust, in) ret g.CallI?k‘(st,in)
Op(ctz, op,in) Op(ctz, op, in)
if ctzr = a then ret L if ctz = o then ret L
if b =1 then ret Z/(ctz, op, in) if b=1 then ret 7). (ctz, op, in)
ret S.Op*(xo, ctz, op, in) ret S.OpZva(o, ctz, op, in)
Expli*2 (S,D) Op(ctz, op, in)
dec str sk, st,o; b «— {0,1} ifb=1 thOen ret T (cta, op, in)
(pk, sk) «— Z°.Gen(); o «— S.Init(pk) ret S.Op%s (vo, ctz, op, in)
d 4 DOP (pk); ret (d =b)

Figure 3: Top-left: The GAP1 experiment for interface Z, game G, simulator S, and adversary D. Top-right: The
GAP2 experiment for interfaces Z' and Z°, G, S, and D. Bottom: The wGAP2 experiment for (Z*,Z°) respectively.

security goals are captured by single-stage games, including classic notions of privacy (IND-CCA) of encryp-
tion schemes, unforgeability (UF-CMA) of signatures, entity authentication (EA), and authenticated key
exchange (AKE).

Our experiments allow for modeling corruption of secret state associated with the game (for example,
when modeling forward secrecy of an AKE protocol), but not of the secret key exposed by the interface.
(Unless the interface provides an operation that returns sk, in which case SEC/I security is a lost cause.)
Corruption of such long-term secrets held by interfaces could be modeled by introducing a new oracle to the
experiment.

Finally, we note that the SEC/I experiment is not well-suited for analyzing games in the multi-user
setting. (See related work in Bellare and Tackmann [13] for a nice overview of this area.) One may wish to
define an experiment that is played with multiple interfaces, perhaps corresponding to multiple parties. One
way to do this would be to “wrap” the adversary’s Call queries so that it specifies which interface the game
should call. However, we will leave the details to future work.

4.1 Simulatability of an Interface

Intuitively, the “gap” between the SEC/I and SEC security of an interface Z with respect to game G is
driven by any extra leverage the attacker gains by interacting with Z directly. In this section, we formalize
an experiment that aims to measure the size of this gap for a given 7 and G. We also define a related
experiment that measures the relative security “gap” between a pair of interfaces (Z1,Zy) with respect to a
given game. This is particularly useful when the operations permitted by Z; are a superset of those permitted
by Zy. For example, in Section 5, we will use this notion to analyze the change in security when operations
are added to an existing interface. Both of these experiments will make use of simulators, so let us first
define these.

Definition 4 (Simulators). A simulator S is a tuple of algorithms (Init, Op) defined as follows:

11

e Init(str pk) — stro. The initiator takes as input a public key and outputs the simulator’s initial
state o.

e OpY(ustr o, str ctz, op, in) — str out. The operator takes as input a reference to the simulator state
(which it may update as a side-effect) and a triple of strings (ctz, op, in) and outputs a string out.
Oracle O is an interface oracle defined just as for games.

In the remainder, we may denote S.Op® (va, ctz, op, in) by SO (ctz, op,in). We say that S is (t, g7)-resource
if each algorithm is ¢-time and the caller makes at most g; queries to its oracle. ¢

Definition 5 (GAP1/2 security). Figure 3 defines two experiments: GAP1 and GAP2. Each involves a
simulator S, an adversary D, and a game G; GAP1 involves a single interface Z, while GAP2 involves a pair
interfaces (Z1,Zy). Both begin by choosing a challenge bit b at random, executing the key generator (Z.Gen
in GAP1 and Z°.Gen in GAP2), and initializing the simulator via S.Init on input of the public key. The
adversary is then executed on input of the public key and with four oracles:

e Init, Final, and Call execute the game just like in the SEC/I experiment; interface queries are
answered by Z.0p in GAP1 and Z°.Op in GAP2.

e Op processes (ctz, op, in) as follows. If ctz is equal to the game context, then it returns L (just as in
SEC/I). If b = 1, then it returns Z.Op(sk, ctz, op, in) in GAP1 and Z'.Op(sk, ctr, op, in) in GAP2; if
b = 0, theni the oracle returns S.Op~ (o, ctz, op,in) in GAP1 and S.Opng(o, ctx, op,in) in GAP2.
(The “L” oracle given to S denotes the interface oracle that just returns L on any query.)

The outcome of the experiment is the bit d output by D when it halts. A valid GAP1 (resp. GAP2) adversary
makes a single query to Init, this being its first query; it may then make any number of queries to Call and
Op. It completes its execution by making a single query to Final. We define the advantage of a (valid)
GAP1l-adversary D in attacking Z with respect to G as

Adv8'EY (S, D) = 2Pr[ExpSE (S, D)] — 1.

We call an GAP1 adversary (t, q¢, g7)-resource if it is t-time and makes at most gg and ¢; queries to Call and
Op respectively. We define the maximum advantage of any r-resource GAP1 adversary (for a given Z,G,S)
as Adv%‘gl(S7 r). Define Adv%?‘?;o’g (S,D) and Adv?{f’éo’g(s, r) in kind. Informally, we say that Z (resp.
(Z',7°)) is GAP1 (resp. GAP2) secure for G if for every efficient GAP1 (resp. GAP2) adversary D there
exists an efficient S such that D has small advantage.

Finally, we say that a simulator is regular for GAP1 (resp. GAP2) if each time it is called with input
context ctz, each of its interface queries have the form (ctz, op, in) for some op,in € {0,1}*. ¢

4.2 The Composition Theorem

An interface Z being GAP1 secure for G means that whatever information an SEC/I adversary learns in its
attack against G it can (efficiently) compute on its own without interacting with the Op oracle. Thus, if 7
is both SEC and GAP1 secure for G, then it should be that Z is also SEC/I secure for G. Relatedly, for
any pair of interfaces (Z!,Z°) and game G, if (Z',Z) is GAP2 secure for G and Z° is SEC/I secure for G,
then Z! is SEC/I-secure for G, too. Theorem 1 makes these claims precise. To support upcoming results in
Sections 5 and 6, we state and prove our composition theorem in the ROM. So, let us first formalize the
ROM in our setting.

The ROM. When modeling a function H : X —) as a random oracle (RO) in an experiment, we declare
an associative array elemy 7[] and a set Q (initially empty) and define three oracles: P, Q, and R. The
last of these is the usual RO: on input of X € X, oracle R checks to see if mx is defined (i.e., mx # ©);
if not, then it samples mx from) according to the distribution induced on Y by H. (Usually) will be
finite and the distribution will be uniform.) Finally, it returns 7x. We call an algorithm gg-ro-bound if it
makes at most gr queries to R during any execution; a game, interface, or simulator is gg-ro-bound if each
of its constituent algorithms is gg-ro-bound. Experiments are lifted to the ROM by providing each named
algorithm oracle access to R. In addition, each query X to R made by the adversary is added to the set Q.

Just as we measure an adversary’s runtime using the experiment in which it is executed, our convention
will be that an adversary’s RO-query budget accounts for all queries to R made by it or any other algorithm

12

(including the simulator) during the course of the experiment. That is, XXX-adversary A is gr-ro-bound
if Exp**(A) is qr-ro-bound. We say an algorithm is (r || gg)-resource if it is r-resource and gg-ro-bound.
(Note that 7 || gr is a tuple, since = is a tuple and ¢g is a singleton.) Let ¢ : {0,1}* x X — {0,1} be a
function. We say that a game G is 1-ro-regular (for the associated experiment) if each of its RO queries X € X
satisfies ¥ («, X), where « is the game context used to initialize it in the experiment. Similarly, we say that
an interface Z is 1-ro-regular if each of Z.0p’s RO queries X € X satisfies 9(ctz, X), where ctz is the
provided context string.

The other two oracles (P and Q) are used to specify additional powers made available to simulators in
security proofs. Oracle P takes as input a pair (X,Y) € X x) and sets 7[X] < Y, allowing the simulator to
“program” the RO. Oracle Q simply returns the set Q of RO queries made by the adversary so far, allowing
the simulator to “observe” the adversary’s RO queries as it makes them.

Joint security in the ROM. We emphasize that P and Q formalize powers of the simulator that are
usually left implicit, but are essential to certain proof techniques [34, 22]. The usual approach to proving
joint security of cryptosystems is to show that the oracle cryptosystem is efficiently simulatable without
knowledge of the secret key. Haber and Pinkas [34] elicit two techniques for doing so in the ROM: the first
requires the ability to observe the adversary’s queries (via Q), and the other requires the ability to program
the RO (via P). We will illustrate the latter. (Note that these techniques are also sometimes applied in the
generic group model [58], cf. [22].)

A Schnorr signature [57] of a message M under secret key s € Z,, over a finite group (G) of order n is a pair
(z,t), where x = r —st (mod n), t = R(rG || M), and r is a random element of Z,,. Valid Schnorr signatures
can be simulated without knowledge of s by choosing random z,t € Z,,, computing R = G + tP, where
P = 5@ is the public key, and setting P(R || M,t). The idea is that, in a security reduction for the target
cryptosystem, an adversary that simulates the RO can program it in this way without significantly changing
the distribution of the RO-query responses. However, when composing the simulator with an adversary in
a security reduction, one must take care to ensure that whatever power the simulator is endowed with is
also available in the reduction. For example, suppose we find a reduction from a problem—say, decisional
Diffie-Hellman (DDH)—to the IND-CCA security of an encryption scheme with key pair (sG,s). If we
want to prove that this scheme is secure in the presence of a Schnorr-signature oracle for s, then the DDH
adversary we construct must have the ability to program the RO. Indeed, this is often the case, as it is here;
the DDH adversary would simply simulate the RO itself. We introduce oracle-relative simulators as a means
of formalizing the requirements of the simulator for composition.

Definition 6 (Oracle-relative simulators). Let O be an oracle in an experiment. An O-relative simulator S
is one for which both the initiator and operator expect oracle access to O; we say that S is ¢-O-bound if each
algorithm makes at most ¢ such queries on any execution. Let X and) be sets and let 1, uo > 0 be real
numbers. In the ROM we say that a P-relative simulator is (11, u2)-min-entropy if for all (X', V") € X x Y
and each query (X,Y) to P, it holds that Pr [X = X’} < 27#1 and Pr[Y = Y’] < 27Hz, ¢

Theorem 1. Let Z' and I° be interfaces, let G be a game, and let H : {0,1}* — {0,1}" be a function
modeled as a random oracle. Let qa,qr1,qr,t,cr,cr,cp,s > 0 be integers such that s = O(t/(q; + 1)), and
let p1, pe > 0 be real numbers such that po < h. Let v = (t,q9¢,q1,9r). Then, for every regular, P- and
Q-relative simulator S that is (s, cr, cr)-resource, cp-P-bound, and (u1, po)-min-entropy, it holds that

(i) AdvyT(r) < e+ AdviE(O(t). e, dr) + AdVEPS(S,7) and

(i) AdvyT(r) < e+ AdviS(0(t), ae. crar. dr) + AdVES, 5(S,7),
where € = (cpqr)(qr/2" "t + 2"+ — 1), ¢r = qr + (cr + cp)(qr + 1), and # = (O(t), qc, a1, 4R)-

We give the full proof in Appendix A.1. Except for accounting for the simulator’s powers in the ROM,
the proof is closely related to [55, Theorem 1]. A few observations about this result are in order. First, we
note that the € term in the bound is only non-zero for simulators that program the RO. Second, it is sufficient
for the domain points programmed by the simulator to be high min-entropy, but the bound is vacuous unless
the corresponding range points are essentially uniform (because of the 2"~#2 term in the expression for ¢).
When the programmed domain points are high min-entropy, neither the game nor the GAP2 distinguisher
is likely to call the RO on the domain points programmed by the simulator. This fact, and the uniformity of

13

programmed range points, allows us to compose the GAP1/2 distinguisher and the simulator S into a new
SEC/I adversary, despite the fact that S may program the RO, but the SEC/I adversary may not. Likewise,
the simulator “observing” the distinguisher’s RO queries is not an issue for this composition.

A necessary condition for Theorem 1(ii). Condition (ii) of the composition theorem characterizes
a sufficient property of (Z',Z°) and G such that it is safe to replace Z° with Z! (GAP2). This tells us,
in particular, what sorts of operations are safe to expose in an API without breaking applications. We
would also like a characterization of what sorts of operations are not safe, i.e., a necessary condition for
Theorem 1(ii). We find that if wGAP2 security (defined below) does not hold for (Z*,Z°), then there are
games G for which Z! is not SEC/I secure, even if Z° is SEC/I secure for G (Theorem 2). We will use this
result to rule out certain API-design choices in the remainder of the paper.

Definition 7 (wGAP2 security). The wGAP2 experiment is defined in Figure 3. A wGAP2 adversary takes
as input a string and outputs a bit and expects access to an interface oracle. Let Z' and Z° be interfaces,
S be a simulator, and D be a wGAP2 adversary. The wGAP2 experiment for (Z!,Z°), S, and D, denoted
Expvzvlgg’(?(s , D), is defined just like the GAP2 experiment in Figure 3, except that D is only executed with
access to oracle Op, and since there is no game context, we remove line 3:20. Define the advantage of D
in distinguishing Z' from Z° with respect to simulator S as AdeIVIg;zIpO2 (§,D) = 2Pr[Exp¥1gf*Ip02 (8,D)] —1.
Informally, we say that (Z',Z°) is wGAP2 secure if for every efficient adversary D, there is an efficient
simulator § such that D’s advantage is small. We say D is (¢, gr)-resource if it is t-time and makes at
most ¢q; queries to Op. ¢

Theorem 2 (wGAP2 is necessary for Theorem 1(ii)). Let Z' and Z° be interfaces, let B be an SEC/I
adversary, and let D be a wGAP2 adversary. There exist a game G, SEC/I-adversary A, and simulator S
such that _ _

AdvIER2(S, D) + AdviE (B) < AdviTE(A).
Moreover, if D is (s, r)-resource, B is (t,qq, qr)-resource, and t = O(s), then A is (O(t),qa,qr + r)-resource
and S is (t,1)-resource.

Note that this result is easily lifted to the ROM. The proof (provided in Appendix A.2) is in the same spirit
as that of [47, Theorem 1], but there are some subtleties. The crux of the argument, which was adapted
from Maurer, Renner, and Holenstein [47], is that the game G is defined using the adversary D so that the
winning condition depends on D doing something “bad” (in particular, outputting 1). This allows us to
relate B’s advantage to D’s. It may be that GAP2 is, itself, necessary, but we know no way of showing it. In
particular, the proof trick we use will not work, because D’s experiment would allow it to call the game G,
which in turn would run D, and so on.

Remark 1. We do not know of a necessary condition for Theorem 1(i). The obvious route of defining a “weak
version” of GAP1 (in the way that wGAP2 is a weak version of GAP2) and adapting Theorem 2 does not
work, since the simulator used in that proof uses its interface oracle in a crucial way. Our sense is that such
a necessary condition would depend on the details of the interface. We will leave addressing this apparent
asymmetry between GAP1 and GAP2 for future work.

5 Discrete Log Interfaces

In this section we bring our framework to bear on a few common operations for discrete log (DL) interfaces.
We first recall some standard definitions from the cryptographic literature and formally define DL interfaces
and signing interfaces.

Preliminaries. Refer to the CDH and GDH experiments in Figure 4. Define the advantage of an adver-
sary A in solving an instance of the computational DH (CDH) problem for G as Adv & (A) = Pr[Exp&it(A)]
and let Adv&dh (t) denote the maximum advantage of any ¢-time CDH-adversary. Define the advantage of an
adversary A in solving an instance of the gap DH (GDH) problem [49] for G as Advédh(A) = Pr[Expédh(A)].
Depending on the group G and the model of computation, it may not be possible to evaluate A’s DDH
queries efficiently; for the purpose of accounting for A’s resources, we will regard the discrete log computa-
tions on lines 4:7-8 as constant time operations. Let Advédh(t,q) denote the maximum advantage of any

14

idh :
R Pyl e R
(Xok) « T.Con() @y 4= Ln b loeo B
Y < ZLn Z 4= Al2G,yG) ¢ < log, C
Z 4 AT (X, yG) ‘ 7 « APPH (3G 0y @) ‘ ret (c = ab)
ret (2 =yX) ret (Z = zyQ)

Figure 4: Let G = (G) be a represented, additive group of order n and let Z be a DL interface for G. Left: IDH
problem for (G,Z). Right: CDH and GDH problems for G.

t-time GDH-adversary that makes at most g queries to its DDH oracle. Informally, we say CDH (resp. CDH)
is hard for G if the CDH (resp. GDH) advantage of any efficient adversary is small.

Define the CR advantage of an adversary C() — elemyxx in finding collisions for function H : X — Y
as Adv{(C) =Pr[X #Y AH(X)=H(Y): (X,Y) %« C()].

Definition 8 (DL and signing interfaces). Let G = (G) be a represented, additive group of order n. A DL
interface for G is an interface Z with an associated scalar computer, a deterministic algorithm Scal(str sk) —
int s such that for every (pk, sk) € [Z.Gen()] it holds that pk = sG, where s = Z.Scal(sk). We say that 7 is
simple if Z.Scal(sk) = s just in case sk = s.

A signing interface DS has an associated deterministic algorithm DS . Verify (str pk, ctz, M, T) — bool v,
called the verifier, for which T' € [DS(sk, ctz,sig, M)] iff DS Verify(pk, ctx, M, T) = 1 for all cte, M,T €
{0,1}* and (pk, sk) € [DS.Gen()]. (This is analogous to the correctness condition for standard signature
schemes.) We may denote DS.Op(sk, ctz,sig, M) by DS.Sign(sk, ctz, M) and refer to DS.Sign as the signer.
We say that a game is DS-regular (for the associated experiment) if each time it invokes DS.Verify, it does
so on input of (pk,«, M, T), where « is the game context used to initialize it and pk, M, T € {0,1}*. ¢

5.1 Diffie-Hellman

Let G = (G) be an additive, represented group of order n. Let Z be a DL interface for G and define Zq4;, as
the pair of algorithms (Z.Gen, Op), where Op is defined as follows. On input of (sk, ctz, op, in), if op = dh
and @ € G, where @ is the element of G U {o} encoded by in, then return s@, where s = Z.Scal(sk);
otherwise return Z(sk, ctx, op, in). We refer to dh as the DH operator. (Note that point validation [45] for
this operation is implicitly enforced by our conventions for represented groups; see Section 2.)

With the help of such a “static DH oracle”, an algorithm devised by Brown and Gallant [19] significantly
reduces the cost of computing discrete logarithms in many finite groups. Given a point P = sG € G and an
oracle that computes s@ for a chosen input @Q € G, their algorithm correctly computes s in O(nl/ 3) time,
where n is the order of G. This is a significant improvement over the O(nl/ 2) complexity of the best known
classical algorithm for solving the discrete log problem [53]. But in order to be able to finish the computation
in this amount of time, their algorithm needs to perform about n'/? queries; thus, choosing a large enough
group may render a key-recovery attack infeasible in practice. However, we can rule out the security of
exposing the DH operation (inadvertently or not) in a given interface as follows. We formalize a property
of Z that, if it holds, implies that (Zyqn,Z) is wGAP2 insecure; by Theorem 2, this implies that Z, gy is
not SEC/I secure in general. We then build on this result by considering whether it is safe to expose some
function of the output (e.g., a hash or key-derivation function); when we model the function as a random
oracle, we find that this is not wGAP2 secure.

Insecurity of exposing DH easily follows from the hardness of a variant of the CDH problem for G
associated with Z. The problem is motivated by the strong DH (SDH) problem proposed by Abdalla,
Bellare, and Rogaway [1]. The SDH problem is similar to CDH, except that in addition to zG,Y € G, the
adversary is given an oracle that, on input of (P, @), returns true iff Q = xP. This is a kind of “restricted”
DDH oracle whereby one of the inputs (zG) is fixed.The interface-relative DH (IDH) problem for (G,Z) is
as follows.

Definition 9 (The IDH problem). Refer to the IDH experiment for G and Z in Figure 4. The experiment

15

first runs Z.Gen to get the public key X and secret key sk. It then chooses a random y € Z,, and runs the
adversary A on input of (X, yG) and with oracle access to Zs;; the adversary wins if it outputs yX. Define
the advantage of IDH-adversary A as Adv"(A) = Pr[Exp{}(A)]. An IDH adversary is (¢, ¢)-resource if
it is t-time and makes at most ¢ queries to its interface oracle; as usual, we denote the maximum advantage

of any r-resource IDH adversary by Adv%&%(r). Informally, we say the IDH problem is hard for (G,Z) if

Adv(i&}i(A) is small for every efficient A. ¢

We will use this problem as a sort of litmus test to rule out insecure API designs. In Section 5.2 we
show (via Theorem 1(i)) that CDH and IDH are equivalent relative to EdADSA, and in in Section 6 we show
that GDH and IDH are equivalent relative to Noise. To prove that hardness of the IDH problem for (G,Z)
implies the wGAP2 insecurity of (Zian,Z), we exhibit a wGAP2 adversary D such that in order for any
simulator S to thwart D, it must solve an instance of IDH for (G,T).

Theorem 3. Suppose that n is prime and let t,q; > 0 be integers. There is a (O(t),1)-resource wGAP2-
adversary D such that for all (t,qr)-resource S, there is a (O(t), qr)-resource IDH-adversary A such that
Advy®PL(S,D) =1 — Advidh(A).

Proof. Define adversary D ©P(P) as follows. First run r «— Z¥, then ask Z «— Op(e,dh,rG). If r~1Z = P,
then return 1; otherwise return 0. Let dp; denote the probability that D outputs 1 conditioned on the event
that its challenge bit is b. First, if b = 1, then the response to D’s query will be Z = srG, where P = sG.
Since n is prime, r has a unique inverse 1/r (mod n), and so 771Z = r~tsrG = sG = P. It follows that
di; = 1. Now consider the probability that »~'Z = P given that b = 0 and define adversary A°(P,Q)
as follows. It first executes o «— S.Init(P), then Z « S9(vo,e,dh,Q). Finally, it returns Z. Then
the probability that A wins is precisely the probability that, in D’s game, simulator S outputs Z such
that r='Z =P <= rP = Z, and so do; = Pr[ExpE}(A)]. O

Functional DH. Many applications do not make direct use of static DH, but some function of its output.
In particular, it is common to apply a hash or key-derivation function to the shared secret, perhaps binding
it to some context, e.g., the transcript hash in TLS or, as we will see, the CipherState in Noise. Therefore,
it is worth considering whether exposing this intermediate functionality is secure.

Let F : G x {0,1}* — {0,1}" be a function. Define the interface Z ¢ as the pair of algorithms
(Z.Gen, Op), where Op is defined as follows. On input of (sk, ctz, op,in), if op = fdh and @ € G, where Q
is the element of G U {¢} encoded by in, then return F(sQ, ctz); otherwise return Z.Op(sk, ctz, op, in). We
call op = fdh the functional DH operator.

Exposing functional DH is also wGAP2 insecure. The proof is more involved, but follows similar lines
as Theorem 3. We cannot directly exploit the algebraic structure of the DH operator as we did above, since
rather than getting s@ in response to its query, adversary D gets F(sQ, ctz). Instead, we model F as a
random oracle and hope that the simulator manages to query the oracle with the correct point. We prove
the following in Appendix A.3:

Theorem 4. Suppose that n is prime and let t,qr,qr > 0 be integers. When F is modeled as a random
oracle, there is a (O(t),1,1)-resource wGAP2-adversary D such that for all (t,qr,q)-resource, P- and Q-
relative, and p-P-bound S, there is a (O(t + q), q1)-resource IDH-adversary A such that

Advgfjdffz(s, D) +e>1— Advif}(A),
where I is 0-ro-bound, € = §/n + ¢*/2"~1, and ¢ = 2(q + p).

Discussion. The existence of a static DH oracle in an interface can be difficult to recognize, and its impact
on security is often quite subtle. Acar, Ngyuen, and Zavarucha [3] discovered that an early version of the
TPM standard exposed such an oracle via flexible APT calls designed to support a wide variety of protocols.
Indeed, a rigorous analysis of the standard in our attack model would have unearthed this subtlety. It would
be worthwhile to study the proposal of Camenish et al. [20], which aims to remove the TPM oracle while still
supporting a large variety of useful applications. More generally, we suggest that the approach developed
in this paper could be used to vet API standards before they are implemented to help uncover such flaws.
Though the problem with TPM was obvious in hindsight, it is possible that more flaws lurk in this and other
API designs.

16

Gen() Scal(K)
K 4 {0,1}%; s « Scal(K) ret cl(H(K)[:b])
ret (sG, K) Sign (K, ctz, M)
Verify (pk, ctz, M, T) dec r,teN
dec P,ReG; z,t €N s+ Scal(K); X < H(K)[b+ 1:]
P pk; Rox T Ty < H(vr(ctz) || X || ph(M))
if ~RV —z then ret 0 to, < H(vr(ctz)||rG | sG | ph(M))
toy, H(vr(ctz)||R|| P || ph(M)) Zz 7+ st (mod n)
ret (z2°G =2°R+12°P) ret 1G.x

Figure 5: Signing/DL interface ED for EADSA. Let b,c € N and let G = (G) be a represented, additive group of
order n. Let H : {0,1}* = {0,1}?®, ¢l : {0,1}* — Z, \ {0}, and wvr, ph : {0,1}* — {0,1}* be functions.

5.2 EdDSA

Unlike signature schemes like RSA-PSS or ECDSA, the standardized version of EADSA (RFC 8032 [35])
admits variants that are context separable, allowing us to prove it GAP1 secure (in the ROM) for any game
in which all signing and verifying operations are regular (Def. 8). We also show that any variant can be
securely composed with any simple DL interface. After presenting our results, we will make the case for
designing and deploying context-separable signatures in practice.

The standard specifies two concrete instantiations of EADSA: Ed22519 and Ed448, whose names indicate
the underlying group. The signing interface £D defined in Figure 5 specifies generic EADSA; a concrete
scheme is instantiated by selecting the group G, integers b and ¢, and functions H, cl, vr, and ph. The group
is determined by a prime number p > 2, parameters for a (twisted) Edwards curve E (see [14, Section 2]), and
a generator G of a prime order subgroup of E(F,), where E(F,) denotes the group of points (z,y) € F, xF,
that lie on the curve E, and F, denotes the finite field of order p. Define b so that 2°~! > p and define ¢
so that #E(F,) = n2¢ (i.e., 2¢ is the cofactor of G). This choice of b makes it possible to encode signatures
with 2b bits, and this choice of ¢ is intended to mitigate small subgroup attacks [45]. The “clamping”
function ¢l is similarly tailored to the underlying group: for Ed25519 and its variants, this function clears
the first 3 bits, sets the second to last bit, and clears the last bit. (This ensures that s = 225 4 8z for a
uniform random = € Zgy2s:.) Finally, the algorithm variant is determined by the functions vr and ph. For
example, the most common Ed25519 variant is obtained by setting vr(X) = ¢ and ph(X) = X for all X,
but the standard also specifies variants that permit context (Ed25519ctx) and pre-hashing of the message
(Ed25519ph). To provide context separability, the function vr must be collision resistant.

We begin our analysis by proving that the context-separable variants of EADSA are GAP1 secure in
the ROM for games in which the signing and verifying operations are regular (Theorem 5). The upcoming
Corollary 1, which follows from Theorem 1(1) and Theorem 5, combined with the straightforward result that
IDH implies CDH, gives a qualitative equivalence between CDH and IDH in terms of the security of (any
variant of) EADSA. We will then show that exposing any variant of EADSA in any simple DL interface is
GAP2 secure in general (Theorem 6). Fix EADSA parameters (G, H, cl, vr, ph, b, ¢) and let ED be the signing
interface instantiated with these parameters as specified in Figure 5. Let n = |G]|.

Theorem 5. Let G be an (ED-)reqular game and suppose that n < 2°~1. When H is modeled as a random
oracle, there exists a reqular, P-relative simulator S such that for all t,qq,qr,qr,c > 0 there exists a
O(t+ qrqr)-time CR-adversary C such that Advgapl ¢(S,7) < 2cqrAdvs; (C) +6qrqr/n, where G is c-bound,
S is (logn/2,2b)-min-entropy, (O(t/(qr +1)),1 0) -resource, and 1-P-bound, and r = (t,q¢,qr1,qR)-

Refer to Appendix A.4 for the full proof. The simulator programs the random oracle with valid EADSA
signatures much like one would for Schnorr signatures. (See the discussion in Section 4.2.) We must ensure,
however, that signatures programmed by the simulator cannot be used by the adversary in an attack against
the game G. To do so, we use the collision resistance of vr to bound the probability that any interface query
made via Call coincides with an interface query made via Op. For this argument to work, we must require
that G is (£D-)regular.

17

If the game in Theorem 5 makes no interface queries (i.e., is 0-bound), then CR security of vr is not
required. This allows us to prove equivalence of IDH and CDH regardless of how vr is realized. The following
corollary follows almost immediately from Theorems 1(i) and 5.

Corollary 1. Let r = |[Rngcl| and suppose that r|2° and n < 2°~1. Then for all t,q;,qr > 0 it holds
that Advg)hgp(t,ql,qR) < n/rAdvi®(O(t + §)) + Tqrqr/n, where H is modeled as a random oracle and
§=qr+aq +1.

Proof. Let A be a (t,qr,qr)-resource IDH adversary and consider the following game G°: on input of
(P, ctz), the initiator ignores ctz, samples y «— Z,, and returns (P, yP,yG); the caller simply returns L
in response to any query; and on input of (P.Z,Z*), the finalizer returns (Z = Z*). Now consider the
following (O(t),0, g1, gr)-resource SEC/I-adversary A’: On input of P, adversary A’ queries @ — Init(e),
runs Z* «— A9P(P,Q), queries Final(Z*), then halts. It is clear that A’ perfectly emulates A in the IDH

experiment relative to £D, and so Adv('}g}:‘gp (A) = Advzﬂeg/igcdh (A").

By Theorem 1, Theorem 5, and the assumption that n < 2°~!, there exists a (O(t),0,0,q + qr + 1)-

resource SEC/I-adversary B’ such that Advzeg{lgcdh (A') < Tqrar/n + AdvEs gean(B'). In the remainder, we
relate the advantage of B’ to the hardness of the CDH problem for G.

Observe that B’s experiment only uses D for key generation, since neither G nor B’ makes use of
the operator. Consider the following CDH adversary B. On input of (P,Q), it first executes Z «— (B':
Init’,Final’, 1, 1, R)(P), where the oracles are defined as follows: oracle R is its own RO; on input of ctz,
oracle Init’ returns Q; and on input of Z* to oracle Final’, adversary B halts and outputs Z*.

To complete the proof, we argue that B perfectly emulates B’ in its experiment if the scalar s corresponding
to its input P happens to fall in the range of cl. In B"’s experiment, the scalar s is equal to cl(R(K)[:b]).
Since 7[K] is determined by the RO query made by the key generator (the key generator is the first algorithm
in the experiment to be executed with access to the RO), we may treat R(K)[:b] as a random variable V
uniformly distributed over {0, 1}%. Because r divides 2°, function ¢l partitions its domain into r sets of equal
size. It follows that ¢I(V') is uniformly distributed over Rng ¢l. Conditioning on the event that s € Rng ¢l

in B’s experiment, we conclude that Adv&®(B) > r/nPr [Exp;e;{lgcdh(li’)]. O
Remark 2. For both Ed25519 and Ed448 the order of the main subgroup is less than 2°~! [35]. Moreover,
function ¢l is specified so that |[Rngcl| = 2% for some a < b, and so the number of distinct points in the
range divides 2°. The multiplicative factor n/2% is small for both algorithms. Function vr is only CR secure
for Ed25519ctx and Ed448ctx, and only so for a finite set of inputs: wvr is injective for these variants, but
the standard imposes a maximum length on the context string. Therefore, to apply Theorem 5 directly to
the standard, it is necessary to limit the adversary’s queries in kind.

Finally, we show that EADSA can be composed with any simple DL interface Z without affecting the
security of Z’s intended application. Let Z be a simple DL interface for G. We define a new interface ED 7 =
(ED.Gen, Op), where on input of (sk, ctz, op, in), algorithm Op returns £D.Sign(sk, ctz,in) if op = sig and
returns Z.0p(s, ctz, op, in) otherwise, where s = £D.Scal(sk).

Theorem 6. Let G be a game and suppose that n < 2°~1. When H is modeled as a random oracle, there exists
a regqular, P-relative simulator S such that for allt, qa, qr, qr > 0 it holds that Adv%%pleyg(& r) < 7qrqr/n,
where S is (logn/2,2b)-min-entropy, (O(t/(qr + 1)), 1,0)-resource, and 1-P-bound, and r = (t,q9¢,q1,49R)-

The restriction to simple interfaces is so that we can achieve context separation in the proof without using
collision resistance of vr. The argument leverages the fact that Z does not make use of the string X computed
by the signer. Otherwise the proof is closely related to Theorem 5; we defer the details to to Appendix A.5.

Remark 3. While most signatures are not GAP1 secure (context separability is not a common design pattern
in signature schemes), it is likely that exposing many of them in an interface is GAP2 secure for large classes
of games. Haber and Pinkas [34] exhibit a programming simulator for RSA-PSS that is high min-entropy
in the sense required by Theorem 1. Degabriele et al. [22] show how to simulate ECDSA signatures in the
generic group model; in the ROM, techniques of Fersch, Kiltz, and Poettering [29] may be applicable to
ECDSA.

18

Discussion. The restrictions imposed on the game in Theorem 5 and the interface in Theorem 6 are very
mild, but are required for context separability. If the game encodes the UF-CMA security of €D, then
this ensures that a signature generated via the interface cannot be used as a forgery in the game. But
this “attack” is rather uninteresting and is only an artifact of our model. On the other hand, the game
might specify the use of a signature scheme in a complex protocol like TLS in which digital signatures have
a variety of uses, including client and server authentication and delegation of credentials for terminating
TLS on a party’s behalf [7]. In each of these cases the protocol binds the signature to a unique context
string identifying its use (e.g., [54, Section 4.4.3]). Our abstraction boundary makes the requirements for
such applications explicit. Because Ed25519ctx and Ed448ctx are context separable, Theorem 5 makes clear
the conditions under which these algorithms are secure for their intended application, no matter how else
they are used: the implementer must ensure that (1) the interface enforces context separation, and (2)
signing /verification operations in the application always use the context that identify the application. We
believe that exploiting this property of context-separable signatures would reduce the inherent complexity
of designing and deploying protocols. (Indeed, it is also not difficult to design signature schemes to have this

property.)

6 Noise

In this section we consider the GAP1 security of Noise [52], a framework for designing DL-based, two-party
protocols. Noise provides a set of rules for processing handshake patterns, which define the sequence of
interactions between an initiator and responder in a protocol. The processing rules involve three primitives:
Diffie-Hellman (DH), an AEAD scheme, and a hash function. Each message sent or received by a host
updates the host’s state, which consists of the host’s ephemeral (i.e., short-lived) and static (long-lived)
secret keys, the peer’s ephemeral and static public keys, shared state used to derive the symmetric key
and associated data, the current symmetric key, and the current nonce. The symmetric key, nonce, and
associated data are used to encrypt payloads accompanying each message, providing implicit authentication
of a peer via confirmation of knowledge of their static secret.

Noise admits a wide variety of protocols. The processing rules are designed to make it easy to verify
properites of handshake patterns, and considerable effort has gone into their formal analysis [25, 37, 46].
But the study of handshake patterns in isolation does not fully address the complexity of using Noise to
build and deploy protocols. In practice, it is often necessary for the communicants to negotiate the details
of the handshake, including the pattern, primitives, and cryptographic artifacts such as static keys and their
certificates. All of this is out of scope of the core Noise specification, which aims to be as rigid as possible.
As a result, there is an apparent gap between our understanding of the security that Noise provides and how
it might be used in practice. One question that arises, which we will address here, is whether it is safe to
reuse a single static key in many patterns.

We cast the Noise framework as an interface that exposes a host’s static key for use in Noise protocols.
The interface specifies how the host consumes (resp. produces) messages sent by (resp. to send to) the peer,
and how its handshake state is updated as a side-effect. In other words, it implements the processing rules
such that Noise patterns can be executed by making calls to the interface. Our goal is to prove GAP1 security
with respect to the largest possible set of games, which would provide two benefits in practice. First and
foremeost, it would imply joint security (up to context separation) of all patterns the interface implements;
second it would provide a degree of robustness to cross protocol attacks by ensuring that, as long as context
separation is enforced, vulnerabilities in one application cannot creep into another.

Our analysis sheds light on two limitations of Noise with respect to our security notions. The first is
that some handshake patterns, if implemented by our interface, would allow for GAP1 attacks. We provide
a formal characterization of the actions that give rise to these attacks, and we prove GAP1 security of our
interface when they are excluded. The second issue is more subtle. To prove GAP1 security with respect to
games in which the adversary may compromise the handshake state—for example, when modeling forward
secrecy—it is necessary to tweak the Noise spec slightly. The processing rules explicitly bind the protocol
context (i.e., a string that uniquely defines the handshake pattern and parameters) to the initial state of
the protocol. While this provides a certain degree of context separability, the lack of binding to each state
update precludes a proof of security relative to such games. We propose a simple and efficient modification

19

Exp 5™t (A) Dec(N, A, C)
dec set Q,C; str K; bool win if (N,A,C) € C then ret L
K « K; AEre:Dee: ret win M + AE.Deci(C)
win < win V (M # 1)
Enc(N,A, M) ret M
if N € Q then ret L
C <+ AE.Enci?*(M); C + CU{(N,A,C)}
Q<+ QU{N};ret C
NN: NK: NX: IKpsk2:
— e, «— s — e — s
— e, ee «— e, ee s, es
— €&, es — e, €s,S, ss
< e, ee < e, ee, se, psk

Figure 6: Top: INT-CTXT for AEAD scheme AE with key space K. Bottom: Examples of Noise handshake patterns.

of the processing rules that ensures context separability under these conditions, allowing us to prove security
under minimal (and natural) assumptions about the game.

Of course, a consequence of these restrictions is that our analysis leaves open the security of key reuse
in Noise as it is. At the end of this section, we will discuss what our results mean for Noise in practice and
suggest directions for future work.

Preliminaries. Our analysis will use the standard notion of ciphertext integrity of AEAD schemes. A
scheme for authenticated encryption with associated data (AEAD) is a pair of deterministic algorithms AE =
(Enc,Dec). The first, Enc(str K, N, A, M) — str C, maps a key K, nonce N, associated data A, and
plaintext M to a ciphertext C. The second, Dec(str K, N, A,C) — str M, maps K, N, A, and C to M. We
respectively define the key, nonce, associated-data (AD), and message space as the sets K, N, A, M C {0,1}*
for which Enc(K, N, A, M) # L if and only if (K, N,A,M) € K x N’ x A x M; correctness requires that
Dec(K,K,N, A, Enc(K,N, A, M)) = M for every such (K, N, A, M). (This condition implies that AE is
both correct and tidy in the sense of Namprempre, Rogaway, and Shrimpton [48].) We say that AE has
key-length k if K = {0, 1}* and nonce-length n if N = {0, 1}". We will use the standard notion of ciphertext
integrity (INT-CTXT) for AEAD schemes in the presence of nonce-respecting adversaries; refer to Figure 6
for its precise definition. Define the advantage of an adversary A in breaking the ciphertext integrity of AE
as AdviE™(A) = Pr[Exp'i5™(A) |. Let Adv35°™ (¢, qp, qp) denote the maximum advantage of any
t-time adversary making at most gg (resp. gp) queries to Enc (resp. Dec).

6.1 Handshake and Message Patterns

By way of eliciting the formal tools we will need in our analysis, we begin this section with a brief overview
of how handshake patterns are specified. Figure 6 recalls four patterns from the standard [52]. The first,
referred to as the “NN” pattern, encodes an unauthenticated DH key exchange as a sequence of handshake
messages, which in turn encode sequences of tokens. In the first message (— e) the initiator generates an
ephemeral DH key pair and sends the public key to the responder. In the next handshake message (+ e, ee),
the responder generates an ephemeral key pair (e), computes the DH shared secret and derives a symmetric
key (ee), then sends the ephemeral public key in its response. Every message includes a possibly AEAD-
encrypted payload. Encryption is opportunistic. Once a shared secret is established, everything that can be
encrypted will be encrypted; if the caller does not provide a payload, then the payload is the empty string.

The NK pattern is a variant of NN that provides authentication of the responder. The main difference is
an additional message preceding the ellipses (+ s) indicating that the responder’s static public key is known
to the initiator before the protocol begins. In its first action, the initiator computes the shared secret between
this and its ephemeral secret (es) and uses it to encrypt the message payload. This has two effects: first, the
initiator proves knowledge of the shared secret to the responder; and second, the responder authenticates
itself by proving knowledge of the shared secret to the initiator. These properties are due to the sequence
of actions induced by the pattern; if decryption fails, then this indicates that the sender does not know the

20

Gen() Op(sk, ctz, op, in)

K « {0,1}® dec st hs; msg req; bool f, r; str u, pat, err
s+ c(K) s < Scal(sk); o, f. T, pat < op; hs,in < in
ret (sG,s) if o # noise V hs.id # vr(ctz) V |hs.L| # hV

|hs.psk| € {u+ 8,h + u+ 8} then ret L
if f then //outbound payload

dec struct { (resp, err) «— Write(zhs, s, , pat, in)
str P, E,S } msg if —err then ret hs, resp,¢

dec struct { str id, psk; else req < in //inbound message
int seq; str K, N; // CipherState (out, err) «— Read(¢hs, s, r, pat, req)
str L, A; //SymmetricState if —err then ret hs, out.o
Q,ReG;e€Zy, }st if err ret o, 0, err

Figure 7: Simple DL interface A for Noise. Let G = (G) be a v-encoded, additive group of order n and let h,b,u > 0
be integers such that v & {u 4+ 8,h + u + 8}. Let cl : {0,1}* = Z, \ {0} and vr : {0,1}* — {0,1}* be functions.
Procedures Write and Read are defined in Figure 8.

correct shared secret. This works because each key derivation depends on all shared secrets computed in the
protocol so far.

The NX pattern is similar except that the public key is transmitted to the initiator during the handshake,
rather than out-of-band. For our purposes, the significant difference between NK and NX is that, in the
former pattern, the initiator confirms knowledge of the shared secret before the responder consumes the
message and produces its response. On the other hand, in the NX pattern the initiator can send an arbitrary
element of the DH group as its ephemeral key and observe a valid response without demonstrating knowledge
of its discrete logarithm. This leads to information leakage beyond what is learned by honest initiators (that
is, for computationally bounded attackers). It is akin to providing the adversary with a functional DH oracle,
which enables an attack against the GAP1 security of the interface; as we did in Theorem 4, one can exhibit
a distinguisher that gets high advantage if the IDH problem is hard for the underlying group. (More on
this attack in the next section.) To reason about this attack in our analysis, we require an abstraction for
handshake patterns and the actions they induce.

Definition 10 (Patterns, actions, and tokenizers). A handshake pattern is a sequence of message patterns
that specify the sequence of tokens processed when producing or consuming a message. A message pattern
is a string that can be parsed by a tokenizer, which determines the set of valid actions. A tokenizer is a
deterministic algorithm 7 (bool f, r, str pat) — tup ¢, str err. String pat is the message pattern, f indicates
whether or not the host is producing a message, and r indicates whether the host is the initiator. The outputs
are a tuple t comprised of the sequence of tokens to be processed and a string err indicating whether an
error occurred. A valid action for 7T is a triple (f, r, pat) for which err = o, where (¢, err) = Tz(r, pat). We
say that 7 has action count € if |t| < ¢ for every valid action (f,r, pat).

A token action is a triple (f,r,t) € {0,1} x {0,1} x {0,1}*. We say that a tokenizer T includes a set of
token actions X if for each (f,r,t) € X the following is true: there exists a valid pattern pat for 7 such that
t =t; for some 1 < ¢ < |t] and (¢, err) = T¢(r,t). If this condition holds for no such token action, then 7
excludes X . ¢

Remark 4. Our notion of message-pattern validity (relative to a tokenizer) is not rich enough to account
for all handshake-pattern validity rules in the Noise specification [52, Section 7.3]. In particular, while we
can say what it means for an action to be valid, our abstraction cannot account for the (in)validity of a
sequence of actions. For example, the spec only permits the use of one ephemeral key and one static key per
handshake, but this rule cannot be enforced by 7. Nevertheless, this definition is sufficient for what we aim
to prove in the current work.

6.2 The Interface

The interface is specified as the composition of a tokenizer and the DH, AEAD, and hash primitives. Let G =
(G) be a v-encoded, additive group of order n, and fix integers k,n’, h, b, u > 0 such that v & {u+8, h+u+8}.

21

(The core spec mentions groups Curve25519 and Curve448 [52, Section 12], but other groups are permitted
and used in practice.) Let AE be an AEAD scheme (either AES-GCM or ChaCha20-Poly1305) with key-
length k and nonce-length n’. Let cl : {0,1}* — Z,,\ {0}, vr : {0,1}* — {0,1}*, and H : {0,1}* — {0,1}" be
functions. Function # is a hash function (either SHA2 or BLAKE2) that will serve multiple purposes, one of
which is to derive symmetric keys using HKDF [38]. We will ignore the details of HKDF in this section and
simply denote key derivation by a function F : ({0,1}*)3 — ({0,1}")3 that maps an “information” string id,
a “salt” X, and input key material Y to a triple of h-bit strings F(id, X,Y). We will model F as a random
oracle in our analysis; in Appendix B we address the implications of this modeling choice.

The high-level specification. Figure 7 specifies our Noise interface A/ at a high level and defines structures
st and msg for the handshake state and messages respectively. The key generator A.Gen chooses a random,
b-bit string K, sets s « cl(K), and returns (sG, s). (Thus, A is simple in the sense of Def. 8.) Function cl
serves the same purpose as cl in our specification of EADSA; it maps a bit string of a particular length to
a suitable scalar s for use with the given group. (This captures the behavior of the X25519 and X448 DH
functions [43] as they are used in Noise.) The key operator N'.Op is defined in terms of two procedures:

e Read(sst hs,int s, bool r, str pat, msg req) — str out, err. Called when consuming an inbound mes-
sage. It takes as input the static key s and processes the action (0, r, pat) on the message req and
current handshake state hs. It outputs a payload out.

e Write(ust hs, int s, bool r, str pat, in) — msg resp, str err. Called when producing an outbound mes-
sage. It takes as input the static key s and processes the action (1, r, pat) on the payload in and current
handshake state hs. It outputs a message resp.

Read and Write are defined (Figure 8) in terms of T, A€, F, and H. The operand encodes the current
handshake state hs and the input in, and the operator op encodes an action (f,r,pat). If f =1, then the
host interprets in as a payload to send to its peer in its next handshake message; it calls Write and returns
the updated state and outbound message. If f = 0, then the host interprets in as a message sent by the
peer; it calls Read and returns the updated state and inbound payload.

Context-to-action binding. The context ctz is bound to the handshake state via a field hs.id, which
should be equal to vr(ctz) (7:12). We will call this the handshake identifier. Each call to F made by either
Read or Write uses hs.id as the label. In this way, interface N binds the string hs.id = vr(ctr) to each key
derivation, thereby binding the context to the action being performed. We call this contezt-to-action binding.
This differs from Noise as it is, which uses an empty string as the information string for key derivation via
HKDF (see [52, Section 4.3]). (Formally, the processing rules as they are specified are recovered by defining
vr(ctz) = e for all ctz.) Noise binds the context to initialization of the handshake state (see [52, Section 5.3]),
but action binding is required in our attack model in order to provide context separation when the game
leaks its internal handshake state to the adversary. We will discuss the issue that arises in Section 6.3.

The low-level details. Procedures Read and Write are defined in Figure 8. Both begin by computing the
sequence of tokens ¢ from the action (f, 7, pat) via T. The tokens are then processed in order, updating the
handshake state as a side-effect. Once all of the tokens have been processed, procedure Write “encapsulates”
the outbound payload and attaches it to the outbound message; procedure Read “decapsulates” the inbound
payload attached to the inbound message and returns it. (We will define “capsulation” in a moment.)
Available tokens are e, s, ee, es, se, ss, and psk. The token-processing rules are specified by procedures rTok
and wTok (invoked by Read and Write respectively). Messages have three components (7:5): the payload
blob, the ephemeral key blob, and the static key blob. On token e, the reader interprets the ephemeral key
blob as the peer’s ephemeral public key hs.R (8:9), and the writer generates an ephemeral secret key hs.e
and uses (hs.e)G as its ephemeral key blob (8:37). On s, the reader decapsulates the static key blob in
the inbound message (8:11), and the writer encapsulates its static public key sG and adds the blob to the
outbound message. The remaining tokens update the symmetric key state (hs.L) and key (hs.K) and reset
the nonce (hs.N) as specified by mKeyTok. All key-update tokens but psk perform a DH operation; psk mixes
a pre-shared symmetric key (hs.psk) into the state. All tokens but the DH operations update the shared
hash state (hs.A) via mHash, which is used as associated data when encrypting or decrypting. Encryption is
opportunistic; if Cap is called and hs.K is set, then the input is encrypted if f = 1 and decrypted otherwise;
if no key is set, then the input is passed through in plaintext. The nonce is incremented after encrypting

22

Read (st hs,int s, bool 7, str pat, msg in)
dec str out; int 4
(t, err) < To(r, pat)
while —err AP < |t| do i i +1
err < r'Tok(zhs, in, s, r, t;)
if err then ret (out, err)
(out, err) <— Capo(zhs, in.P)
ret (out, err)

rTok(zst hs, msg in, int s, bool r, str)
switch (¢)
case e: hs.R + in.F
ret mHash(«¢hs, in.E)
case s:
(X, err) « Capo(&hs, in.S)
hs.Q + X
ret err
ret mKeyTok(zhs, s, r,t)

Cap(bool f, zst hs,str X)
if —hs.K then ret (X, mHash(zhs, X))
(K, A) < (hs.K,hs.A); N < hs.seq,,
if f then Y < AE.Enc(K,N, A, X)
else Y + AE.Dec(K,N, A, X)
if Y = L then ret (o,err_cap)
mHash(¢hs,Y); ret (Y,iNonce(¢hs))

iNonce(zst hs)
if hs.seq > 254 — 1 then
ret err_nonce
hs.seq < hs.seq + 1; ret ©

mKeyPSK (ust hs, str psk)
if —hs.psk then ret err_psk
(hs.L,L', L") + F(hs.id, hs.L, psk)
hs.K < L"[:k]; hs.seq < 0
ret mHash(zhs, L)

Write(ust hs, int s, bool r, str pat, in)
dec msg out; int i
(t, err) < T1i(r, pat)
while —err At < |t do i i+ 1

err «— wTok(zhs, zout, s, r,t;)

if err then ret (out, err)
(out.P, err) < Capi(zhs,in)
ret (out, err)

wTok (zst hs, emsg out, int s, bool r, str ¢)
switch (¢)
case e: (out.E, ek) «— Gen()
hs.e « Scal(ek)
ret mHash(¢hs, out.E)
case s:
(out.S, err) < Capi(zhs, sG)
ret err
ret mKeyTok(«hs, s, r,t)

mKeyTok(¢st hs, int s, bool r, str t)

Yo < hs.Q; Y1 < hs.R

To < S; 1 < hs.e

switch (t)
case psk: ret mKeyPSK(«hs, hs.psk)
case ee: ret mKeyDH (zhs, 21, Y1)
case es: ret mKeyDH (¢hs, z,,Y1—r)
case se: ret mKeyDH (¢hs,z1-r,Y:)
case ss: ret mKeyDH(%hs, zo, Yo)

ret err_token

mKeyDH (ust hs, int z, elemgY')
if —2 vV —Y then ret err_dh
(hs.L,L', L") + F(hs.id, hs.L,xY)
hs.K < L'[:k]; hs.seq < 0; ret o
mHash (zst hs, str X)
hs.A < H(hs.A|| X); ret ¢

Figure 8: Low-level procedures for specifying A/ (Figure 7). Let k,n’,h > 0 be integers such that h > k. Let T be
a tokenizer, let AE be an AEAD scheme with key-length & and nonce-length n’, and let H : {0,1}* — {0,1}" and
F: ({0,1})® — ({0,1}")? be functions.

or decrypting (8:21). When encapsulating (resp. decapsulating), the output (resp. input) is mixed into the
hash state via mHash. We refer to this process as capsulation.

A GAPI1 attack against any NX-capable interface. Since the static secret is only ever used for DH,
we could have simply exposed mKeyDH (8:53-55) directly and left the rest of the processing logic to the
application (i.e., the game). Specifying as much processing logic as we have reflects a need to carefully
“wrap” this DH operator so that the interface does not give rise to a static DH oracle in our attack model.

Recall the NK pattern discussed in Section 6.1. The responder implicitly authenticates itself to the
initiator by transmitting a ciphertext encrypted under the correct symmetric key; in our security analysis,
we will need to exhibit an algorithm that simulates an interface performing this action without knowledge
of the static secret. We will do so by modeling F as a random oracle and have the simulator reconstruct
the correct key from the adversary’s RO queries. For this argument to work, it is crucial that the initiator
(i.e., the adversary) “proves” knowledge of the shared secret by, for example, encrypting the payload and
attaching it to its message.

23

NX is an example of a pattern in which the initiator need not prove knowledge of the shared secret. A
GAP1 attacker against A can learn F(vr(ctz),u,sR) for any R € G and ctz it wishes and wu for which it
does not control, but can compute from the interface’s response. Consider the following GAP1 distinguisher
against an NX-capable interface. (It is similar to the wGAP2 distinguisher in Theorem 4.) The distinguisher
first generates an ephemeral key pair (E,e) «— Gen() and sends a message with the public key to its Op
oracle just as it would send the first message to the responder in the NX protocol. Let hs, resp, err denote
the reply. Given e, the public key P, and the contents of the response resp, the distinguisher can easily
determine if resp.P is a ciphertext encrypted under the correct symmetric key. It does so as follows. Let hs
denote its handshake state prior to consuming the message. Run err < rTok(¢hs, resp, <, 1,t) for each ¢ in
(e,ee,s,es). If err # ¢ at any point, then guess 0; otherwise guess 1. If the oracle’s response is well-formed,
then it is equivalent to running hs.A < H(hs.A| resp.E); R + resp.E; (hs.L,L’',*) < F(id,hs.L,eR);
hs.A < H(hs.A| resp.S); Q + AE.Dec(L'[k:],0™, hs. A, resp.S); (hs.L,L’,+) + F(id, hs.L,eQ); and M +
AE Dec(L'[k:],0™hs. A, resp.P).

We claim that, when F is modeled as a random oracle and A€ is INT-CTXT secure, the only way for the
simulator to thwart this distinguisher is to solve the IDH problem for G relative to our NX-capable interface.
(We will not prove it, as the details are closely related to Theorem 4.) The “unsafe” action (with respect
to GAP1) is handing the interface a DH public key without proving knowledge of the corresponding secret.
Related attacks are possible against any interface that induces this action. In the next section, we will prove
that it suffices to exclude a small number of token actions.

Other design notes. Our interface assumes a fixed choice of parameters, and so it is not possible to
negotiate these with our interface. As a result, our analysis does not address the issue of cryptographic
agility [2], particularly as it pertains to the set of AEAD schemes that can be negotiated. We remark that
the processing rules prevent the use of the same key with two different AEAD schemes by binding the name
of the scheme to the initial state, but our analysis does not address this mechanism. Not addressing agility
was a conscious choice made to focus the exposition, but which future work must address.

The operator A.Op requires that |hs.L| is equal to h and that |hs.psk| is not equal to u+ 8 or h +u+ 8
(see 7:12-13). These requirements, as well as the restriction of the range of vr to w-bit strings and the
requirement that elements of G are encoded as v-bit strings (where v is not w4 8 or h+ u+ 8), are imposed
in order to be able to use the indifferentiability of HKDF from a random oracle. We refer the reader to
Appendix B for details.

Lastly, our interface only encompasses a subset of the validity rules for Noise. We only include those
rules that are essential to the security goals in the current work, which we emphasize are orthogonal to the
security goals of particular protocols (i.e., (mutual) entity authentication or authenticated key exchange,
forward secrecy, etc.). Validity rules that are needed to achieve these goals would be enforced by the game.

6.3 Security

Interface N is GAP1 secure for any game G subject to the following restrictions. First, the tokenizer must
exclude any write action involving DH on the static secret. (It may, however, read messages that depend on
the static secret.) And second, each time G invokes F on an input (id,u,v) it must hold that id = vr(a),
where « is the game context.

Fix Noise parameters (G, AE, T, H, F, cl,vr, k,n’, h,b,u) and let A be the DL interface instantiated with
these parameters as specified in Figure 7. Let n = |G| and let X = {(1,0,es), (1,0,ss), (1,1,se), (1,1,ss)}.
Define v : {0,1}* x ({0,1}*)3 — {0, 1} as the map (ctz, (id,u,v)) — (vr(ctz) = id).

Theorem 7. Suppose that n is prime. Let G be a reqular game and suppose that T is X-excluding and
has action count £. Let DDH be as defined in Figure 4. When F is modeled as a random oracle, there
exists a reqular, DDH- and Q-relative simulator S such that for all t,qq, qr,qr,c > 0 there exists a t-time
CR-adversary C such that

Advi?f’gl (S,7) < 2¢qrAdvS(C) + 2£q1AdviA“t5'CtXt(f, 0,qr),

where G is c-ro-bound and Y-ro-reqular; AE, T, H, cl, and vr are 0-ro-bound; simulator S is (O(t/(qr +
1)), qr,£)-resource, Lqrqr-DDH-bound, and 2-Q-bound; v = (t,qa, qr,qr); and t = O(t + qrq).

24

We will sketch the main ideas of the proof; refer to Appendix A.6 for the details. To simulate static
DH computations on an input Y (either the peer’s static or ephemeral key), the simulator S computes the
set V of points incident to the adversary’s RO queries. For each Z € V it uses its DDH oracle to check if
(loge P)(logn Y) = loge Z, where P is the host’s static key. If so, then it uses Z to simulate the output of
the interface. This is only possible in general for read actions, since these require the adversary to compute
a ciphertext under the correct symmetric key, which can be obtained by querying the RO first. In fact, what
we show is that, short of breaking the CR security of vr or INT-CTXT security of AE, the only way to get
a valid response from Op is to compute the inbound message as specified by the processing rules.

The need for context-to-action binding and the restriction of the game’s RO queries arise in order to
ensure there is no “subliminal channel” between the game and the adversary conveying information about
the RO to the adversary beyond what it learns by making RO queries on its own. If the game provides
the outputs of its RO queries to the adversary (e.g., by compromising the handshake state), then without
action binding, these can be used by the adversary to compute ciphertexts without interacting with the RO.
Hence, there is no way for the simulator to correctly respond given only knowledge of the adversary’s RO
queries. (Allowing the simulator to observe more RO queries than this—in particular, the game’s—would
make composition impossible.)

Next, as we did in Section 5.2, we apply the GAP1 security of A/ and the composition theorem to the
IDH problem for A/. We cannot reduce the CDH problem to it as we did in Corollary 1, since the simulator
requires a DDH oracle. Of course, this is precisely what the GDH experiment provides. The following
is obtained by applying Theorems 1 and 7. (We will not prove it, but the details are closely related to
Corollary 1.)

Corollary 2. Suppose that n is prime and that T is X-excluding and has maximum action count £. Let
r = |Rng cl| and suppose that r|2°. Then for all t,qr,qr > 0 it holds that

AdviEN(t.q1,qr) < n/rAdvE"(O(t + §), Larar) + 20qr Adv s> (1,0, q1),

where F is modeled as a random oracle; AE, T, H, cl, and vr are 0-ro-bound; § = qr + ¢(qr + 1); and
t=0(t+qrar)-

Remark 5. The use of the DDH oracle by the simulator in Theorem 7 is standard; it is used, for instance,
to prove joint security of encryption and signing in the ROM [22]. In fact, the Noise spec calls for a group
for which the GDH problem is hard; see [52, Section 4.1]. However, we are not certain that the DDH oracle
is essential to the argument. The current proof uses the DDH oracle and the adversary’s RO queries to
determine if the adversary knows the symmetric key used to encrypt the payload currently being processed.
It may be possible to simply check each symmetric key output by the adversary’s RO queries if the key
correctly decrypts the ciphertext. However, this argument would require that AE be “key-robust” in the
sense of Farshim, Orlandi, and Rosie [28], which demands, roughly, that it is difficult to find (K, Ko, N, A, C)
such that K7 # K5 and (N, A, C) decrypts properly under both K7 and K>. AEAD schemes are not usually
designed to have this property; in particular, AES-GCM is not key robust due to an attack by Dodis et
al. [23].

6.4 Composition with EADSA

In Section 5.2 we proved (modeling the underlying hash function as a random oracle) that EADSA can be
securely composed with any simple DL interface. Because A is simple, by Theorem 1(ii) if N is SEC/I secure
for a game G, then so is their composition, which we denote ED . (We write it this way to denote the fact
that it uses £D’s key generator rather than A’s.) We would also like to prove the complimentary statement:
that if €D is secure for a game G, then so is ED nr.

This follows from a proof of GAP2 security of (Ziar,Z), where Zyxr = (Z.0p, Op) is an interface con-
structed from A and DL interface Z as follows. On input of (sk, ctz, op, in), the operator interprets op as
u, f,r,pat, where u is a string and (f,r, pat) is an action. If u = noise, then return N.Op(s, ctz, op, in),
where s = Z.Scal(sk); otherwise return Z.Op(sk, ctz, op,in). We can prove this using essentially the
same argument as in Theorem 7, but we also need to account for Z's RO queries. Fix Noise parameters
(G, AE, T, H,F,cl,vr,k,n' h,b,u) and fix token-action set X and predicate ¥ as in the previous section.

25

Theorem 8. Suppose that n is prime. Let G be a regular game and suppose that T is X-excluding and
has action count £. Let DDH be as defined in Figure 4. When F is modeled as a random oracle, there
exists a DDH- and Q-relative reqular simulator S such that for all t,qq,qr,qr,c > 0 there exists a t-time
CR-adversary C such that
Adv%‘"ﬁiz,g(é‘, r) < 2cqr AdVE(C) + 20qr Adv R (4,0, 1),

where G is c-ro-bound and -ro-reqular; T is Y-ro-reqular and I.Gen is 0-ro-bound; AE, T, H, cl, and
vr are 0-ro-bound; simulator S is (O(t/(qr + 1)), q1,¢)-resource, Lqrqr-DDH-bound, and 2-Q-bound; r =
(t.qc.a1,qr); and t = O(t + qrar).

(Note that the vr parameter in the CR-advantage term is the one for Noise and not for EADSA.) We sketch
the proof in Appendix A.7. By Theorem 1 we conclude that if ED is SEC/I secure for a game G that meets
the conditions of Theorem 8, then so is ED 4 ar.

Remark 6. In Theorem 6 we modeled the underlying hash function as a random oracle, and in Theorem 8 we
modeled the HKDF as a random oracle. Indeed, since HKDF may be constructed from the very same hash
function used with EADSA, it is crucial that HKDF is indifferentiable from an RO when the hash function
is modeled as an RO. Otherwise, there may be an attack against ED r with respect to some game G that
exploits the underlying structure of HKDF; such an attack would be out-of-scope of our analysis. Fortunately,
we are able to rule these out in Appendix B.

Discussion. So far, our treatment has elided an important detail regarding the composition of EADSA and
Noise. Both are specified in terms of a generic group, and so for their composition to make sense, this must
be the same group for both interfaces. The curves used by Noise, Curve25519 and Cured48, are birationally
equivalent to the Edwarsd curves used by Ed25519 and Ed448 respectively [14]. Loosely speaking, this means
there is an efficiently computable map from points on one curve to points on the other. This map would be
used to transform the EADSA key pair into a static key pair for Noise. We emphasize, however, that due to
our formalization of represented groups, the use of this transform is out-of-scope of our analysis.

6.5 Conclusion

Theorem 7 specifies conditions for A" and G that suffice for N to be SEC/I secure for G. The restriction to
(1p-ro-)regular games G is mild, but proving GAP1 security—at least, without making additional restrictions
on the protocol and security goal captured by G—requires modifying the processing rules. But the change
we suggest is a relatively simple one. Noise already provides a degree of context separability by binding the
handshake pattern and parameters to the initial state (see [52, Sec. 5.2]). This is provided by using the hash
of the protocol name (e.g. Noise NK 25519 AESGCM _SHA256) as the initial HKDF salt. Our suggestion
is that by simply using the protocol name as the HKDF label instead, Noise protocols would be context
separable under a much wider set of circumstances (in particular, all conditions captured by G in Theorem 7).
The more consequential finding of our analysis is that, in order to prove GAP1 security, we must exclude
handshake patterns that entail certain actions that are insecure with respect to GAP1 (in particular, the
set of token actions X'). By our count, of the 37 one-way, fundamental, and deferred handshake patterns in
the spec [52], 19 would be supported by the initiator, 24 by the responder, and only 10 by both. We stress,
however, that we are not aware of an explicit SEC/I attack at this time. It is likely that, in many cases, our
analysis is more conservative than is necessary.

As a result of these restrictions, our work leaves the security of key-reuse among Noise protocols as they
are an open question. In particular, our work leaves open the possibility of a direct proof of SEC/I security
with respect to a particular game. One could also achieve meaningful results by considering joint security in
a weaker attack model wherein parties may negotiate one of a fixed set of concrete Noise patterns. However,
these results would be far less general than ours.

The primary goal of this work was not to analyze Noise as it is, but to demonstrate that the analytical
approach we developed can be applied to reason about protocol interactions in a very general way. The
design philosophy underlying Noise (build the framework first, then build protocols from the framework)
makes Noise an ideal case study. (Indeed, a similar analysis could be carried out in order to shed light on
protocol interactions among other DH-based protocols [32, 40, 42, 44].) It is not surprising that our analysis

26

would unearth limitations with respect to our security goals, since, to the best of our knowledge, these goals
have not been considered before.

(In)security with respect to GAP1 is akin to (in)security in the sense of indifferentiability [47]. For exam-
ple, while length-extension attacks against Merkle-Damgard-style hash functions rule out indifferentiability
from a random oracle [21], whether these attacks are exploitable depends on how the hash function is used.
Analogously, whether these GAP1 attacks against Noise are exploitable in practice depends intrinsically
upon the protocol and its intended security goal. On the other hand, and analogous to indifferentiability,
security in our setting rules out these attacks altogether.

Finally, we believe the design philosophy underlying Noise has the potential to re-shape how our com-
munity approaches protocol design and analysis. It is our hope that this work will help lay the formal
foundations for this effort going forward.

Acknowledgements

This work was made possible by NSF grant CNS-1816375. We thank the anonymous reviewers of CRYPTO 19
for their useful comments. We thank Trevor Perrin for his valuable feedback on our analysis of Noise. Thanks
to Dave Tian for providing his systems security perspective on the problem, and thanks to Luis Vargas and
Tyler Tucker for editorial feedback.

References

[1] Abdalla, M., Bellare, M., Rogaway, P.: The oracle Diffie-Hellman assumptions and an analysis of DHIES.
In: Topics in Cryptology — CT-RSA 2001. pp. 143-158. Springer Berlin Heidelberg, Berlin, Heidelberg
(2001)

[2] Acar, T., Belenkiy, M., Bellare, M., Cash, D.: Cryptographic agility and its relation to circular en-
cryption. In: Advances in Cryptology — EUROCRYPT 2010. pp. 403-422. Springer Berlin Heidelberg,
Berlin, Heidelberg (2010)

[3] Acar, T., Nguyen, L., Zaverucha, G.: A TPM Diffie-Hellman oracle. Cryptology ePrint Archive, Report
2013/667 (2013), https://eprint.iacr.org/2013/667

[4] Acar, Y., Backes, M., Fahl, S., Garfinkel, S., Kim, D., Mazurek, M.L., Stransky, C.: Comparing the
usability of cryptographic APIs. In: 2017 IEEE Symposium on Security and Privacy (SP). pp. 154-171
(May 2017)

[5] Adams, A., Sasse, M.A.: Users are not the enemy. Commun. ACM 42(12), 40-46 (Dec 1999)

[6] Albrecht, M., Farshim, P., Paterson, K., Watson, G.: On cipher-dependent related-key attacks in
the ideal-cipher model. In: Fast Software Encryption 2011 — FSE 2011. pp. 128-145. Springer Berlin
Heidelberg, Berlin, Heidelberg (2011)

[7] Barnes, R., Iyengar, S., Sullivan, N., Rescorla, E.: Delegated credentials for TLS. Internet-Draft draft-
ietf-tls-subcerts-03, IETF Secretariat (February 2019), http://www.ietf.org/internet-drafts/
draft-ietf-tls-subcerts-03.txt

[8] Bellare, M., Boldyreva, A., O’Neill, A.: Deterministic and efficiently searchable encryption. In: Advances
in Cryptology - CRYPTO 2007. pp. 535-552. Springer Berlin Heidelberg, Berlin, Heidelberg (2007)

[9] Bellare, M., Brakerski, Z., Naor, M., Ristenpart, T., Segev, G., Shacham, H., Yilek, S.: Hedged public-
key encryption: How to protect against bad randomness. In: Advances in Cryptology — ASTACRYPT
2009. pp. 232-249. Springer Berlin Heidelberg, Berlin, Heidelberg (2009)

[10] Bellare, M., Kohno, T.: A theoretical treatment of related-key attacks: RKA-PRPs, RKA-PRFs, and
applications. In: Advances in Cryptology — EUROCRYPT 2003. pp. 491-506. Springer Berlin Heidel-
berg, Berlin, Heidelberg (2003)

27

https://eprint.iacr.org/2013/667
http://www.ietf.org/internet-drafts/draft-ietf-tls-subcerts-03.txt
http://www.ietf.org/internet-drafts/draft-ietf-tls-subcerts-03.txt

[11]

[12]

[13]

[25]

[26]

Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing efficient protocols.
In: Proceedings of the 1st ACM Conference on Computer and Communications Security. pp. 62-73.
CCS 93, ACM, New York, NY, USA (1993)

Bellare, M., Rogaway, P.: The security of triple encryption and a frameworkforcode-basedgame-
playingproofs. In: Advances in Cryptology - EUROCRYPT 2006. pp. 409-426. Springer Berlin Hei-
delberg, Berlin, Heidelberg (2006)

Bellare, M., Tackmann, B.: The multi-user security of authenticated encryption: AES-GCM in TLS
1.3. In: Advances in Cryptology — CRYPTO 2016. pp. 247-276. Springer Berlin Heidelberg, Berlin,
Heidelberg (2016)

Bernstein, D.J., Duif, N., Lange, T., Schwabe, P., Yang, B.Y.: High-speed high-security signatures.
Journal of Cryptographic Engineering 2(2), 77-89 (Sep 2012)

Bhargavan, K., Boureanu, 1., Fouque, P., Onete, C., Richard, B.: Content delivery over TLS: a crypto-
graphic analysis of Keyless SSL. In: 2017 IEEE European Symposium on Security and Privacy (EuroS
P). pp. 1-16 (April 2017). https://doi.org/10.1109/EuroSP.2017.52

Black, J., Rogaway, P., Shrimpton, T.: Encryption scheme security in the presense of key-dependent
messages. In: International Workshop on Selected Areas in Cryptography — SAC 2002. pp. 62-75.
Springer Berlin Heidelberg, Berlin, Heidelberg (2002)

Bleichenbacher, D.: Chosen ciphertext attacks against protocols based on the rsa encryption standard
PKCS #1. In: Proceedings of the 18th Annual International Cryptology Conference on Advances in
Cryptology. pp. 1-12. CRYPTO ’98, Springer-Verlag, London, UK, UK (1998)

Brickell, E., Camenisch, J., Chen, L.: Direct anonymous attestation. In: Proceedings of the 11th ACM
Conference on Computer and Communications Security. pp. 132-145. CCS ’04, ACM, New York, NY,
USA (2004)

Brown, D.R.L., Gallant, R.P.: The static Diffie-Hellman problem. Cryptology ePrint Archive, Report
2004/306 (2004), https://eprint.iacr.org/2004/306

Camenisch, J., Chen, L., Drijvers, M., Lehmann, A., Novick, D., Urian, R.: One TPM to bind them
all: Fixing TPM 2.0 for provably secure anonymous attestation. In: 2017 IEEE Symposium on Security
and Privacy (SP). pp. 901-920 (May 2017)

Coron, J.S., Dodis, Y., Malinaud, C., Puniya, P.: Merkle-damgard revisited: How to construct a hash
function. In: Advances in Cryptology — CRYPTO 2005. pp. 430-448. Springer Berlin Heidelberg, Berlin,
Heidelberg (2005)

Degabriele, J.P., Lehmann, A., Paterson, K.G., Smart, N.P., Strefler, M.: On the joint security of
encryption and signature in EMV. In: Topics in Cryptology — CT-RSA 2012. pp. 116-135. Springer
Berlin Heidelberg, Berlin, Heidelberg (2012)

Dodis, Y., Grubbs, P., Ristenpart, T., Woodage, J.: Fast message franking: From invisible salaman-
ders to encryptment. Cryptology ePrint Archive, Report 2019/016 (2019), https://eprint.iacr.org/
2019/016

Dodis, Y., Ristenpart, T., Steinberger, J., Tessaro, S.: To hash or not to hash again? (In)Differentiability
results for H2 and HMAC. In: Advances in Cryptology — CRYPTO 2012. pp. 348-366. Springer Berlin
Heidelberg, Berlin, Heidelberg (2012)

Dowling, B., Paterson, K.G.: A cryptographic analysis of the wireguard protocol. In: Applied Cryptog-
raphy and Network Security. pp. 3-21. Springer International Publishing, Cham (2018)

Egele, M., Brumley, D., Fratantonio, Y., Kruegel, C.: An empirical study of cryptographic misuse in
Android applications. In: Proceedings of the 2013 ACM SIGSAC Conference on Computer & Commu-
nications Security. pp. 73-84. CCS '13, ACM, New York, NY, USA (2013)

28

https://eprint.iacr.org/2004/306
https://eprint.iacr.org/2019/016
https://eprint.iacr.org/2019/016

[27]

[28]

[29]

Fahl, S., Harbach, M., Muders, T., Baumgéartner, L., Freisleben, B., Smith, M.: Why Eve and Mallory
love Android: An analysis of Android SSL (in)security. In: Proceedings of the 2012 ACM Conference
on Computer and Communications Security. pp. 50-61. CCS ’12, ACM, New York, NY, USA (2012)

Farshim, P., Orlandi, C., Rosie, R.: Security of symmetric primitives under incorrect us-
age of keys. TACR Transactions on Symmetric Cryptology 2017(1), 449-473 (Mar 2017).
https://doi.org/10.13154 /tosc.v2017.11.449-473

Fersch, M., Kiltz, E., Poettering, B.: On the provable security of (EC)DSA signatures. In: Proceedings
of the 2016 ACM SIGSAC Conference on Computer and Communications Security. pp. 1651-1662. CCS
'16, ACM, New York, NY, USA (2016)

Georgiev, M., Iyengar, S., Jana, S., Anubhai, R., Boneh, D., Shmatikov, V.: The most dangerous code
in the world: Validating SSL certificates in non-browser software. In: Proceedings of the 2012 ACM
Conference on Computer and Communications Security. pp. 38-49. CCS 12, ACM, New York, NY,
USA (2012)

Gleeson, S., Zimman, C.. PKCS #11 cryptographic token interface base specification version
2.40. Online white paper (July 2015), http://docs.oasis-open.org/pkcsll/pkcsll-base/v2.40/
pkcsll-base-v2.40.html

Goldberg, 1., Stebila, D., Ustaoglu, B.: Anonymity and one-way authentication in key exchange pro-
tocols. Designs, Codes and Cryptography 67(2), 245-269 (May 2013). https://doi.org/10.1007/s10623-
011-9604-z, https://doi.org/10.1007/s10623-011-9604-z

Green, M., Smith, M.: Developers are not the enemy!: The need for usable security APIs. IEEE Security
Privacy 14(5), 4046 (Sept 2016)

Haber, S., Pinkas, B.: Securely combining public-key cryptosystems. In: Proceedings of the 8th ACM
Conference on Computer and Communications Security. pp. 215-224. CCS ’01, ACM, New York, NY,
USA (2001)

Josefsson, S., Liusvaara, I.: Edwards-curve digital signature algorithm (EdDSA). RFC 8032, RFC Editor
(January 2017)

Kelsey, J., Schneier, B., Wagner, D.: Protocol interactions and the chosen protocol attack. In: Security
Protocols. pp. 91-104. Springer Berlin Heidelberg, Berlin, Heidelberg (1998)

Kobeissi, N., Bhargavan, K.: Noise Explorer: Fully automated modeling and verification for arbi-
trary Noise protocols. Cryptology ePrint Archive, Report 2018/766 (2018), https://eprint.iacr.
org/2018/766

Krawczyk, H., Eronen, P.. HMAC-based extract-and-expand key derivation function (HKDF).
RFC 5869, RFC Editor (May 2010), http://www.rfc-editor.org/rfc/rfc5869.txt

Krawczyk, H., Bellare, M., Canetti, R.: HMAC: Keyed-hashing for message authentication.
RFC 2104, RFC Editor (February 1997), http://www.rfc-editor.org/rfc/rfc2104.txt, http:
//www.rfc-editor.org/rfc/rfc2104.txt

Krawczyk, H., Wee, H.: The OPTLS protocol and TLS 1.3. Cryptology ePrint Archive, Report 2015/978
(2015), https://eprint.iacr.org/2015/978

Kiinnemann, R., Steel, G.: YubiSecure? Formal security analysis results for the Yubikey and YubiHSM.
In: Security and Trust Management. pp. 257-272. Springer Berlin Heidelberg, Berlin, Heidelberg (2013)

LaMacchia, B., Lauter, K., Mityagin, A.: Stronger security of authenticated key ex-
change (January 2007), https://www.microsoft.com/en-us/research/publication/
stronger-security-of-authenticated-key-exchange/

29

http://docs.oasis-open.org/pkcs11/pkcs11-base/v2.40/pkcs11-base-v2.40.html
http://docs.oasis-open.org/pkcs11/pkcs11-base/v2.40/pkcs11-base-v2.40.html
https://doi.org/10.1007/s10623-011-9604-z
https://eprint.iacr.org/2018/766
https://eprint.iacr.org/2018/766
http://www.rfc-editor.org/rfc/rfc5869.txt
http://www.rfc-editor.org/rfc/rfc2104.txt
http://www.rfc-editor.org/rfc/rfc2104.txt
http://www.rfc-editor.org/rfc/rfc2104.txt
https://eprint.iacr.org/2015/978
https://www.microsoft.com/en-us/research/publication/stronger-security-of-authenticated-key-exchange/
https://www.microsoft.com/en-us/research/publication/stronger-security-of-authenticated-key-exchange/

[43]

[44]

[45]

[51]

Langley, A., Hamburg, M., Turner, S.: Elliptic curves for security. RFC 7748, RFC Editor (January
2016)

Lauter, K., Mityagin, A.: Security analysis of KEA authenticated key exchange protocol. Cryptology
ePrint Archive, Report 2005/265 (2005), https://eprint.iacr.org/2005/265

Lim, C.H., Lee, P.J.: A key recovery attack on discrete log-based schemes using a prime order sub-
group. In: Advances in Cryptology — CRYPTO ’97. pp. 249-263. Springer Berlin Heidelberg, Berlin,
Heidelberg (1997)

Lipp, B., Blanchet, B., Bhargavan, K.: A Mechanised Cryptographic Proof of the WireGuard Virtual
Private Network Protocol. Research Report RR-9269, Inria Paris (Apr 2019), https://hal.inria.fr/
hal-02100345

Maurer, U., Renner, R., Holenstein, C.: Indifferentiability, impossibility results on reductions, and
applications to the random oracle methodology. In: Theory of Cryptography. pp. 21-39. Springer Berlin
Heidelberg, Berlin, Heidelberg (2004)

Namprempre, C., Rogaway, P., Shrimpton, T.: Reconsidering generic composition. In: Advances in
Cryptology — EUROCRYPT 2014. pp. 257-274. Springer Berlin Heidelberg, Berlin, Heidelberg (2014)

Okamoto, T., Pointcheval, D.: The gap-problems: A new class of problems for the security of cryp-
tographic schemes. In: Public Key Cryptography. pp. 104-118. Springer Berlin Heidelberg, Berlin,
Heidelberg (2001)

Oliveira, D., Rosenthal, M., Morin, N.; Yeh, K.C., Cappos, J., Zhuang, Y.: It’s the psychology stupid:
How heuristics explain software vulnerabilities and how priming can illuminate developer’s blind spots.
In: Proceedings of the 30th Annual Computer Security Applications Conference. pp. 296-305. ACSAC
'14, ACM, New York, NY, USA (2014)

Oliveira, D.S., Lin, T., Rahman, M.S., Akefirad, R., Ellis, D., Perez, E., Bobhate, R., DeLong, L.A.,
Cappos, J., Brun, Y.: API blindspots: Why experienced developers write vulnerable code. In: Four-
teenth Symposium on Usable Privacy and Security (SOUPS 2018). pp. 315-328. USENIX Association,
Baltimore, MD (2018)

Perrin, T.: The Noise protocol framework. Online white paper (July 2018), https://noiseprotocol.
org/noise.html

Pollard, J.M.: Kangaroos, monopoly and discrete logarithms. J. Cryptol. 13(4), 437-447 (2000)

Rescorla, E.: The transport layer security (TLS) protocol version 1.3. RFC 8446, RFC Editor (August
2018)

Ristenpart, T., Shacham, H., Shrimpton, T.: Careful with composition: Limitations of the indifferen-
tiability framework. In: Advances in Cryptology — EUROCRYPT 2011. pp. 487-506. Springer Berlin
Heidelberg, Berlin, Heidelberg (2011)

Rogaway, P., Stegers, T.: Authentication without elision: Partially specified protocols, associated data,
and cryptographic models described by code. In: 2009 22nd IEEE Computer Security Foundations
Symposium. pp. 26-39 (July 2009)

Schnorr, C.P.: Efficient signature generation by smart cards. Journal of Cryptology 4(3), 161-174 (Jan
1991)

Shoup, V.: Lower bounds for discrete logarithms and related problems. In: Advances in Cryptology —
EUROCRYPT ’97. pp. 256-266. Springer Berlin Heidelberg, Berlin, Heidelberg (1997)

Shrimpton, T., Stam, M., Warinschi, B.: A modular treatment of cryptographic APIs: The symmetric-
key case. In: Advances in Cryptology — CRYPTO 2016. pp. 277-307. Springer Berlin Heidelberg, Berlin,
Heidelberg (2016)

30

https://eprint.iacr.org/2005/265
https://hal.inria.fr/hal-02100345
https://hal.inria.fr/hal-02100345
https://noiseprotocol.org/noise.html
https://noiseprotocol.org/noise.html

[60] Trusted Computing Group: TPM 2.0 library specification (September 2016), https://
trustedcomputinggroup.org/resource/tpm-library-specification/

A Proofs

A.1 Theorem 1 (composition)

We will use the following lemma.

Lemma 1. Lett > 0 be an integer, let R be a finite set, and let X andY be random variables with support R.
For every t-time algorithm D(elemg R) — bool b it holds that Pr[D(X)] — Pr[D(Y)] < A(X,Y).

Proof. The following is based on Daniel Wichs’ lecture notes.> Let IT denote the classs of algorithms that
take as input an element of R and output a bit. Fix integer ¢t > 0 and let II; be the set of t-time algorithms D
such that D € II. There exists an integer p < ¢ such that each D € II; consumes at most p random coins
on any execution. Let R and S be random variables independently and uniformly distributed over {0, 1}*,
let By = (X,R), and let By = (Y, S). Let V =R x {0,1}* and let Wp = {(W,R) € V: D(W;R) =1} and
6p =Pr[D(X)] —Pr[D(Y)] for every D € II,. Then

op < glleafi (Pr[Bl € WD/] fPr[Bo € WD/]) (1)
< g}lg}é(Pr[BleVV]fPr[BgEW]) (2)
= Pr[BieW*| —Pr[Bye W*] (3)

for every such D, where W* denotes the subset of V that maximizes the quantity on the right hand side
of Eq. (2). Note that either W* =T or W* =V \ T, where T ={b€V:Pr[B; =b]| —Pr[By=b] > 0}.
But Pr[By € T|+Pr[B € V\T|=Pr[By€T]|+Pr[By€V\T]|, which implies that

op < Pr[BieT|—-Pr[ByeT] (4)
= %(Pr[BleT}—PI‘[B()ET]—‘FPT[B()EV\T}—PI‘[B1€V\T]) (5)
= S Ee[Bi=v] -Pr[Bo=v])+ 3 (Pr[Bo=v] ~Pr[B=0]) (6)
veT veV\T
< %Z|Pr[B1:v]—Pr[Bosz (7)
vEV
= % Pr[X:v];p—Pr[Y:v};p’ (8)
vER
= %Z‘Pr[X:v]—Pr[Y:vH (9)
VER

for every D € II;, where Eq. (8) follows from the observation that for every v € {0,1}”, the probability that
R=wvis 27" (Also for S.) O

We only prove condition (ii) explicitly; condition (i) follows from a similar argument. (We will discuss the
differences at the end.) Let A be an r-resource SEC/I-adversary. Consider the GAP2-adversary D defined
by simulating A in the SEC/I experiment for G as follows. It runs A on its input pk: when A asks a of
its Init oracle, D returns the output of Init(«); when A asks (ctz, op, in) of Op, D returns Op(ctz, op, in)
if ¢tz # o and L otherwise; when A asks in of Call, D returns the output of Call(in); and when A asks X
of R, D returns R(X). Finally, when A asks in of Final, if Final(in) outputs 1, then D halts and outputs 1;
otherwise it halts and outputs 0. Let dp; denote the probability that D outputs 1 given that b is the challenge

Shttp://www.ccs.neu.edu/home/wichs/class/crypto-falli5/lecture2.pdf, accessed 2018-02-04.

31

https://trustedcomputinggroup.org/resource/tpm-library-specification/
https://trustedcomputinggroup.org/resource/tpm-library-specification/
http://www.ccs.neu.edu/home/wichs/class/crypto-fall15/lecture2.pdf

P(X,V) G/ P(X,V) Gl G,

if 7[X] # o then bad < 1; if 7[X]# o then bad < 1; ret L
i+—i+ 1Y,V i+—i+1;Y; <V

U; « {0,1}"; 7[X] « U; Ui 4 {0,1}"; 7[X] + U;

if i <j then 7[X] + Y; if i < j then 7[X] + Y;

Figure 9: Specification of oracle P in experiments 0, 1, and 2 for the proof of Theorem 1.

sec/i

71g(A) |, since D perfectly simulates A in the SEC/I experiment

bit in its experiment. Then dy; = Pr[Exp

with G and Z' when b = 1. _ _

Let j > 0 be an integer and let G}(S,.A) be an experiment defined just like Exp?i/é(A), but with
the following changes: first, line 2:12 is replaced with ret (S, : ZOF P, Q,R)(ctz, op,in), where o «—
(S.Init: P, Q,R)(pk) was executed prior to running A; second, the experiment declares variables int ¢ and
str U[],Y[] prior to executing S.Init; and third, the P oracle is as defined in Figure 9.

Note that do; = Pr[G{'(S,.A)], where P = cp(qr+1) is the maximum number of P queries made during

the course of the experiment. Then

AdvITL(A) = Pr[Expli(A)] —Pr[G(S,4)] +Pr[GH(S, 4)] (10)
= d11 —dol +PI‘[G5(S,A)} (11)
= AdvEPS, (S, D)+ Pr[GL(S,A)]. (12)

We proceed by a game-playing argument [12]. Define a new experiment G{ from G% by modifying the P
oracle as shown in Figure 9. The only difference between Gé and G{ is that, in the latter experiment, if P
is queried on (X, V') such that 7[X] was previously defined, then the oracle P returns | without overwriting
the value of 7[X]. By the Fundamental Lemma of Game Playing [12] it follows that

Pr[G{(S,A)] —Pr[G](S,A)] < Pr[G{(S, A)sets bad | < grP/2" (13)

since gr is the maximum number of R queries over the course of the experiment. Next, note that we have
Pr[G3(S,D)] = Pr[GY(S,D)], where G is defined just like GY, but P is now as defined in Figure 9.
This is because the condition on line 9:4 is never met in case j = 0. From a hybrid argument it follows that

Pr[GY(S,A)] <6P+Pr[Gs(S,A)], (14)

where § = maxi<j<pd; and §; = ‘Pr[G{(S,.A)} — Pr[G{fl(S,A)]‘.

Now consider the SEC/I-adversary B that composes S and A in experiment Gy as follows. Adversary B
declares a set Q, initially empty, and defines the following three oracles. On input of (X, V), oracle P’ runs
R(X). Oracle Q' just returns the current value of Q. On input of X, oracle R’ runs @ + QU {X} and
returns R(X).

Adversary B first runs o «— S .InitP/’QI’R(pk), where pk is the public key that it gets as input. It then
runs (A : Init, Final, Call, Op’,R’)(pk), where on input (ctz, op,in), oracle Op’ returns the output of
SJOP’P/’QI’R(ct:c, op, in). Since S is regular by assumption, none of its Op’ queries will coincide with the
game context. Then Pr[Exp;i/é(B)} = Pr[G;(S, A) | holds by construction, and

Pr[Exp5i(A)] < AdvERS, (S, D) + qrP/2" + 6P + Pr[Expi/s(B)]. (15)

Since neighboring hybrids differ only in the distribution of the range value of the j-th point programmed
by P, by Lemma 1 we have that

1

0; < 3 Z ’Pr[Yi:v]—Pr[UiZUH (16)
ve{0,1}"
1 1 1 2h 1 1 1
S o Z (2”2 - 2h> = 2;42-‘,-1 - 5 = 2;42—}L+1 - 5 (17)

32

G%/(B,D) G.Init(pk, ctz)

dec str pk, sk, st, a; bool win (st', out’) «— G'.Init(pk, ctz)

(pk, sk) «— I°.Gen() ret (pk,st’, out’)

(B: In'lt, Final, Call, Op)(pk) G.Call® (vt in)

ret win

dec str pk, st’

Init (ctz) pk, st’ + st

(st, out) «— G'.Init(pk, ctz) out «— G’ (in)

a < ctz; ret out st < pk, st’
Final(in) ret out

win — (G'.Final: Z%)(st, in) G .Final® (st in)

c«{0,1}; d « (D: T8, (pk) dec str pk, st’

if c=1 then ret winV (d =1) pk. st’ < st

ret win A (d =1) win «— G’ .Final® (st’, in)
Call(in) c 4 {0,1}; d <~ D (pk)

S if ¢ =1 then ret win Vv (d=1)
ret (Go: Zg)(in) ret win A (d =1)

Op(ctz, op,in)
if ctz = o then ret L
ret Z% (ctz, op, in)

Figure 10: left: experiment Gg, (B, D); and right: game G for proof of Theorem 2.

for each j, where Eq. (17) follows from the assumption that pus < h. Note that P = cp(qr +1) < 2¢pqy, and
so 0P < cpqr(2h=r2 —1).

To complete the proof, we need only to account for D and B’s resources. Both D and B make at most ¢g
queries to Call; adversary D (resp. B) makes at most g; (resp. crqr) queries to Op; and both adversary D
and B make at most gg + (cr + cp)(¢r + 1) = ¢r queries to R.

Condition (i) follows from essentially the same argument. The GAP1 adversary is identical to D, and
the SEC adversary is defined just like B, except that the simulator is given L instead of Op.

A.2 Theorem 2 (necessity of wGAP2 for Theorem 1(ii))

Define S as follows: on input of pk, the initiator S.Init returns e; and on input of (vo, ctz, op,in), the
operator S.0Op? runs out «— O(ctz, op, in) and returns out. Let dy, denote the probability that D outputs y
in the wGAP2 experiment with simulator S given that the challenge bit b is equal to x.

Let A = B. Let G’ be any game and define game G from D and G’ as specified in Figure 10. This game
acts as a shim for G/, but changes the winning condition as follows. It flips a coin ¢ and runs d 4— D ©(pk)
(10:24). If ¢ = 1 then the outcome is 1 if G’ is in a winning state or d = 1; if ¢ = 0, then the outcome is 1
if G’ is in a winning state and d = 1.

Let g, denote the probability that G¢, (B, D) = 1, where Gg, (B, D) is as specified in Figure 10, and let
gzy denote the probability that GE, (B, D) = 1 given that ¢ = y (see line 10:7). Then

g1 = 0.5g11 +0.5g10 (18)
291 = g11 — go1 + go1 + 910 — goo + Goo (19)
= go1 + goo + (911 — go1) + (910 — Goo0) (20)

= 290+ (911 — goo) + (910 — go1) - (21)

When ¢ = 1, the probability that B wins is at least the probability that D outputs 1; this implies that
g11 > d11 and go1 < (1 — dgo). When ¢ = 0, the probability that B wins is at most the probability that D

33

Go(S) / G1(S) P(X,V) G
dec set R; str W*,w[]; P € G; r € Zy ‘ifV:W* then ret L
(P, sk) «— Z.Gen(); r «— Zn [X] <V
W* « {0,1}"; 7[rPe] + W* R + {W*}
o 4 (S.Init: P,Q,R)(P)

g* : %Sagt),P,Q,Rﬂs,fdm@) RX) .
ret W =W~ W«—{O,l}h
P(X,V) if 7[X] then W «+ 7[X]
if X = (rP,e) then 7[X] « o T[X] = W5 ret W
T X] <+ V P(X,V)
R(X) if V. =W" then ret L
if X = (rP,e) then n[X] + ¢ W[X]%V
W« {0,1}"

if 7[X] then W « 7[X]
7w[X] < W; ret W

Q(): ret 0

A°(P,Q) R(Z, ctz)
dec set R; str «[]; elemg p[] W« {0,1}"\ R
o % (S.Init: P,Q,R)(P) if 7[Z, ctz] then W «+ 7[Z, ctz]
W« (S-: O,P,Q,R)(e, fdh, Q) plW, ctz] « Z; w[Z, ctx] < W
ret p[W,¢] R+ RU{W};ret W

P((Z, ctz), V) Q():ret 0

R+ RU{V}; w[Z, ctz] «+ V

Figure 11: Experiments 0 — 3 and IDH-adversary A for proof of Theorem 4.

outputs 1; this implies that goo < dp1 and g19 > (1 — dyo). It follows that

291 Z 2g0 + (d11 — d01) + (1 — le) — (1 — doo) (22)
= 2g0 + (d11 — do1) + (doo — dao) (23)
g1 = go+ AdVVIV{gaLIpo2 (S,D). (24)

The last equation follows by conditioning on the outcome of the coin flip b in the wGAP2 experiment. Noting

that g; = Pr[Exp;ef/é(A)] and gy = Pr[Exp;eDC/; (B) | completes the proof.

A.3 Theorem 4 (WGAP2 insecurity of functional DH)

Define (D: Op,R)(P) as follows. Run r «— Z,, W « Op(e, fdh,rG), and W* «— R(rP,¢). Return 1 if
and only if W = W*. Note that if b = 1, then the response will be n[srG] = w[rP] = W*, and so D will
output 1. Let G((S) be the experiment specified in Figure 11. While the game sets the value 7[r P, ¢] to W*
before invoking the simulator, if one of the simulator’s RO queries coincide with (rP,¢), then the value of
m[rP,e] will be overwritten (line 11:9 and 13). Thus, this experiment is equivalent to running the wGAP2
game with D and S. Then

Advgfjdfz(s, D) =1-Pr[Go(S)]. (25)

We proceed with a game-playing argument. Our goal is to rewrite the R and P oracles so that we can use S
to solve the IDH problem for (G,Z). In particular, we will exhibit a game Gj in which & must query R
on the correct point in order to do any better than just guessing W*. Consider the experiment G, also
defined in Figure 11. The difference between it and Gy is that the value of 7[rP,] is no longer overwritten

34

by &’s RO queries. These experiments are identical as long as none of S’s RO queries coincide with the
point 7P. Since |G| = n is prime and P € G, by Lagrange’s Theorem we have that G = (P). Since r is
chosen uniform randomly from Z,,, for any query X the probability that X = (rP,¢) is at most 1/n. The
simulator initiator S.Init and operator S.Op are both run exactly once, and so by the Fundamental Lemma
of Game Playing [12] we have that

2(q +
Pr[Go(S)] §¥+Pr[G1(S)]. (26)
Next, G is defined just like Gy, except oracle P does as follows. On input of ((Z, ctz), V), if V # W*, then
set 7[Z, ctx] < V; otherwise do nothing. Since S.Init and S.Op are each executed once, we have that

<24tp) 2 pigys)]. (27)

PI‘[G()(S)] ~ n 2h

Next, modify G to get a new game, Gs, as follows. The game declares a set R, initially containing just W*.
On input of ((Z, ctx),V), if P sets w[Z, ctx] <+ V, then it also adds V to the set R. Moreover, on input
of (Z, ctz), instead of sampling W from {0,1}", oracle R samples W from {0,1}" \ R. After doing so it
adds W to R. Then experiments G, and Gg are identical up to the collision of two or more range points
sampled by R (11:17). This at most (2p + 1)/2" for the first of these queries, since the size of |R| < 2p+ 1;
for the i-th query, this probability is at most (2p + 4)/2". Summing over all R queries, we have

2q .
2+
e < mia] 3 -
=1
pg | & i
= PGS+ or +2 o (20)
i=1
ipg A
< mlu S -
Combining Eq. (27) with Eq. (30) we obtain
2(q + 2p 4 442
Pr[Go(S)] < Pr[G3(S)}+M+2%+%+2% o
2(¢+p) , 4p* +4pg +4¢®
< PrGa(S)]+ (qn i T (32)
g, ¢
= PGSO (33)

n 20

Now consider the IDH-adversary A specified in Figure 11. It executes the simulator S just as in the proof
of Theorem 3 except that it must also answer S’s RO queries. It does so using oracles P, Q, and R specified
in the same figure. For each query (Z, ctx) to R it records the response W in an associative array p by
setting p[W, ctz] < Z. Since each W is distinct, each element of p is set exactly once. When the simulator
halts and outputs W, adversary A halts and outputs p[W,e]. Consider the probability that G3(S) = 1
conditioned on the event that S queries its oracle on rP. If this happens, then A wins its game, and so the
probability that A wins is at least the probability that the game outputs 1. Now suppose that S does not
guess the point rP; then the probability it manages to output the correct string W* is at most 1/2". Then
Pr[Gs(S)] < Advify(A) +1/2". Tt follows that

~ ~0 1)
Pr[Go(S)] < % + g—h + 5 + AdvE(A) (34)
< 0, @ | gy (A) (35)

- n 2h-1 GI ’

which yields the claimed bound.

35

A.4 Theorem 5 (GAP1 security of EADSA)

Lemma 2. For all Q € G and N > n it holds that Pr[Q = rG : r «— Zyn | < 2/n, where G = (G) is an
additive group of order n.

Proof. Let Q € G and let k > 1 be the largest integer such that kn < N. Conditioning on the event that

r < kn we have

Pr[Q=rG] :Pr[erG|r<kn]ljv—"+Pr[Q:rG|r2kn]N;m, (36)

where 7 «— Zn. If r < kn, then for each @ € G the probability that Q = rG is exactly 1/n. If r > kn, then
rG is one of N — kn equiprobable points in G, and so the probability that @ = rG is at most 1/(N — kn).
Then

1 kn 1 N—-kn k+1 2k
— < . . — <2
PrlQ=rGl< Tty TN N - N (37)
Since kn < N it follows that 2k/N < 2/n. O

The proof is by a game-playing argument. Let D be a r-resource GAP1-adversary. In Figure 12 we define
an experiment G (S, D), which is similar to Exp%%‘ilg(é' , D), except that it performs some additional book
keeping. First, it declares the following additional variables: str X, p[]; bool bad; and set). Second, set Y
is populated with each context string ctz # « passed to Op; if ED (via G) ever makes an RO query u such
that vr®(ctz) < u for some ctz €), then the flag bad gets set. Third, string X is set to a random element
of {0,1}® immediately after executing the key generator (and prior to running the simulator or adversary).
This will be used as a global variable later on, but for now the value of X has no impact on the outcome
of the game. We note that Go(S,D) is O(t + grgr)-time since D is t-time and the bookkeeping overhead
for bad is O(qrqr)-

Next, we define an experiment G by modifying Gg so that, immediately after setting bad (line 12:12),
oracle R’ halts and returns L. Because G is regular, this change ensures that in the new experiment, no
queries made by ED via Call, except those involved in computing the scalar s and randomizer X (12:23-24),
coincide with those made by Op via Op. If a query u to R’ sets bad, then this implies that vr® (o) = vr® (ctz)
for some ctx € Y for which ctz # «. Thus, one can easily exhibit a O(t + grgr)-time CR-adversary C such
that

Pr[Go(S,D)] —Pr[G:(S,D)] < cqrAdvL(C). (38)

The adversary executes Go(S,D): if bad gets set, then it searches) for a string ctr that collides with «
under vr and outputs (ctz, a).

We define experiment Gg from G; by modifying the Op procedure called by Op as follows: remove line
line 12:24 (execution of X «— R(K)[b+ 1:]); instead, this procedure will use the X generated at the start
of the experiment (12:3). These experiments are identical unless D manages to ask K of R, and so we can
show that

Pr[Go(S,D)] — Pr[G1(S,D)] < qr/2". (39)

Next, experiment G is constructed from G as follows (see Figure 12). Replace ry, 4— R(A | X || B) on line
12:35 with the following procedure: if p[A, B] is undefined, then sample p[A, B] «— {0, 1}*%; then set r,, <
plA, B][:2b]. (We also set ty, < p[A, B][2b+ 1:] and = < r (mod n), but these variables get overwritten
immediately thereafter, and so these statements have no affect on the outcome of the experiment.) Since G is
ED-regular, experiment G is identical to G unless D manages to ask A | X || B of R, where A = vr®(ctz)
and B = th(in) coincide with any one of its sig-operator queries. Hence,

Pr[Gi(S,D)] — Pr[G2(S,D)] < qrar/2". (40)

Next, experiment G4 is defined from G by modifying Op as follows: remove ¢, «— R(A|rG | P | B) on
line 12:51 and add the statement P (A || R|| P|| B, ty) just prior to the return statement. These experiments
are identical unless D manages to guess an input A||rG| P B to R that coincides with one of its sig-
operator queries. To bound this probability, first consider the probability that @@ = rG for any @ € G and a

36

Go(S,D)
dec str K, X, st, 0, a, p[], 7[]
dec set V; boolc,d, bad; P € G
(P,K) « Gen®(); X « {0,1}°
c 4 {0,1}; o 4 S.Init® R (P)
d «— (D: Init, Final, Call, Op, R)(P)
ret (d =c¢)

Op(ctz, op,in)
if ctr = a then ret L
Y+ YU{ctz}
if ¢ =1 then ret Op%(ctz, op, in)
ret ST R (ctz, op, in)

Init (ctz)
(st, out) «— G.Init® (pk, ctz)
a < ctx; ret out
Final(in)
ret (G.Final: EDY, R)(st,in)
Call(in)
ret (G.Call: SD%,R)(st,in)
Gen®()
K « {0,1}%; s «— cI®(R(K)[:b])
ret (sG, K)
Op% (ctz, op, in)

R'(u)
if (Jete € Y)vrR(ctz) < u then dec 7t € N
,Sad - 1y) (ctz) 2 5+ PR (R(K)b:])
ret R (u) X « R(K)[b+ 1:]
if op # sig then ret L
P (u,v) A« vr®(ctz); B < ph®(in)
T v ry 4 R(A| X|| B)
ta « R(A|rG| P B)
R(u) x < r+ st (mod n); R+ rG
if -7, then m, 4 {0,1}?; ret =, ret R,z
Op(sk, ctz, op, in) G, Op(sk, ctz, op, in) (e
dec r,t € N dec r,t € N

5+ c®(R(K)[b:])

if op # sig then ret L

A — vr®(ctz); B + ph®(in)
Ty = R(A| X | B)

s+ c®(R(K)[b:])
if op # sig then ret L
A — vr®(ctz); B + ph®(in)
if PA,B =< then
PA,B & {Ov 1}4b

if pa,p = ¢ then

PA,B & {071}4b
Top < PA,B[:2]; toy, < pa,B[2b+ 1]
z < 1 (mod n)

Top < PA,B[:2]; toy, < pa,B[2b+ 1]
x < r (mod n)

ty, <~ R(A| G| P| B)

ty, <~ R(A|rG| E| B)
x 1+ st (mod n); R+ rG
ret R, x

x 1+ st (mod n); R+ rG
[P(A|R| P Bty

ret R,z

Op(sk, ctz, op, in)
dec r,t € N
s+ c®(R(K)[b:]);
if op # sig then ret L
A« ur®(ctz); B + ph®(in)
if pa,p = ¢ then
PA,B & {07 1}4b
Top < pa,B[:2b]; Loy < pa,B[2b+ 1]
z < r (mod n)
z < r+ st (mod n); R < rG

P(A|R[2| B,ty)
ret R,z

G. S Init® R (pk)

dec strp[]; PG
P« pk; ret P.p

5°.0p9F R(ug, ctx, op, in)
dec strp[]; boola; P € G; z,t € N
if op # sig then ret O(ctz, op, in)
P.p — o; A< ur®(ctz); B « ph®(in)
if pap=9¢then a+1
pap 4 {0,1}*; 0« P.p
Top < pa,B[:20); Loy < pa,B[2b+ 1]
z <z (mod n); R < =G — tP
if a=1then P(A| R| P| B,ty)
ret R,z

Figure 12: Experiment 0, and revisions for 4, 4, and 5, and P-relative simulator S for proof of Theorem 5.

37

Go(S,D) Op(ctz, op,in)

dec str K, X, st, o, o, 7[] if ctr = a then ret L
dec boolc,d, bad; P € G; s € N if ¢ =1 then ret I'(ctz, op,in)
c 4 {0,1}; K « {0,1}"; 7[K] « {0,1}* ret (S;: 1o, P,R)(ctz, op,in)

s+ cl(m(K)[:b])

P« 5G; 0 4 S.Init® R (P) L. (ctz, op, in)

d «— (D: Init, Final, Call, Op,R;)(P) if z=1)\ op =sig then
ret (d =c¢) ret EDy (ctz, op, in)
ret 22 (ctz, op, in)
Init(ctz) =
- R’ (u)
(st, out) «— G.Init ™2 (pk, ctz)
a + ctz; ret out if u ~ X then bad < 1
ret R(u)
Final (in)
ret (G.Final: L., Ro)(st, in) P (u,v)
Ty U
Call(in)
R (u)

ret {G.Call: Lo, Ra) (ist, in) if -7, then m, 4 {0,1}?*; ret =

Figure 13: Experiments 0 and 1 for proof of Theorem 5.

randomly sampled 7, «— {0,1}2*. Note that sampling r in this way is equivalent to sampling r as 7 4— Zo2
(cf. Section 2). Lemma 2 implies that this probability is at most 2/n, and so

Pr[Gs(S,D) | — Pr[G3(S,D)] < 2qraqr/n. (41)

Finally, in Gs, instead of returning R = rG and z = r + st (mod n), we return R = 2G —tP and = = r
(mod n). This does not change the outcome of the experiment, however, since R and z have the same
relationship in both experiments (namely, G = R+ ¢P). Observe that the behavior of the Op in case b =1
is the same as when b = 0, and so Pr [G5(S, D)} = 1/2. Summarizing, we have that

Pr[Exp§hs(S.D] < cqrAdviL(C)+Pr[Gi(S,D)] (42)
< cqrAdvE(C) + ‘;—’j +Pr[Go(S,D)] (43)
< cqrAdvE(C) + ‘;—fj + BRI pr[Gy(S,D)] (44)
< cqrAdviy(C)+ U0 4 W0 AR by Gy(s,D)] (45)
< carAdvi(€) + Y 4 pr]Gs(s,D)] (46)
< cqrAdveL(C) + 3qsq1 + % (47)

where Eq. (46) follows from our assumption that n < 2°~!. The claimed bound follows by applying the
definition of D’s GAP1 advantage.

Note that S is O(t/qr)-time since, by convention (see Section 2), adversary D’s runtime includes the
time required to evaluate its queries, It is (logn/2, 2b)-min-entropy because each query to P is of the form
(A]|zG —tP|| P|| B,ty,), where z and t are random elements of Zgyp; by Lemma 2 the probability that any @
is equal to G — tP is at most 2/n = 1/2'°8"/2,

A.5 Theorem 6 (GAP2 security of EADSA)

The proof is closely related to Theorem 5, except we needn’t rely on the collision resistance of vr for context
separation. In Theorem 5, this property was used to bound the probability of an adversary distinguishing
between an experiment in which the random scalar r is generated honestly and an experiment in which it

38

is computed using a table p that is independent of X = R(K). (See the middle-left panel of Figure 12.)
Since 7 is simple, it is independent of X by definition, and so we can instead use the unpredictability of X
to bound this probability.

Let D be a r-resource GAP2-adversary. We begin with an experiment G (S, D) (Figure 12) that is similar
Exp%%)le’g (8, D), but with some changes that will help clarify our argument. First, before executing D, we
explicitly compute the public and secret keys. This does not change semantics of the experiment. Second,
only the simulator and £D have direct access to R; all other algorithms’ RO queries are proxied by an
oracle R’ that checks if u ~ X, i.e., if X is non-empty and is a sub-string of w. If so, then it sets a flag bad.
Note that Go(S, D) is O(¢)-time if D is t-time.

The first change reflects the second change in the proof of Theorem 5. Define experiment G; from Gy
as follows. Modify the call to €D in Op with the procedure Op defined in the top panel of Figure 12. Now,
remove the statement X «— R(K)[b + 1:] on line 12:24 and add the statement X «— {0,1}® just prior to
running the adversary. Then

Pr[Go(S,D)] —Pr[G1(S,D)] < qr/2". (48)

Next, we construct G, from G by modifying R’ so that the oracle halts and outputs L immediately after
bad gets set. The probability that any query to R’ for any z sets bad; is at most 1/2/XI = 1/20. Since the
number of queries is at most ¢g it follows that

Pr[G1(S,D)] — Pr[G2(S,D)] < Pr[G:(S,D)sets bad: | < qr/2". (49)

To complete the proof, we can apply the same rewrites in the bottom panel of Figure 12 to obtain an
experiment Gg such that

Pr[Go(S,D)] < 2qr/2" + qrar /2" + 2qrgr/n + Pr[G3(S,D)] (50)

and in which D has no advantage. The only difference is that it uses Z to answer non-sig-operator queries,
rather than return nothing (12:57). We have that Pr|[G2(S,D)] = 1/2 since this is precisely the behavior
of §. Then

Pr[Go(S,D)] < 2qr/2"+qrar/2" + 2qrqr/n+1/2 (51)
Adv%%pr,LQ(S, D) < 4qR/2b + 2qRq1/2b + 4qrqr/n (52)
< 3qrqr/2° +4qrqr/n < Tqrqr/n, (53)

yielding the desired bound.

A.6 Theorem 7 (GAP1 security of Noise)

The proof is by a game-playing argument in which we rewrite the Op oracle so that its output is independent
of the challenge bit b. Our strategy is to change the pseudocode executed by Op when b = 1 so that it is
functionally equivalent to the simulator S indicated in the theorem statement. We will specify S at the very
end; for now, let S be any DDH- and Q-relative simulator. Let D be a r-resource GAP1-adversary.

Consider the experiment G(S, D) defined in Figure 14. This game is similar to Expjg\?f’gl (8, D), except
it performs some additional bookkeeping. In particular, it declares a variable g of type sst (defined in
the bottom-left panel of Figure 14), which we will refer to as the game’s “shadow state”. First, when the
key generator is executed, its output is assigned to (g.P, g.s). Second, the experiment sets a flag g.bad; if
the game G (or A via G) ever makes an RO query (id,u,v) that satisfies 1(ctz, (id,u,v)) for some context
string ctx # « used in a query to Op. Third, each time it is executed, the Op oracle processes the adversary’s
fresh RO queries as follows: for each (u,v) € ¢.Q\ Q, it adds u to the set ¢g.U, and if v encodes a valid
point Z € G, it adds Z to the set g.). Finally, it adds Q to the set ¢.Q. One can easily verify that none of
these changes affect the outcome of the experiment; note, however, that Go(S, D) is O(t + qrgr)-time since
D is t-time and the bookkeeping overhead is O(qrqr).

Experiment G is also specified in Figure 14. It is identical to Gg until g.bad; gets set, after which
point Ry returns L. By the (¢)-ro-)regularity of G and the definition of N, and by assumption that each

39

Go(.D) /[Ga(5,)]

dec str st, o, a, str 7[]; bool b, d

dec set Q,); sstg; seN

(g.P, g.8) «— N.Gen(); s + g.s

o 4 S.InitPPHQR (g PY: b« {0,1}

d «— (D: Init, Final, Call, Op,R1)(g.P)
ret (d =b)

Init (ctz)
(st, out) 4— G.Init®2(g.P, ctx)
o < ctz; ret out

Final(in)
ret (G.Final: NP2 Ro)(st, in)

Call(in)
ret (G.Call: NP2 Ro)(est, in)

Op(ctz, op, in)

if ctr = o then ret L

g.known < 1; Y < Y U {ciz}

for each (id,u,v) € Q\ g.Qdo Z + v
gU — gUU{(id,u)}
if Z then ¢.V + ¢V U{Z}

g.Q+g.QuUQ

if b=1 then ret NE(ctz, op, in)

ret SEHPPHQR (g op in)

R.(id, u,v)
if ¢ =1 then //caller is D
Q « QU {(id,u,v)}
if ¢=2then //caller is G (or N via G)
if (ctz € Y)Y(ctz, (id,u,v)) then

g.bad1 < 1;

ret R(id, u,v)

R (id, u,v)
if g u,0 then miq ... «— ({0, l}h)3
ret Tid,u,v

Q()
ret O

SimCap(bool f,¢sst g, ¢st hs,str X) G2

if —hs.K then ret (X, mHash(zhs, X))

(K, A) < (hs.K,hs.A); N < hs.seq,,s

if f then Y «+ AE.Enc(K,N, A, X)

else Y + AE.Dec(K,N, A, X)

if Y = L then ret (o,err_cap)

if —g.known then g.bads + 1

mHash(zhs,Y); ret (Y, iNonce(zhs))

mKeySimPSK® (usst g, ust hs, str psk)
if —hs.psk then ret err_psk
g.known < ((hs.id,hs.L) € g.U)
(hs.L, L', L") «— R.(hs.id, hs.L, psk)
hs.K < L"[:k]; hs.seq < 0
x + g.known; ¢.Kg + g.Kz U{hs.K}
ret mHash(zhs, A)

mKeySimDHPPH R (455t g, ust hs, elemgY)
decstr L', L"; Z € G
if =Y then ret err_dh
Z 4 SimDHPPHR (44 4hs,Y)
g.-known < (Z A (hs.id, hs.L) € g.U)
if g.known then (hs.L, L', L") «— R(hs.id, hs.L, Z)
else (hs.L, L', L") « R(hs.id, hs.L,(g.s)Y)
hs.K < L'[:k]; hs.seq < 0
x + g.known; ¢.Ky + g.Kz U{hs.K}
ret ¢

mKeySimTokPPH R (usst g, ust hs, bool f, 7, str t)

switch (f,r,t) //“” means “match any”

case (0, , psk):

ret mKeySimPSK® (vhs, hs.psk)
case (0,0,se), (0,1,es), (0,+,ss) :

ret mKeySimDHPPH R (44 vhs, hs.Q)
case (0,0, es), (0,1,se), (0, ,ee):

ret mKeySimDHPPH:R (49 whs, hs.R)
case (1, «, psk):

ret mKeyPSK® (¢hs, hs.psk)
case (1, +,ee):

ret mKeyDH® (¢hs, hs.e, hs.R)
case (1,0,se), (1,1,es):

ret mKeyDH® (¢hs, hs.e, hs.Q)

dec struct {
tup 7[]; elemgp[]; set K[], Q, R, U, V;
bool known, bad[]; P € G; s € Z,, } sst

case (1,0,es), (1,1,se), (1, *,ss):
ret | //excluded by T

ret err_token

Figure 14: Experiments 0 — 2 and definition of type sst (bottom-left) for proof of Theorem 7.

40

of N'’s constituents is 0-ro-bound, this implies that vr(ctz) = vr(«). But since ctz # «, we can bound the
probability that flag g.bad; gets using the collision resistance of vr. In particular, one can easily exhibit a
O(t + qrgr)-time CR-adversary C such that

Pr[Go(S,D)] —Pr[G1(S,D)] < cqrAdvL(C). (54)

The adversary executes Go(S,D): if g.bad; is set, then it searches Y for a string ctz that collides with «
under vr and outputs (ctz, a).

The next transition rewrites the call to A’ made by Op in order to set up the reduction to the INT-CTXT
security of AE. Consider procedures SimCap, mKeySimPSK, mKeySimDH, and mKeySimTok defined in
the top-right panel of Figure 14. These are variants of Cap, mKeyPSK, mKeyDH, and mKeyTok (Fig-
ure 8) respectively that use the shadow state instead of the static key. We first describe each procedure’s
functionality, then specify the changes made in experiment G.

SimCap works precisely like Cap, except it does some additional bookkeeping. In particular, if encryption
or decryption succeeds and a flag g.known is not set, then it sets a another flag g.bads. Flag g.known is set
or unset as defined below.

mKeySimPSK works precisely like mKeyPSK, except it performs some additional bookkeeping. In par-
ticular, if the first input to the RO w = hs.id || hs.L is in the set g.Uf, then it sets g.known; otherwise it
unsets g.known (i.e., it runs g.known < 0). After the symmetric key state and key are updated (14:40—41)
it adds the new key K to a set ¢.K,, where x = g.known. If K € ¢g.K1, then we will say that K is (possibly)
known to the adversary; otherwise will say that K is (certainly) unknown.

mKeySimDH is called when processing a key update involving the static secret key. It first attempts
to perform the update without using static secret key by invoking a procedure SimDH (14:46) with access
to DDH and R and on input of the shadow state, the handshake state, and the input point Y. (We will
define SimDH in a moment.) Let Z denote the output, and let w = hs.id | hs.L. If Z € G (i.e., Z # o) and
u € g.U, then the procedure sets g.known and unsets it otherwise. Next, if g.known is set, then the state is
updated using Z (the output of SimDH); otherwise it uses (g.s)Y. Finally, the new key is added to the set
9.y, where x = g.known. Procedure SimDH uses the DDH oracle as defined in Figure 15. On input of Y,
it updates the shadow state as follows. For each R € ¢.R and W € ¢.V, if g.pr is undefined, then it asks
r <+ DDH(g.P,R,W): if r = 1, then it sets g.pr + W. After updating the shadow state, SimDH halts and
outputs g.py, which is either a point in G or equal to <.

Lastly, mKeySimTok is much like mKeyTok, except that it operates on token actions rather than tokens so
that it can explicitly disallow the write actions excluded by T (i.e., the set X’). Write actions permitted by 7
are processed with the normal procedures (14:60-67), but read actions are processed using their simulated
counterparts (54-59).

Now that we have defined the low-level simulation procedures, we are ready to specify the changes to
the experiment. Experiment G is defined from G by replacing pseudocode with calls to the procedures
defined in Figure 14, as well as variants of the higher-level procedures that we will define.

1. Define wSimTok from wTok as follows: (a) replace execution of mKeyTok® (zhs, s, r,t) with execution
of mKeySimTok® (vg, vhs, 1, 7,t); (b) replace Cap; (¢hs, sG) with SimCap (¢g, vhs, g.P); and (c) change
the signature by removing int s and adding ¢sst ¢ as the first argument.

2. Define rSimTok from rTok in kind: (a) replace execution of mKeyTok® (vhs,s,r,t) with execution
of mKeySimTokPPH-R (g hs, 0,7,t); (b) replace Capg(zhs, sG) with SimCapg(zg, zhs, g.P); and (c)
change the signature just like 1(c).

3. Define SimWrite from Write as follows: (a) replace execution of wTok®(vhs,zout,s, r t;) with ex-
ecution of wSimTok® (vg,«hs, zout,r,t;); (b) replace Capi(vhs,in) with SimCapi(zg,«hs,in); and
(c) change the signature just like 1(c).

4. Define SimRead from Read in kind: (a) replace execution of rTok® (zhs,in,s,r,t;) with execution
of tSimTokPPH-R (4.9 whs in, r,t;); (b) replace Capg(zhs,in.P) with SimCapg(zg, vhs, in.P); and (c)
change the signature just like 1(c).

5. Define SimOp from Op as follows: (a) replace execution of Write® (vhs, s, r, pat,in) with execution
of SimWrite® (vg,¢hs, r, pat,in) immediately preceded by the statement g.known < 1; (b) replace

41

SimCap(bool f, usst g, ¢st hs,str X) Go SimDHPPH (usst g, ust hs,elemcY')
if —hs.K then ret (X, mHash(zhs, X)) g-R g RU{Y}
(K, A) « (hs.K,hs.A); N < hs.seq,,, for each (R,W) € g.R x g.V do
if f then Y < AE.Enc(K,N, A, X) if ~g.por N\DDH(g.P, R, W) then
else Y + AE£.Dec(K,N, A, X) g.pr < W
if Y = 1 then ret (o,err_cap) ret g.py
if —g.known then g.bads <1
ret (o,err_cap) (8**[P].Init: DDH, Q, R)(pk)
mHash(¢hs,Y); ret (Y, iNonce(zhs)) dec sst g; g.P < pk; ret g
(8™[P].Op: O,DDH, Q, R) (0, ctz, op, in)
mKeySimDHR® (zsst g, ust hs, elemgY) (e dec sst g; st hs; msg req
decstr L', L"; Z € G dec bool f, r; str u, pat, err
if =Y then ret err_dh g o;u, f,r,pat < op; hs,in < in
Z « PR (ug,uhs,Y) for each (id,u,v) € Q()\ ¢g.Qdo Z + v
g.known < (Z A (hs.id, hs.L) € g.U) gU + gUU{(id,u)}
if g.known then (hs.L, L', L") « R(u, Z) if Z then g.)(/ — g Vu{z}
)T g-Q+g.2uUQ()
olse (koL I7, 1) &= R(u, (g.0)¥) if u = noise A hs.id = vr(ctz) then
X« (u, (g.8)Y) ret SimOp[P]PPH-R (ug, ctz, op, in)
if =g.mx then g.7mx « ({0, 1}h)3 else ret O(ctz, op,in)
(hs.L, L', L") < g.7x
hs.K < L'[:k]; hs.seq < O
x + g.known; ¢.Ky + g.Kz U{hs. K}
ret ¢

Figure 15: Left: Experiments 3 (top) and 4 (bottom) for the proof of Theorem 7. Right: Procedure SimDH (top)
and simulator S = S™[P] (bottom) for proof of Theorem 7. Procedure P has signature P(usst g, ¢st hs,elemgY) —
elemg Z (and can be instantiated via SimDH); procedure SimOp|[P] is as defined in experiment 5; type sst is defined
in Figure 14; and oracle DDH is defined in Figure 4.

execution of Read® (vhs, s, r, pat, req) with SimReadPPH-R (vg, vhs, r, pat, req) immediately preceded
by the statement g.known < 1; (c) remove s <— Scal® (sk) from line 7:11; and (d) change the signature
by removing str sk and adding ¢sst ¢ as the first argument.

6. Finally, modify the Op oracle by replacing /\/’iR(ctac7 op, in) with SimOpPPH-R (4g ¢tz op, in).

We claim that Go(S, D) and G1(S, D) are equivalent. The main change is in the way static DH operations are
performed (via mKeySimDH). First note that if SimDH outputs any point at all, then the output is correct;
this is made possible by the DDH oracle, which allows the procedure to decide if (logs P)(log-Y) = logs Z
for the input Y and some Z € ¢.V. Thus, if the solution coincides with one of D’s queries, then SimDH will
find it in O(grqr) time. Otherwise mKeySimDH will compute the correct solution using g.s.

The remaining changes addresses this dependence on g.s. First, experiment Gg is defined from Go by
modifying SimCap as specified in the top-left panel of Figure 15. The experiments are identical until g.bads
gets set, after which SimCap halts and outputs (o, err_cap) in G. SimCap gets called when encapsulating or
decapsulating a payload or static key blob; flag g.bads only gets set if encryption/decryption succeeds and
—g.known holds. Since variable g.known can only be unset by a read action (mKeySimPSK or mKeySimDH),
this event is always triggered by a successful decryption under a key in the set ¢.XCo.

The set of keys ¢g.Kp is unknown to D in the sense that, by definition, each key was derived from an RO
query for which at least one of the inputs (i.e., the key state or DH secret), is not incident to any RO query
made by D. However, this fact alone does not preclude the possibility of D learning information about ¢.Ko,
since Call or Op oracles may leak the handshake state to the adversary. Indeed, upon a successful Op query,
the adversary gets the symmetric key used to encapsulate/decapsulate the payload, since it is contained in
the state; and the Call oracle might leak keys if, for example, the game G admits state-corruption queries
(e.g., when modeling forward secrecy). But the (¢-ro-)regularity of G ensures that symmetric keys used in

42

the game G are independent of ¢.KCy; any keys leaked by the interface are either in ¢.K;, or the leakage
occured only after g.bads got set.

These observations allow us to bound the probability that G3(S, D) sets g.bads using the INT-CTXT
security of AE. Consider the following INT-CTXT adversary. It executes G3(S, D), but replaces all encryp-
tion or decryption operations incident to some K € g.Ky with queries to its own Enc or Dec oracle. (Note
that only Dec will be used, since g.known is only unset by read actions.) This is made by possible by virtue
of the fact that K is never revealed to D, since the operator will return only an error (err_cap) instead of
the handshake state. Such an attack succeeds only if the experiment sets g.bads and decryption operation
incident to this event was evaluated using Dec.

Let A; be like the adversary just described, but it simulates actions involving the i-th key entered
into g.Ko using its own oracle. Note that |g.KCo| < fg; and define AFeDPec a5 follows: choose i «— [(q;],
run A?“C’Dec, and halt. Let H;(S,D) be an experiment defined just like G, except that after i-th key is
entered into the set g.Kp, if g.bads gets set, then SimCap halts and outputs an error (as in Gs). Then Gy
is the same as Hyg,, experiment G3 is the same as Hy, and

Lq1

Pr[G2(S,D)] — Pr[G3(S,D)] ZPr[Hi(S,D)] —Pr[H,;_1(8,D)] (55)

Lqr

> Pr[H;(S,D)sets g.bads | (56)

IN

Lqr
< Z Pr [Expij{fg’m‘t(/li)] (57)
i=1

= L AdvEE(A) (58)

where the last line follows by conditioning on the outcome of A’s sampling ¢ uniformly from [¢g;].

Observe that in G 3, the output of SimCap is independent of g.Kg, since if —~g.known holds, then it outputs
(o,err_cap) regardless of the outcome the decryption operation. This allows us to rewrite mKeySimDH so
that it is independent of g.s. We do so in two steps. First, experiment G, is defined from Gg in the bottom-
left panel of Figure 15 by replacing evaluation of R in case —g.known holds (15:14) with a simulation using
the shadow state. Specifically, it checks an associative array g.7 for X = (u, (g.s)Y); if g.wx is undefined,
then sets it to a random element of ({0, 1}")3. Tt then sets (hs.L, L', L") + g.mx. This does not change the
distribution of the experiment, however, because —g.known implies that wx is undefined. It follows that

Pr[Exp§/% (S, D)] < cqrAdveL(C) + LgrAdviiE™ (A) + Pr[G4(S,D)] . (59)

Finally, define experiment G5 from Gy as follows. On line 15:15, replace “(¢.s)Y” with just “Y”. Because n
is prime, by Langrange’s Theorem, scalar multiplication of an element of G by g.s € Z, is injective. In
particular, it holds that (g.s)X = (g.s)Y <= X =Y for all XY € G, and so the distribution of the
experiment (in particular, the distribution on the key state hs.L and derived values) does not change.

Let SimOp[P] denote SimOp as it is specified in experiment G5 and where P is the DH-simulation
procedure used to instantiate mKeySimDH. (We write it this way in order to emphasize that, while we use
P = SimDH in the current proof, there may be other instantiations that do not require a DDH oracle.)
Since SimOp[P] does not depend on the secret key, we may use it as a sub-routine in the specification of
our simulator. Let & = S™[SimDH] be as specified in Figure 15. One can easily verify that, when the
simulator is defined in this way, the output of Op in G5(S,D) is independent of b. We conclude that
Pr[G5(S,D)] = 1/2. The claimed bound follows.

We conclude by accounting for C’s, A’s, and S’s resources. Both A and C are O(t + qrqr)-time, which
accounts for the bookkeeping overhead inherited from experiment Go. Adversary A makes no queries to Enc,
but at most g; queries to Dec. Finally, the simulator is (O(t/qr), g1, £)-resource, {qrq-DDH-bound, and
2-Q-bound.

43

Exp2% (T, D) R[X, Y].Init() HKDF[F, j].Init()

dec str st,o; bool b, d dec elemy []; ret 7 ret F.Init()

b« {0,1}) .)

st «— Fp.Init() R[X, Y].Hon(ust, in) HKDF[F, j].Hon(zst, in)

o« T.Init() dec elemx X; elemy 7] dec int j; str X, Y, L[]; tup r

d «— PpFunc,Prim T st; X < in id, X, Y < in

ret (b= d) if -mx then 7x «- Y K « F.Hon(ust, X.Y) // Extract

st < m; ret Tx for i + 1 to j do //Expand

Func(in) v 4 Li_y | id || ig

R[X, V].Adv(&st, in)

ret Fp.Hon(zst,in) L; « F.Hon(¢st, K,v)

ret Hon(ust,in)
Prim(in) () retT f 7l L
if b=1 then B
ret Fi.Adv(ust, in) HKDF[F, j].Adv(ust, in)
ret 7.0p7 oAVt (45 ip) ret F.Adv(zst,in)

Figure 16: Left: INDIFF experiment for funcionalities F1 and Fy, primtive-simulator 7, and adversary D. Middle:
The random oracle functionality R[X,))] for a function with domain X and finite range). Right: The HKDF
functionality HKDF'[F, j] defined in terms of functionality F (an idealization of HMAC) and integer 0 < j < 255.

A.7 Sketch of Theorem 8 (GAP2 security of Noise)

The proof of GAP2 security of (Zyar,Z) for G is closely related to the proof of Theorem 7, so we will only
enumerate the differences here. First, experiment G has the following differences:

1. Instead of (g.P, g.s) «— N.Gen() we run (g.P, sk) «— Z.Gen() and set g.s < Z.Scal(sk). (Recall that
Z.Gen is 0-ro-bound by assumption.)

2. We modify Final and Call to use Z;n.Opg if b = 1 and Zg, otherwise. Both are given Ry as the
RO just as in Theorem 7. Notice that since Z is t-ro-regular by assumption, the same condition as
before will trigger g.bad; getting set: if a RO query made by via Call coincides with an RO query
made via Op, then the result will be L in Gos.

3. We modify Op so that Z; nr.Opgy, is used if b =1 and (S.Op,: ZB) is used otherwise.

The remaining steps are the same as in the proof of Theorem 7.

B Indifferentiability of HKDF

In our analysis of the SEC/I security of Noise (Section 6) we modeled the key-derivation function as a random
oracle (RO). Noise uses HKDF [38] instantiated with a hash function H. This modeling choice is only valid if
the attacker is unable to exploit the underlying structure of HKDF. This section provides formal justification
for this choice.

Definition 11 (Indifferentiable functionalities). We recall the notion of indifferentiable functionalities (for
single-stage adversaries) of Ristenpart, Schacham, and Shrimpton [55]. A functionality F is a triple of
algorithms (Init, Hon, Adv):

e Init() — str st. Returns the initial state of the functionality.

e Hon, Adv(ust,str in) — str out. The honest and adversarial interfaces of the functionality take as
input a string in and the current state st and return a string out. Each may update st as a side-effect.

The INDIFF experiment (left panel of Figure 16) is associated with functionalities F; and Fy, an adversary D,
and an INDIFF-simulator T. The INDIFF simulator is a pair of algorithms (Init,Op): the first takes no
inputs and outputs a string o representing the simulator’s initial state; and the second, Op(estr o, str in) —
str out processes an input and updates o. Algorithm Op expects access to an oracle for an adversarial

44

interface. Let Advi}-‘lﬂi}fo (T, D) denote the advantage of D in differentiating F; from Fy with respect to 7.
Informally, we will say that F; is indifferentiable from Fy if there exists an efficient INDIFF-simulator 7
such that the advantage of any efficient adversary in differentiating F; from Fy with respect to T is small.
We call an INDIFF adversary (Xg, Xp)-restricted if each of its Func queries encodes an elment of Xr and
each of its Prim queries encodes an element of Xp. We call an INDIFF simulator (%, ¢)-resource if each of
its constituent algorithms are t-time and the operator makes at most ¢ queries to its oracle on any given
execution. ¢

HKDF uses HMAC [39] instantiated with a hash function H : {0,1}* — {0,1}*. HMAC requires H be
computed by iterating an underlying compression function on fixed-length blocks of data, where the block size
is at least h bits. Therefore, in order to instantiate HKDF with a particular hash function, the hash function
must be suitable for HMAC. Many widely used hash function are, including SHA2 and BLAKE2 (both
specified for use with Noise). Although designed for message authentication, HMAC is used for randomness
extraction in a wide variety of settings. As a result, it is common to model HMAC as a random oracle when
anaylzing the security of these schemes.

In the single-stage setting [55] and under appropriate restrictions of the key space, HMAC is known to
be indifferentiable from an RO when H is modeled as an RO [24]. Dodis et al. define (in [24, Section 4.4])
allowed key sets for a particular hash function H, and they show that for all allowed key sets K, the function
HMAC™ : K x {0,1}* — {0,1}" is indifferentiable from an RO when # is modeled as an RO. They note
that for any k& < d — 1, where d is the block size of H, the set {0,1}* is an allowed key set for H; see [24,
Section 4.4]. We will focus our attention on hash functions for which d > h (e.g., SHA2 and BLAKE2) and
require the salt string used for HKDF to be of length h. That is, we restrict ourselves to the key set {0, 1}",
which is allowed for the class of hash functions that we consider. (Note that a direct proof is required for
Merkle-Damgard-style hash functions such as SHA2; see [24, Theorem 4.4].)

In Figure 16 we express HKDF as a functionality HKDF [F, j] defined in terms of a functionality F and
an integer j > 0. The functionality F is an idealization of HMAC, which the adversarial interface exposes
directly (16:26). We realize F as an RO functionality, which is also defined in Figure 16. An RO functionality
R[X,))] is equivalent to modeling some function H : X —) as an RO in an experiment (see Section 4.2);
its initializer declares an associative array used to lazy-compute a random function from X to). Its honest
and adversarial interfaces are the same. Note that the RO functionality is only well-defined if) is finite.

Like HMAC, this HKDF functionality is also not indifferentiable from an RO in general. Lipp et al. [46]
prove that it is necessary to restrict the input key material so that no input to HKDF coincides with the
input to a call to HMAC induced by HKDF. In particular, suppose that the information string is always of
length w. Then, by [46, Lemma 7], the HKDF functionality is indifferentiable from an RO as long as the
input key material is a string of any length other than w + 8 (the length of the input to HMAC for the first
extracted block) or h + u + 8 (the length of the input to HMAC for each subsqeuent block).

Fix integers 0 < j < 255 and h > 0 and a function H : {0,1}* — {0,1}" suitable for HMAC with block
size d > h. Let Xg = {0,1}* x {0,1}* and let Xp = {0,1}* x {0,1}" x ({0,1}*\ ({0, 1}4+8 U {0, 1} +u+8)),
Let H = R[Xy,{0,1}"], F = HKDF[H,j], and R = R[XF, ({0,1}"*)7] as defined in Figure 16.

Lemma 3 ([46], Lemma 7). Fizr integers 0 < qp,qp < 2. There exists an INDIFF-simulator T such for
every t-time INDIFF-adversary D making qr queries to Func and qp queries to Prim, it holds that

AdvEEN (T, D) < (gr + 2qp)*/2"
where D is (Xp, Xy)-restricted and T is (O(t/(qp + 1)?,2)-resource.

In light of this result, our interface for Noise makes the following restrictions. First the hash function
must be suitable for HMAC [39]; second, the hash function must have a block size strictly greater than the
output size h and that the salt length is exactly h bits [24]; and third, the information string is of some
fixed length u, and the input key material is of any length other than u + 8 and h + u + 8 (Lemma 3).
This translates to the following restrictions on interface A (Figure 7): Function vr is restricted to an output
length of u (the length of the information string provided to HKDF); elements of G must all be encoded as
strings of some fixed length other than u+ 8 or h 4w+ 8; the length of the chain key hs.L must be h (7:12);
and the length of the PSK hs.psk must not be u+ 8 or h 4+ u + 8 (7:13).

45

	Introduction
	Pseudocode and Conventions
	Interfaces and Games
	Security Under Exposed Interface Attack
	Simulatability of an Interface
	The Composition Theorem

	Discrete Log Interfaces
	Diffie-Hellman
	EdDSA

	Noise
	Handshake and Message Patterns
	The Interface
	Security
	Composition with EdDSA
	Conclusion

	Proofs
	Theorem 1 (composition)
	Theorem 2 (necessity of wGAP2 for Theorem 1(ii))
	Theorem 4 (wGAP2 insecurity of functional DH)
	Theorem 5 (GAP1 security of EdDSA)
	Theorem 6 (GAP2 security of EdDSA)
	Theorem 7 (GAP1 security of Noise)
	Sketch of Theorem 8 (GAP2 security of Noise)

	Indifferentiability of HKDF

