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Abstract—This paper studies the ‘“age of information” of
status updates in a general multi-source multi-hop wireless
network with time slotted transmissions and general interference
constraints. Specifically, the scenario considered in this paper
assumes that each node in the network is both a source and
a monitor of information and that all nodes wish to receive
fresh status updates from all other nodes in the network. Lower
bounds for the instantaneous peak and average age of information
are derived for three interference models using properties of
each interference model’s family of feasible activation sets. These
bounds generalize prior results derived for the “global” interfer-
ence model where only one node transmits in each time slot.
Achievability results are presented through the development of
explicit schedules for ring networks in three specific interference
models: (i) global interference, (ii) interference free, i.e., all
nodes can transmit simultaneously without interference, and
(iii) topologically-dependent interference where multiple nodes
transmit simultaneously if they share no one-hop neighbors.
Numerical examples are presented to quantify the gap between
the achieved age and the bounds.

Index Terms—Age of information, multi-source, multi-hop,
explicit contention, graph theory, interference models.

I. INTRODUCTION

In many contemporary networked monitoring and control
systems, e.g., intelligent vehicular systems, timely status up-
dates are critically important to maintain safe operation and
provide stable control loops. This understanding has led to a
new line of research centered around an Age of Information
(Aol) metric [1], [2] which measures the staleness of a
monitor’s knowledge of a time varying process measured by
a separate source in the network. Much of the literature on
this subject has focused on the single-source, single-monitor,
single-hop setting, where the hop is typically modeled as a
random delay through a queue [3]-[7]. Multi-source and/or
multi-monitor extensions, also in the single-hop context, have
been considered in [8]-[14].

This paper considers age of information in multi-hop net-
works. While the multi-hop setting was first considered in
the context of vehicular networks in [15], this setting has
received relatively little attention in the literature. One line
of study has focused on analyzing specific multi-hop network
structures, e.g., line, ring, and/or two-hop networks [15]-
[21]. A general multi-hop network setting where a single-
source disseminates status updates through a gateway to an
interference-free network was considered in [22], [23]. A
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practical age control schedule to improve Aol in multi-hop
IP networks was also recently proposed in [24]. The work
in [25] considers a network with multiple source-monitor
pairs communicating over multiple hops with interference
constraints. The analysis in [25] addresses age-optimal random
transmission policies where links are activated according to a
fixed probability distribution.

This paper considers a general multi-source, multi-monitor,
multi-hop setting with explicit interference constraints. Unlike
[25], we assume that (i) every node in the network is both a
source and a monitor of information, (ii) every node wishes
to receive timely status updates from all other nodes in the
network, and (iii) updates are disseminated with deterministic
schedules. The work in this paper builds on our prior results
in [26], [27] by generalizing our analysis to allow for arbitrary
interference constraints and simultaneous transmissions of
status updates. The main contributions of this paper are:

1) We consider Aol in a general multi-source, multi-
monitor, multi-hop setting with explicit interference con-
straints expressed through the network’s graph and a
corresponding family of feasible activation sets.

2) We derive general lower bounds on the instantaneous
peak and average Aol under arbitrary interference con-
straints. These lower bounds generalize the bounds in
[26], [27] and are based on properties of each interfer-
ence model’s family of feasible activation sets.

3) For ring networks with any number of nodes, we de-
velop explicit schedules and present numerical results
quantifying the gap between the achieved age and the
bounds.

II. SYSTEM MODEL AND AGE METRIC

In this section, we describe the system model and the age
metric that is considered in this paper.

A. Network Model

We consider a wireless network where connectivity of nodes
is modeled by a time-invariant directed graph G = (V,€)
where the vertex set V represents the wireless nodes and the
edge set £ represents the channels between the nodes in the
network. Edge e;; is in set £ when transmissions can be
reliably delivered from node i directly to node j in the absence
of interference. We assume that nodes have equal transmission
range, hence ¢; ; € £ & ¢;; € £ We denote the number of
nodes as N = |V| and the set of one-hop neighbors of node 4



Fig. 1. Example N = 6 ring network.

as Ni(i), ie., j € N1(i) & e;; € . Finally, we assume that
the network is connected, i.e., there exists a path between any
two distinct vertices i,j € V.

We consider a setting where each node ¢ € V is associated
with a local process H;(t). No assumptions are made about
these processes other than they are time-varying and each is
of timely interest to all nodes in the network. In addition to
its local process, each node 7 € V has a table of “statuses”
of all of the non-local processes in the network. We denote a
status as the tuple (H( (t), 7 (Z (t)), where H(l)( t) and TJ@ (t)
denote the most recent sample value and the corresponding
timestamp of H;(¢) known to node ¢ at time ¢, respectively.

Since the processes {H;(t)} are time-varying and of timely
interest to all nodes in the network, each node i € V seeks to
maintain a table of “fresh” statuses with recent timestamps.
For simplicity, we assume each node can sample its own
local process without delay. The remaining statuses must be
updated via broadcast transmissions containing status updates
from other nodes in the system. We assume:

1) Transmissions are time slotted, require one unit of time
to complete, and are received at times t = 1,2,3,....

2) Each transmission contains one status, i.e., one sample
and its corresponding timestamp, of a process.

3) A transmitting node may transmit the status of its own
local process or its status of another node’s process.

4) Transmissions from node ¢ are received reliably by all
nodes in the one-hop neighborhood of node i, denoted
by N1 (2), while nodes outside the one-hop neighborhood
receive nothing from node i.

5) At least one node can reliably transmit a status update
to its neighbors in each time slot. Depending on the in-
terference model (as discussed in Section III), more than
one node may reliably transmit updates to its neighbors
in each time slot subject to interference constraints.

As each node in the network is both a source and a monitor
of information, there are inherent tradeoffs in how fresh the
status at each node can be in this setting. For example, in
the ring network in Fig. 1, node 1 can keep nodes 2 and 3
updated with fresh status updates of H1(¢) by transmitting new
samples of its local process in every time slot. While statuses
H 1(2 (t) and Hl(g)(t) remain fresh, all of the other statuses in
the network become stale since they are not refreshed.

B. Age Evolution and Schedules

The age of a status update of process H;(t) at node 7 is
defined below.

Definition 1 (A%e) leen the status of process j at node
i denoted as Hj (t),TJ )( t)), the age of this status at time
t> T;Z) (t) is defined as Agl (t) &t — (1)( t).

Note that the age A@ (t) is non-negative and is not defined

for t < T( )(t) or if no status update for process H,(t) has
been recelved at node i. We denote by £ a time such that all
ages A ( ) are defined for ¢ > t. Given Definition 1 and the
assumed time slotted nature of the status updates in the system,
we can describe the dynamics of each age in the system with
a simple discrete time model similar to [9], [11]. Specifically,
given a status update from node ¢ regarding process j, the age
at each node m € V with m # j is updated at integer times
t = n according to

1 m € Ni(i) and i = j
mGNl(l) | J,
and A [n] < A [n]

A;m) [n] +1 otherwise.

In order for node m # j to update its status of process
j and reduce the corresponding age Agm)(t), it must (i)
receive the status update transmission, i.e.. be within the one-
hop neighborhood of a transmitting node, and (ii) the status
update must be fresher than the current status at node m.
Otherwise, the age simply increases by one. The first case
in (1) corresponds to the case when node ¢ transmits a
status update of its local process H;(t). In this case, since
transmissions require unit time to complete, the local age at
the start of the transmission is Az(-z) [n] = 0 and the age when
nodes m € N7 (i) receive the status update is Agm) [n+1] = 1.
The second case in (1) corresponds to the case when node @
transmits a status update of a non-local process H;(t) with
j # i. In this case, nodes receiving the transmission update
their statuses to match that at node ¢ if the status from node
is fresher. When no update is received or the update is staler
than the current status at node m, i.e., the third case in (1),
the age simply increases by one.

We define a schedule as a sequence of transmissions in-
dexed by integer time n with one or more pairs (i,7) with
1 € {1,..., N} corresponding to the transmitting node index
and j € {1,..., N} corresponding to the index of the process
for which node ¢ is transmitting a status update. For the trivial
example discussed previously where node 1 repeatedly sends
updates of its own process Hi (t) to its neighbors, the schedule
can be simply written as n : {(1,1)} forall n = 1,2,.... If
the interference model allows for nodes 1 and 4 to transmit
simultaneously (note that nodes 1 and 4 share no neighbors
in Fig. 1), and both nodes just transmit updates of their own
processes Hy (t) and Hy(t), respectively, then the schedule can
be written as n : {(1,1), (4,4)}. To facilitate the development
of non-trivial schedules, the following section formalizes the
notion of interference models and feasible activation sets.

m Al
A 1] = { 7 (1)

III. INTERFERENCE MODEL ASSUMPTIONS

The Aol in networks where only one node can transmit per
time slot was analyzed in [26], [27]. This paper generalizes



this prior work by allowing for multiple nodes to transmit in
each time slot, subject to interference constraints. Similar to
[25], for any directed graph (V, &), we call f C £ a “feasible
activation set” if all links in f can be activated simultaneously
without interference. An edge e; ; is said to be “active” during
a time slot if node 4 is transmitting and j € N (7).

In this section, we present specific interference models
spanning from the most pessimistic model (global interference
[26], [27]) to the most optimistic model (interference free
[22], [23]). Between these extremes, we also describe a
topologically-dependent interference model in which multiple
nodes transmit simultaneously if they share no one-hop neigh-
bors. Each of these settings will be analyzed in the sequel.

A. Global Interference Model

The global interference model was considered in [26], [27].
This pessimistic interference model imposes the constraint that
only one node can transmit during each time slot. In this
setting, there are a total of IV feasible activation sets, given by
Feiob = {f1,...,fn}, where f; ={alle,; € € s.t. £ =i} is
the set of directed edges exiting node i.

B. Interference Free Model

In contrast to the pessimistic global interference model, this
model considers a setting in which all nodes can transmit
simultaneously without interference. This optimistic “interfer-
ence free”” model has been considered previously in the context
of Aol in [22], [23]. In this setting, each of the /N nodes in
the network can transmit in each time slot. The collection
of all feasible activation sets Fipee in this setting can be
expressed as Fifree = Uivzl JFi where Fy is the collection
of all sets of edges with k£ transmitting nodes. For example,
F1 = Fglob is the collection of all sets of edges with one
transmitting node. Similarly, the collection of all sets of edges
with two transmitting nodes F2 = {f12, f1,3,---, fN-1.N}
with f; ; = f; U f; and f; as defined previously is the union
of the sets of directed edges exiting nodes ¢ and j. Note that
Fn = & C Fireo» 1.€., the collection of all feasible activation
sets in this setting includes the set of all directed edges.

C. Topologically-Dependent Interference Model

In some networks, the global interference model may
be overly pessimistic since multiple nodes may be able to
transmit simultaneously due to frequency reuse, e.g., with
sufficient spacing between some nodes, the use of multiple-
access strategies, or other interference avoidance approaches.
Similarly, the interference free model may be overly optimistic
in some settings because nodes may not be able to separate
simultaneously received updates or operate in full-duplex.
As such, we consider a topologically-dependent interference
model that falls between the pessimistic and optimistic models
above. Specfically, if Ay (i) N N1(j) = 0, then ¢ and j can
transmit simultaneously without interference in this model.

Note that the collection of feasible activation sets in the
topologically-dependent interference setting includes all trans-
missions from a single node, ie., Fgob € Figi. It also

contains the collection of sets of edges of multiple transmitting
nodes that share no common neighbors. As an example of the
collection of feasible activation sets in topologically-dependent
interference setting, consider the ring network in Fig. 1. Note
that Fiai = Fglob U {f14, f2,5, f3,6} where f; ; = f; U f; as
defined previously. Hence, for the six-node ring network in
Fig. 1, there are a total of nine feasible activation sets.

In general, note that Fgio1, C© Fiai C Fifree and the sets of
possible schedules in each case has the same ordering. The
following section analyzes the age statistics in each of these
interference settings.

IV. AGE OF INFORMATION ANALYSIS

In this section, we present the main results consisting
of lower bounds on the peak and average age (as defined
below) under general interference constraints including the
three interference models described in Section III. The basic
approach is to use a property of the feasible activation sets to
lower bound the number of time slots required to update all
statuses throughout the network. This leads directly to a lower
bound on the instantaneous peak age. Additional properties of
the feasible activation sets are then used to derive a lower
bound on the instantaneous average age.

Before proceeding, we first review some key graph theoretic
principles needed to establish a lower bound on the number
of time slots required to update all statuses. Recall that a set
S C V of vertices in a graph is called a dominating set if every
vertex not in S is adjacent to a vertex in S [28]. A minimum
connected dominating set (MCDS) S C V is a dominating set
satisfying (i) the subgraph induced by S is connected and (ii)
S has the smallest cardinality among all connected dominating
sets of G. Recall that for any W C V, the induced subgraph
G[W] consists of W and all edges whose endpoints are in W.
The cardinality of any MCDS is called connected domination
number of G and is denoted by .. In general graphs do not
have a unique MCDS, yet all MCDSs of a graph have the
same cardinality [29], [30]. Below, we introduce the notion of
a pseudo-leaf vertex.

Definition 2 (Pseudo-leaf vertex). A vertex i € V is a pseudo-
leaf vertex if it is not a member of any MCDS.

We refer to the set of all pseudo-leaf vertices of G as L.
Under this definition, every true leaf (i.e., every vertex with
degree one) is also a pseudo-leaf.

The following lemma establishes a lower bound on the
number of time slots required to update all of the statuses
in the network.

Lemma 1 (Number of time slots required to update all
statuses). For any schedule, updating all of the statuses
throughout the network requires at least
Nvy.+|L
v
time slots, where v is the maximum number of simultaneously
transmitting nodes over all feasible activation sets.



Proof sketch: A proof for the global interference model is
provided in [26], [27] where v = 1 since all feasible activation
sets correspond to a single transmitting node. For general
interference models with v corresponding to the maximum
number of simultaneously transmitting nodes over all feasible
activation sets, the desired result follows from considering v
simultaneous transmissions in each time slot. O
Note that the bound in Lemma 1 is tight for all network
topologies when v = 1 but can be loose in some cases when
v > 1. This is a consequence of the fact that the bound is
simply based on assuming all time slots use the maximum
number of parallel transmissions and ignoring the constraint
that each node can only transmit one status update per time
slot. While the bound in Lemma 1 is general, it is possible to
develop tighter lower bounds for specific interference models
and/or topologies by considering these additional constraints.
For the interference models in Section III, we have
Vifree = IV )

Vglob = 1, Vtdi = X, (3)

where x is the maximum number of vertices with the same
color over all distance-2 colorings of G.

The remaining analysis in this section develops bounds on
the instantaneous peak and average ages in the network. To
facilitate this analysis, we first define the instantaneous peak
and average age by extending the scalar age update model in
(1) to a vector age update model given by

An+1]= Aln, An]] Aln] + 1, 4)

where Aln] € ZV =N, An, An]] € ZWN*=N)*(N*=N) and
1€ ZN"~N is a vector of ones. Note that the local ages
Agl) (t) are not included in A[n] since they are always zero.
From (1), it is clear that A[n, A[n]] is a matrix, dependent
on both the status update and the current ages as time n, with
elements equal to zero or one. It is also evident that the rows
of A[n, A[n]] each have at most one element equal to one.
Note that, for ¢ € [n,n+1), since all (non-local) ages increase
linearly with time, we can write A(t) = A[n]+ (t — n).

Given Definition 1 and #, we now define the instantaneous
peak age at any point in time ¢ > .

Definition 3 (Instantaneous peak age). For any t > t, the
instantaneous peak age is defined as

Apeak (t) 2 max A(t) 5)

Note that ¢ is fixed here and the maximum is computed over
the N2 — N elements of the vector A(t). Similarly, we define
the instantaneous average age at any point ¢ > ¢ below.

Definition 4 (Instantaneous average age). For any t > 1, the
instantaneous average age is defined as

Ape(t) & (N2 = N)"11TA(1) (6)

Note that the instantaneous average age represents the
average of the N 2_N ages of the non-local statuses, i.e.,
the zero-age local statuses are not included in the average.

Given (4) and A[n), the age vector at time n > ng can be
written as
n—1
Aln] = ®[n,no]Alno] + Y ®n,k+1]1, (1)

k:’n,()

where ®[n, m] is the usual discrete-time state transition matrix
based on A[n —1,A[n—1]],..., A[m, A[m]]. Note that the
dynamics in (4) and (7) are not linear due to the dependence
of A on A. Nevertheless, (7) can be used to derive lower
bounds on the age statistics as shown below.

Theorem 1 (Lower bound on instantaneous peak age). The
instantaneous peak age of information for any schedule at
time t >t is lower bounded by

* £ 7 (8)

peak,inst

Proof sketch: For t > ¢ and t € [n,n + 1), we can write
Apeak(t) = max Aln] + (t —n) > max A[n] > e A[n]

for all i € {1,...,N? — N}. From (7), we can set ng = 0
and n >t > T* to write

n—1
Aln]> > ®nk+1]1, 9)
k=n—T*

where the inequality follows from the fact that each term in
the sum is non-negative. Observe that there are 7" terms in
the sum and that that all ®[n, k + 1] in the sum are non-zero.
Hence, there must exist at least one 7 such that e/ ®[n,n —
T* + 1]1 = 1. Moreover, e, ®[n,n — T* + 1]1 = 1 implies
e/ ®n,k+11=1foral ke {n—T*...,n—1}. Hence,
given i such that e ®[n,n — T 4+ 1]1 = 1, we can write

n—1
Apee:lk(t) Z e;'r ‘I’[’R, k + 1]1 = T'*7

k=n-—T*
which shows the desired result. O

Theorem 2 (Lower bound on instantaneous average age). The
instantaneous average age of information for any schedule is
lower bounded by

ng,inst £ (N2 - N)ill—rsa (10)

where
S é [ma’X(mlayl)v max(mQayQ)v s 7maX(mT*ayT* )]a (1121)
x 2 [N>~N,N’~-N—¢,...,N°~-N—(T*~1)¢], (11b)
y2[T*T" —1,...,1] (11c)

with € corresponding to the maximum number of active edges
over all feasible activation sets.

Proof sketch: Along the same lines as Theorem 1, for ¢t > ¢
and ¢ € [n,n + 1), we can write

n—1
Awe(t) > (N =N)7'1T Y~ ®[n,k+1]1.
k=n—T*



Let s[n,k + 1] = 1T®[n, k + 1]1 and observe that s[n, k +

1] corresponds to the number of non-zero elements, i.e., the

number of statuses not updated, in ®[n, k + 1]. Observe that

(P1) s[n,n] = N? — N from the fact that ®[n,n] = Iy2_y.

(P2) s[n,k + 1] — s[n, k] <e since at most € statuses can be
updated in a time slot.

(P3) sjn,n—T*+K]> K forall K € {1,...,T*}.
The minimal sequence s satisfying these properties is shown
in (11a), (11b), and (11c) above. O

For the interference models in Section III, we have
€glob = 6maX7 €ifree — |g|7 €tdi = W, (12)

where dyax 1S the maximum degree of the graph and w is the
maximum number of active edges over all feasible activation
sets in the topologically-dependent interference model.

V. NUMERICAL RESULTS

This section presents numerical examples for the specific
case of ring networks (i.e., cycle graphs) that serve to illustrate
the bounds on peak and average age in Section IV. Due to
space constraints and the combinatorics of schedule design in
the topologically-deterministic interference setting for general
graphs, we do not present general schedule constructions
algorithms here. Instead, we restrict our attention to status
update schedules in the specific case of ring networks to
illustrate the main points. For an N-node ring network, note
that || =2N, 7. =N-2, L=0, x=|5|. Smax =2, and e=2v.

We first present a schedule for the global interference model
below. The modulus operator

p.g({(G1,51), o5 (Gry Jr) }) 2

{t+p mod N,j1+g mod N).....,(E,+p mod N,j,+q mod N},

is used to simplify the notation. Also, for any = if = + p
modN =0 (x+q modN = 0),set z+p modN = N
(x + ¢ mod N = N). Schedule A below is a special case of
the general minimum length periodic schedules developed for
the global interference model in [26], [27].

Schedule A: ring with global interference model.
Let 1:{(1,1)} be the schedule during time slot 1. For

the next time slots n = 2,3,..., N(NN — 2), the schedule

is obtained by n : apq({( )}), where p = n—1—

{%J (N —3)and ¢ = {—1J

In schedule A, node 1’s status update is first disseminated
clockwise around the ring (requiring N — 2 transmissions),
then node 2’s status update is disseminated around the ring,
and so on, until node N’s status update has been disseminated
around the ring at which point the process repeats with node 1.
It is straightforward to confirm that Schedule A is a minimum
length periodic schedule with period T' = N(N —2) = T}y,
For the N = 6 ring network in Fig. 1, Schedule A generates

L{(LD} 242D} 3{B1)}  4{(4D},  5{(22)}, 6{(32)},
7{(42)},  8{(52)}, 9{(33)}, 10:{(43)}. 11{(53)}, 12:{(63)},
13:{(44)}, 14{(54)}, 15{(64)}, 16:{(14)}, 17{(55)}, 18{(65)},
19:{(15)}, 20{(25)}, 21:{(66)}, 22:{(16)}, 23{(26)}, 24:{(36)}.

Schedule B: ring with interference free model.

Let 1:{(1,1),(2,2)....,(IN,N)} be the schedule during
time slot 1. For the next time slots n=23,...,N—2, the
schedule is obtained by n:op ({(1,1),(2,2)....,(N,N)}),
where p=0and g =1 —n.

In schedule B, all N nodes begin by transmitting their local
status updates in parallel. In the next N-3 time slots, each node
continually relays the status update sent by their counterclock-
wise neighbor, after which point the process repeats again with
each node transmitting a fresh update of its local process. It
is straightforward to confirm that Schedule B is a minimum
length periodic schedule with period T=N —2=T7 .

For the N = 6 ring network in Fig. 1, Schedule B generates

Schedule C: ring with topologically-dependent inter-
ference model.

Let 1:4{(1,1),(4,4)...,(3x—2,3x—2)} be the sched-
ule during time slot 1. For the next time slots n =
23...,(3+mod(N, 3))(N —2), the schedule is obtained
by n : op4({(1,1)(4,4).. (3)(— 2,3x — 2)}), where
p=n—1-— V—_IJ (N —3) an

n—1
N=2 |*

In schedule C, every third node around the ring transmits
simultaneously to avoid interference; in other words, given
a distance-2 coloring of the graph, all nodes of the same
color transmit simultaneously. For example, for the N=6 ring
network in Fig. 1 there are 3 colors. All nodes of a given
color begin by transmitting their local status updates simul-
taneously, and over the next N — 3 time slots these updates
are disseminated in simultaneously, clockwise around the ring.
Then, the next group of nodes of a given color take their turn,
followed by the third and final group of same-colored nodes.
After this, the process repeats by returning to the first color.
It is straightforward to confirm that Schedule C is a minimum
length periodic schedule with period T' = 3(N — 2) = T}%;
for N =3k and k € {1,2,3,...}.

For the N = 6 ring network in Fig. 1, Schedule C generates

L{(1,1)(4,4)},2:4(2,1)(5,4)}, 3:4(3,1)(6,4)}, 4:{(4,1)(1,4)},
5:{(2,2)(5,5)},6:{(3,2)(6,5)}, 7:{(4,2){1,5)}, 8:{(5,2){(2,5)},
9:{(3,3)(6,6)},10:{(4,3)(1,6)},11: {(5,3)(2,6)},12:{(6,3)(3,6)}.

Figure 2 compares the instantaneous peak and average age
lower bounds presented in Theorems 1 and 2 with the mini-
mum achieved instantaneous peak and average age of Sched-
ules A, B, and C for ring networks with N € {3,4,...,15}.
To compute the minimum achieved instantaneous peak and
average ages, since the schedules are periodic, it is sufficient
to consider only one period of the schedule after all ages are
defined at all nodes in the network. The results confirm that the
instantaneous peak and average age for the interference free
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Fig. 2. Lower bounds and achievable peak and average age for ring networks
with N = {3,4,...,15}.

model and the topologically-dependent interference model are
of order N, consistent with the bounds in Theorems 1 and 2.

VI. CONCLUSION

This paper studied the age of information problem in a
general multi-source multi-hop wireless network with nodes
communicating over time slotted transmissions. We presented
fundamental lower bounds on the performance of any status
update dissemination schedule in terms of the peak and
average age metrics for general interference models. Explicit
schedules and achievability results are also presented for ring
networks with three interference models spanning from the
most pessimistic setting (global interference) to the most
optimistic setting (interference free). In contrast to the prior
results for ring networks in the global interference model [27]
showing ages scaling with N2, the peak and averages ages of
ring networks under topologically-dependent interference or
interference free models scale with N. Future directions of this
work include further generalizations of the interference models
to allow for collisions at some nodes during simultaneous
updates and the development of schedules for the general
interference models for any connected network topology.
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