
Submodular Cost Submodular Cover with an Approximate Oracle

Victoria G. Crawford 1 Alan Kuhnle 2 My T. Thai 1

Abstract

In this work, we study the Submodular Cost Sub-
modular Cover problem, which is to minimize the
submodular cost required to ensure that the sub-
modular benefit function exceeds a given thresh-
old. Existing approximation ratios for the greedy
algorithm assume a value oracle to the benefit
function. However, access to a value oracle is not
a realistic assumption for many applications of
this problem, where the benefit function is diffi-
cult to compute. We present two incomparable
approximation ratios for this problem with an ap-
proximate value oracle and demonstrate that the
ratios take on empirically relevant values through
a case study with the Influence Threshold problem
in online social networks.

1. Introduction

Monotone1 submodular set functions are found in many
applications in machine learning and data mining (Kempe
et al., 2003; Lin & Bilmes, 2011; Wei et al., 2013; Singla
et al., 2016). A function f : 2S → R defined on subsets
of a ground set S is submodular if for all A ⊆ B ⊆ S and
x /∈ B,

f(A ∪ {x})− f(A) ≥ f(B ∪ {x})− f(B).

The ubiquity of submodular functions ensures that the op-
timization of submodular functions has received much at-
tention (Nemhauser et al., 1978; Wolsey, 1982). In this
work, we study the Submodular Cost Submodular Cover
(SCSC) optimization problem, originally introduced by Wan
et al. (2010) as a generalization of Wolsey (1982). SCSC is
defined as follows.

1Department of Computer and Information Science and En-
gineering, University of Florida, Gainesville, Florida, United
States 2Department of Computer Science, Florida State Uni-
versity, Tallahassee, Florida, United States. Correspondence
to: Victoria G. Crawford <vcrawford01@ufl.edu>, Alan Kuhnle
<kuhnle@ufl.edu>, My T. Thai <mythai@cise.ufl.edu>.

Proceedings of the 36
th International Conference on Machine

Learning, Long Beach, California, PMLR 97, 2019. Copyright
2019 by the author(s).

1For all A ⊆ B ⊆ S, f(A) ≤ f(B).

Submodular Cost Submodular Cover (SCSC) Let
f, c : 2S → R≥0

2 be monotone submodular functions de-
fined on subsets of a ground set S of size n. Given threshold
τ ≤ f(S), find argmin{c(X)|X ⊆ S, f(X) ≥ τ}.

Applications of SCSC include influence in social networks
(Goyal et al., 2013; Kuhnle et al., 2017), data summariza-
tion (Mirzasoleiman et al., 2015; 2016), active set selection
(Norouzi-Fard et al., 2016), recommendation systems (Guil-
lory & Bilmes, 2011), and monitor placement (Soma &
Yoshida, 2015; Zhang et al., 2016).

Existing approximations (Wolsey, 1982; Wan et al., 2010;
Soma & Yoshida, 2015) to the NP-hard SCSC problem
assume value oracle access to f , meaning that f can be
queried at any subset X ⊆ S. Unfortunately, for many
emerging applications of submodular functions, the function
f is difficult to compute. Instead of having access directly
to f , we may query only a surrogate function F that is
ǫ-approximate to f , meaning that for all X ⊆ S

|f(X)− F (X)| ≤ ǫ.

For example, f may be approximated by a sketch (Badani-
diyuru et al., 2012; Cohen et al., 2014), evaluated under
noise (Chen et al., 2015; Singla et al., 2016), estimated
via simulation (Kempe et al., 2003), or approximated by a
learned function (Balcan et al., 2012).

If the surrogate function F is monotone submodular, then
we may use existing approximation results for SCSC (see
Appendix A). However, it is not always the case that the
surrogate F maintains these properties. For example, the ap-
proximate influence oracle of Cohen et al. (2014) described
in detail in Section 3 is non-submodular. To the best of our
knowledge, no approximation results currently exist for the
SCSC problem under a general approximate oracle.

1.1. Our Contributions

We provide an approximation ratio for SCSC if the greedy
algorithm (Algorithm 1) has a value oracle to an ǫ-
approximate function to f , provided that the smallest
marginal gain µ3 of any element that was added to the greedy

2We also assume that f(∅) = 0, and c(X) = 0 if and only if
X = ∅.

3See notation in Section 1.3 for a definition.

Submodular Cost Submodular Cover with an Approximate Oracle

solution is sufficiently large relative to ǫ (Theorem 1). Our
proof of Theorem 1 is a novel adaptation of the charging
argument developed by Wan et al. (2010) for SCSC with
integral-valued f , and has potential to be used for other ver-
sions of SCSC where f cannot be evaluated for all X ⊆ S.
If the oracle error ǫ = 0, our ratio nearly reduces to existing
ratios for SCSC (Wolsey, 1982; Wan et al., 2010; Soma &
Yoshida, 2015).

We provide a second, incomparable approximation ratio
for SCSC if the greedy algorithm has a value oracle to an
ǫ-approximate function to f , under the same conditions on
the marginal gain as Theorem 1 (Theorem 2). In practical
scenarios, the ratio of Theorem 1 is sometimes difficult to
compute or bound because it requires evaluation of f . In
contrast, an upper bound on the ratio of Theorem 2 is easy
to compute only having access to the surrogate F . If the
oracle error ǫ = 0, our ratio is a new approximation ratio
for SCSC that is incomparable to existing ratios for SCSC
(Wolsey, 1982; Wan et al., 2010; Soma & Yoshida, 2015).

We demonstrate that the ratios of Theorem 1 and Theorem
2 take on empirically relevant values through a case study
with the Influence Threshold (IT) problem under the in-
dependent cascade model on real social network datasets.
This problem is a natural example of SCSC in which the
function f is the expected activation of a seed set and is
#P -hard to compute, so optimization must proceed with a
suitable surrogate function F . We use the average reacha-
bility sketch proposed by Cohen et al. (2014) for F , which
is a non-submodular ǫ-approximation of f .

Organization In Section 1.2, we present an overview of
related work on SCSC and submodular optimization with
approximate oracles. Definitions used throughout the pa-
per are presented in Section 1.3. The main approximation
results (Theorems 1 and 2) are presented in Section 2. We
consider the special case where F is monotone submodular
in Appendix A. Finally, in Section 3, we compute the values
that the approximation ratios of Theorems 1 and 2 take on
for Influence Threshold.

1.2. Related Work

Submodular Cost Submodular Cover (SCSC) Approx-
imation guarantees of the greedy algorithm with value or-
acle access to f for SCSC have previously been analyzed
(Wolsey, 1982; Wan et al., 2010; Soma & Yoshida, 2015).

If c is modular4 and f is integral valued, then Wolsey (1982)
proved that the approximation ratio of the greedy algorithm
is ln(α), where α is the largest singleton value of f 5. This is
the best we can expect: set cover, which is a special case of

4c is modular if for all X ⊆ S, c(X) =
∑

x∈X
c({x}).

5α = maxx∈Sf({x})

SCSC, cannot be approximated within (1− ǫ) ln(n) unless
NP has nO(log(log(n)))-time deterministic algorithms (Feige,
1998).

If f is real-valued, Wolsey proved that the greedy algorithm
has an approximation ratio of 1 + ln(α/β), where β is the
smallest non-zero marginal gain of adding any element to
the greedy solution at any iteration6. In comparison, when
the cost is modular and the value oracle exact (ǫ = 0)
then the ratio that we provide in Theorem 1 reduces to
2 + ln(α/β).

If f is integral, Wan et al. (2010) proved that the greedy
algorithm has an approximation ratio of ρ ln(α), where ρ is
the curvature of c. Wan et al. developed a charging argu-
ment in order to deal with the general monotone submodular
cost function. In the argument of Wan et al., the cost of the
greedy solution, c(A), is split up into charges over the ele-
ments of the optimal solution A∗. This method of charging
will not work for SCSC with an ǫ-approximate oracle. This
is because the elements chosen by the surrogate F do not
necessarily exhibit diminishing cost-effectiveness. But, our
argument is inspired by that of Wan et al.. Portions of our
argument that share significant overlap with that of Wan
et al. are made clear and restricted to the appendix. When f
is integral and the value oracle exact (ǫ = 0), the ratio that
we provide in Theorem 1 reduces to ρ(2 + ln(α)).

Soma & Yoshida (2015) generalized SCSC to functions on
the integer lattice, an extension of set functions. Soma &
Yoshida proved that a decreasing threshold algorithm has a
bicriteria approximation ratio of (1+ 3δ)ρ(1+ ln(α/β)) to
SCSC on the integer lattice, where δ < 1 is an input. When
the value oracle is exact (ǫ = 0), the ratio that we provide
in Theorem 1 reduces to ρ(2 + ln(α/β)).

The special case of SCSC where c is cardinality is the
Submodular Cover (SC) problem. Distributed algorithms
(Mirzasoleiman et al., 2015; 2016) as well as streaming
algorithms (Norouzi-Fard et al., 2016) for SC have been
developed and their approximation guarantees analyzed.

To the best of our knowledge, we are the first to study SCSC
with an approximate oracle to f .

Optimization with Approximate Oracles A related
problem to SCSC is Submodular Maximization (SM) with a
cardinality constraint7. SM with a cardinality constraint and
an approximate oracle has previously been analyzed (Horel
& Singer, 2016; Qian et al., 2017).

Horel & Singer (2016) considered SM with a cardinality
constraint where we seek to maximize F which is a rela-

6See notation in Section 1.3 for a definition.
7 Given a budget κ and a monotone submodular function f

defined on subsets of a ground set S of size n, find argmax{f(X) :
|A| ≤ κ}.

Submodular Cost Submodular Cover with an Approximate Oracle

tive8 ǫ-approximation to a monotone submodular function
f . Under certain conditions on the oracle error, Horel &
Singer found that the greedy algorithm yields a tight approx-
imation ratio of 1− 1/e−O(δ). On the other hand, Horel
& Singer proved for any fixed β > 0, no algorithm given
access to a 1/n1/2−β-approximate F can have a constant
approximation ratio using polynomially many queries to F .
The results of Horel & Singer can easily be translated into
maximization of f with an approximate oracle. Another
recent work for SM with a cardinality constraint and an
approximate oracle is Qian et al. (2017), where a Pareto
algorithm is analyzed.

A dual problem to SCSC is Submodular Cost Submodu-
lar Knapsack (SCSK)9. In the absence of oracle error, the
approximation guarantees of SCSC and SCSK are con-
nected (Iyer & Bilmes, 2013). In particular, Iyer & Bilmes
proved that an (α, δ)-bicriteria10 approximation algorithm
for SCSK can be used to get a ((1 + ǫ)δ, α)-bicriteria ap-
proximation algorithm for SCSC, and a similar result holds
for the opposite direction.

Thus, the approximation results for SM with an approximate
oracle could potentially be translated into an approximation
guarantee for SCSC with an approximate oracle. However,
the results of Horel & Singer are for the special case of
SCSK where the cost function is cardinality. To the best of
our knowledge, we are the first to study submodular opti-
mization with oracle error and general monotone submod-
ular cost functions. In addition, the feasibility guarantee
provided under the Iyer & Bilmes framework is roughly
f(A) > (1 − 1/e)τ , so only a fraction of the threshold τ :
in our work, we obtain the feasibility f(A) ≥ τ − ǫ.

SM with an approximate oracle has been studied under dif-
ferent models for the surrogate F than an ǫ-approximation
(Hassidim & Singer, 2017; Singer & Hassidim, 2018).
These models are suited to applications where the approxi-
mate oracle is due to noise.

An approximate oracle to a submodular function results in
a non-submodular function. Other works optimizing non-
submodular or weakly submodular functions include Bian
et al. (2017); Chen et al. (2018); Kuhnle et al. (2018).

1.3. Definitions

The definitions presented in this section are used throughout
the paper.

8See discussion in Section 1.3 about ǫ-approximation.
9 Given a budget κ and monotone submodular functions f, c

defined on subsets of a ground set S of size n, find argmax{f(X) :
c(A) ≤ κ}.

10See Section 1.3 for a discussion of bicriteria approximation
guarantees.

Algorithm 1 greedy(F, c, τ)

Input:A value oracle to F : 2S → R≥0, a value oracle
to c : 2S → R≥0, and τ .
Fτ = min{F, τ}
A = ∅
while F (A) < τ do

u = argmaxx∈S\A∆Fτ (A, x)/c(x)
A = A ∪ {u}

end while

return A

Notation Given a function g : 2S → R≥0, define gτ :
2S → R≥0 to be gτ (X) = min{τ, g(X)} for all X ⊆ S.
In addition, we shorten the notation for marginal gain to be
∆g(X,x) = g(X ∪ {x})− g(X).

Given an instance of SCSC with cost function c and ben-
efit function f , we define cmin = minx∈S c(x), cmax =
maxx∈S c(x), α = maxx∈S f({x}), and ρ to be the curva-
ture of c.

Suppose at the end of a run of Algorithm 1 there were k
iterations of the while loop. Then we let Ai be A at the
end of iteration i ∈ {1, ..., k}, A0 = ∅, µ = min{fτ (Ai)−
fτ (Ai−1) : i ∈ {1, ..., k}}, and β = min{∆fτ (Ai, x) :
i ∈ {0, ..., k}, x ∈ S,∆fτ (Ai, x) > 0}.

Greedy algorithm Pseudocode for the greedy algo-
rithm that we analyze in Section 2 for SCSC with an ǫ-
approximate oracle is given in Algorithm 1. Notice that
when choosing an element at each iteration, we compute the
marginal gain of Fτ and not F . Algorithm 1 was analyzed
by Wan et al. for SCSC when a value oracle to f is given.

ǫ-Approximate A function F : 2S → R≥0 is ǫ-
approximate to f if for all X ⊆ S, |f(X) − F (X)| ≤ ǫ.
Notice that we use ǫ-approximate in an absolute sense, in
contrast to ǫ-approximate in a relative sense: for all X ⊆ S,
|f(X)− F (X)| ≤ ǫf(X). The latter is particularly useful
if we are uncertain what range f takes on, in which case
it is difficult to make meaningful requirements for additive
noise.

Approximation in the relative sense can be converted into
approximation in the absolute sense. Suppose F is an ǫ-
approximation to f in the relative sense. If B is an upper
bound on f , then F is an ǫB-approximation to f in the
absolute sense. Over the duration of Algorithm 1, we can
assume without loss of generality that τ is an upper bound
on f .

Curvature The approximation guarantees presented in
our work will use the curvature of the cost function c, as
has been previously done for SCSC (Wan et al., 2010; Soma

Submodular Cost Submodular Cover with an Approximate Oracle

& Yoshida, 2015). The curvature measures how modu-
lar11 a function is. The curvature ρ of c is defined as
ρ = maxX⊆S

∑

x∈X c(x)/c(X). If c is modular, ρ = 1,
otherwise ρ > 1 (since c is submodular).

Bicriteria Approximation Algorithm We show in Sec-
tion 2 that Algorithm 1 is a bicriteria approximation al-
gorithm to SCSC, under certain conditions. A bicriteria
approximation algorithm approximates the feasibility con-
straint (f(A) ≥ τ) in addition to the objective (minimize c).
In our case, the feasibility guarantee is f(A) ≥ τ − ǫ if we
have an ǫ-approximate oracle.

2. Approximation Results

In this section, we analyze the approximation guarantee
of the greedy algorithm (Algorithm 1) for SCSC with an
ǫ-approximate oracle. Definitions used in this section can
be found in Section 1.3.

We first give a formal statement and discussion of our ratios
in Section 2.1. In Section 2.2, we prove that the two ratios
presented in Section 2.1 are incomparable. A sketch of the
proofs of our results is presented in Section 2.3. Parts of the
proofs not included in Section 2.3 are in Appendices B and
C. The approximation guarantee of the greedy algorithm
for SCSC with an ǫ-approximate oracle for the special case
where the oracle is monotone submodular is in Appendix A.

2.1. Approximation Guarantees of the Greedy

Algorithm for SCSC with an ǫ-Approximate

Oracle

We present two approximation guarantees of the greedy
algorithm (Algorithm 1) for SCSC with an ǫ-approximate
oracle in Theorem 1 and Theorem 2. The guarantee in The-
orem 1 corresponds more closely to existing approximation
guarantees of SCSC (Wolsey, 1982; Wan et al., 2010; Soma
& Yoshida, 2015) than that of Theorem 2. However, in some
cases, Theorem 2 is easier to bound above. In general, the
two ratios are incomparable; that is, there exist instances of
SCSC where each dominates the other, as shown in Section
2.2.

Theorem 1. Suppose we have an instance of SCSC with op-

timal solution A∗. Let F be a function that is ǫ-approximate

to f .

Suppose we run Algorithm 1 with input F , c, and τ . Then

f(A) ≥ τ − ǫ. And if µ > 4ǫcmaxρ/cmin,

c(A) ≤
ρ

1− 4ǫcmaxρ
cminµ

(

ln

(

α

β

)

+ 2

)

c(A∗).

11c is modular if c(X) =
∑

x∈X
c({x}).

Discussion of Theorem 1 In order for the ratio of The-
orem 1 to hold, ǫ must be small enough relative to µ so
that µ > 4ǫcmaxρ/cmin. The lower bound on µ is used
to upper bound the error introduced by choosing elements
with F instead of f in the proof of Theorem 1 (see Section
2.3). Alternatively, we may ensure the approximation ratio
of Theorem 1 as long as ǫ is sufficiently small by exiting
Algorithm 1 if Fτ (Ai+1) − Fτ (Ai) falls below an input
value. The feasibility guarantee is weakened since Algo-
rithm 1 does not necessarily run to completion, but not by
much if ǫ is sufficiently small. The details of this alternative
approximation guarantee can be found in Appendix A.

If ǫ = 0, i.e. we have an oracle to the benefit function
f , then the lower bound on µ is always satisfied and the
approximation ratio in Theorem 1 nearly reduces to the ratio
of previous approximation ratios for SCSC (Wolsey, 1982;
Wan et al., 2010; Soma & Yoshida, 2015). In particular, the
approximation ratio reduces to ρ(ln(α/β) + 2). Compare
this to the approximation ratio of Soma & Yoshida: ρ(1 +
3δ)(ln(α/β) + 1) where δ is an input that is greater than 0.

Computing α, β and µ in Theorem 1 requires evaluation of
f . It is therefore of interest whether an upper bound can
be computed on the ratio in Theorem 1 for a given instance
of SCSC and a solution provided by the greedy algorithm,
considering that we only have an oracle to F . We assume
that the curvature ρ of c can be computed and focus on the
values related to f . Without an oracle to f , the value α
in Theorem 1 cannot be computed exactly, but α can be
bounded above by using the oracle to F . Similarly, µ and β
must be bounded below by using the oracle to F . However,
a positive lower bound on β is problematic since it can
be especially small and fall below the oracle error. This
motivates our second approximation ratio, Theorem 2.

Theorem 2. Suppose we have an instance of SCSC with op-

timal solution A∗. Let F be a function that is ǫ-approximate

to f .

Suppose we run Algorithm 1 with input F , c, and τ . Then

f(A) ≥ τ − ǫ. And if µ > 4ǫcmaxρ/cmin, then for any

γ ∈ (0, 1− 4ǫcmaxρ/cminµ),

c(A) ≤
ρ

1− 4ǫcmaxρ
cminµ

− γ

(

ln

(

nαρ

γµ

)

+ 2

)

c(A∗).

Discussion of Theorem 2 If ǫ = 0, i.e. we have an oracle
to the benefit function f , then the lower bound on µ is
always satisfied and the approximation ratio in Theorem 2
is a new approximation ratio for SCSC that is incomparable
to those existing (Wolsey, 1982; Soma & Yoshida, 2015).

In contrast to the approximation guarantee of Theorem 1,
the instance-dependent β has been replaced by γ in the
approximation guarantee of Theorem 2. Since we no longer
need a positive lower bound on β, this ratio was easy to

Submodular Cost Submodular Cover with an Approximate Oracle

bound in Section 3 by using the oracle to F . Also, since β
is related to the minimum marginal gain on an instance, in
some sense this ratio is more robust to the presence of very
small marginal gains.

2.2. Incomparability of Guarantees of Theorem 1 and

Theorem 2

In this section, we give examples that show that the approx-
imation guarantees of Theorem 1 and of Theorem 2 are
incomparable; for each guarantee, there exists an instance
of SCSC where that guarantee is better than the other.

Examples We consider an instance of the Influence
Threshold (IT) problem as defined in Appendix D under
the independent cascade model of influence (Kempe et al.,
2003).

Let n ≥ 3. We construct a graph where n− 2 vertices are in
a clique, and all edge weights within the clique have weight
1. One remaining vertex is connected to the clique by an
edge of weight σ ∈ (0, 1), and the other has degree 0.

Suppose we have an instance of SCSC where c is cardinality
and τ = n−1+σ. If we run Algorithm 1 with input f, c, τ ,
Algorithm 1 will return a single vertex from the clique and
then the vertex with degree 0. In addition, α = n− 2 + σ,
µ = 1, and β = 1− σ. Therefore the ratio from Theorem 1
is

ln

(

n− 2 + σ

1− σ

)

+ 2 (1)

and the ratio from Theorem 2 is for any γ ∈ (0, 1)

1

1− γ
ln

(

n(n− 2 + σ)

γ

)

+ 2 (2)

If we choose σ sufficiently close to 1, ratio (1) gets arbi-
trarily large; hence, there exists some γ where ratio (2) is
smaller than ratio (1). On the other hand, as σ approaches
0, ratio (1) approaches ln(n − 2) + 2. However, for any
γ ∈ (0, 1), ratio (2) is at least ln(n(n− 2)) + 2.

2.3. Proof Sketches of Theorem 1 and 2

In this section, we present a sketch of the proofs of Theorem
1 and Theorem 2. The full proof for Theorem 1 and for
Theorem 2 can be found in Appendix B and Appendix C
respectively. Recall that definitions can be found in Section
1.3 and notation in Section 2.1.

Proof Sketch of Theorem 1 The feasibility guarantee is
clear from the stopping condition on the greedy algorithm:
f(A) ≥ F (A)− ǫ ≥ τ − ǫ.

We now prove the upper bound on c(A) if µ >
4ǫcmaxρ/cmin. Without loss of generality we re-define

f = min{f, τ} and F = min{F, τ}. This way, f = fτ
and F = Fτ . Notice that this does not change that F is an
ǫ-approximation of f .

Let x1, ..., xk be the elements of A in the order that they
were chosen by Algorithm 1. If k = 0, then c(A) = 0 and
the approximation ratio is clear. For the rest of the proof,
we assume that k ≥ 1.

We define a sequence of elements x̃1, ..., x̃k where

x̃i = argmaxx∈S\Ai−1

∆f(Ai−1, x)

c(x)
.

x̃i has the most cost-effective marginal gain of being added
to Ai−1 according to f , while xi has the most cost-effective
marginal gain of being added to Ai−1 according to F . Note
that the same element can appear multiple times in the
sequence x̃1, ..., x̃k. In addition, we have the following
lower bound on ∆f(Ai−1, x̃i):

∆f(Ai−1, x̃i) ≥
c(x̃i)

c(xi)
∆f(Ai−1, xi) ≥

cmin

cmax
µ. (1)

Our argument to bound c(A) will follow the following three
steps: (a) We bound c(A) in terms of the costs of the ele-
ments x̃1, ..., x̃k. (b) We charge the elements of A∗ with the
costs of the elements x̃1, ..., x̃k, and bound c(A) in terms
of the total charge on all elements in A∗. (c) We bound the
total charge on the elements of A∗ in terms of c(A∗).

(a) First, we bound c(A) in terms of the costs of the el-
ements x̃1, ..., x̃k. At iteration i of Algorithm 1, the most
cost-effective element to add to Ai−1 according to F is
xi. Using the fact that F is ǫ-approximate to f , we can
bound how much more cost-effective x̃i is compared to xi

according to f as follows:

c(x̃i)

∆f(Ai−1, x̃i)
+ αi ≥

c(xi)

∆f(Ai−1, xi)
(2)

where αi =
2ǫ(c(xi) + c(x̃i))

∆f(Ai−1, x̃i)∆f(Ai−1, xi)
.

Inequality (2) and the submodularity of c imply that

c(A) ≤
k

∑

i=1

c(xi) =

k
∑

i=1

∆f(Ai−1, xi)
c(xi)

∆f(Ai−1, xi)

≤
k

∑

i=1

∆f(Ai−1, xi)

(

c(x̃i)

∆f(Ai−1, x̃i)
+ αi

)

. (3)

We now bound the second term on the right side of Equation

Submodular Cost Submodular Cover with an Approximate Oracle

(3) by

k
∑

i=1

∆f(Ai−1, xi)αi =

k
∑

i=1

2ǫ(c(x̃i) + c(xi))

∆f(Ai−1, x̃i)

≤
k

∑

i=1

2ǫc(xi)

∆f(Ai−1, xi)
+

2ǫc(xi)

∆f(Ai−1, x̃i)

≤
4ǫcmax

cminµ

k
∑

i=1

c(xi) ≤
4ǫcmaxρ

cminµ
c(A).

Applying this bound to (3) gives us the following bound on
c(A) in terms of the costs of the elements x̃1, ..., x̃k:

(

1−
4ǫcmaxρ

cminµ

)

c(A) ≤
k

∑

i=1

∆f(Ai−1, xi)

∆f(Ai−1, x̃i)
c(x̃i). (4)

(b) Next, we charge the elements of A∗ with the costs
of the elements x̃1, ..., x̃k, and bound c(A) in terms of the
total charge on all elements in A∗. By this we mean that we
give each y ∈ A∗ a portion of the total cost of the elements
x̃1, ..., x̃k. In particular, we give each y ∈ A∗ a charge of
w(y), defined by

w(y) =

k
∑

i=1

(πi(y)− πi+1(y))ωi, where ωi =
c(x̃i)

∆f(Ai−1, x̃i)
,

and πi(y) =

{

∆f(Ai−1, y) i ∈ {1, ..., k}

∆f(A, y) i = k + 1
.

Recall that ∆f(Ai−1, x̃i) > 0 for all i by Equation (1),
and so we can define ωi as above. Wan et al. charged
the elements of A∗ with the cost of elements x1, ..., xk

analogously to the above. We charge with the cost of el-
ements x̃1, ..., x̃k because they exhibit diminishing cost-
effectiveness, i.e. ωi − ωi−1 ≥ 0 for all i ∈ {1, ..., k},
which is needed to proceed with the argument. Because we
choose x1, ..., xk with F , which is not monotone submodu-
lar, x1, ..., xk do not exhibit diminishing cost-effectiveness
even if we replace f with F in the definition of w(y) above.

Using Equation (4) and an argument similar to Wan et al.,
we may work out that
(

1−
4ǫcmaxρ

µcmin

)

c(A) ≤
∑

y∈A∗

w(y) + ∆f(A, y)ωk. (5)

f(A) is not necessarily τ since the stopping condition
for Algorithm 1 is only that F (A) ≥ τ . In this case, if
∆f(A, y) 6= 0 for y ∈ A∗ (which implies that y /∈ Ak−1)
then by the submodularity of f

∆f(A, y)ωk ≤ ∆f(A, y)
c(y)

∆f(Ak−1, y)
≤ c(y).

Therefore we can bound c(A) in terms of the total charge
on all elements in A∗:

(

1−
4ǫcmaxρ

µcmin

)

c(A) ≤
∑

y∈A∗

w(y) + ρc(A∗). (6)

(c) Now, we bound the total charge on the elements of A∗

in terms of c(A∗).

We first define a value ℓy for every y ∈ A∗. For each y ∈ A∗,
if π1(y) = 0 we set ℓy = 0, otherwise ℓy is the value in
{1, ..., k} such that if i ∈ {1, ..., ℓy} then πi(y) > 0, and if
i ∈ {ℓy + 1, ..., k} then πi(y) = 0. Such an ℓy can be set
since f is monotone submodular. Then

∑

y∈A∗

w(y) =
∑

y∈A∗

ℓy
∑

i=1

(πi(y)− πi+1(y))ωi

=
∑

y∈A∗

c(y)
(

ln(π1(y))− ln(πℓy (y)) + 1
)

≤ ρ

(

ln

(

α

β

)

+ 1

)

c(A∗). (7)

Finally, we combine inequality (6) and inequality (7) to see
that

(

1−
4ǫcmaxρ

cminµ

)

c(A) ≤ ρ

(

ln

(

α

β

)

+ 2

)

c(A∗).

If µ > (4ǫcmaxρ)/(cmin), this completes the proof of the
approximation guarantee in the theorem statement.

Proof Sketch of Theorem 2 The argument for the proof
of Theorem 2 is the same as Theorem 1, except for part (c).
In particular, we have gotten to the point of the proof of
Theorem 1 where we have proven that

(

1−
4ǫcmaxρ

cminµ

)

c(A) ≤
∑

y∈A∗

w(y) + ρc(A∗). (1)

Let λ > 0. Then we define a value my for every y ∈ A∗

that is similar to ℓy but for when πi(y) falls below λ: For
each y ∈ A∗, if π1(y) ≤ λ we set my = 0, otherwise my

is the value in {1, ..., k} such that if i ∈ {1, ...,my} then
πi(y) > λ, and if i ∈ {my+1, ..., k} then πi(y) ≤ λ. Such
an my can be set since f is monotone submodular. We may
then use a similar analysis as in the proof of Theorem 1 to
see that

w(y) ≤ c(y)
(

ln
(α

λ

)

+ 1
)

+
k

∑

i=my+1

(πi(y)− πi+1(y))ωi

≤ c(y)
(

ln
(α

λ

)

+ 1
)

+
λρ

µ
c(A).

Submodular Cost Submodular Cover with an Approximate Oracle

By combining Equations (1) and the bound on w(y), we
have that
(

1−
4ǫcmaxρ

cminµ
−

λρn

µ

)

c(A) ≤ ρ
(

ln
(α

λ

)

+ 2
)

c(A∗).

If we set λ = (γµ)/(nρ) we have the approximation ratio
in the theorem statement.

3. Application and Experiments

In this section, we compute the approximation ratios stated
in Theorems 1 and 2 on instances of the Influence Threshold
problem (IT), a special case of SCSC. We use the non-
submodular approximate reachability oracle that has been
proposed by Cohen et al. (2014).

Influence Threshold Problem (IT) Let G = (V,E) be
a social network where vertices V represents users and
edges E represent social connections. Suppose that G1 =
(V,E1), ..., GN = (V,EN), where Ei ⊆ E, represent N
instances of “alive" social connections. In an instance, ac-
tivation of users in the social network starts from an initial
seed set and then propagates across edges. c : 2V → R≥0 is
a monotone submodular function that gives the cost of seed-
ing a set of users. For X ⊆ V , f(X) is the average number
of reachable vertices from X over the N instances. Given
threshold τ ≤ f(V), the Influence Threshold (IT) problem
is to find the seed set argmin{c(X)|X ⊆ V, f(X) ≥ τ}.

Our definition of IT follows the simulation-based model
of influence, as opposed to directly using a model such as
Independent Cascade (IC) and defining f as the expected
number of influenced vertices (Kempe et al., 2003). The IC
model is commonly approximated by the simulation-based
model, since computing the expected influence under the
IC model is #P -hard (Chen et al., 2010). In addition, the
simulation-based model approximates the IC model arbitrar-
ily well by choosing sufficiently large N . For more details
on approximation of the IC model by the simulation-based
model, see Appendix D.

Variations of IT where c is cardinality (He et al., 2014;
Dinh et al., 2014; Kuhnle et al., 2017) or modular (Goyal
et al., 2013; Han et al., 2017) have been studied in the
influence literature. Notice the difference between IT and
the Influence Maximization (IM) problem12 (Kempe et al.,
2003; Li et al., 2017). To the best of our knowledge, our
approximation results are the first for IT with a general
monotone submodular cost function.

The Approximate Average Reachability Oracle of Co-

hen et al. In order to have value oracle access to f in the

12 Given a budget κ, IM is to determine the set A such that
c(A) ≤ κ and f(A) is maximized.

x

y

z x

y

z x

y

z

Figure 1. Instance G1, G2 and G3 (in that order from left to right)
from the proof of Proposition 1.

0 r2z r2x r1z r3z r3y r2y r1y r1x r3x 1

Figure 2. The mapping for each vertex, instance pair to the interval
[0, 1] for the proof of Proposition 1. riu is the mapped value of
vertex u, instance Gi.

IT problem, the instances G1, ..., GN must be stored. In ad-
dition, to compute f(X) for X ⊆ V the reachable vertices
from X must be computed for each of the N instances. If
N is large, this is not scalable to large influence instances
(Cohen et al., 2014).

Motivated by this, Cohen et al. (2014) proposed us-
ing an approximate average reachability oracle in place
of f that is based on bottom-k min-hash sketches (Co-
hen, 1997). Given k ∈ Z>0, the approximate average
reachability oracle F is constructed as follows: For ev-
ery vertex, instance pair (v, i) ∈ V × {1, ..., N} a random
rank value riv is drawn from the uniform distribution on
[0, 1]. For every vertex u ∈ V , the combined reachabil-
ity sketch Xu of u is the smallest k values from the set
{riv : v is reachable from u on instance Gi}. Xu is stored
for all u ∈ V . Note that generating Xu for all u ∈ V does
not require all the instances G1, ..., GN to be stored at the
same time.

Let X ⊆ S. If | ∪u∈X Xu| < k, then F (X) = | ∪u∈X

Xu|/N . Otherwise, let t be the k-th smallest value in
∪u∈XXu. Then F (X) = (k − 1)/(Nt).

F can be made an ǫ-approximation to f by choosing suf-
ficiently large k: For c > 2, if k = cǫ−2 log(n) then the
relative error of all queries over the duration of the greedy
algorithm is within ǫ with probability at least 1 − 1/nc−2

(Cohen et al., 2014). The relative error can be converted to
absolute error as described in Section 1.3.

Proposition 1. The approximate average reachability ora-

cle of Cohen et al. is non-submodular.

Proof. Consider an instance of IT where V = {x, y, z} and
three instances G1, G2, G3 are as depicted in Figure 1.

Suppose that we construct the approximate reachability ora-
cle of Cohen et al. with k = 5, and the randomly generated
mapping from vertex, instance pairs to the interval [0, 1]
is as depicted in Figure 2. Then Xx = {r2z , r

2
x, r

1
z , r

1
y, r

1
x},

Submodular Cost Submodular Cover with an Approximate Oracle

4. Acknowledgements

This work was supported in part by NSF CNS-1814614,
NSF EFRI 1441231, and DTRA HDTRA1-14-1-0055. Vic-
toria G. Crawford was supported by a Harris Corporation
Fellowship. We thank the anonymous reviewers for their
helpful feedback.

References

Badanidiyuru, A., Dobzinski, S., Fu, H., Kleinberg, R.,
Nisan, N., and Roughgarden, T. Sketching valuation
functions. In Proceedings of the twenty-third annual

ACM-SIAM symposium on Discrete Algorithms, pp. 1025–
1035. Society for Industrial and Applied Mathematics,
2012.

Balcan, M. F., Constantin, F., Iwata, S., and Wang, L. Learn-
ing valuation functions. In Conference on Learning The-

ory, pp. 4–1, 2012.

Bian, A. A., Buhmann, J. M., Krause, A., and Tschi-
atschek, S. Guarantees for Greedy Maximization of Non-
submodular Functions with Applications. In Proceedings

of the 34th International Conference on Machine Learn-

ing (ICML), 2017.

Chen, L., Feldman, M., and Karbasi, A. Weakly Sub-
modular Maximization Beyond Cardinality Constraints:
Does Randomization Help Greedy? In International

Conference on Machine Learning (ICML), 2018. URL
http://arxiv.org/abs/1707.04347.

Chen, W., Wang, C., and Wang, Y. Scalable influence maxi-
mization for prevalent viral marketing in large-scale so-
cial networks. In Proceedings of the 16th ACM SIGKDD

international conference on Knowledge discovery and

data mining, pp. 1029–1038. ACM, 2010.

Chen, Y., Hassani, S. H., Karbasi, A., and Krause, A. Se-
quential information maximization: When is greedy near-
optimal? In Conference on Learning Theory, pp. 338–
363, 2015.

Cohen, E. Size-estimation framework with applications to
transitive closure and reachability. Journal of Computer

and System Sciences, 55(3):441–453, 1997.

Cohen, E., Delling, D., Pajor, T., and Werneck, R. F. Sketch-
based influence maximization and computation: Scaling
up with guarantees. In Proceedings of the 23rd ACM

International Conference on Conference on Information

and Knowledge Management, pp. 629–638. ACM, 2014.

Dinh, T. N., Zhang, H., Nguyen, D. T., and Thai, M. T.
Cost-effective viral marketing for time-critical campaigns
in large-scale social networks. IEEE/ACM Transactions

on Networking (ToN), 22(6):2001–2011, 2014.

Feige, U. A threshold of ln n for approximating set cover.
Journal of the ACM (JACM), 45(4):634–652, 1998.

Goyal, A., Bonchi, F., Lakshmanan, L. V., and Venkatasub-
ramanian, S. On minimizing budget and time in influence
propagation over social networks. Social network analy-

sis and mining, 3(2):179–192, 2013.

Guillory, A. and Bilmes, J. A. Simultaneous learning and
covering with adversarial noise. In ICML, volume 11, pp.
369–376, 2011.

Han, K., He, Y., Tang, S., Huang, H., and Xu, C. Cost-
effective seed selection in online social networks. arXiv

preprint arXiv:1711.10665, 2017.

Hassidim, A. and Singer, Y. Submodular optimization under
noise. In Conference on Learning Theory, pp. 1069–1122,
2017.

He, J. S., Ji, S., Beyah, R., and Cai, Z. Minimum-sized
influential node set selection for social networks under
the independent cascade model. In Proceedings of the

15th ACM International Symposium on Mobile ad hoc

Networking and Computing, pp. 93–102. ACM, 2014.

Horel, T. and Singer, Y. Maximization of approximately
submodular functions. In Advances in Neural Information

Processing Systems, pp. 3045–3053, 2016.

Iyer, R. K. and Bilmes, J. A. Submodular optimization with
submodular cover and submodular knapsack constraints.
In Advances in Neural Information Processing Systems,
pp. 2436–2444, 2013.

Kempe, D., Kleinberg, J., and Tardos, É. Maximizing the
spread of influence through a social network. In Proceed-

ings of the ninth ACM SIGKDD international conference

on Knowledge discovery and data mining, pp. 137–146.
ACM, 2003.

Kuhnle, A., Pan, T., Alim, M. A., and Thai, M. T. Scalable
bicriteria algorithms for the threshold activation problem
in online social networks. In INFOCOM 2017-IEEE

Conference on Computer Communications, IEEE, pp. 1–
9. IEEE, 2017.

Kuhnle, A., Smith, J. D., Crawford, V. G., and Thai,
M. T. Fast Maximization of Non-Submodular, Mono-
tonic Functions on the Integer Lattice. In International

Conference on Machine Learning (ICML), 2018. URL
http://arxiv.org/abs/1805.06990.

Leskovec, J. and Mcauley, J. J. Learning to discover social
circles in ego networks. In Advances in neural informa-

tion processing systems, pp. 539–547, 2012.

Submodular Cost Submodular Cover with an Approximate Oracle

Leskovec, J., Kleinberg, J., and Faloutsos, C. Graph evolu-
tion: Densification and shrinking diameters. ACM Trans-

actions on Knowledge Discovery from Data (TKDD), 1
(1):2, 2007.

Li, X., Smith, J. D., Dinh, T. N., and Thai, M. T. Why
approximate when you can get the exact? optimal tar-
geted viral marketing at scale. In IEEE INFOCOM 2017-

IEEE Conference on Computer Communications, pp. 1–9.
IEEE, 2017.

Lin, H. and Bilmes, J. A class of submodular functions
for document summarization. In Proceedings of the 49th

Annual Meeting of the Association for Computational

Linguistics: Human Language Technologies-Volume 1,
pp. 510–520. Association for Computational Linguistics,
2011.

Mirzasoleiman, B., Karbasi, A., Badanidiyuru, A., and
Krause, A. Distributed submodular cover: Succinctly
summarizing massive data. In Advances in Neural Infor-

mation Processing Systems, pp. 2881–2889, 2015.

Mirzasoleiman, B., Zadimoghaddam, M., and Karbasi, A.
Fast distributed submodular cover: Public-private data
summarization. In Advances in Neural Information Pro-

cessing Systems, pp. 3594–3602, 2016.

Nemhauser, G. L., Wolsey, L. A., and Fisher, M. L. An
analysis of approximations for maximizing submodular
set functions—i. Mathematical programming, 14(1):265–
294, 1978.

Norouzi-Fard, A., Bazzi, A., Bogunovic, I., El Halabi, M.,
Hsieh, Y.-P., and Cevher, V. An efficient streaming algo-
rithm for the submodular cover problem. In Advances in

Neural Information Processing Systems, pp. 4493–4501,
2016.

Qian, C., Shi, J.-C., Yu, Y., Tang, K., and Zhou, Z.-H. Subset
selection under noise. In Advances in Neural Information

Processing Systems, pp. 3560–3570, 2017.

Singer, Y. and Hassidim, A. Optimization for approximate
submodularity. In Advances in Neural Information Pro-

cessing Systems, pp. 394–405, 2018.

Singla, A., Tschiatschek, S., and Krause, A. Noisy submod-
ular maximization via adaptive sampling with applica-
tions to crowdsourced image collection summarization.
In AAAI, pp. 2037–2043, 2016.

Soma, T. and Yoshida, Y. A generalization of submodular
cover via the diminishing return property on the integer
lattice. In Advances in Neural Information Processing

Systems, pp. 847–855, 2015.

Tang, Y., Xiao, X., and Shi, Y. Influence maximization:
Near-optimal time complexity meets practical efficiency.
In Proceedings of the 2014 ACM SIGMOD international

conference on Management of data, pp. 75–86. ACM,
2014.

Wan, P.-J., Du, D.-Z., Pardalos, P., and Wu, W. Greedy
approximations for minimum submodular cover with sub-
modular cost. Computational Optimization and Applica-

tions, 45(2):463–474, 2010.

Wei, K., Liu, Y., Kirchhoff, K., and Bilmes, J. Using doc-
ument summarization techniques for speech data subset
selection. In Proceedings of the 2013 Conference of the

North American Chapter of the Association for Compu-

tational Linguistics: Human Language Technologies, pp.
721–726, 2013.

Wolsey, L. A. An analysis of the greedy algorithm for the
submodular set covering problem. Combinatorica, 2(4):
385–393, 1982.

Zhang, H., Kuhnle, A., Zhang, H., and Thai, M. T. Detecting
misinformation in online social networks before it is too
late. In Proceedings of the 2016 IEEE/ACM International

Conference on Advances in Social Networks Analysis and

Mining, pp. 541–548. IEEE Press, 2016.

