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ABSTRACT

In this paper, we present D���C���� a novel Framework for con-

tent caching, which can signi�cantly boost cache performance. Our

Framework is based on powerful deep recurrent neural network

models. It comprises of two main components: i) Object Character-

istics Predictor, which builds upon deep LSTM Encoder-Decoder

model to predict the future characteristics of an object (such as

object popularity) – to the best of our knowledge, we are the �rst

to propose LSTM Encoder-Decoder model for content caching; ii) a

caching policy component, which accounts for predicted informa-

tion of objects to make smart caching decisions. In our thorough

experiments, we show that applying D���C���� Framework to

existing cache policies, such as LRU and k-LRU, signi�cantly boosts

the number of cache hits.

CCS CONCEPTS

• Information systems → Multimedia information systems; •

Networks→ Network services; • Computingmethodologies→

Neural networks;

KEYWORDS

DeepCache; deep learning;machine learning; caching; lstm; seq2seq;

smart caching policies; cache hit; video object caches; prefetching;

proactive caching; popularity prediction; fake requests;

1 INTRODUCTION

Recent years have witnessed a rapid increase in video streaming

services, as a result of the massive content published by content

providers, high-speed Internet, and the number of devices con-

nected to the Internet. Thus, content providers have resorted to

employ one or more content distribution networks (CDNs) to han-

dle scalability, and improve the quality of experience (QoE) for

users. By 2021, 77% of the Internet video tra�c is expected to cross

CDNs [1]. Hence, adding cache storage space at routers becomes

of utmost importance to handle this massive growth, and improve

the network performance as well as user’s QoE. Consequently, in-

formation centric networks (ICNs) (e.g., NDN [11], DONA [12],

CONIA [16]) have been developed as an emerging architecture for

content delivery. ICN o�ers new primitives such as in-network

caching, in which storage becomes an integral part of the network

substrate (i.e., routers have the capability to cache objects on-the-�y,

and serve user requests for cached objects). This makes caching

∗This is a slightly revised version of paper D���C����: A Deep Learning Based Frame-
work For Content Caching that was initially presented at the SIGCOMM’18 workshop
on Network Meets AI & ML (NetAI 2018).

algorithms a major aspect in video streaming applications. With-

out caching, every user request is fetched from the backend/origin

server, which increases the network load, as well as user-perceived

latency. As a result, user engagement is impacted, which leads to

signi�cant revenue loss for content providers.

One of the most di�cult decisions is which object to cache and

evict, given the limited capacity of the cache network and large num-

ber of objects to cache. Caching algorithms can be classi�ed based

on which entity controls the caching decision, and the available

information to make these decisions. Least Recently Used (LRU),

Least Frequently Used (LFU), and their variants are examples of

reactive caching, in which individual caches decide which objects

to cache purely based on the recent locally observed object access

patterns. They are easy to implement and widely used in today’s

CDNs [18]. On the other hand, static caching is proactive caching,

in which centralized controllers have global view of user demands

and object access patterns. They decide which objects to cache, and

push these objects to cache nodes. Reactive caching reacts faster to

changes in object access patterns, but leads to caching non-popular

objects, which are evicted before receiving their next request, due

to their lack of knowledge about future object popularity. This

leads to thrashing problem and wasting cache resources (see (§3)

for more details). Proactive caching is the optimal solution only if

the object access pattern is stationary. Thus, it cannot cope with

sudden changes in object popularity as reactive caching.

Content objects are heterogeneous as they vary in size (e.g., web

pages vs. videos), access pattern, and popularity. A study in [3]

shows that 70% of objects served by a cache server are requested

only once over a period of days. Object access patterns are fre-

quently changing due to the frequent changes in object popularity

as shown by the study in [20] using real traces, object popularity

changes within each day according to the diurnal pattern, and also

over days according to the object’s life span. In addition, changes

in request routing algorithms due to network/server failures can

also cause changes in object access patterns. Due to these frequent

changes, the assumption of stationary object access patterns be-

comes invalid. Thus, caching algorithms cannot rely on the locally

observed object access patterns for making decisions. On the other

hand, manually tuning the caching algorithm for each cache server

according to the changes of request access patterns is very expen-

sive and is not scalable.

Thus, if we know ahead of time an estimation for object charac-

teristics, we can utilize such information in the caching mechanism

to cope with the predicted changes. The cache performance de-

pends on the prediction accuracy, and how it is being utilized to

make decisions. This task has many challenges, (1) the future object

characteristics need to be forecasted to be available at the time of
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Figure 6: Performance of our LSTM-based Content Popular-

ity Prediction Model of an object. Here, we see LSTM per-

forms well for predicting ith = {1, 12, 24} hour ahead of time

in comparison with the original values over a time series of

∼10 days.

Cache-Hit E�ciency: Figure 5 shows the result of applying a

simple form of D���C���� Framework on both Datasets 1 and 2.

For instance, in Figure 5a, we compare traditional LRU with D����
C����, andwithoutD���C����. P-Optimal shows the performance

of D���C����with 100% accuracy in content popularity prediction.

For Dataset2 which represents a more realistic workload with large

number of object catalog and cache size, we evaluate D���C����
using both LRU (see Figure 5b) and k-LRU (see Figure 5c). In k-LRU,

the object has to traverse K −1 virtual caches before it is inserted in

the physical cache [14]. For all experiments, we found D���C����
signi�cantly outperforms simple LRU. Surprisingly, in Figure 5c,

we observe that D���C���� with k-LRU has slightly higher cache-

hit than P-Optimal. We hypothesize this is due to LSTM’s smooth

probability prediction behavior. In case of P-Optimal, probabilities

are frequently changing, which makes caching policy less stable

compared to D���C����. As a result, slightly more cache hits are

observed for D���C���� over longer period of time.

6 CONCLUSION

In this paper we proposed D���C���� Framework, a paradigm

to use state-of-the-art machine learning tools to the problem of

content caching. In that, using such a framework, we proposed

how to reason about the cache prediction problem under seq2seq

modeling. We successfully show the ability of our LSTM based

models to predict the popularity of content objects. To show the ef-

�cacy of our approach, we evaluated it using two synthetic datasets

under multiple settings out of which one tries to emulate realistic

workloads. Results show that enabling D���C���� with existing

cache replacement algorithms such as LRU, k-LRU signi�cantly

outperforms algorithms without it.

ACKNOWLEDGMENTS

This research was supported in part by US NSF grant CNS-1411636,

CNS-1618339 and CNS-1617729, DTRA grant HDTRA1-14-1-0040,

and a Huawei gift.

REFERENCES
[1] Cisco visual networking index: Forecast and methodology, 2016-2021, 2017.
[2] B�������, D., C��, K., ��� B�����, Y. Neural machine translation by jointly

learning to align and translate. arXiv preprint arXiv:1409.0473 (2014).
[3] B���, S., S����������, A., G������, J., S���������, S., ��� S��������, R.

Adaptive ttl-based caching for content delivery. vol. 45, ACM, pp. 45–46.
[4] C��, H., W���, Z., ��� T���, Y. Analysis and design of hierarchical web caching

systems. In Proceedings IEEE INFOCOM 2001. (2001), vol. 3, pp. 1416–1424 vol.3.
[5] C����, J., G�������, C., C��, K., ��� B�����, Y. Empirical evaluation of gated

recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555
(2014).

[6] F�������, A., R��������, I., ��� P�������, F. Optimizing ttl caches under
heavy-tailed demands. vol. 44, ACM, pp. 101–112.

[7] G�����, A., ��� J�����, N. Towards end-to-end speech recognition with re-
current neural networks. In Proceedings of the 31st International Conference
on International Conference on Machine Learning - Volume 32 (2014), ICML’14,
JMLR.org, pp. II–1764–II–1772.

[8] G�����, K., D��������, I., G�����, A., R������, D. J., ���W�������, D. Draw:
A recurrent neural network for image generation. arXiv preprint arXiv:1502.04623
(2015).

[9] H������, M., �� ��. Learning memory access patterns. arXiv preprint
arXiv:1803.02329 (2018).

[10] H���������, S., ��� S����������, J. Long short-term memory. Neural compu-
tation 9, 8 (1997), 1735–1780.

[11] J�������, V., S�������, D. K., T�������, J. D., P����, M. F., B�����, N. H., ���
B�������, R. L. Networking named content. In Proceedings of CoNEXT 2019
(New York, NY, USA, 2009), CoNEXT ’09, ACM, pp. 1–12.

[12] K������, T., C�����, M., C���, B.�G., E����������, A., K��, K. H., S������, S.,
��� S�����, I. A data-oriented (and beyond) network architecture. In Proceedings
of the 2007 Conference on Applications, Technologies, Architectures, and Protocols
for Computer Communications (New York, NY, USA, 2007), SIGCOMM ’07, ACM,
pp. 181–192.

[13] M��, H., N��������, R., ��� A�������, M. Neural adaptive video streaming
with pensieve. In Proceedings of the Conference of the ACM Special Interest Group
on Data Communication (2017), ACM.

[14] M������, V., G������, M., ��� L�������, E. A uni�ed approach to the perfor-
mance analysis of caching systems. In IEEE INFOCOM 2014 - IEEE Conference on
Computer Communications (April 2014), pp. 2040–2048.

[15] M������, T., K�������, M., B�����, L., Č�������̀, J., ��� K��������, S. Re-
current neural network based language model. In Eleventh Annual Conference of
the International Speech Communication Association (2010).

[16] R������, E., N��������, A., ��� Z����, Z. L. CONIA: Content (provider)-
oriented, namespace-independent architecture for multimedia information deliv-
ery. In 2015 IEEE ICMEW (June 2015), pp. 1–6.

[17] S������, A., S�������������, F., ��� G��������, G. B. Optimal and scalable
caching for 5g using reinforcement learning of space-time popularities. IEEE
Journal of Selected Topics in Signal Processing 12, 1 (Feb 2018), 180–190.

[18] S�����, M. Z., L��, A. X., ��� K�������, A. R. Revisiting caching in content
delivery networks. vol. 42, ACM, pp. 567–568.

[19] S��������, I., V������, O., ��� L�, Q. V. Sequence to sequence learning with
neural networks. NIPS’14, MIT Press.

[20] T���, W., F�, Y., C���������, L., ��� V�����, A. Medisyn: A synthetic stream-
ing media service workload generator. In NOSSDAV (2003), ACM.

ACM SIGCOMM Computer Communication Review Volume 48 Issue 5, October 2018


