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ABSTRACT

This paper presents the basic ingredients of a novel method, the

stochastic Fejér-monotone hybrid steepest descent method (S-FM-

HSDM), designed to solve affinely constrained and composite con-

vex minimization tasks. The minimization task is not known exactly;

noise contaminates the information about the composite loss func-

tion and the affine constraints. S-FM-HSDM generates sequences

of random variables that, under certain conditions and with respect

to a probability space, converge pointwise to solutions of the noise-

less minimization task. S-FM-HSDM enjoys desirable attributes of

state-of-the-art stochastic-approximation techniques such as splitting

of variables and constant step size (learning rate). Furthermore, it

provides a novel way of exploiting the information about the affine

constraints via fixed-point sets of appropriate mappings. Among the

offsprings of S-FM-HSDM, the hierarchical recursive least squares

(HRLS) takes advantage of S-FM-HSDM’s versatility toward affine

constraints and offers a novel twist to LS by generating sequences

of estimates that converge to solutions of a hierarchical optimization

task: Minimize a convex loss over the set of minimizers of the ensem-

ble least-squares loss. Numerical tests on a synthetic ℓ1-norm regu-

larized LS task show that HRLS compares favorably to several state-

of-the-art convex, as well as non-convex, stochastic-approximation

and online-learning counterparts.

1. INTRODUCTION

1.1. Problem statement

The following problem is considered: With a stochastic oracle pro-

viding estimates fn (or even ∇fn), hn and An per n (n denotes

discrete time and iteration index; n ∈ Z≥0 := {0, 1, 2, . . .}) of

the generally unknown convex functions f, h and the affine set A,

respectively, solve

minx∈A⊂X f(x) + h(x) + g(x) , (P)

where X is a finite-dimensional real Hilbert space. Only the convex

(regularizing) function g is assumed to be known exactly. The goal

is to construct a sequence of estimates (xn)n := (xn)n∈Z≥0
⊂ X

by exploiting the information about (fn)n, or (∇fn)n, (hn,An)n
as well as g, and to identify the conditions which ensure, despite the

uncertainty about f, h and A, the pointwise convergence of (xn)n to

a solution of (P) with respect to (w.r.t.) a probability space.

Instances of (P) appear in adaptive filtering (AF) [16, 23]; in

particular, in linear equalization, channel estimation, beamforming,

tracking of fading channels, line and acoustic echo cancellation and

active noise control [23]. Special cases of (P) appear also in stochas-

tic approximation (SA) [18] and online learning [24],1 as in train-

ing artificial neural networks, learning optimal strategies in Markov
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1[25] provides an outline of the strong ties and distinct differences between

SA and online learning.

decision processes, recursive games, sequential-decision tasks in

economics [18], online classification and multi-armed bandit prob-

lems [24].

1.2. Case study: Sparsity-aware least squares

To highlight the versatility of (P), it is instructive to examine specific

instances of (P). To this end, let X be the Euclidean R
D . Bold-

faced symbols indicate that X = R
D; in particular, lowercase bold-

faced symbols denote vectors in R
D . With respect to a probability

space (Ω,Σ,P), consider a sparse system θ∗ ∈ X and the classi-

cal linear-regression model: bn = a⊺

nθ∗ + ηn, almost surely (a.s.),

∀n ∈ Z>0, with input-output data pair (an, bn) ∈ X × R, the

noise process (ηn)n is assumed to be zero-mean and independent of

(an)n, and ⊺ denotes vector/matrix transposition. Typical stationar-

ity assumptions on (an, bn)n are adopted also here: R := E(ana
⊺

n),
r := E(bnan), and E(b2n) stay constant ∀n, where E(·) denotes ex-

pectation. It is well-known that θ∗ satisfies the normal equations

θ∗ ∈ {x ∈ X |Rx = r} [23, (3.9)]. This section deals with the

system-identification problem of estimating the sparse θ∗ without

knowing (R, r) and relying only on the information (an, bn)n pro-

vided by the stochastic oracle.

Motivated by the celebrated (Lagrangian form of the) least abso-

lute shrinkage and selection operator (LASSO) [14, (3.52)], designed

to solve sparse system-identification problems, the first instance of

(P) is the convexly regularized least squares (LS): ∀n ∈ Z>0,

min
x∈RD

l(x)
︷ ︸︸ ︷
1
2
x
⊺
Rx− r

⊺
x+ 1

2
E(b2n)+

g(x)
︷ ︸︸ ︷

ρ‖x‖1

= min
x∈RD

E

[
1
2n

∑n

ν=1
(a⊺

νx− bν)
2

︸ ︷︷ ︸

ln(x)

]

+ ρ‖x‖1 , (CRegLS)

where the ℓ1-norm regularizer promotes sparse solutions. (CRegLS)

becomes a special case of (P), if A := X = R
D =: An, f := l and

fn := ln, or, h := l and hn := ln, a.s.

The second instance of (P) exploits the fact that even the infor-

mation about A may be inexact, and takes the form of a hierarchical

(H)LS estimation task, which appears to be new in the AF, SA and

online-learning literature: ∀n,

min
x∈RD

[ ‖x‖1 =: g(x) ]

s.to x ∈ arg min
x
′∈RD

E

[∑n

ν=1

(
a
⊺

νx
′ − bν

)2
]

︸ ︷︷ ︸
A

, (HLS)

i.e., the convex loss g(·), here ‖ · ‖1, is minimized over the set of

minimizers of the classical (ensemble) LS loss. Recall that A in

(HLS) comprises all vectors, including θ∗, that satisfy the normal

equations. In the case of g(·) := ‖ · ‖1, (HLS) can be also viewed

as an SA extension of (the deterministic) basis pursuit [6]. Since
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(R, r) are generally unknown, A is also unknown to the user. Still,

the goal is to solve (HLS). If f := h := 0 =: hn =: fn, and

An is defined as an estimate of A, a.s., then (HLS) turns out to

be a special instance of (P). This paper provides a novel way of

using the available estimates (An)n of A via fixed-point sets of

appropriate mappings (cf. Section 2). This new viewpoint pays off

in the computationally efficient HRLSa (cf. Algorithm 2), which

solves (HLS) despite the uncertainty in the estimates (An)n and

under certain conditions, while scoring the lowest estimation error

across a variety of numerical-test scenarios and several state-of-the-

art schemes (cf. Section 3).

1.3. Prior art

Online-learning and SA algorithms have their origins usually in de-

terministic optimization schemes. For example, the online-learning

scheme [28] draws inspiration from the forward-backward (a.k.a.

proximal-gradient) algorithm [3, §27.3] and incorporates variance-

reduction arguments [15] into its iterations to effect convergence

speed-ups in solving a special case of (P), which appears to be of pri-

mary importance in machine learning: f := (1/m)
∑m

i=1fi, where

{fi}
m
i=1 are convex and smooth, m is massive, h := 0 and A := X .

Driven by the need to avoid the cumbersome computation of ∇f ,

stochasticity is introduced by selecting randomly only a small subset

of {fi}
m
i=1, per time/iteration index n, to form an estimate of ∇f .

Recent SA schemes, motivated by the forward-backward algorithm

and formulated in the more general setting of monotone-operator

inclusions, can be found in [5, 7]. An SA extension of the Douglas-

Rachford algorithm [3, §25.2, §27.2] is reported in [7]. Study [29]

extends the celebrated alternating direction method of multipliers

(ADMM) [11, 12] to the online-learning setting, and blends it with

variance-reduction arguments to solve a problem similar to that of

[28], but with a non-trivial, yet deterministic affine constraint A ( X .

Further, [10] explores the dual-averaging scheme of [21] in the SA

context offering linear-convergence guarantees for a quadratic f and

A := X in (P), while X is a closed convex set with non-empty

interior. Moreover, the SA schemes [19, 22] are motivated by the

deterministic acceleration method of [20]; in particular, [19] uses

specific step sizes (cf. [19, (33)]) to effect convergence acceleration

in the case where h := 0, g is (Lipschitz) continuous and a determin-

istic convex compact constraint takes the place of A in (P).

With regards to the specific setting of Section 1.2, the state-of-

the-art AF schemes [1,2,9] are built around a variation of (CRegLS),

where the regularizing coefficient ρn converges to zero as n → ∞.

A Bayesian approach to the LS sparse system-identification problem

appears in [27], and a greedy RLS approach based on the orthogonal-

matching-pursuit algorithm is reported in [8]. Basis pursuit [6] is

used in [4] to provide an interpretation of the estimate-update equa-

tion per iteration n of several proportionate-type AF schemes; how-

ever, an ensemble-based viewpoint, such as (HLS), and a perfor-

mance analysis are not provided.

2. STOCHASTIC FEJÉR-MONOTONE HYBRID STEEPEST
DESCENT METHOD AND OFFSPRINGS

With the stochastic oracle providing the estimates (An)n of A, the

user constructs mappings (Tn)n that serve as estimates of the un-

known T . Since A is affine, T is considered to be affine, i.e., for a

linear mapping Q : X → X and a π ∈ X , Tx = Qx+ π, ∀x ∈ X ;

in short, T = Q+ π. For an affine T , FixT is an affine set. For the

linear Q, ‖Q‖ := sup{x| ‖x‖≤1}〈x | Qx〉. Mapping Q : X → X is

called positive if it is linear, bounded, self-adjoint and 〈x | Qx〉 ≥ 0,

Algorithm 1: S-FM-HSDM

Stochastic oracle’s input : (∇fn, hn,An)n, L∇f , g.

User’s input : α, λ, (Tn)n.

Output : Sequence (xn)n.

1 Initialization
2 Set α ∈ [0.5, 1) and λ ∈ (0, 2(1− α)/L∇f ).

Arbitrarily fix x0.

3 x1/2 := T
(α)
0 x0 − λ∇f0(x0).

4 x1 := Proxλ(h0+g)(x1/2).

5 for n = 0 to +∞ do
6 xn+3/2 := xn+1/2 − [T

(α)
n xn − λ∇fn(xn)] +

[Tn+1xn+1 − λ∇fn+1(xn+1)].
7 xn+2 := Proxλ(hn+1+g)(xn+3/2).

∀x ∈ X [17, §9.3]. Given the affine set A, define now the following

non-empty family of mappings [26, Prop. 2.11]:

TA :=

{

T : X → X

∣
∣
∣
∣

FixT = A;T = Q+ π;

Q is positive; ‖Q‖ ≤ 1;π ∈ X

}

. (1)

Since ‖Q‖ ≤ 1, every mapping T ∈ TA turns out to be nonex-

pansive [3]: ∀(x, x′) ∈ X 2, ‖Tx − Tx′‖ = ‖Qx − Qx′‖ =
‖Q(x− x′)‖ ≤ ‖Q‖‖x− x′‖ ≤ ‖x− x′‖. It is also worth noticing

here that TA is closed under any convex combination and certain

compositions of its members [26, Prop. 2.10]. There are several

choices for mappings T ∈ TA that suit the context of Section 1.2,

e.g., [26, (70), and (72)]. A well-known member of TA is the projec-

tion mapping PA onto A [26, Prop. 2.11]. Nevertheless, this study

revolves around less obvious cases. Examples are provided next.

Lemma 1. For A := {x |Rx = r} in Section 1.2, mappings

T =

{
(I− µ

̟
R) + µ

̟
r , ̟ ≥ ‖R‖ , µ ∈ (0, 1] , (2a)

(I+ κR)−1 + κ(I+ κR)−1
r , κ ∈ R>0 , (2b)

belong to TA, where I is the identity matrix and the spectral norm

‖R‖ is equal to the maximum eigenvalue of R.

Instead of the unknown R and r, the following classical running-

average estimates are used [23]; ∀n ∈ Z>0,

Rn := 1
n

∑n

ν=1
aνa

⊺

ν , rn := 1
n

∑n

ν=1
bνaν . (3)

Choices for the estimates Tn of the mapping T in (2) are

Tn :=







(I− µ
̟n

Rn) +
µ

̟n
rn , ̟n ≥ ‖Rn‖ ,

µ ∈ (0, 1] , (4a)

(I+ κRn)
−1 + κ(I+ κRn)

−1
rn , κ ∈ R>0 . (4b)

S-FM-HSDM is presented in Algorithm 1. The averaged map-

ping T
(α)
n , given parameter α ∈ (0, 1), is defined by T

(α)
n :=

αTn + (1− α) Id, a.s., ∀n. Moreover, Prox in lines 4 and 7 of Al-

gorithm 1 denotes the celebrated proximal mapping [3]. In the case

where L∇f is not available or cannot be estimated, S-FM-HSDM

offers the option of setting f := fn := 0, where L∇f can be set to

any positive real-valued number (cf. Section 3), whereas any estimate

of f can be transferred to the loss hn, since assumptions on h and

hn are weaker than those on f and fn.

In the context of Section 1.2 and if (4a) is adopted, S-FM-HSDM
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Algorithm 2: HRLSa

Stochastic oracle’s input : (an, bn)n∈Z>0
.

User’s input : α, λ.

Output : Sequence (xn)n.

1 Initialization
2 Set α ∈ [0.5, 1) and λ ∈ R>0. Arbitrarily fix x0.

3 Set ̟0 ≥ ‖R0‖.

4 x1/2 := x0 − α 1
̟0

(R0x0 − r0).

5 For any d ∈ {1, . . . , D},

[x1]d := [x1/2]d · (1− λ/max{λ, |[x1/2]d|}).

6 for n = 0 to +∞ do
7 Set ̟n+1 ≥ ‖Rn+1‖.

8 xn+3/2 := xn+1 + xn+1/2 − xn + α 1
̟n

(Rnxn −

rn)−
1

̟n+1
(Rn+1xn+1 − rn+1).

9 For any d ∈ {1, . . . , D},

[xn+2]d := [xn+3/2]d ·(1−λ/max{λ, |[xn+3/2]d|}).

takes the flavor of Algorithm 2, coined HRLSa. Following (4a),

Lines 3 and 7 of Algorithm 2 introduce over-estimates (̟n)n of the

maximum eigenvalues (λmax(Rn) = ‖Rn‖)n. To this end, mo-

tivated by the celebrated power iteration [13], and for a randomly

generated initial vector p0 ∈ X , the following iterative procedure,

run over all n ∈ Z>0, is used in Section 3 to generate (̟n)n:

i) qn := Rnpn−1; ii) pn := qn/‖qn‖; iii) ̟n := p⊺

nRnpn + ǫ̟ ,

for a user-defined ǫ̟ ∈ R>0. If (4b) is used as Tn in Algorithm 1,

the flavor of S-FM-HSDM is coined HRLSb. Due to space limi-

tations, the detailed pseudo-code description of HRLSb is omitted.

Other options for Tn will be explored elsewhere.

Several assumptions follow to serve as the ground onto which

Theorems 1 and 2 are based. The journal version of this manuscript

will also include more details and exemplifying instances of the fol-

lowing assumptions in the context of Section 1.2.

Assumption 1 (Pointwise ergodicity). E
R
n := R−Rn

a.s.
−→n 0 and

ε
r
n := r− rn

a.s.
−→n 0.

Assumption 2 (Mappings T and Tn).

(i) T ∈ TA.

(ii) Tn := Qn + πn, where mapping Qn : X → X is positive,

with ‖Qn‖ ≤ 1, and πn ∈ X , a.s., ∀n.

(iii) (T − Tn)
a.s.
−→n 0, i.e., (T − Tn)x

a.s.
−→n 0, ∀x ∈ X , or,

equivalently, (Q−Qn)
a.s.
−→n 0 and (π − πn)

a.s.
−→n 0.

(iv) Define a.s. and ∀n,

tn := E|Fn

[∑n

ν=1
(T − Tν)xν

]

= E|Fn

{∑n

ν=1
[(Id−Tν)xν − (Id−T )xν ]

}

. (5)

Consider the event

Ωt := {limn→∞ E(tn) ∈ ran(Id−Q)} . (6)

Let P(Ωt) > 0.

Assumption 3 (Loss functions).

(i) f, h, g : X → R ∪ {+∞} belong to the class Γ0(X ) of

proper, lower semicontinuous (l.s.c.), convex functions [3].

(ii) f is everywhere (Fréchet) differentiable, with L∇f -Lipschitz

continuous ∇f : ‖∇f(x) − ∇f(x′)‖ ≤ L∇f‖x − x′‖,

∀(x, x′) ∈ X × X , for some L∇f ∈ R>0.

(iii) fn, hn ∈ Γ0(X ) a.s., ∀n.

(iv) fn is everywhere (Fréchet) differentiable, with Ln-Lipschitz

continuous ∇fn a.s., ∀n.

(v) There exist n# ∈ Z≥0 and a CLip ∈ R>0, which is constant

over all ω ∈ Ω, s.t. Ln ≤ CLip a.s., ∀n ≥ n#.

(vi) (∇f −∇fn)
a.s.
−→n 0.

Assumption 4 (Asymptotic unbiasedness).

(i) For any x ∈ mFn, E|Fn
[(h− hn)(x)] =: εhn(x)

a.s.
−→n 0 and

εhn(xn)
a.s.
−→n 0.

(ii) E|Fn
[(∇f −∇fn)(xn)] =: εfn(xn)

a.s.
−→n 0.

Assumption 5 (Dominated (ϑn)n∈Z≥0
). With respect to a sequence

of random variables (ϑn)n∈Z≥0
, whose description is out of the

scope of this paper and will be given in the journal version of this

manuscript, define

Ωϑ :=







∃ψ ∈ (mΣ)+ with E(ψ) < +∞

s.t.
∑

n
E|Fn

(ϑn)
+ ≤ ψ a.s.






,

where E|Fn
(ϑn)

+ := max{0,E|Fn
(ϑn)}. Let P(Ωϑ) > 0.

Assumption 6 (Bounded variances).

(i) Given z ∈ X , there exists C∇f := C∇f (z) ∈ R>0 s.t.

E[‖(∇f −∇fn)z‖
2] ≤ C∇f , ∀n.

(ii) There exists Cπ ∈ R>0 s.t. E(‖πn − π‖2) ≤ Cπ , ∀n.

Assumption 7 (Bounded estimates yield bounded subgradients).

(i) For any a.s. bounded (zn)n, there exist a sequence (τn)n
and C∂ := C∂(ω) ∈ R>0 s.t. τn ∈ ∂(hn + g)(zn) and

E|Fn
(‖τn‖) ≤ C∂ , ∀n, a.s.

(ii) Consider the sequence (ξn)n of subgradients associated with

the sequence of estimates (xn)n (details are deferred to the

journal version of the manuscript). If (xn)n is bounded a.s.,

then (ξn)n is bounded a.s.

(iii) If (E(‖xn‖
2))n is bounded, then (E(‖ξn‖

2))n is bounded.

The main convergence properties of S-FM-HSDM (Algorithm 1)

are summarized in the following two theorems.

Theorem 1. Under Assumptions 2–7, and by choosing α ∈ [0.5, 1)
and λ ∈ (0, 2(1−α)/L∇f ), the set of cluster points C[(xn)n] of the

S-FM-HSDM sequence (xn)n (Algorithm 1) is nonempty a.s. Every

point in C[(xn)n] is a solution of (P) a.s.

Theorem 2. Consider the case where T is known exactly, i.e., T =
Tn, ∀n. Then, under the same setting as in Theorem 1, but without

Assumptions 2, 6(ii), 7(ii) and 7(iii), the sequence (xn)n generated

by Algorithm 1 converges a.s. to a solution of (P).

3. NUMERICAL TESTS

The proposed framework is validated within the setting of Section 1.2

where S-FM-HSDM(CRegLS), HRLSa and HRLSb are compared

with the following online-learning and SA schemes: i) The classical

RLS [23, §30.2]; ii) the ℓ1-norm regularized (ℓ1-)RLS [9], and its

extension, the ℓ0-norm (ℓ0-)RLS [9], where a non-convex regulariz-

ing function is used instead of ‖·‖1; iii) the LASSO-motivated online

selective coordinate descent (OSCD) and online cyclic coordinate

descent (OCCD) methods [1], where, according to [1, Sec. V], the
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