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ABSTRACT

This paper presents the basic ingredients of a novel method, the
stochastic Fejér-monotone hybrid steepest descent method (S-FM-
HSDM), designed to solve affinely constrained and composite con-
vex minimization tasks. The minimization task is not known exactly;
noise contaminates the information about the composite loss func-
tion and the affine constraints. S-FM-HSDM generates sequences
of random variables that, under certain conditions and with respect
to a probability space, converge pointwise to solutions of the noise-
less minimization task. S-FM-HSDM enjoys desirable attributes of
state-of-the-art stochastic-approximation techniques such as splitting
of variables and constant step size (learning rate). Furthermore, it
provides a novel way of exploiting the information about the affine
constraints via fixed-point sets of appropriate mappings. Among the
offsprings of S-FM-HSDM, the hierarchical recursive least squares
(HRLS) takes advantage of S-FM-HSDM'’s versatility toward affine
constraints and offers a novel twist to LS by generating sequences
of estimates that converge to solutions of a hierarchical optimization
task: Minimize a convex loss over the set of minimizers of the ensem-
ble least-squares loss. Numerical tests on a synthetic £;-norm regu-
larized LS task show that HRLS compares favorably to several state-
of-the-art convex, as well as non-convex, stochastic-approximation
and online-learning counterparts.

1. INTRODUCTION

1.1. Problem statement

The following problem is considered: With a stochastic oracle pro-
viding estimates f, (or even V fy,), h, and A,, per n (n denotes
discrete time and iteration index; n € Z>o := {0,1,2,...}) of
the generally unknown convex functions f, h and the affine set A,
respectively, solve

mingeacx f(z) + h(z) + g(z), (P)

where A is a finite-dimensional real Hilbert space. Only the convex
(regularizing) function g is assumed to be known exactly. The goal
is to construct a sequence of estimates (n)n ‘= (Tn)nezs, C X
by exploiting the information about (fy)n, or (V fr)n, (hn, An)n
as well as g, and to identify the conditions which ensure, despite the
uncertainty about f, h and A, the pointwise convergence of (z ) to
a solution of (P) with respect to (w.r.t.) a probability space.
Instances of (P) appear in adaptive filtering (AF) [16, 23]; in
particular, in linear equalization, channel estimation, beamforming,
tracking of fading channels, line and acoustic echo cancellation and
active noise control [23]. Special cases of (P) appear also in stochas-
tic approximation (SA) [18] and online learning [24],! as in train-
ing artificial neural networks, learning optimal strategies in Markov
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1[25] provides an outline of the strong ties and distinct differences between
SA and online learning.
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decision processes, recursive games, sequential-decision tasks in
economics [18], online classification and multi-armed bandit prob-
lems [24].

1.2. Case study: Sparsity-aware least squares

To highlight the versatility of (P), it is instructive to examine specific
instances of (P). To this end, let X be the Euclidean R?. Bold-
faced symbols indicate that X = RP:in particular, lowercase bold-
faced symbols denote vectors in R”. With respect to a probability
space (2, X, P), consider a sparse system 0, € X and the classi-
cal linear-regression model: b, = a} 0. + n,, almost surely (a.s.),
Vn € Zso, with input-output data pair (a,,b,) € X x R, the
noise process (7 )n is assumed to be zero-mean and independent of
(an)n, and T denotes vector/matrix transposition. Typical stationar-
ity assumptions on (an, b, ), are adopted also here: R := E(anal,),
r := E(b,a,), and E(b2) stay constant ¥n, where E(-) denotes ex-
pectation. It is well-known that 6, satisfies the normal equations
0. € {x € X|Rx = r} [23, (3.9)]. This section deals with the
system-identification problem of estimating the sparse 8. without
knowing (R, r) and relying only on the information (a,, by ). pro-
vided by the stochastic oracle.

Motivated by the celebrated (Lagrangian form of the) least abso-
lute shrinkage and selection operator (LASSO) [14, (3.52)], designed
to solve sparse system-identification problems, the first instance of
(P) is the convexly regularized least squares (LS): Vn € Zxo,

L(x) 9(x)

——
. 2
min Ix"Rx —r'x + 1 E(b7) + pll %1

— min [E[ L3 (alx =07 +plxlh,  (CRegLS)

x€eRD

In (x)

where the ¢1-norm regularizer promotes sparse solutions. (CRegLS)
becomes a special case of (P), if A := X = RP =: A,, f:=1land
fn i==ln,o0r, h:=1land hy,, :=[,, as.

The second instance of (P) exploits the fact that even the infor-
mation about A may be inexact, and takes the form of a hierarchical
(H)LS estimation task, which appears to be new in the AF, SA and
online-learning literature: Vn,

xnel[é«% (x|l =: g(x)]

< : " T 2]
s.to X € arg ;IéanD E [Zyzl (a,,x b,,) , (HLS)
A
i.e., the convex loss g(-), here || - ||1, is minimized over the set of

minimizers of the classical (ensemble) LS loss. Recall that A in
(HLS) comprises all vectors, including 6., that satisfy the normal
equations. In the case of g(-) := || - |1, (HLS) can be also viewed
as an SA extension of (the deterministic) basis pursuit [6]. Since
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(R, r) are generally unknown, A is also unknown to the user. Still,
the goal is to solve (HLS). If f := h := 0 =: h, =: fy, and
A,, is defined as an estimate of A, a.s., then (HLS) turns out to
be a special instance of (P). This paper provides a novel way of
using the available estimates (Aj). of A via fixed-point sets of
appropriate mappings (cf. Section 2). This new viewpoint pays off
in the computationally efficient HRLSa (¢f. Algorithm 2), which
solves (HLS) despite the uncertainty in the estimates (A, ), and
under certain conditions, while scoring the lowest estimation error
across a variety of numerical-test scenarios and several state-of-the-
art schemes (cf. Section 3).

1.3. Prior art

Online-learning and SA algorithms have their origins usually in de-
terministic optimization schemes. For example, the online-learning
scheme [28] draws inspiration from the forward-backward (a.k.a.
proximal-gradient) algorithm [3, §27.3] and incorporates variance-
reduction arguments [15] into its iterations to effect convergence
speed-ups in solving a special case of (P), which appears to be of pri-
mary importance in machine learning: f := (1/m) > ", f;, where
{f:i}i, are convex and smooth, m is massive, h := 0 and A := X.
Driven by the need to avoid the cumbersome computation of V f,
stochasticity is introduced by selecting randomly only a small subset
of {f;}i%,, per time/iteration index n, to form an estimate of V f.
Recent SA schemes, motivated by the forward-backward algorithm
and formulated in the more general setting of monotone-operator
inclusions, can be found in [5,7]. An SA extension of the Douglas-
Rachford algorithm [3, §25.2, §27.2] is reported in [7]. Study [29]
extends the celebrated alternating direction method of multipliers
(ADMM) [11, 12] to the online-learning setting, and blends it with
variance-reduction arguments to solve a problem similar to that of
[28], but with a non-trivial, yet deterministic affine constraint A C X.
Further, [10] explores the dual-averaging scheme of [21] in the SA
context offering linear-convergence guarantees for a quadratic f and
A := X in (P), while X is a closed convex set with non-empty
interior. Moreover, the SA schemes [19, 22] are motivated by the
deterministic acceleration method of [20]; in particular, [19] uses
specific step sizes (cf. [19, (33)]) to effect convergence acceleration
in the case where h := 0, g is (Lipschitz) continuous and a determin-
istic convex compact constraint takes the place of A in (P).

With regards to the specific setting of Section 1.2, the state-of-
the-art AF schemes [1,2,9] are built around a variation of (CRegLS),
where the regularizing coefficient p,, converges to zero as n — oo.
A Bayesian approach to the LS sparse system-identification problem
appears in [27], and a greedy RLS approach based on the orthogonal-
matching-pursuit algorithm is reported in [8]. Basis pursuit [6] is
used in [4] to provide an interpretation of the estimate-update equa-
tion per iteration n of several proportionate-type AF schemes; how-
ever, an ensemble-based viewpoint, such as (HLS), and a perfor-
mance analysis are not provided.

2. STOCHASTIC FEJER-MONOTONE HYBRID STEEPEST
DESCENT METHOD AND OFFSPRINGS

With the stochastic oracle providing the estimates (A, )» of A, the
user constructs mappings (7,)» that serve as estimates of the un-
known T'. Since A is affine, T is considered to be affine, i.e., for a
linear mapping @ : X — X andaw € X, Tx = Qr + 7, Vo € A;
in short, " = Q) + =. For an affine T", Fix T is an affine set. For the
linear @, [| Q| := supy| <13 (* | @z). Mapping Q : X — X' is
called positive if it is linear, bounded, self-adjoint and (x | Qz) > 0,

Algorithm 1: S-FM-HSDM
Stochastic oracle’s input : (V fy, by, An)n, Lvy, g.
User’s input ta, A (To)n-
Output : Sequence (Zn)n.

1 Initialization

2 Seta € [0.5,1) and A € (0,2(1 — o) /Lvy).
Arbitrarily fix xo.

3 T1/2 = TO(Q)I() — )\Vfo(x())

4 | @1 = Proxang+g)(1/2)-

5 forn = 0to +oo do

6 -rn+3/2 = In+l/2 - [T'r(La)xn - /\an(xn)} +
[Tn+lxn+l - Aan-&»l(mn+l)]v

7 | @tz = ProXa(h, i +9) (Tnts/2)-

Vo € X [17, §9.3]. Given the affine set A, define now the following
non-empty family of mappings [26, Prop. 2.11]:

FixT=A;T=Q +m;
TA =T : X > X| _. » RN
{ Q is positive; [|Q]] < 1;7 € X}

Since ||@Q]| < 1, every mapping T" € ¥ 4 turns out to be nonex-
pansive [3]: V(z,2') € X2, ||Tz — T<'| = ||Qzr — Qz'|| =
1Q(z — )| < 1IQ|lllx — || < ||z — ]| 1t is also worth noticing
here that T 4 is closed under any convex combination and certain
compositions of its members [26, Prop. 2.10]. There are several
choices for mappings 7' € ¥ 4 that suit the context of Section 1.2,
e.g., [26, (70), and (72)]. A well-known member of ¥ 4 is the projec-
tion mapping P4 onto A [26, Prop. 2.11]. Nevertheless, this study
revolves around less obvious cases. Examples are provided next.

Lemma 1. For A := {x|Rx = r} in Section 1.2, mappings

| @+ sR) T +k(I+KR)'r, KERsy,  (2b)
belong to T 4, where I is the identity matrix and the spectral norm
||R || is equal to the maximum eigenvalue of R. O

Instead of the unknown R and r, the following classical running-
average estimates are used [23]; Vn € Zxo,

1 n T 1 n
Rn = Zyzl aya, , r, ‘= n Zyzl buau . (3)

Choices for the estimates 7>, of the mapping 7" in (2) are
(I— 2 Ra) + Zorn, @n 2 [Rall,

we (0,1], (4a)

(I+#Rn) " + K1+ KRn) 'y, K €ERso.  (4b)

T, =

S-FM-HSDM is presented in Algorithm 1. The averaged map-
ping T\, given parameter o € (0,1), is defined by T* :=
oT, + (1 — a)1d, a.s., Vn. Moreover, Prox in lines 4 and 7 of Al-
gorithm 1 denotes the celebrated proximal mapping [3]. In the case
where Ly is not available or cannot be estimated, S-FM-HSDM
offers the option of setting f := f,, := 0, where Ly can be set to
any positive real-valued number (cf. Section 3), whereas any estimate
of f can be transferred to the loss h,,, since assumptions on h and
h,, are weaker than those on f and f,.

In the context of Section 1.2 and if (4a) is adopted, S-FM-HSDM
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Algorithm 2: HRLSa

Stochastic oracle’s input : (a,,bn)necz-,.
User’s input ta, A

Output : Sequence (Xn)n.
Initialization
Set o € [0.5,1) and A € R¢. Arbitrarily fix xo.
Set g > HRoH

Xl/g =Xp — a%(ROX0 — I‘()).
Foranyd € {1,...,D},
[x1]a := [xayala - (1= A/ max{A, [[x1/2]al})-

6 forn = 0to +oo do

[ I N

7 Set w41 > HRn+1H.

8 Xn43/2 = Xn+1 + Xnj1/2 — Xn + awin(Rnxn -
rn) = gy (Rng1Xng1 — Toga).

9 Foranyd € {1,...,D},
[Xn+2]d = [Xnysyela- (1 =N/ max{A, |[Xn13/2]al})-

takes the flavor of Algorithm 2, coined HRLSa. Following (4a),
Lines 3 and 7 of Algorithm 2 introduce over-estimates (coy, ), of the
maximum eigenvalues (Amax(Rn) = ||Rn]|)n. To this end, mo-
tivated by the celebrated power iteration [13], and for a randomly
generated initial vector po € &, the following iterative procedure,
run over all n € Zso, is used in Section 3 to generate (cop)n:
i) qn ‘= Rnpn—l; ii) Pn = qn/Hq"H; iii) Wn = pILRnpn + €w,
for a user-defined e € R¢. If (4b) is used as 7}, in Algorithm 1,
the flavor of S-FM-HSDM is coined HRLSb. Due to space limi-
tations, the detailed pseudo-code description of HRLSb is omitted.
Other options for T, will be explored elsewhere.

Several assumptions follow to serve as the ground onto which
Theorems 1 and 2 are based. The journal version of this manuscript
will also include more details and exemplifying instances of the fol-
lowing assumptions in the context of Section 1.2.

Assumption 1 (Pointwise ergodicity). £F := R — R,, =%,, 0 and
62::1‘—1'”&)”0. O
Assumption 2 (Mappings 7" and T7,).

(i) T eZa.
(ii) T, = @Qn + 7y, where mapping @, : X — X is positive,
with [|Qr]| < 1,and m, € X, ass., Vn.
(i) (T — Tn) 25, 0, ie., (T — Tp)x 2, 0, Vo € X, or,
equivalently, (Q — Q) 2%, 0and (m—mp) A5, 0.
(iv) Define a.s. and Vn,

tn = E 5, [Zzzl(T - Ty)xu]
=Ex, {le [(1d—T})z, — (1d —T):L'l,]} .6
Consider the event
Q= {limno o E(ty) € ran(Id—Q)} . (6)
Let P() > 0. O

Assumption 3 (Loss functions).

@ f,h,g : X - R U {400} belong to the class I'o(X) of
proper, lower semicontinuous (1.s.c.), convex functions [3].

(ii) f is everywhere (Fréchet) differentiable, with Lv y-Lipschitz
continuwous Vf: |[Vf(z) — V(@) < Lvysllz — 2|,
V(z,z') € X x X, for some Ly € Rso.

(iii) fn,hn € To(X) as., Vn.

(iv) fn is everywhere (Fréchet) differentiable, with L,,-Lipschitz
continuous V f,, a.s., Vn.

(v) There exist ng € Z>¢ and a Cpj, € R0, which is constant
overallw € Q, s.t. L, < Cljp as., Vn > ng.

i) (Vf—=Vfn) =5, 0. O
Assumption 4 (Asymptotic unbiasedness).

(i) Forany z € mF,, Ez, [(h — ha)(z)] =: eh(z) =, 0and
eh () 2, 0.

(i) Ez, [(Vf = Vin)(@a)] = el (zn) =5, 0. O
Assumption 5 (Dominated (¥r, )nez ). With respect to a sequence
of random variables (ﬁn)nez>u, whose description is out of the
scope of this paper and will be given in the journal version of this
manuscript, define

F € (mE) " with E(y) < 400
Qy 1=
9 s.t. Zn Eir, (9,)" < as. )

where E |z, (9,)1 := max{0, |z, (9n)}. Let P(Q2s) > 0. O
Assumption 6 (Bounded variances).

(i) Given z € X, there exists Cvy = Cvys(z) € R s.t.
E[[(VSf = Vfn)2|*] < Cvy, Vn.
(ii) There exists Cr € R s.t. E(||mn — 7||?) < Cr, V. 0O

Assumption 7 (Bounded estimates yield bounded subgradients).

(i) For any a.s. bounded (zy)n, there exist a sequence (7 )n
and Cp := Ch(w) € Rsg s.it. 7 € I(hn + g)(zn) and
Eix, ([Ima]]) < Ca, ¥n, as.

(ii) Consider the sequence (&, )» of subgradients associated with
the sequence of estimates (x,,)n (details are deferred to the
journal version of the manuscript). If (z,,), is bounded a.s.,
then (&) is bounded a.s.

(i) If (E(||zn||?))n is bounded, then (E(||£,||?))n is bounded.

O

The main convergence properties of S-FM-HSDM (Algorithm 1)
are summarized in the following two theorems.

Theorem 1. Under Assumptions 27, and by choosing o € [0.5,1)
and A € (0,2(1—a)/Lvy), the set of cluster points €[(zy)r] of the
S-FM-HSDM sequence (zn ), (Algorithm 1) is nonempty a.s. Every
point in €[(zy, )] is a solution of (P) a.s. O
Theorem 2. Consider the case where 7" is known exactly, i.e., T =
T, Yn. Then, under the same setting as in Theorem 1, but without
Assumptions 2, 6(ii), 7(ii) and 7(iii), the sequence (z,)» generated
by Algorithm 1 converges a.s. to a solution of (P). O

3. NUMERICAL TESTS

The proposed framework is validated within the setting of Section 1.2
where S-FM-HSDM(CRegLS), HRLSa and HRLSb are compared
with the following online-learning and SA schemes: i) The classical
RLS [23, §30.2]; ii) the ¢1-norm regularized (¢1-)RLS [9], and its
extension, the fo-norm (4o-)RLS [9], where a non-convex regulariz-
ing function is used instead of ||-||1; iii) the LASSO-motivated online
selective coordinate descent (OSCD) and online cyclic coordinate
descent (OCCD) methods [1], where, according to [1, Sec. V], the
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power of the additive noise in the linear-regression model is assumed
to be known and incorporated in the regularizing coefficient p, in
(CRegLS) s.t. p,, =, 0; iv) the proximal stochastic variance-re-
duced gradient (Prox-SVRG) method [28], applied to the setting of
the ever-growing data regime f := (1/n)>."_, £, in (CRegLS),
with £, (x) := (1/2)(alx — b,)?; v) SVRG-ADMM [29], where
f is identical to that of the Prox-SVRG case; vi) the accelerated
stochastic approximation (ACSA) with the step sizes of [19, (33)];
vii) the adaptive sparse variational Bayes multi-parameter Laplace
prior (ASVB-MPL) method [27]; and viii) the stochastic dual-aver-
aging (SDA) scheme with linear-convergence-rate guarantees [10]. It
is worth stressing here that all of [1,9, 10, 19,28,29] are built around
the mainstream (CRegLS). As explained in Sections 1.1 and 1.2, any
attempt to pass A of (HLS) to the objective function via the indicator
function ¢ 4 [3] entails the use of the projection mapping P4 and,
thus, the eigen-decompositions of (R.,)» via the (Moore-Penrose-
)pseudoinverse operation.

In all tests, the dimension of the Euclidean space X = RP
is set to D := 100. The sparse system 6, is created by placing
+1s at randomly selected entries of the D x 1 all-zero vector. The
“sparsity level” of 6, is defined as the percentage of the number of
non-zero entries of 8, over D. Since focus is placed on the system-
identification problem of Section 1.2, the criterion of performance
is the normalized-root-mean-square-deviation loss ||x,, — .|| /|6« |-
The parameters of every method were carefully tuned to yield optimal
performance per given scenario. Each curve in the figures is the
uniform average of 500 independently performed tests.

With regards to the linear-regression model of Section 1.2, pro-
cess (an, )n is considered to be IID Gaussian. Independency is also
assumed among the entries ([a]4)5, of each vector a,,, Vn. Given
a value for the signal-to-noise ratio (SNR) in dB, the “power” of
the additive noise E(n2) = 10~ SNRUB0)19, 112 E([a,]3). The SNR
values {10, 20}dB were examined and results are illustrated in Fig-
ures 1 and 2. Remarkably, the (HLS) formulation seems to be more
appropriate than (CRegLS) for the sparse system-identification prob-
lem: The best performance among all methods is achieved by the
proposed HRLSa, HRLSb and the non-convex £,-RLS.

To test the ability of the methods to adapt to dynamic system
changes, a typical AF test is considered here [23]: The sparsity level
of the estimandum .. changes abruptly at the time instance 2.5 - 10°
from 1% to 10%, where the non-zero entries of 0, are re-allocated
randomly.

As in the classical exponentially-weighted RLS [23, §30.6],
(CRegLS) is modified to

. n n—v 2
min [E[2F1f,n ZV:I ' (alx —by) ] + pllx]|l1,

where I, := > _ A" and ¢ € (0,1] is a “forgetting coeffi-
cient” that enforces a “short-memory” effect, via the exponential rule
¢, to account for the non-stationaries of the input-output data
statistics. Results are illustrated in Figure 3. HRLSa, HRLSb and
the Bayesian ASVB-MPL seem to be both agile and accurate in their
estimation task.

4. CONCLUSIONS AND THE ROAD AHEAD

This paper presents the basic ingredients of a novel stochastic-
approximation tool, namely the stochastic Fejér-monotone hybrid
steepest descent method (S-FM-HSDM), designed to solve convex
and affinely constrained composite minimization tasks. Noise
contaminates the information about the task, affecting not only the
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10°
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(a) Sparsity level: 1%.
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(b) Sparsity level: 10%.

Fig. 1: IID (ay )»; SNR = 20dB.

Tteration number n (x10%)

(a) Sparsity level: 1%.

Iteration number n (x10%)

(b) Sparsity level: 10%.

Fig. 2: IID (a5, )»; SNR = 10dB.



100

1 2 25 3 4
Iteration number n (x10?)

o

Fig. 3: IID (a,)n; SNR = 20dB; the sparsity level of 8. changes at time
n = 2.5-10° from 1% to 10%.

loss terms but also the affine constraints. S-FM-HSDM provides
a novel way of dealing with stochastic affine constraints via
fixed-point sets of appropriate mappings, while retaining several
desirable properties of state-of-the-art stochastic-approximation
methods, such as splitting of variables and constant step size.
Theorems, without proofs, are also provided to identify the
conditions under which the sequence of random variables, generated
by S-FM-HSDM, converges a.s. to solutions of the latent noiseless
minimization task. Several offsprings of S-FM-HSDM are presented
in the context of a well-studied convexly regularized least-squares
task. The versatility of S-FM-HSDM toward affine constraints
opens the door for computationally efficient novel designs, called
hierarchical recursive least squares, which, according to extensive
numerical tests on synthetic data, appear to score the lowest
estimation error across a variety of scenarios and among several
state-of-the-art AF, SA and online-learning schemes. Due to space
limitations, the proofs of the theorems, rates of convergence,
other theoretical contributions, as well as further applications of
S-FM-HSDM will be presented elsewhere.
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