
Adventures in Monotone Complexity and TFNP

Mika Göös1

Institute for Advanced Study, Princeton, NJ, USA
mika@ias.edu

Pritish Kamath2

Massachusetts Institute of Technology, Cambridge, MA, USA
pritish@mit.edu

Robert Robere3

Simons Institute, Berkeley, CA, USA
robere@cs.toronto.edu

Dmitry Sokolov4

KTH Royal Institute of Technology, Stockholm, Sweden
sokolov.dmt@gmail.com

Abstract
Separations: We introduce a monotone variant of Xor-Sat and show it has exponential mono-
tone circuit complexity. Since Xor-Sat is in NC2, this improves qualitatively on the monotone
vs. non-monotone separation of Tardos (1988). We also show that monotone span programs over
R can be exponentially more powerful than over finite fields. These results can be interpreted as
separating subclasses of TFNP in communication complexity.

Characterizations: We show that the communication (resp. query) analogue of PPA (subclass
of TFNP) captures span programs over F2 (resp. Nullstellensatz degree over F2). Previously,
it was known that communication FP captures formulas (Karchmer–Wigderson, 1988) and that
communication PLS captures circuits (Razborov, 1995).

2012 ACM Subject Classification Theory of computation → Communication complexity, The-
ory of computation → Circuit complexity, Theory of computation → Proof complexity

Keywords and phrases TFNP, Monotone Complexity, Communication Complexity, Proof Com-
plexity

Digital Object Identifier 10.4230/LIPIcs.ITCS.2019.38

Related Version A full version of the paper is available at [24], https://eccc.weizmann.ac.
il/report/2018/163/.

Acknowledgements We thank Ankit Garg (who declined a co-authorship) for extensive discus-
sions about monotone circuits. We also thank Thomas Watson and anonymous ITCS reviewers
for comments.

1 Work done while at Harvard University; supported by the Michael O. Rabin Postdoctoral Fellowship.
2 Supported in parts by NSF grants CCF-1650733, CCF-1733808, and IIS-1741137.
3 Work done while at University of Toronto; supported by NSERC.
4 Supported by the Swedish Research Council grant 2016-00782, Knut and Alice Wallenberg Foundation

grants KAW 2016.0066 and KAW 2016.0433.

© Mika Göös, Pritish Kamath, Robert Robere, and Dmitry Sokolov;
licensed under Creative Commons License CC-BY

10th Innovations in Theoretical Computer Science (ITCS 2019).
Editor: Avrim Blum; Article No. 38; pp. 38:1–38:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:mika@ias.edu
mailto:pritish@mit.edu
mailto:robere@cs.toronto.edu
mailto:sokolov.dmt@gmail.com
https://doi.org/10.4230/LIPIcs.ITCS.2019.38
https://eccc.weizmann.ac.il/report/2018/163/
https://eccc.weizmann.ac.il/report/2018/163/
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

38:2 Adventures in Monotone Complexity and TFNP

1 Our Results

We study the complexity of monotone boolean functions f : {0, 1}n → {0, 1}, that is, functions
satisfying f(x) ≤ f(y) for every pair x ≤ y (coordinate-wise). (An excellent introduction
to monotone complexity is the textbook [36].) Our main results are new separations of
monotone models of computation and characterizations of those models in the language of
query/communication complexity. At the core of these results are two conceptual innovations.
1. We introduce a natural monotone encoding of the usual CSP satisfiability problem

(Subsection 1.1). This definition unifies many other monotone functions considered in the
literature.

2. We extend and make more explicit an intriguing connection between circuit complexity
and total NP search problems (TFNP) via communication complexity. Several prior
characterizations [37, 55] can be viewed in this light. This suggests a potentially useful
organizational principle for circuit complexity measures; see Section 2 for our survey.

1.1 Monotone C-Sat
The basic conceptual insight in this work is a new simple definition: a monotone encoding
of the usual constraint satisfaction problem (CSP). For any finite set of constraints C, we
introduce a monotone function C-Sat. A general definition is given in Section 3, but for now,
consider as an example the set C = 3Xor of all ternary parity constraints

3Xor :=
{

(v1 ⊕ v2 ⊕ v3 = 0), (v1 ⊕ v2 ⊕ v3 = 1)
}
.

We define 3Xor-Satn : {0, 1}N → {0, 1} over N := |C|n3 = 2n3 input bits as follows. An
input x ∈ {0, 1}N is interpreted as (the indicator vector of) a set of 3Xor constraints over n
boolean variables v1, . . . , vn (there are N possible constraints). We define 3Xor-Satn(x) := 1
iff the set x is unsatisfiable, that is, no boolean assignment to the vi exists that satisfies all
constraints in x. This is indeed a monotone function: if we flip any bit of x from 0 to 1, this
means we are adding a new constraint to the instance, thereby making it even harder to
satisfy.

Prior work. Our C-Sat encoding generalizes several previously studied monotone functions.
(NL) Karchmer and Wigderson [37] (also [29, 49, 56] and textbooks [39, 36]) studied the NL-

complete st-connectivity problem. This is equivalent to a C-Sat problem with C consisting
of a binary implication (v1 → v2) and unit clauses (v1) and (¬v1).

(P) Raz and McKenzie [52] (also [14, 15, 25, 18, 56, 48]) studied a certain P-complete
generation problem. In hindsight, this is simply Horn-Sat, that is, C consists of Horn
clauses: clauses with at most one positive literal, such as (¬v1 ∨ ¬v2 ∨ v3).

(NP) Göös and Pitassi [25] and Oliveira [45, §3] (also [47, 48]) studied the NP-complete
(dual of) Cnf-Sat problem, where C consists of bounded-width clauses.

These prior works do not exhaust all interesting classes of C, as is predicted by various
classification theorems for CSPs [59, 20, 11, 63]. In this work, we focus on linear constraints
over finite fields Fp (for example, 3Xor-Sat corresponding to F2) and over the reals R.

1.2 Separations
First, we show that 3Xor-Satn cannot be computed efficiently with monotone circuits.

I Theorem 1. 3Xor-Satn requires monotone circuits of size 2nΩ(1) .

M. Göös, P. Kamath, R. Robere, and D. Sokolov 38:3

This theorem stands in contrast to the fact that there exist fast parallel (non-monotone)
algorithms for linear algebra [44]. In particular, 3Xor-Sat is in NC2. Consequently, our
result improves qualitatively on the monotone vs. non-monotone separation of Tardos [61]
who exhibited a monotone function in P (computed by solving a semidefinite program)
with exponential monotone circuit complexity. For further comparison, another famous
candidate problem to witness a monotone vs. non-monotone separation is the perfect matching
function: it is in RNC2 [40] while it is widely conjectured to have exponential monotone
circuit complexity (a quasipolynomial lower bound was proved by Razborov [53]).

Span programs. The computational easiness of 3Xor-Satn can be stated differently: it
can be computed by a linear-size monotone F2-span program. Span programs are a model of
computation introduced by Karchmer and Wigderson [38] (see also [36, §8] for exposition)
with an extremely simple definition. An F-span program, where F is a field, is a matrix
M ∈ Fm×m′ each row of which is labeled by a literal, xi or ¬xi. We say that the program
accepts an input x ∈ {0, 1}n iff the rows of M whose labels are consistent with x (literals
evaluating to true on x) span the all-1 row vector. The size of a span program is its number
of rows m. A span program is monotone if all its literals are positive; in this case the program
computes a monotone function.

A corollary of Theorem 1 is that monotone F2-span programs cannot be simulated by
monotone circuits without exponential blow-up in size. This improves on a separation
of Babai, Gál, and Wigderson [3] who showed that monotone circuit complexity can be
quasipolynomially larger than monotone F2-span program size.

Furthermore, Theorem 1 holds more generally over any field F: an appropriately defined
function 3Lin(F)-Satn (ternary F-linear constraints; see Section 3) is easy for monotone
F-span programs, but exponentially hard for monotone circuits. No such separation, even
superpolynomial, was previously known for fields of characteristic other than 2.

This brings us to our second theorem.

I Theorem 2. 3Lin(R)-Satn requires monotone Fp-span programs of size 2nΩ(1) for any
prime p.

In other words: monotone R-span programs can be exponentially more powerful than
monotone span programs over finite fields. This separation completes the picture for the
relative powers of monotone span programs over distinct fields, since the remaining cases
were exponentially separated by Pitassi and Robere [48].

Finally, our two results above yield a bonus result in proof complexity as a byproduct:
the Nullstellensatz proof system (over any field) can be exponentially more powerful than
the Cutting Planes proof system (see Subsection 4.2).

Techniques. The new lower bounds are applications of the lifting theorems for monotone
circuits [23] and monotone span programs [48]. We show that, generically, if some unsatisfiable
formula composed of C constraints is hard to refute for the Resolution (resp. Nullstellensatz)
proof system, then the C-Sat problem is hard for monotone circuits (resp. span programs).
Hence we can invoke (small modifications of) known Resolution and Nullstellensatz lower
bounds [8, 10, 1]. The key conceptual innovation here is a reduction from unsatisfiable
C-CSPs (or their lifted versions) to the monotone Karchmer–Wigderson game for C-Sat.
This reduction is extremely slick, which we attribute to having finally found the “right”
definition of C-Sat.

ITCS 2019

38:4 Adventures in Monotone Complexity and TFNP

1.3 Characterizations
There are two famous “top-down” characterizations of circuit models (both monotone and non-
monotone variants) using the language of communication complexity; these characterizations
are naturally related to communication analogues of subclasses of TFNP.
(FP) Karchmer and Wigderson [37] showed that the logarithm of the (monotone) formula

complexity of a (monotone) function f : {0, 1}n → {0, 1} is equal, up to constant factors,
to the communication complexity of the (monotone) Karchmer–Wigderson game:

Search problem KW(f) = input: a pair (x, y) ∈ f−1(1)× f−1(0)
[resp. KW+(f)] output: an i ∈ [n] with xi 6= yi [resp. xi > yi]

We summarize this by saying that the communication analogue of FP captures formulas.
Here FP ⊆ TFNP is the classical (Turing machine) class of total NP search problems
efficiently solved by deterministic algorithms [42].

(PLS) Razborov [55] (see also [50, 60]) showed that the logarithm of the (monotone) circuit
complexity of a function f : {0, 1}n → {0, 1} is equal, up to constant factors, to the
least cost of a PLS-protocol solving the KW(f) (or KW+(f)) search problem. Here a
PLS-protocol (Definition 14 in Appendix A) is a natural communication analogue of
PLS ⊆ TFNP [35]. We summarize this by saying that the communication analogue of
PLS captures circuits.

We contribute a third characterization of this type: the communication analogue of PPA
captures F2-span programs. The class PPA [46] is a well-known subclass of TFNP embodying
the combinatorial principle “every graph with an odd degree vertex has another”. Informally,
a search problem is in PPA if for every n-bit input x we may describe implicitly an undirected
graph Gx = (V,E) (typically of size exponential in n; the edge relation is computed by a
polynomial-size circuit) such that G has degree at most 2, there is a distinguished degree-1
vertex v∗ ∈ V , and every other degree-1 vertex v ∈ V is associated with a feasible solution
to the instance x (that is, the solution can be efficiently computed from v).

Gx :

v∗

feasible
solutions

Communication PPA. The communication analogue of PPA is defined canonically by letting
the edge relation be computed by a (deterministic) communication protocol. Specifically,
first fix a two-party search problem S ⊆ X × Y × O, that is, Alice gets x ∈ X , Bob gets
y ∈ Y, and their goal is to find a feasible solution in S(x, y) := {o ∈ O : (x, y, o) ∈ S}. A
PPA-protocol Π solving S consists of a vertex set V , a distinguished vertex v∗ ∈ V , and for
each vertex v ∈ V there is an associated solution ov ∈ O and a protocol Πv (taking inputs
from X × Y). Given an input (x, y), the protocols Πv implicitly describe a graph G = Gx,y

M. Göös, P. Kamath, R. Robere, and D. Sokolov 38:5

on the vertex set V as follows. The output of protocol Πv on input (x, y) is interpreted
as a subset Πv(x, y) ⊆ V of size at most 2. We define {u, v} ∈ E(G) iff u ∈ Πv(x, y) and
v ∈ Πu(x, y). The correctness requirements are:
(C1) if deg(v∗) 6= 1, then ov∗ ∈ S(x, y).
(C2) if deg(v) 6= 2 for v 6= v∗, then ov ∈ S(x, y).
The cost of Π is defined as log |V |+ maxv |Πv| where |Πv| is the communication cost of Πv.
Finally, define PPAcc(S) as the least cost of a PPA-protocol that solves S.

For a (monotone) function f , define SPF(f) (resp. mSPF(f)) as the least size of a
(monotone) F-span program computing f . Our characterization is in terms of S := KW(f).

I Theorem 3. For any boolean function f , we have log SPF2(f) = Θ(PPAcc(KW(f))).
Furthermore, if f is monotone, we have log mSPF2(f) = Θ(PPAcc(KW+(f))).

Query PPA. Our second characterization concerns the Nullstellensatz proof system; see
Section 3 for the standard definition. Span programs and Nullstellensatz are known to be
connected via interpolation [51] and lifting [48]. Given our first characterization (Theorem 3),
it is no surprise that a companion result should hold in query complexity: the query complexity
analogue of PPA captures the degree of Nullstellensatz refutations over F2.

The query analogue of PPA is defined in the same way as the communication analogue,
except we replace protocols by (deterministic) decision trees. In fact, query PPA was already
studied by Beame et al. [6] who separated query analogues of different subclasses of TFNP.
To define it, first fix a search problem S ⊆ {0, 1}n ×O, that is, on input x ∈ {0, 1}n the goal
is to find a feasible solution in S(x) := {o ∈ O : (x, o) ∈ S}. A PPA–decision tree T solving
S consists of a vertex set V , a distinguished vertex v∗ ∈ V , and for each vertex v ∈ V there
is an associated solution ov ∈ O and a decision tree Tv (querying bits of an n-bit input).
Given an input x ∈ {0, 1}n, the decision trees Tv implicitly describe a graph G = Gx on the
vertex set V as follows. The output of Tv on input x is interpreted as a subset Tv(x) ⊆ V of
size at most 2. We then define {u, v} ∈ E(G) iff u ∈ Tv(x) and v ∈ Tu(x). The correctness
requirements are the same as before, 1 and 2. The cost of T is defined as the maximum over
all v ∈ V and all inputs x of the number of queries made by Tv on input x. Finally, define
PPAdt(S) as the least cost of a PPA–decision tree that solves S.

With any unsatisfiable n-variate boolean CSP F one can associate a canonical search
problem:

CSP search problem S(F) = input: an n-variate truth assignment x ∈ {0, 1}n

output: constraint C of F falsified by x (i.e., C(x) = 0)

I Theorem 4. The F2-Nullstellensatz degree of an k-CNF formula F equals Θ(PPAdt(S(F))).

The easy direction of this characterization is that Nullstellensatz degree lower bounds
PPAdt. This fact was already observed and exploited by Beame et al. [6] to prove lower
bounds for PPAdt. Our contribution is to show the other (less trivial) direction.

Let us finally mention a related result in Turing machine complexity due to Belovs et
al. [9]: a circuit-encoded version of Nullstellensatz is PPA-complete. Their proof is highly
nontrivial whereas our characterizations admit relatively short proofs, owing partly to us
working with simple nonuniform models of computation.

ITCS 2019

38:6 Adventures in Monotone Complexity and TFNP

FP

EoML

SoML PPAD

PPADS

PLS PPP PPA

TFNP

= formulas

circuits = = F2-span programs

comparator circuits ≤

Figure 1 The landscape of communication search problem classes (uncluttered by the usual ‘cc’
superscripts). A solid arrow C1 → C2 denotes C1 ⊆ C2, and a dashed arrow C1 99K C2 denotes
C1 * C2 (in fact, an exponential separation). Some classes can characterize other models of
computation (printed in blue). See Appendix A for definitions.

2 Survey: Communication TFNP

Given the results in Section 1, it is natural to examine other communication analogues of
subclasses of TFNP. The goal in this section is to explain the current state of knowledge
as summarized in Figure 1. The formal definitions of the communication classes appear in
Appendix A.

TFNP. As is customary in structural communication complexity [2, 30, 27] we formally
define TFNPcc (resp. PLScc, PPAcc, etc.) as the class of all total two-party n-bit search
problems that admit a nondeterministic protocol5 (resp. PLS-protocol, PPA-protocol, etc.)
of communication cost polylog(n). For example, Karchmer–Wigderson games KW(f) and
KW+(f), for an n-bit boolean function f , have efficient nondeterministic protocols: guess a
log n-bit coordinate i ∈ [n] and check that xi 6= yi or xi > yi. Hence these problems are in
TFNPcc. In fact, a converse holds: any total two-party search problem with nondeterministic
complexity c can be reduced to KW+(f) for some 2c-bit partial monotone function f , see [21,
Lemma 2.3]. In summary, the study of total NP search problems in communication complexity
is equivalent to the study of monotone Karchmer–Wigderson games for partial monotone
functions.

5 That is, for any input (x, y), every accepting computation of the nondeterministic protocol outputs a
feasible solution o ∈ O for (x, y). An alternative, more restrictive definition of TFNPcc (which is closer
to how the classical class is defined) is to require that there is an efficient deterministic protocol that on
input (xo, y) decides whether o ∈ O is feasible for (x, y). In this paper we stick with the stronger (and
simpler) definition for convenience. All results hold equally well under the more restrictive definition.

M. Göös, P. Kamath, R. Robere, and D. Sokolov 38:7

Sometimes a partial function f can be canonically extended into a total one f ′ without
increasing the complexity of KW(f) (or KW+(f)). This is possible whenever KW(f) lies in
a communication class that captures some associated model of computation. For example,
if KW(f) is solved by a deterministic protocol (resp. PLS-protocol, PPA-protocol) then
the Karchmer–Wigderson connection can build us a corresponding formula (resp. circuit,
F2-span program) that computes some total extension f ′ of f . Consequently, separating two
communication classes that capture two monotone models is equivalent to separating the
monotone models themselves.

FP. Raz and McKenzie [52] showed an exponential separation between monotone formula
size and monotone circuit size. This can be rephrased as PLScc * FPcc. Their technique is
much more general: they develop a query-to-communication lifting theorem for deterministic
protocols (see also [26] for exposition). By plugging in known query complexity lower bounds
against the class EoML (combinatorial subclass of CLS [17] introduced by [32, 19]), one can
obtain a stronger separation EoMLcc * FPcc.

A related question is whether randomization helps in solving TFNPcc problems. Lower
bounds against randomized protocols have applications in proof complexity [34, 7, 33, 25]
and algorithmic game theory [58, 5, 28, 57, 22, 4]. In particular, some of these works (for
finding Nash equilibria) have introduced a communication analogue of the PPAD-complete
End-of-Line problem, which we will continue to study in Subsection 4.2.

PLS. Razborov’s [54] famous monotone circuit lower bound for the clique/coloring problem
(which is in PPPcc) can be interpreted as an exponential separation PPPcc * PLScc. We show
a stronger separation PPADcc * PLScc using the End-of-Line problem in Subsection 4.2.
Note that this is even slightly stronger than Theorem 1, which only implies PPAcc * PLScc.

PPApD. In light of our characterization of PPAcc, we may interpret the inability of monotone
F2-span program to efficiently simulate monotone circuits [48] as a separation PLScc * PPAcc.
We show an incomparable separation PPADScc * PPAcc in Subsection 4.3.

In the other direction, prior work implies PPAcc * PPADcc as follows. Pitassi and
Robere [48] exhibit a monotone f (in hindsight, one can take f := 3Xor-Satn) computable
with a small monotone F2-span program (hence KW+(f) ∈ PPAcc) and such that KW+(f)
has an exponentially large R-partition number (see Section 3 for a definition); however, we
observe that all problems in PPADcc have a small R-partition number (see Remark 9).

PPP. There are no lower bounds against PPPcc for an explicit problem in TFNPcc. However,
we can show non-constructively the existence of KW(f) ∈ TFNPcc such that KW(f) /∈ PPPcc,
which implies PPPcc 6= TFNPcc. Indeed, we argue in Remark 8 that every S reduces to
KW+(3Cnf-SatN) over N := exp(O(PPPcc(S))) variables. Applying this to S := KW(f)
for an n-bit f , we conclude that f is a (non-monotone) projection of 3Cnf-SatN for
N := exp(O(PPPcc(KW(f)))). In particular, if KW(f) ∈ PPPcc (i.e., PPPcc(KW(f)) ≤
polylog(n)), then f is in non-uniform quasipoly-size NP. Therefore KW(f) /∈ PPPcc for a
random f .

EoML, SoML, and comparator circuits. One prominent circuit model that currently lacks
a characterization via a TFNPcc subclass is comparator circuits [41, 16]. These circuits are
composed only of comparator gates (taking two input bits and outputting them in sorted
order) and input literals (positive literals in the monotone case).

ITCS 2019

38:8 Adventures in Monotone Complexity and TFNP

We can show an upper bound better than PLScc for comparator circuits. Indeed, we
introduce a new class SoML generalizing EoML [32, 19] as follows. Recall that EoML is the
class of problems reducible to End-of-Metered-Line: we are given a directed graph of
in/out-degree at most 1 with a distinguished source vertex v∗ (in-degree 0), and moreover,
each vertex is labeled with an integer “meter” that is strictly decreasing along directed
paths; a solution is any sink or source distinct from v∗. The complete problem defining
SoML is Sink-of-Metered-Line, which is the same as End-of-Metered-Line except
only sinks count as solutions. It is not hard (left as an exercise) to adapt the characterization
of circuits via PLScc [55, 50, 60] to show that KW(f) is in SoMLcc if f is computed by a
small comparator circuit. However, we suspect that the converse (SoML-protocol for KW(f)
implies a comparator circuit) is false.

2.1 Open problems
In query complexity, the relative complexities of TFNP subclasses are almost completely
understood [6, 12, 43]. In communication complexity, by contrast, there are huge gaps in our
understanding as can be gleaned from Figure 1. For example:
(1) There are no lower bounds against classes PPADScc and PPPcc for an explicit problem

in TFNPcc. For starters, show PLScc * PPADScc or PPAcc * PPADScc.
(2) Find computational models captured by EoMLcc, SoMLcc, PPADcc, PPADScc, PPPcc.
(3) Query-to-communication lifting theorems are known for FP [52], PLS [23], PPA [48].

Prove more. (This is one way to attack Question 1 if proved for PPADS.)
(4) Prove more separations. For example, can our result PPADScc * PPAcc be strengthened

to SoMLcc * PPAcc? This is closely related to whether monotone comparator circuits can
be more powerful than monotone F2-span programs (no separation is currently known).

3 Preliminaries

C-Sat. Fix an alphabet Σ (potentially infinite, e.g., Σ = R). Let C be a finite set of
k-ary predicates over Σ, that is, each C ∈ C is a function C : Σk → {0, 1}. We define a
monotone function C-Satn : {0, 1}N → {0, 1} over N = |C|nk input bits as follows. An
input x ∈ {0, 1}N is interpreted as a C-CSP instance, that is, x is (the indicator vector
of) a set of C-constraints, each applied to a k-tuple of variables from v1, . . . , vn. We define
C-Satn(x) := 1 iff the C-CSP x is unsatisfiable: no assignment v ∈ Σn exists such that
C(v) = 1 for all C ∈ x.

For a field F, we define kLin(F) as the set of all F-linear equations of the form∑
i∈[k] aivi = a0, where ai ∈ {0,±1}.

In particular, we recover 3Xor-Satn defined in Section 1 essentially as 3Lin(F2)-Satn. We
could have allowed the ai to range over F when F is finite, but we stick with the above
convention as it ensures that the set kLin(R) is always finite.

Boolean alphabets. We assume henceforth that all alphabets Σ contain distinguished
elements 0 and 1. We define Cbool to be the constraint set obtained from C by restricting each
C ∈ C to the boolean domain {0, 1}k ⊆ Σk. Moreover, if F is a C-CSP, we write Fbool for the
Cbool-CSP obtained by restricting the constraints of F to boolean domains. Consequently,
any S(Fbool) associated with a C-CSP F is a boolean search problem.

M. Göös, P. Kamath, R. Robere, and D. Sokolov 38:9

Algebraic partitions. We say that a subset A ⊆ X × Y is monochromatic for a two-party
search problem S ⊆ X ×Y ×O if there is some o ∈ O such that o ∈ S(x, y) for all (x, y) ∈ A.
Moreover, if M ∈ FX×Y is a matrix, we say M is monochromatic if the support of M is
monochromatic. For any field F, an F-partition of a search problem S is a setM of rank-1
matrices M ∈ FX×Y such that

∑
M∈MM = 1 and each M ∈ M is monochromatic for

S. The size of the partition is |M|. The F-partition number χF(S) is the least size of an
F-partition of S. In the following characterization, recall that we use SPF and mSPF to
denote (monotone) span program complexity.

I Theorem 5 ([21]). For any boolean function f and any field F, SPF(f) = χF(KW(f)).
Furthermore, if f is monotone then mSPF(f) = χF(KW+(f)).

Nullstellensatz. Let P := {p1 = 0, p2 = 0, . . . , pm = 0} be an unsatisfiable system of
polynomial equations in F[z1, z2, . . . , zn] for a field F. An F-Nullstellensatz refutation of P is
a sequence of polynomials q1, q2, . . . , qm ∈ F[z1, z2, . . . , zn] such that

∑m
i=1 qipi = 1 where the

equality is syntactic. The degree of the refutation is maxi deg(qipi). The F-Nullstellensatz
degree of P , denoted NSF(P), is the least degree of an F-Nullstellensatz refutation of P .

Moreover, if F is a k-CNF formula (or a boolean k-CSP), we often tacitly think of it as a
polynomial system PF by using the standard encoding (e.g., (z1 ∨ ¬z2) (1− z1)z2 = 0)
and also including the boolean axioms z2

i − zi = 0 in PF if we are working over F 6= F2.

Lifting theorems. Let S ⊆ {0, 1}n×O be a boolean search problem and g : X ×Y → {0, 1}
a two-party function, usually called a gadget. The composed search problem S ◦ gn ⊆
Xn × Yn ×O is defined as follows: Alice holds x ∈ Xn, Bob holds y ∈ Yn, and their goal is
to find an o ∈ S(z) where z := gn(x, y) = (g(x1, y1), . . . , g(xn, yn)). We focus on the usual
index gadget Indm : [m]× {0, 1}m → {0, 1} given by Indm(x, y) := yx.

The main results of [23, 48] can be summarized as follows (we define more terms below).

I Theorem 6. Let k ≥ 1 be a constant and let m = m(n) := nC for a large enough constant
C ≥ 1. Then for any an unsatisfiable boolean n-variate k-CSP F ,

[23]: PLScc(S(F) ◦ Indn
m) = PLSdt(S(F)) ·Θ(log n),

[48]: PPAcc(S(F) ◦ Indn
m) = PPAdt(S(F)) ·Θ(log n),

[48]: logχF(S(F) ◦ Indn
m) = NSF(F) ·Θ(log n), ∀F ∈ {Fp,R}.

For aesthetic reasons, we have used PLSdt(S(F)) here to denote the Resolution width
of F (introduced in [10]), which is how the result of [23] was originally stated. (But one
can check that the query analogue of PLS, obtained by replacing protocols with decision
trees in Definition 14, is indeed equivalent to Resolution width.) We also could not resist
incorporating our new characterizations of PPAcc and PPAdt to interpret the result of [48]
specialized to F2.

4 Proofs of Separations

In this section, we show lower bounds for C-Sat against monotone circuits (Theorem 1)
and monotone span programs (Theorem 2), plus some bonus results (PPADcc * PLScc,
PPADScc * PPAcc, Nullstellensatz degree vs. Cutting Planes).

ITCS 2019

38:10 Adventures in Monotone Complexity and TFNP

4.1 Reduction
The key to our lower bounds is a new reduction. We show that a lifted version of S(Fbool),
where F is an unsatisfiable C-CSP, reduces to the monotone Karchmer–Wigderson game
for C-Sat. Note that we require F to be unsatisfiable over its original alphabet Σ, but the
reduction is from the booleanized (and hence easier-to-refute) version of F .
I Lemma 7. Let F be an unsatisfiable C-CSP. Then S(Fbool) ◦ Indn

m reduces to
KW+(C-Satnm).
Proof. Suppose the C-CSP F consists of k-ary constraints C1, . . . , Ct applied to variables
z1, . . . , zn. We reduce S(Fbool) ◦ Indn

m ⊆ [m]n × ({0, 1}m)n × [t] to the problem KW+(f) ⊆
f−1(1)× f−1(0)× [N] where f := C-Satmn over N := |C|(mn)k input bits. The two parties
compute locally as follows.
Alice: Given (x1, . . . , xn) ∈ [m]n, Alice constructs a C-CSP over variables {vi,j : (i, j) ∈

[n]× [m]} that is obtained from F by renaming its variables z1, . . . , zn to v1,x1 , . . . , vn,xn

(in this order). Since F was unsatisfiable, so is Alice’s variable-renamed version of it.
Thus, when interpreted as an indicator vector of constraints, Alice has constructed a
1-input of C-Satmn.

Bob: Given y ∈ ({0, 1}m)n, Bob constructs a C-CSP over variables {vi,j : (i, j) ∈ [n]× [m]}
as follows. We view y naturally as a boolean assignment to the variables vi,j . Bob
includes in his C-CSP instance all possible C-constraints C applied to the vi,j such that
C is satisfied under the assignment y (i.e., C(y) = 1). This is clearly a satisfiable C-CSP
instance, as the assignment y satisfies all Bob’s constraints. Thus, when interpreted as
an indicator vector of constraints, Bob has constructed a 0-input of C-Satmn.

It remains to argue that any solution to KW+(C-Satmn) gives rise to a solution to
S(Fbool) ◦ Indn

m. Indeed, a solution to KW+(C-Satmn) corresponds to a C-constraint C
that is present in Alice’s C-CSP but not in Bob’s. By Bob’s construction, such a C must
be violated by the assignment y (i.e., C(y) = 0). Since all Alice’s constraints involve only
variables v1,x1 , . . . , vn,xn , the constraint C must in fact be violated by the partial assignment
to the said variables, which is z = Indn

m(x, y). Thus the constraint of F from which C was
obtained via renaming is a solution to S(Fbool) ◦ Indn

m. J

I Remark 8 (Generic reduction to Cnf-Sat). We claim that any problem S ⊆ X × Y ×O
that lies in one of the known subclasses of TFNPcc (as listed in Section 2) reduces efficiently
to KW+(kCnf-Satn) for constant k (one can even take k = 3 by standard reductions). Let
us sketch the argument for S ∈ PPPcc; after all, better reductions are known for PLScc and
PPAcc, namely to Horn-Sat and 3Xor-Sat.

Proof Sketch. Let Π := (V, v∗, ov,Πv) be a PPP-protocol solving S of cost c := PPPcc(S).
We may assume wlog that all the Πv have constant communication cost k ≤ O(1) by
embedding the protocol trees of the Πv as part of the implicitly described bipartite graph. In
particular, we view each Πv as a function X × Y → {0, 1}k where the output is interpreted
according to some fixed map {0, 1}k → V . Consider a set of n := k|V | (|V | ≤ 2c) boolean
variables {zv,i : (v, i) ∈ V × [k]} with the intuitive interpretation that zv,i is the i-th output
bit of Πv. We may encode the correctness conditions for Π as an unsatisfiable 2k-CNF
formula F over the zv,i that has, for each {v, u} ∈

(
V
2
)
, clauses requiring that the outputs of

Πv and Πu (as encoded by the zv,i) should point to distinct vertices. Finally, we note that
computing the i-th output bit (Πv)i : X ×Y → {0, 1} reduces to a large enough constant-size
index gadget IndO(1) (which embeds any two-party function of communication complexity
k ≤ O(1)). Therefore S naturally reduces to S(F) ◦ Indn

O(1), which by Lemma 7 reduces to
KW+(2kCnf-SatO(n)), as desired. J

M. Göös, P. Kamath, R. Robere, and D. Sokolov 38:11

4.2 Monotone circuit lower bounds
Xor-Sat. The easiest result to prove is Theorem 1: an exponential monotone circuit lower
bound for 3Xor-Satn. By the characterization of [55] it suffices to show

PLScc(KW+(3Xor-Satn)) ≥ nΩ(1). (1)

Urquhart [62] exhibited unsatisfiable n-variate 3Xor-CSPs F (aka Tseitin formulas) requiring
linear Resolution width, that is, PLSdt(S(F)) ≥ Ω(n) in our notation. Hence Theorem 6
implies that PLScc(S(F) ◦ Indn

m) ≥ Ω(n) for some m = nO(1). By the reduction in Lemma 7,
we get that PLScc(KW+(3Xor-Satnm)) ≥ Ω(n). (Note that 3Xor has a boolean alphabet,
so F = Fbool.) This yields the claim (1) by reparameterizing the number of variables.

Lin(F)-Sat. More generally, we can prove a similar lower bound over any field F ∈ {Fp,R}:

PLScc(KW+(3Lin(F)-Satn)) ≥ nΩ(1). (2)

Fix such an F henceforth. This time we start with a kLin(F)-CSP introduced in [13] for
F = Fp (aka mod-p Tseitin formulas), but the definition generalizes to any field. The CSP
is constructed based on a given directed graph G = (V,E) that is regular : in-deg(v) =
out-deg(v) = k/2 for all v ∈ V . Fix also a distinguished vertex v∗ ∈ V . Then F = FG,F is
defined as the following kLin(F)-CSP over variables {ze : e ∈ E}:

∀v ∈ V :
∑

(v,u)∈E

z(v,u) −
∑

(u,v)∈E

z(u,v) = 1v∗(v), (FG,F)

where 1v∗(v∗) = 1 and 1v∗(v) = 0 for v 6= v∗. This system is unsatisfiable because the sum
over v ∈ V of the RHS equals 1 whereas the sum of the LHS equals 0 (each variable appears
once with a positive sign, once with a negative sign).

We claim that the booleanized k-CSP Fbool (more precisely, its natural k-CNF encoding)
has linear Resolution width, that is, PLSdt(S(Fbool)) ≥ Ω(n) in our notation. Indeed, the
constraints of Fbool are k/2-robust in the sense that if a partial assignment ρ ∈ {0, 1, ∗}k

fixes the value of a constraint of Fbool, then ρ must set more than k/2 variables. Alekhnovich
et al. [1, Theorem 3.1] show that if k is a large enough constant, there exist regular expander
graphs G such that Fbool (or any k-CSP with Ω(k)-robust constraints) has Resolution width
Ω(n), as desired.

Combining the above with the lifting theorem in Theorem 6 and the reduction in Lemma 7
yields PLScc(kLin(F)-Satn) ≥ nΩ(1) for large enough k. Finally, we can reduce the arity from
k to 3 by a standard trick. For example, given the linear constraint a1v1+a2v2+a3v3+a4v4 =
a0 we can introduce a new auxiliary variable u and two equations a1v1 + a2v2 + u = 0 and
−u+a3v3+a4v4 = a0. In general, we replace each equation on k > 3 variables with a collection
of k−2 equations by introducing k−3 auxiliary variables to create an equisatisfiable instance.
This shows that kLin(F)-Satn reduces to (i.e., is a monotone projection of) 3Lin(F)-Satkn,
which concludes the proof of (2).

PPADcc * PLScc via End-of-Line. Consider the R-linear system F = FG,R defined above.
We observe that S(Fbool) is in fact equivalent to (a query version of) the PPAD-complete
End-of-Line problem. In the End-of-Line problem, we are given a directed graph of
in/out-degree at most 1 and a distinguished source vertex v∗ (in-degree 0); the goal is to
find a sink or a source distinct from v∗ (cf. Definition 15). On the other hand, in S(Fbool)

ITCS 2019

38:12 Adventures in Monotone Complexity and TFNP

we are given a boolean assignment z ∈ {0, 1}E , which can be interpreted as (the indicator
vector of) a subset of edges defining a (spanning) subgraph Gz of G; the goal is to find a
vertex v ∈ V such that either
(1) v = v∗ and out-deg(v) 6= in-deg(v) + 1 in Gz; or
(2) v 6= v∗ and out-deg(v) 6= in-deg(v) in Gz.
The only essential difference between S(Fbool) and End-of-Line is that the graph Gz can
have in/out-degree a large constant k/2 rather than 1. But there is a standard reduction
between the two problems [46]: we may locally interpret a vertex v ∈ V (Gz) with out-deg(v) =
in-deg(v) = ` as ` distinct vertices of in/out-degree 1. This reduction also shows that the
lifted problem S(Fbool) ◦ Indm for m = nO(1) admits a O(log n)-cost PPAD-protocol, and
is thus in PPADcc. By contrast, we proved above that this problem is not in PLScc (for
appropriate G).

I Remark 9 (Algebraic partitions for PPADcc). We claim that every problem S ∈ PPADcc

admits a small Z-partition, and hence a small F-partition over any field F. More precisely, we
argue that logχZ(S) ≤ O(PPADcc(S)). Indeed, let Π := (V, v∗, ov,Πv) be an optimal PPAD-
protocol for S. We define a Z-partitionM by describing it as a nondeterministic protocol for
S whose accepting computations output weights in Z (interpreted as values of the entries of
an M ∈M): On input (x, y), guess a vertex v ∈ V ; if v is a sink in Gx,y, accept with weight
1; if v is a source distinct from v∗, accept with weight −1; otherwise reject (i.e., weight 0).
This protocol accepts with overall weight #(sinks)−#(non-distinguished sources) = 1 on
every input (x, y), as desired.

A similar argument yields an analogous query complexity bound
NSZ(F) ≤ O(PPADdt(S(F))) where PPADdt(S) is the least cost of a PPAD–decision tree
(Definition 15) solving S.

Nullstellensatz vs. Cutting Planes. By the above remark, Fbool for F = FG,F admits a low-
degree – in fact, constant-degree – Nullstellensatz refutation over any field F. Nullstellensatz
degree behaves well with respect to compositions: if we compose Fbool with a gadget Indn

m,
m = nO(1) (see, e.g., [23, §8] how this can be done), the Nullstellensatz degree can only
increase by the query complexity of the gadget, which is O(log n) for Indn

m. This gives us
an nO(1)-variate boolean k-CSP F ′ := Fbool ◦ Indn

m (where k is constant [23, §8]) such that
NSF(F ′) ≤ O(log n). On the other hand, we can invoke the strong version of the main result
of [23]: if F has Resolution width w, then F ◦ Indn

m requires Cutting Planes refutations of
length nΩ(w). In summary, F ′ witnesses that F-Nullstellensatz can be exponentially more
powerful than log of Cutting Planes length.

4.3 Monotone span program lower bounds
Let us prove Theorem 2: 3Lin(R)-Satn requires exponential-size monotone Fp-span programs,
that is,

χFp
(KW+(3Lin(R)-Satn)) ≥ nΩ(1). (3)

Using Theorem 6 and Lemma 7 similarly as in Subsection 4.2, it suffices to show that
NSFp

(Fbool) ≥ nΩ(1), for some unsatisfiable kLin(R)-CSP F where k is a constant. To this
end, we consider an R-linear system F = FG,U,R that generalizes FG,R defined above:

∀v ∈ V :
∑

(v,u)∈E

z(v,u) −
∑

(u,v)∈E

z(u,v) = 1U (v), (FG,U,R)

M. Göös, P. Kamath, R. Robere, and D. Sokolov 38:13

where 1U : V → {0, 1} is the indicator function for U ⊆ V . This is unsatisfiable as long
as U 6= ∅. Combinatorially, the boolean search problem S(Fbool) can be interpreted as an
End-of-`-Lines problem for ` := |U |: given a graph with distinguished source vertices U , find
a sink or a source not in U . It is important to have many distinguished sources, |U | ≥ nΩ(n),
as otherwise S(Fbool) is in PPADdt [31] and hence Fbool has too low an Fp-Nullstellensatz
degree (by Remark 9).

Nullstellensatz lower bound. To show NSFp
(Fbool) ≥ nΩ(1) for an appropriate F = FG,U,R,

we adapt a result of Beame and Riis [8]. They proved a Nullstellensatz lower bound for a
related bijective pigeonhole principle Pn whose underlying graph has unbounded degree; we
obtain a bounded-degree version of their result by a reduction.

I Lemma 10 ([8, §8]). Fix a prime p. The following system of polynomial equations over
variables {xij : (i, j) ∈ D×R}, where |D| = n and |R| = n−nΩ(1), requires Fp-Nullstellensatz
degree nΩ(1):

(i) ∀i ∈ D :
∑

j∈R
xij = 1 “each pigeon occupies a hole”,

(ii) ∀j ∈ R :
∑

i∈D
xij = 1 “each hole houses a pigeon”,

(iii) ∀i ∈ D, {j, j′} ∈
(

R
2

)
: xijxij′ = 0 “no pigeon occupies two holes”,

(iv) ∀j ∈ R, {i, i′} ∈
(

D
2

)
: xijxi′j = 0 “no hole houses two pigeons”.

(Pn)

We construct a natural bounded-degree version G of the complete bipartite graph D ×R
and show that each constraint of Fbool for F = FG,U,R is a low-degree Fp-Nullstellensatz
consequence of Pn. Hence, if Fbool admits a low-degree Fp-Nullstellensatz proof, so does Pn

(see, e.g., [13, Lemma 1] for composing proofs), which contradicts Lemma 10.
The directed graph G = (V,E) is obtained from the complete bipartite graph D ×R as

illustrated in Figure 2 (for |D| = 4 and |R| = 3). Specifically, each vertex of degree d in
D ×R is replaced with a binary tree of height log d. The result is a layered graph with the
first and last layers identified with D and R, respectively. We also add a “feedback” edge
from each vertex in R to a vertex in D according to some arbitrary injection R→ D (dashed
edges in Figure 2). The vertices in D not incident to feedback edges will form the set U
(singleton in Figure 2).

This defines a boolean 3-CSP Fbool for F = FG,U,R over variables {ze : e ∈ E}. In order
to reduce Pn to Fbool, we define an affine map between the variables xij of Pn and ze of
Fbool. Namely, for a feedback edge e we set ze := 1, and for every other e = (v, u) we set

z(v,u) :=
∑

i∈Dv j∈Ru

xij ,

where Dv := {i ∈ D : v is reachable from i without using feedback edges},
Ru := {j ∈ R : j is reachable from u without using feedback edges}.

Note in particular that this map naturally identifies the edge-variables ze in the middle of
G (yellow edges) with the variables xij of Pn. The other variables ze are simply affinely
dependent on the middle edge-layer. We then show that from the equations of Pn we can
derive each constraint of Fbool. Recall that the constraint for v ∈ V requires that the out-flow∑

(v,u)∈E z(v,u) equals the in-flow
∑

(u,v)∈E z(u,v) (plus 1 iff v ∈ U).
v /∈ D ∪ R: Suppose v is on the left side of G (right side is handled similarly) so that

z(v,u) =
∑

j∈Ru
xij for some fixed i ∈ D. The out-flow is∑

(v,u)∈E z(v,u) =
∑

(v,u)∈E

∑
j∈Ru

xij =
∑

j∈Rv
xij . (4)

ITCS 2019

38:14 Adventures in Monotone Complexity and TFNP

G :

U

xijD R

Figure 2 Graph G = (V,E), a bounded-degree version of the biclique D ×R.

On the other hand, v has a unique incoming edge (u∗, v) so the in-flow is
∑

(u,v)∈E z(u,v) =
z(u∗,v) =

∑
j∈Rv

xij , which equals (4).
v ∈ D: (Case v ∈ R is handled similarly). The in-flow equals 1 (either v ∈ U so that we have

the +1 term from 1U (v); or v /∈ U and the value of a feedback-edge variable gives +1).
The out-flow equals

∑
j∈Rv

xij =
∑

j∈R xij = 1 by (4), Rv = R, and (ii).
Finally, we can verify the boolean axioms z2

e = ze. This holds trivially for feedback edges e.
Let e = (v, u) be an edge in the left side of G (right side is similar) so that ze =

∑
j∈Ru

xij

for some fixed i ∈ D. We have z2
e = (

∑
j∈Ru

xij)2 =
∑

j∈Ru
x2

ij =
∑

j∈Ru
xij = ze by (iii)

and the boolean axioms for Pn.
This concludes the reduction and hence the proof of (3).

PPADScc * PPAcc via End-of-`-Lines. It is straightforward to check that Fbool for F =
FG,U,R is in the query class PPADSdt (Definition 16). In particular, in the PPADS–decision
tree, we can define the distinguished vertex v∗ as being associated with any vertex from U .
Similarly, the lifted problem S′ := S(Fbool)◦Indm

n form = nO(1) is in the communication class
PPADScc. By contrast, we just proved that χF2(S′) ≥ nΩ(1), which implies that S′ /∈ PPAcc.

5 Proofs of Characterizations

Due to space constraints, the proofs of Theorem 3 and Theorem 4 are omitted from this
extended abstract. See the full version [24] for complete proofs.

References
1 Michael Alekhnovich, Eli Ben-Sasson, Alexander Razborov, and Avi Wigderson. Pseu-

dorandom Generators in Propositional Proof Complexity. SIAM Journal on Computing,
34(1):67–88, 2004. doi:10.1137/S0097539701389944.

2 László Babai, Peter Frankl, and Janos Simon. Complexity Classes in Communication
Complexity Theory. In Proceedings of the 27th Symposium on Foundations of Computer
Science (FOCS), pages 337–347. IEEE, 1986. doi:10.1109/SFCS.1986.15.

3 László Babai, Anna Gál, and Avi Wigderson. Superpolynomial Lower Bounds for Monotone
Span Programs. Combinatorica, 19(3):301–319, 1999. doi:10.1007/s004930050058.

http://dx.doi.org/10.1137/S0097539701389944
http://dx.doi.org/10.1109/SFCS.1986.15
http://dx.doi.org/10.1007/s004930050058

M. Göös, P. Kamath, R. Robere, and D. Sokolov 38:15

4 Yakov Babichenko, Shahar Dobzinski, and Noam Nisan. The Communication Complexity
of Local Search. Technical report, arXiv, 2018. arXiv:1804.02676.

5 Yakov Babichenko and Aviad Rubinstein. Communication Complexity of Approximate
Nash Equilibria. In Proceedings of the 49th Symposium on Theory of Computing (STOC),
pages 878–889. ACM, 2017. doi:10.1145/3055399.3055407.

6 Paul Beame, Stephen Cook, Jeff Edmonds, Russell Impagliazzo, and Toniann Pitassi. The
Relative Complexity of NP Search Problems. Journal of Computer and System Sciences,
57(1):3–19, 1998. doi:10.1006/jcss.1998.1575.

7 Paul Beame, Toniann Pitassi, and Nathan Segerlind. Lower Bounds for Lovász–Schrijver
Systems and Beyond Follow from Multiparty Communication Complexity. SIAM Journal
on Computing, 37(3):845–869, 2007. doi:10.1137/060654645.

8 Paul Beame and Søren Riis. More on the Relative Strength of Counting Principles. In
Proceedings of the DIMACS Workshop on Proof Complexity and Feasible Arithmetics,
volume 39, pages 13–35, 1998.

9 Aleksandrs Belovs, Gábor Ivanyos, Youming Qiao, Miklos Santha, and Siyi Yang. On the
Polynomial Parity Argument Complexity of the Combinatorial Nullstellensatz. In Proceed-
ings of the 32nd Computational Complexity Conference (CCC), volume 79, pages 30:1–30:24.
Schloss Dagstuhl, 2017. doi:10.4230/LIPIcs.CCC.2017.30.

10 Eli Ben-Sasson and Avi Wigderson. Short Proofs Are Narrow—Resolution Made Simple.
Journal of the ACM, 48(2):149–169, 2001. doi:10.1145/375827.375835.

11 Andrei Bulatov. A Dichotomy Theorem for Nonuniform CSPs. In Proceedings of the
58th Symposium on Foundations of Computer Science (FOCS), pages 319–330, 2017. doi:
10.1109/FOCS.2017.37.

12 Joshua Buresh-Oppenheim and Tsuyoshi Morioka. Relativized NP search problems and
propositional proof systems. In Proceedings of the 19th Conference on Computational Com-
plexity (CCC), pages 54–67, 2004. doi:10.1109/CCC.2004.1313795.

13 Sam Buss, Dima Grigoriev, Russell Impagliazzo, and Toniann Pitassi. Linear Gaps between
Degrees for the Polynomial Calculus Modulo Distinct Primes. Journal of Computer and
System Sciences, 62(2):267–289, 2001. doi:10.1006/jcss.2000.1726.

14 Siu Man Chan. Just a Pebble Game. In Proceedings of the 28th Conference on Computa-
tional Complexity (CCC), pages 133–143, 2013. doi:10.1109/CCC.2013.22.

15 Siu Man Chan and Aaron Potechin. Tight Bounds for Monotone Switching Networks via
Fourier Analysis. Theory of Computing, 10(15):389–419, 2014. doi:10.4086/toc.2014.
v010a015.

16 Stephen Cook, Yuval Filmus, and Dai Tri Man Lê. The Complexity of the Comparator
Circuit Value Problem. ACM Transactions on Computation Theory, 6(4):15:1–15:44, 2014.
doi:10.1145/2635822.

17 Constantinos Daskalakis and Christos Papadimitriou. Continuous Local Search. In Pro-
ceedings of the 22nd Symposium on Discrete Algorithms (SODA), pages 790–804. SIAM,
2011. URL: http://dl.acm.org/citation.cfm?id=2133036.2133098.

18 Susanna de Rezende, Jakob Nordström, and Marc Vinyals. How Limited Interaction
Hinders Real Communication (and What It Means for Proof and Circuit Complexity).
In Proceedings of the 57th Symposium on Foundations of Computer Science (FOCS), pages
295–304. IEEE, 2016. doi:10.1109/FOCS.2016.40.

19 John Fearnley, Spencer Gordon, Ruta Mehta, and Rahul Savani. End of Potential Line.
Technical report, arXiv, 2018. arXiv:1804.03450.

20 Tomás Feder and Moshe Vardi. The Computational Structure of Monotone Monadic SNP
and Constraint Satisfaction: A Study through Datalog and Group Theory. SIAM Journal
on Computing, 28(1):57–104, 1998. doi:10.1137/S0097539794266766.

ITCS 2019

http://arxiv.org/abs/1804.02676
http://dx.doi.org/10.1145/3055399.3055407
http://dx.doi.org/10.1006/jcss.1998.1575
http://dx.doi.org/10.1137/060654645
http://dx.doi.org/10.4230/LIPIcs.CCC.2017.30
http://dx.doi.org/10.1145/375827.375835
http://dx.doi.org/10.1109/FOCS.2017.37
http://dx.doi.org/10.1109/FOCS.2017.37
http://dx.doi.org/10.1109/CCC.2004.1313795
http://dx.doi.org/10.1006/jcss.2000.1726
http://dx.doi.org/10.1109/CCC.2013.22
http://dx.doi.org/10.4086/toc.2014.v010a015
http://dx.doi.org/10.4086/toc.2014.v010a015
http://dx.doi.org/10.1145/2635822
http://dl.acm.org/citation.cfm?id=2133036.2133098
http://dx.doi.org/10.1109/FOCS.2016.40
http://arxiv.org/abs/1804.03450
http://dx.doi.org/10.1137/S0097539794266766

38:16 Adventures in Monotone Complexity and TFNP

21 Anna Gál. A Characterization of Span Program Size and Improved Lower Bounds for
Monotone Span Programs. Computational Complexity, 10(4):277–296, 2001. doi:10.1007/
s000370100001.

22 Anat Ganor and Karthik C. S. Communication Complexity of Correlated Equilibrium with
Small Support. In Proceedings of the 22nd International Conference on Randomization
and Computation (RANDOM), volume 116, pages 12:1–12:16. Schloss Dagstuhl, 2018. doi:
10.4230/LIPIcs.APPROX-RANDOM.2018.12.

23 Ankit Garg, Mika Göös, Pritish Kamath, and Dmitry Sokolov. Monotone Circuit Lower
Bounds from Resolution. In Proceedings of the 50th Symposium on Theory of Computing
(STOC), pages 902–911. ACM, 2018. doi:10.1145/3188745.3188838.

24 Mika Göös, Pritish Kamath, Robert Robere, and Dmitry Sokolov. Adventures in Monotone
Complexity and TFNP. Technical Report TR18-163, Electronic Colloquium on Computa-
tional Complexity (ECCC), 2018. URL: https://eccc.weizmann.ac.il/report/2018/
163/.

25 Mika Göös and Toniann Pitassi. Communication Lower Bounds via Critical Block Sens-
itivity. In Proceedings of the 46th Symposium on Theory of Computing (STOC), pages
847–856. ACM, 2014. doi:10.1145/2591796.2591838.

26 Mika Göös, Toniann Pitassi, and Thomas Watson. Deterministic Communication vs. Parti-
tion Number. In Proceedings of the 56th Symposium on Foundations of Computer Science
(FOCS), pages 1077–1088. IEEE, 2015. doi:10.1109/FOCS.2015.70.

27 Mika Göös, Toniann Pitassi, and Thomas Watson. The Landscape of Communication
Complexity Classes. In Proceedings of the 43rd International Colloquium on Automata,
Languages, and Programming (ICALP), pages 86:1–86:15. Schloss Dagstuhl, 2016. doi:
10.4230/LIPIcs.ICALP.2016.86.

28 Mika Göös and Aviad Rubinstein. Near-Optimal Communication Lower Bounds for Approx-
imate Nash Equilibria. In Proceedings of the 59th Symposium on Foundations of Computer
Science (FOCS), 2018. To appear. arXiv:1805.06387.

29 Michelangelo Grigni and Michael Sipser. Monotone Complexity. In Proceedings of the
London Mathematical Society Symposium on Boolean Function Complexity, pages 57–75.
Cambridge University Press, 1992. URL: http://dl.acm.org/citation.cfm?id=167687.
167706.

30 Bernd Halstenberg and Rüdiger Reischuk. Relations Between Communication Complexity
Classes. Journal of Computer and System Sciences, 41(3):402–429, 1990. doi:10.1016/
0022-0000(90)90027-I.

31 Alexandros Hollender and Paul Goldberg. The Complexity of Multi-source Variants of the
End-of-Line Problem, and the Concise Mutilated Chessboard. Technical report, Electronic
Colloquium on Computational Complexity (ECCC), 2018. URL: https://eccc.weizmann.
ac.il/report/2018/120/.

32 Pavel Hubáček and Eylon Yogev. Hardness of Continuous Local Search: Query Complexity
and Cryptographic Lower Bounds. In Proceedings of the 28th Symposium on Discrete
Algorithms (SODA), pages 1352–1371, 2017. doi:10.1137/1.9781611974782.88.

33 Trinh Huynh and Jakob Nordström. On the Virtue of Succinct Proofs: Amplifying Com-
munication Complexity Hardness to Time–Space Trade-Offs in Proof Complexity. In Pro-
ceedings of the 44th Symposium on Theory of Computing (STOC), pages 233–248. ACM,
2012. doi:10.1145/2213977.2214000.

34 Russell Impagliazzo, Toniann Pitassi, and Alasdair Urquhart. Upper and lower bounds for
tree-like cutting planes proofs. In Proceedings of the 9th Symposium on Logic in Computer
Science (LICS), pages 220–228. IEEE, 1994. doi:10.1109/LICS.1994.316069.

http://dx.doi.org/10.1007/s000370100001
http://dx.doi.org/10.1007/s000370100001
http://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2018.12
http://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2018.12
http://dx.doi.org/10.1145/3188745.3188838
https://eccc.weizmann.ac.il/report/2018/163/
https://eccc.weizmann.ac.il/report/2018/163/
http://dx.doi.org/10.1145/2591796.2591838
http://dx.doi.org/10.1109/FOCS.2015.70
http://dx.doi.org/10.4230/LIPIcs.ICALP.2016.86
http://dx.doi.org/10.4230/LIPIcs.ICALP.2016.86
http://arxiv.org/abs/1805.06387
http://dl.acm.org/citation.cfm?id=167687.167706
http://dl.acm.org/citation.cfm?id=167687.167706
http://dx.doi.org/10.1016/0022-0000(90)90027-I
http://dx.doi.org/10.1016/0022-0000(90)90027-I
https://eccc.weizmann.ac.il/report/2018/120/
https://eccc.weizmann.ac.il/report/2018/120/
http://dx.doi.org/10.1137/1.9781611974782.88
http://dx.doi.org/10.1145/2213977.2214000
http://dx.doi.org/10.1109/LICS.1994.316069

M. Göös, P. Kamath, R. Robere, and D. Sokolov 38:17

35 David Johnson, Christos Papadimitriou, and Mihalis Yannakakis. How easy is local
search? Journal of Computer and System Sciences, 37(1):79–100, 1988. doi:10.1016/
0022-0000(88)90046-3.

36 Stasys Jukna. Boolean Function Complexity: Advances and Frontiers, volume 27 of Al-
gorithms and Combinatorics. Springer, 2012.

37 Mauricio Karchmer and Avi Wigderson. Monotone circuits for connectivity require super-
logarithmic depth. In Proceedings of the 20th Symposium on Theory of Computing (STOC),
pages 539–550. ACM, 1988. doi:10.1145/62212.62265.

38 Mauricio Karchmer and Avi Wigderson. On span programs. In Proceedings of the 8th
Structure in Complexity Theory Conference, pages 102–111, 1993. doi:10.1109/SCT.1993.
336536.

39 Eyal Kushilevitz and Noam Nisan. Communication Complexity. Cambridge University
Press, 1997.

40 László Lovász. On determinants, matchings, and random algorithms. In Proceedings of the
2nd Conference on Fundamentals of Computation Theory (FCT), pages 565–574, 1979.

41 Ernst Mayr and Ashok Subramanian. The complexity of circuit value and network sta-
bility. Journal of Computer and System Sciences, 44(2):302–323, 1992. doi:10.1016/
0022-0000(92)90024-D.

42 Nimrod Megiddo and Christos Papadimitriou. On total functions, existence theorems and
computational complexity. Theoretical Computer Science, 81(2):317–324, 1991. doi:10.
1016/0304-3975(91)90200-L.

43 Tsuyoshi Morioka. Logical Approaches to the Complexity of Search Problems: Proof Com-
plexity, Quantified Propositional Calculus, and Bounded Arithmetic. PhD thesis, University
of Toronto, 2005.

44 Ketan Mulmuley. A fast parallel algorithm to compute the rank of a matrix over an
arbitrary field. Combinatorica, 7(1):101–104, 1987. doi:10.1007/BF02579205.

45 Igor Oliveira. Unconditional Lower Bounds in Complexity Theory. PhD thesis, Columbia
University, 2015. doi:10.7916/D8ZP45KT.

46 Christos Papadimitriou. On the complexity of the parity argument and other inefficient
proofs of existence. Journal of Computer and System Sciences, 48(3):498–532, 1994. doi:
10.1016/S0022-0000(05)80063-7.

47 Toniann Pitassi and Robert Robere. Strongly Exponential Lower Bounds for Monotone
Computation. In Proceedings of the 49th Symposium on Theory of Computing (STOC),
pages 1246–1255. ACM, 2017. doi:10.1145/3055399.3055478.

48 Toniann Pitassi and Robert Robere. Lifting Nullstellensatz to Monotone Span Programs
over Any Field. In Proceedings of the 50th Symposium on Theory of Computing (STOC),
pages 1207–1219. ACM, 2018. doi:10.1145/3188745.3188914.

49 Aaron Potechin. Bounds on Monotone Switching Networks for Directed Connectivity.
Journal of the ACM, 64(4):29:1–29:48, 2017. doi:10.1145/3080520.

50 Pavel Pudlák. On extracting computations from propositional proofs (a survey). In Pro-
ceedings of the 30th Foundations of Software Technology and Theoretical Computer Science
(FSTTCS), volume 8, pages 30–41. Schloss Dagstuhl, 2010. doi:10.4230/LIPIcs.FSTTCS.
2010.30.

51 Pavel Pudlák and Jiří Sgall. Algebraic models of computation and interpolation for algeb-
raic proof systems. DIMACS Series in Discrete Mathematics and Theoretical Computer
Science, 39:279–295, 1998. doi:10.1090/dimacs/039.

52 Ran Raz and Pierre McKenzie. Separation of the Monotone NC Hierarchy. Combinatorica,
19(3):403–435, 1999. doi:10.1007/s004930050062.

ITCS 2019

http://dx.doi.org/10.1016/0022-0000(88)90046-3
http://dx.doi.org/10.1016/0022-0000(88)90046-3
http://dx.doi.org/10.1145/62212.62265
http://dx.doi.org/10.1109/SCT.1993.336536
http://dx.doi.org/10.1109/SCT.1993.336536
http://dx.doi.org/10.1016/0022-0000(92)90024-D
http://dx.doi.org/10.1016/0022-0000(92)90024-D
http://dx.doi.org/10.1016/0304-3975(91)90200-L
http://dx.doi.org/10.1016/0304-3975(91)90200-L
http://dx.doi.org/10.1007/BF02579205
http://dx.doi.org/10.7916/D8ZP45KT
http://dx.doi.org/10.1016/S0022-0000(05)80063-7
http://dx.doi.org/10.1016/S0022-0000(05)80063-7
http://dx.doi.org/10.1145/3055399.3055478
http://dx.doi.org/10.1145/3188745.3188914
http://dx.doi.org/10.1145/3080520
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2010.30
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2010.30
http://dx.doi.org/10.1090/dimacs/039
http://dx.doi.org/10.1007/s004930050062

38:18 Adventures in Monotone Complexity and TFNP

53 Alexander Razborov. Lower bounds on monotone complexity of the logical permanent.
Mathematical notes of the Academy of Sciences of the USSR, 37(6):485–493, 1985. doi:
10.1007/BF01157687.

54 Alexander Razborov. Lower bounds on the monotone complexity of some Boolean functions.
Doklady Akademii Nauk USSR, 285:798–801, 1985.

55 Alexander Razborov. Unprovability of lower bounds on circuit size in certain fragments of
bounded arithmetic. Izvestiya of the RAN, pages 201–224, 1995.

56 Robert Robere, Toniann Pitassi, Benjamin Rossman, and Stephen Cook. Exponential
Lower Bounds for Monotone Span Programs. In Proceedings of the 57th Symposium on
Foundations of Computer Science (FOCS), pages 406–415. IEEE, 2016. doi:10.1109/
FOCS.2016.51.

57 Tim Roughgarden. Complexity Theory, Game Theory, and Economics. Technical report,
arXiv, 2018. arXiv:1801.00734.

58 Tim Roughgarden and Omri Weinstein. On the Communication Complexity of Approx-
imate Fixed Points. In Proceedings of the 57th Symposium on Foundations of Computer
Science (FOCS), pages 229–238. IEEE, 2016. doi:10.1109/FOCS.2016.32.

59 Thomas Schaefer. The Complexity of Satisfiability Problems. In Proceedings of the 10th
Symposium on Theory of Computing (STOC), pages 216–226. ACM, 1978. doi:10.1145/
800133.804350.

60 Dmitry Sokolov. Dag-Like Communication and Its Applications. In Proceedings of the
12th Computer Science Symposium in Russia (CSR), pages 294–307. Springer, 2017. doi:
10.1007/978-3-319-58747-9_26.

61 Éva Tardos. The gap between monotone and non-monotone circuit complexity is exponen-
tial. Combinatorica, 8(1):141–142, 1988. doi:10.1007/BF02122563.

62 Alasdair Urquhart. Hard examples for resolution. Journal of the ACM, 34(1):209–219,
1987. doi:10.1145/7531.8928.

63 Dmitriy Zhuk. A Proof of CSP Dichotomy Conjecture. In Proceedings of the 58th
Symposium on Foundations of Computer Science (FOCS), pages 331–342, 2017. doi:
10.1109/FOCS.2017.38.

A Appendix: TFNP Class Definitions

For each TFNP subclass there is a canonical definition of its communication or query analogue:
we simply let communication protocols or decision trees (rather than circuits) implicitly
define the objects that appear in the original Turing machine definition. Each communication
class Ccc (resp. query class Cdt) is defined via a C-protocol (resp. C–decision tree) that solves
a two-party search problem S ⊆ {0, 1}n/2 × {0, 1}n/2 × O (resp. S ⊆ {0, 1}n × O). The
class Ccc (resp. Cdt) is then defined as the set of all n-bit search problems S that admit
a polylog(n)-cost C-protocol (resp. C–decision tree). We only define the communication
analogues below with the understanding that a query version can be obtained by replacing
mentions of a protocol Πv(x, y) by a decision tree Tv(x); the cost of a C–decision tree is
defined as maxv,x #(queries made by Tv(x)). In what follows, sink means out-degree 0, and
source means in-degree 0.

I Definition 11. (FP)
Syntax: Π is a (deterministic) protocol outputting values in O.
Object: n/a
Correctness: Π(x, y) ∈ S(x, y).
Cost: |Π| := communication cost of Π.

http://dx.doi.org/10.1007/BF01157687
http://dx.doi.org/10.1007/BF01157687
http://dx.doi.org/10.1109/FOCS.2016.51
http://dx.doi.org/10.1109/FOCS.2016.51
http://arxiv.org/abs/1801.00734
http://dx.doi.org/10.1109/FOCS.2016.32
http://dx.doi.org/10.1145/800133.804350
http://dx.doi.org/10.1145/800133.804350
http://dx.doi.org/10.1007/978-3-319-58747-9_26
http://dx.doi.org/10.1007/978-3-319-58747-9_26
http://dx.doi.org/10.1007/BF02122563
http://dx.doi.org/10.1145/7531.8928
http://dx.doi.org/10.1109/FOCS.2017.38
http://dx.doi.org/10.1109/FOCS.2017.38

M. Göös, P. Kamath, R. Robere, and D. Sokolov 38:19

I Definition 12. (EoML)
Syntax: V is a vertex set with a distinguished vertex v∗ ∈ V . For each v ∈ V : ov ∈ O and

Πv is a protocol outputting a tuple (sv(x, y), pv(x, y), `v(x, y)) ∈ V × V × Z.
Object: Dag Gx,y = (V,E) where (v, u) ∈ E iff sv(x, y) = u, pu(x, y) = v, `v(x, y) > `u(x, y).
Correctness: If v∗ is a sink or non-source in Gx,y, then ov∗ ∈ S(x, y).

If v 6= v∗ is a sink or source in Gx,y, then ov ∈ S(x, y).
Cost: log |V |+ maxv |Πv|.

I Definition 13. (SoML)
Syntax: Same as in Definition 12.
Object: Same as in Definition 12.
Correctness: If v∗ is a sink or non-source in Gx,y, then ov∗ ∈ S(x, y).

If v 6= v∗ is a sink in Gx,y, then ov ∈ S(x, y).
Cost: log |V |+ maxv |Πv|.

I Definition 14. (PLS)
Syntax: V is a vertex set. For each v ∈ V : ov ∈ O and Πv is a protocol outputting a pair

(sv(x, y), `v(x, y)) ∈ V × Z.
Object: Dag Gx,y = (V,E) where (v, u) ∈ E iff sv(x, y) = u and `v(x, y) > `u(x, y).
Correctness: If v is a sink in Gx,y, then ov ∈ S(x, y).
Cost: log |V |+ maxv |Πv|.

I Definition 15. (PPAD)
Syntax: V is a vertex set with a distinguished vertex v∗ ∈ V . For each v ∈ V : ov ∈ O and

Πv is a protocol outputting a pair (sv(x, y), pv(x, y)) ∈ V × V .
Object: Digraph Gx,y = (V,E) where (v, u) ∈ E iff sv(x, y) = u and pu(x, y) = v.
Correctness: If v∗ is a sink or non-source in Gx,y, then ov∗ ∈ S(x, y).

If v 6= v∗ is a sink or source in Gx,y, then ov ∈ S(x, y).
Cost: log |V |+ maxv |Πv|.

I Definition 16. (PPADS)
Syntax: Same as in Definition 15.
Object: Same as in Definition 15.
Correctness: If v∗ is a sink or non-source in Gx,y, then ov∗ ∈ S(x, y).

If v 6= v∗ is a sink in Gx,y, then ov ∈ S(x, y).
Cost: log |V |+ maxv |Πv|.

I Definition 17. (PPA)
Syntax: V is a vertex set with a distinguished vertex v∗ ∈ V . For each v ∈ V : ov ∈ O and

Πv is a protocol outputting a subset Πv(x, y) ⊆ V of size at most 2.
Object: Undirected graph Gx,y = (V,E) where {v, u} ∈ E iff v ∈ Πu(x, y) and u ∈ Πv(x, y).
Correctness: If v∗ has degree 6= 1 in Gx,y, then ov∗ ∈ S(x, y).

If v 6= v∗ has degree 6= 2 in Gx,y, then ov ∈ S(x, y).
Cost: log |V |+ maxv |Πv|.

I Definition 18. (PPP)
Syntax: V is a vertex set with a distinguished vertex v∗ ∈ V . For each unordered pair
{v, u} ∈

(
V
2
)
: o{v,u} ∈ O. For each v ∈ V : Πv is a protocol outputting values in V − v∗.

Object: Bipartite graph Gx,y = (V × (V − v∗), E) where (v, w) ∈ E iff Πv(x, y) = w.
Correctness: If (v, w) and (u,w), v 6= u, are edges in Gx,y, then o{v,u} ∈ S(x, y).
Cost: log |V |+ maxv |Πv|.

ITCS 2019

	Our Results
	Monotone C-Sat
	Separations
	Characterizations

	Survey: Communication TFNP
	Open problems

	Preliminaries
	Proofs of Separations
	Reduction
	Monotone circuit lower bounds
	Monotone span program lower bounds

	Proofs of Characterizations
	Appendix: TFNP Class Definitions

