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TRANSPORTATION FORECASTS
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Abstract: This analysis compares the performance of an econometric model, a neural network,
and random walk benchmarks in forecasting international bridge and airport traffic in El Paso,
Texas, a major gateway for trade between the United States and Mexico. For 7 of the 16 variables
analyzed, the econometric forecasts outperform the alternatives as judged by forecast error
summary statistics. The neural network forecasts are more accurate than the competing models
in four cases and the random walk is the best alternative in five cases. To provide a more
comprehensive assessment of predictive accuracy, the forecast errors are decomposed into
proportions of inequality. Systematic forecast error is problematic for several of the econometric
and neural network forecasts. Finally, a statistical test of directional accuracy is applied. The
results of that test largely corroborate the relative accuracy of the econometric model.
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Accuracy

1. INTRODUCTION

Decision-makers use traffic forecasts in a variety of contexts. Traffic forecasts facilitate
operational and budgetary planning activities for airport and tollway administration. Estimates
of traffic flows are also critical inputs to the cost-benefit analyses and environmental impact
assessments that are frequently employed for transportation infrastructure planning (Nicolaisen
and Driscoll, 2014). Overestimation of demand can lead to infrastructure overbuilding and
revenue shortfalls while underestimation can result in underinvestment in and excessive traffic
congestion. Traffic forecasts sometimes suffer from large inaccuracies (Antoniou, Psarianos,
and Brilon, 2011). Because predictive inaccuracies impose real costs for public and private
institutions, much effort has been devoted to improving transportation modeling and forecasting.

In some time-series data, biologically motivated pattern-seeking algorithms perform better
than traditional econometric models for prediction. As a means toward potentially improving
transportation modeling and forecasting forecasts from econometric models can be compared
with those from pattern-seeking methods such as neural networks that attempt to mimic multi-
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layered perceptron (MLP) brain-like learning. MLP offers two major advantages over traditional
non-pattern-seeking mathematical models (Fullerton and Mukhopadhyay, 2013). First, MLP
is flexible and allows for nonlinear patterns in data. Second, MLP does not require prior
knowledge of relationships or distributional assumptions about the data. However, researchers
sometimes over-calibrate MLP models, a step that can result in poor predictive performance.
In this study, care is taken so that the MLP models are calibrated in a manner that helps ensure
accurate MLP forecasts. Details are described below.

This study evaluates the accuracy of econometric and artificial neural network forecasts
for 16 categories of international bridge and airport traffic in El Paso, Texas. El Paso is located
on an important trade corridor linking export processing plants in neighboring Ciudad Juárez,
Mexico with twin plants in the United States. Both airport and bridge traffic in El Paso are
closely linked with international manufacturing activity in the region. The vibrant cross-border
trade in merchandise results in large volumes of cargo truck traffic across the international
bridges (Figliozzi, Harrison, and McCray, 2001). Many cross-border shoppers and commuters
also traverse the international bridges on a regular basis (Fullerton, Jimenez, and Walke, 2015).
Finally, much of the cargo and passenger traffic that passes through the El Paso International
Airport is connected in some way with the border region trade and industrial complex. Given
the importance of cross-border supply chain linkages, traffic forecasts in this region have
notable implications for international trade and commercial flows.

The next section briefly summarizes the literature on the comparative predictive accuracy
of econometric and neural network forecasts. The following section describes the models used
for this study and the variables that are forecasted. That is followed by predictive accuracy
results and a concluding section.

2. LITERATURE REVIEW

Some prior studies compare neural network forecasts of economic variables against econometric
model predictions. In an analysis of consumer expenditure forecasts, Church and Curram (1996)
find that neural networks are competitive with traditional econometric models, but do not
outperform those models. The choice of relevant explanatory variables is found to be critical to
the performance of both methodologies. Hann and Steurer (1996) report that a neural network
outperforms a linear regression model of the exchange rate between the United States dollar
and the German deutschemark when that variable is measured at a weekly frequency. When
monthly data are used instead of weekly data, the two forecasting approaches yield similar
results in terms of accuracy. It is noteworthy that the monthly-frequency regression models
include more economic predictor variables than the weekly-frequency alternatives due to
constraints on the availability of high-frequency economic data.

Within the literature on air and bridge traffic forecasting, several studies assess the
simulation performance of econometric models in comparison with alternative methodologies.
Fullerton (2004) evaluates ex-ante econometric forecasts of airport and international bridge
traffic in El Paso. The econometric model exhibits a mixed forecast accuracy performance
compared to random walk benchmark projections. In a study comparing various econometric
and benchmark forecasts, Fildes, Wei and Ismail (2011) find that an econometric model,
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specifically an autoregressive distributed lag model, generates comparatively accurate forecasts
of air passenger traffic between the United Kingdom and five other countries.

Other studies apply artificial neural networks to transportation forecasting (see, for example,
Faraway and Chatfield, 1998; Wei and Chen, 2012; Chen et al., 2012). Xiao et al. (2015)
develop a hybrid forecasting approach in which the trend component of airport passenger
traffic is predicted using a generalized regression neural network and seasonal oscillations are
forecast using radial basis function networks. The model performs relatively well in comparison
to several alternatives, as judged by forecast error summary statistics. Vlahogianni and Karlaftis
(2013) find that neural network predictions of vehicle speeds on a tolled motorway generally
outperform predictions generated using classical statistical approaches. Overall, the results of
these studies suggest that econometric models and neural networks are both potentially useful
for predicting air and roadway traffic.

This study represents one of the few attempts to directly compare econometric and neural
network forecasts of transportation demand. Another distinguishing feature of the analysis is
the use of directional accuracy metrics in addition to forecast error summary statistics to evaluate
the quality of forecasts. Directional accuracy refers to the capacity to correctly predict increases
or decreases in the variable of interest. Different accuracy measures sometimes yield divergent
conclusions regarding the forecasting track records of competing models. Using multiple forecast
accuracy measures provides a more balanced assessment of overall predictive performance
(Fildes, Wei, and Ismail, 2011). Previous research finds that neural network forecasts are
sometimes better than linear models at predicting directional changes, even when the latter
have smaller average errors (Heravi, Osborn, and Birchenhall, 2004). The evaluation framework
described in the next section includes measures of directional accuracy as well as metrics
based on the size of forecast errors.

3. DATA AND METHODOLOGY

The 16 variables analyzed in this study measure different components of air and bridge traffic.
The eight international bridge traffic variables include pedestrian and light vehicle bridge
crossings at the three ports of entry connecting El Paso with Ciudad Juárez, along with cargo
vehicle crossings at two of the bridges. Cargo vehicles do not, for the most part, use the downtown
international bridges. The eight air traffic variables include the number of passengers on domestic
and international flights, the volume of freight transported by plane, and the volume of air mail
shipments. The air traffic data are collected from El Paso International Airport and are
disaggregated into arrivals and departures.

Table 1A provides information on the sample period and units of measure for the forecasted
variables. The sample periods shown in Table 1 are for historical data rather than forecasts.
Six of the series were discontinued during the timeframe covered in this analysis. First, the
airport suspended international flights in 2006 so only data on domestic flights are available
after that point. Second, separate datasets on air freight and air mail were discontinued after
2007. The forecast sample used for this effort begins in 1998 and ends in the last year for
which historical data are available. Table 1A also shows summary statistics for the full historical
sample period. Annual average traffic across all three bridges during the full historical period
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(1974-2015), amounted to nearly 12.9 million light vehicle crossings, 6.4 million pedestrian
crossings, and 461,000 cargo truck crossings. Domestic passenger flows from 1979 to 2015
averaged around 1.4 million departures and a nearly equal number of arrivals each year. Finally,
air freight and mail deplanements exceeded 28,000 tons per year during the 1974-2007 sample
period, on average, while enplanements surpassed 22,000 tons.

Table 1A
Variable definitions and descriptive statistics

Variable name Sample period Units Mean Standard
deviation

Bridge of the Americas

Light Vehicles 1974-2015 Millions 6.400 1.558

Cargo Vehicles 1974-2015 Millions 0.268 0.130

Pedestrians 1974-2015 Millions 0.683 0.203

Paso del Norte Bridge

Light Vehicles 1974-2015 Millions 4.056 1.021

Pedestrians 1974-2015 Millions 5.210 1.159

Ysleta Bridge

Light Vehicles 1974-2015 Millions 2.439 0.831

Cargo Vehicles 1974-2015 Millions 0.193 0.165

Pedestrians 1974-2015 Millions 0.478 0.385

El Paso International Airport

Domestic Passenger Arrivals 1979-2015 Thousands 1,446.584 261.280

International Passenger Arrivals 1979-2006 Thousands 14.164 11.140

Domestic Passenger Departures 1979-2015 Thousands 1,475.036 273.204

International Passenger Departures 1979-2006 Thousands 10.809 7.898

In-Bound Air Freight Shipments 1974-2007 1,000 Tons 26.178 17.819

Out-Bound Air Freight Shipments 1974-2007 1,000 Tons 20.762 12.703

In-Bound Air Mail Shipments 1974-2007 1,000 Tons 2.587 0.912

Out-Bound Air Mail Shipments 1974-2007 1,000 Tons 1.532 0.619

Table 1B reports additional descriptive statistics for the sample data. With the exception
of three variables (international passenger arrivals, international passenger departures, out-
bound air shipments), the distributions of the data are fairly symmetric. With the exception of
the same three variables (international passenger arrivals, international passenger departures,
out-bound air shipments), the data are also platykurtic. The three series that depart from those
patterns have all been discontinued. Commercial international passenger flights are no longer
scheduled in or out of El Paso International Airport. Air mail data are now reported as part of
a broader airmail and freight category.

Each variable is forecast using a structural econometric model and an artificial neural
network. The regional econometric model uses a variety of indicators to explain movements in
bridge and air traffic as described in Fullerton (2004). Explanatory variables that appear in one
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or more of the international bridge traffic equations include United States gross domestic output,
local population levels on both sides of the border, and a real peso-to-dollar exchange rate
index. One of the innovative features of the model is the incorporation of cross-border variables,
which reflects the interdependence between the economies of El Paso, Texas, and neighboring
Ciudad Juárez, Mexico. Air traffic explanatory variables include wages, output, price indices,
and aggregate transportation expenditures. Binary variables for the period following the 11
September 2001 terrorist attacks are included in several of the equations due to traffic flow
disruptions that occurred in the aftermath of those events (Walke and Fullerton, 2014).

The econometric model has been used to generate published forecasts since 1998 (Fullerton,
2001). The parameters of the model are re-estimated each year and a new set of published ex-
ante forecasts is then produced. Each set of published forecasts covers a three year timeframe.
The 16 indicators listed in Table 1 are among the variables forecasted. Pooling all of the
forecasts together results in a sample size of 51 forecast observations for 10 of the variables.
Due to discontinuation of international flights to and from El Paso in 2006, the in-bound and
out-bound international passenger series only have 24 forecast observations. Also, because
the air freight and mail variables were merged for record-keeping purposes in 2008, there are
only 30 forecast observations each for those variables.

To ensure the best forecasts from the MLP model, the artificial intelligence (AI) pattern-
seeking software -Statistical Analytical Systems (SAS) is employed. The SAS software generates

Table 1b
Variable definitions and descriptive statistics

Variable name Maximum Minimum Skewness Kurtosis

Bridge of the Americas

Light Vehicles 8.802 3.268 -0.638 2.442
Cargo Vehicles 0.497 0.053 -0.270 1.812
Pedestrians 1.208 0.403 0.623 2.555

Paso del Norte Bridge
Light Vehicles 6.039 2.011 -0.616 2.779
Pedestrians 7.738 3.466 0.564 2.232

Ysleta Bridge
Light Vehicles 3.871 1.166 0.216 1.620
Cargo Vehicles 0.438 0.002 -0.037 1.192

Pedestrians 1.256 0.027 0.642 2.133
El Paso International Airport

Domestic Passenger Arrivals 1,830.811 913.023 -0.857 2.742
International Passenger Arrivals 46.054 0.106 1.316 4.602
Domestic Passenger Departures 1,862.582 920.268 -0.833 2.680
International Passenger Departures 34.891 0.137 1.129 4.790
In-Bound Air Freight Shipments 55.600 5.002 0.267 1.417
Out-Bound Air Freight Shipments 41.697 5.467 0.253 1.416
In-Bound Air Mail Shipments 4.337 0.739 0.147 2.186
Out-Bound Air Mail Shipments 2.331 0.051 -1.205 3.569
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three randomly created data sets - calibration, validation, and test. The software finalizes the
calibration models when it achieves the best forecast accuracy on the validation model without
going to test file.

Mukhopadhyay (2006) describes the generic topology of an MLP comprising a layer of
input nodes, one or more layers of hidden nodes, and a layer of output nodes. First hidden
layer nodes are connected with input layer nodes. Output layer nodes are connected with the
last hidden layer nodes. Connection strengths, called weights, are connection values. The output
of each node in an MLP, called an activation value, is a function of its inputs from the previous
layer and the corresponding weights. That function is called an activation function. An activation
value of an input layer node is the value of the input variable. An activation value of the output
layer unit is the estimated value of the dependent variable (target). A training algorithm learns
the mathematical relationship between input variables and the target by assigning proper weights
to all network connections.

The back-propagation (BP) training algorithm (Rumelhart et al., 1986) is used to develop
the MLP. The BP training algorithm estimates an output value from input variable values by
assigning a set of initial weights (connection strengths). The algorithm compares actual output
values with estimated values. The difference between an actual value and an estimated value is
called error. The training algorithm changes all weights in proportion to error magnitudes.
The constant of proportionality is called the learning rate. The method produces no error
signal if there is no difference between the actual and the estimated value. If there is a difference,
the training method starts changing weights from the top layer connections. The process of
updating weights propagates back through the network from the top layer to the first layer
connections. The larger the learning rate, the larger the corresponding weight change. The
process of updating weights repeats over all sample points in the calibration data to complete
a full iteration. The method computes a sum of squared errors value over all sample points
upon completion of each iteration. Training stops when the sum of squared errors value is less
than a predefined low value.

The nonlinear regression equation form (Fullerton and Mukhopadhyay, 2013) of one hidden
layered MLP is:

, , ,
1

ˆ ˆˆ ˆ( , )
n

t h h j h t h j
j

y f I w (1)

where, h is forecast horizon. I
t
 is input vector of current time period value of ,

ˆ ˆ.t h jY W  is the

network weight vector corresponding to forecast horizon h and jth hidden node. A logistic form
of the activation function f is used at each node:

1
,ˆ( , ) (1 )z

t h jf I w e (2)

where,

, , ,
ˆ ˆ

h j h jz w w t (3)



Econometric Versus Neural Network Transportation Forecasts 85

and n is the number of hidden nodes. Logistic activation functions (Equations 2 and 3) introduce
nonlinearity in the model. Activation functions must be differentiable for BP training algorithm
usage. Differentiable sigmoid function (Equations 2 and 3) are used to compute activation
values of hidden and output layer nodes.

MLP Network Architecture and Parameter Values

The guidelines followed are those proposed by a prior study on MLP architecture selection that
has been shown to be useful (Xiang et al., 2005). The study suggests starting with a simple,
three-layered MLP network with only hidden layer. The number of hidden units should match
the minimum number of line segments (or hyper-sigmoid surfaces in high dimensional cases)
required to approximate the target function for a minimal architecture. Functions learned using
a minimal net over calibration sample points work well on new samples. Three network layers
are employed: one input layer for input variables (time t and a bias unit), one hidden unit layer,
and one output layer of one unit. The network connects all hidden nodes with all input nodes.
The output node connects to all hidden nodes. With high learning rate values, faster learning
can be achieved. However, the learning process can jump back and forth on the error surface
for high learning rates. This process of high error sum of squares fluctuation during calibration
is called oscillation. One way to increase the learning rate without leading to oscillation is to
include a momentum factor in the weight change formula. Similar to Rumelhart et al. (1986),
0.1 is used for the learning rate and 0.9 for the momentum factor.

When ex-ante econometric forecasts are generated each year, recent historical values of
the explanatory variables must often be estimated due to time lags in the publication of economic
and demographic data series. To avoid biasing the results in favor of ex-post simulations
estimated with revised and complete historical data, a three-year time lag is used to develop
the neural network forecasts. For each set of previously published econometric forecasts, a
corresponding set of neural network forecasts is developed. Finally, random walk benchmark
projections are also developed for the same time periods. The three sets of forecasts are compared
against each other to assess relative predictive performance.

Several approaches are employed to compare the accuracy of the three sets of forecasts for
each variable. The U-statistic measures the average size of forecast errors. It is obtained by
scaling the root mean squared error such that all possible values of the statistic lie within the
interval between zero and one. Lower values of the U-statistic statistic indicate greater forecast
accuracy. The statistic is shown in Equation (4), where F denotes the forecast of a time series,
A denotes the value of the same series that is actually observed, and T denotes the total number
of time periods forecasted.

2 2 2
1 1 1

1 1 1
( ) ( ) ( )T T T

t t t t t t tU F A F A
T T T (4)

In addition to the average size of forecast errors, it is often useful to have information
regarding the composition of those errors. The mean squared forecast error can be decomposed
into three parts, known as the proportions of inequality. The first of these is the bias proportion,
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denoted U-bias, which is calculated as shown in Equation (5). The bias proportion measures
the deviation of the mean forecast value from the mean of the actual observed series. The
second component is the variance proportion, denoted U-var. As shown in Equation (6), the
variance proportion measures the deviation of the forecast standard deviation, �

F
, from the

actual standard deviation, �
A
. The third component of the mean squared forecast error, which

measures random or unsystematic error, is the covariance proportion, denoted U-cov. This is
shown in Equation (7), where � is the correlation coefficient for F and A. If there is some
nonzero forecast error, then the ideal distribution of the error is U-bias = U-var. = 0 and U-cov.
= 1 (Pindyck and Rubinfeld, 1998).
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In addition to the size and composition of forecast errors, another important dimension of
overall forecasting performance is directional accuracy. In a study of airport traffic forecasting,
Xiao et al. (2015) measure directional accuracy as the percentage of directional changes
(increases versus decreases in the variable of interest) that are correctly predicted. In this
study, directional changes are defined with respect to the value of each variable in the previous
year, which is equal to the random walk forecast. For the econometric and neural network
forecasts, a statistical test of directional predictive accuracy is carried out (Pesaran and
Timmermann, 1992; 1994). The null hypothesis of the test is that predicted directional changes
are independent of actual directional changes. If the null hypothesis can be rejected using a
one-sided normal test, that provides evidence in favor of the hypothesis that the forecasts
contribute useful information for predicting the direction of change (Granger and Pesaran,
2000).

4. EMPIRICAL RESULTS

Tables 2 and 3 report summary statistics for the econometric (EC), neural network (NN), and
random walk (RW) forecast errors. For each variable, the three sets of forecasts are ranked
from one to three in terms of predictive accuracy, as measured by the U-statistic. The rankings
are shown in the third column of each table. The econometric forecasts rank first for seven out
of 16 variables, while the neural network projections are more accurate than the alternatives in
four cases and the random walks provide the best alternatives in five cases.

Among the bridge traffic variables (Table 2), the econometric forecasts outperform the
alternatives in five cases, the neural network models rank first in two cases and the random
walk is superior in only one case. The neural network performs best in forecasting the two
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cargo vehicle traffic series, while the econometric model outperforms the neural network in
forecasting pedestrian and light vehicle traffic. These results are similar to those documented
in Fullerton and Mukhopadhyay (2013). The random walk forecast errors have higher covariance
proportions than either of the alternatives in six out of eight traffic categories. The two exceptions
to this pattern are pedestrian and cargo truck traffic at the Ysleta Bridge. In both of the latter
categories, the econometric forecasts have the highest covariance proportion of the three
alternatives. High covariance proportions indicate that the forecast error is dominated by random
components rather than systematic deviations between the forecasts and the actual historical
series.

Table 2
Bridge traffic forecast error metrics

Variable Method Rank U-Stat. U-Bias U-Var. U-Cov.

Bridge of the Americas EC 1 0.1240 0.1435 0.0005 0.8561
Light Vehicles NN 3 0.1527 0.3066 0.0004 0.6929

RW 2 0.1450 0.0734 0.0003 0.9263
Bridge of the Americas EC 3 0.0924 0.1156 0.0067 0.8777
Cargo Vehicles NN 1 0.0681 0.0172 0.7884 0.1944

RW 2 0.0788 0.0210 0.0643 0.9147
Bridge of the Americas EC 1 0.1200 0.0270 0.0024 0.9706
Pedestrians NN 2 0.1354 0.0524 0.0173 0.9303

RW 3 0.1465 0.0057 0.0003 0.9940
Paso del Norte Bridge EC 1 0.0727 0.1707 0.0098 0.8195
Light Vehicles NN 3 0.1226 0.0096 0.4699 0.5205

RW 2 0.0835 0.1504 0.0223 0.8272
Paso del Norte Bridge EC 1 0.0829 0.0299 0.0056 0.9645
Pedestrians NN 3 0.1351 0.0205 0.0006 0.9789

RW 2 0.0968 0.0085 0.0117 0.9797
Ysleta Bridge EC 2 0.1057 0.0024 0.0018 0.9958
Light Vehicles NN 3 0.1185 0.3421 0.0455 0.6123

RW 1 0.1033 0.0001 0.0000 0.9999
Ysleta Bridge Cargo EC 2 0.0757 0.0027 0.0904 0.9070
Vehicles NN 1 0.0694 0.1911 0.4331 0.3758

RW 3 0.0852 0.1784 0.1077 0.7139
Ysleta Bridge Pedestrians EC 1 0.1043 0.1272 0.0119 0.8608

NN 3 0.1558 0.1024 0.1470 0.7506
RW 2 0.1240 0.1642 0.0198 0.8160

Note: EC, NN, and RW stand for the econometric model, neural network, and random walk, respectively. Accuracy
rankings are based on U-statistics. U-Bias, U-Var., and U-Cov. represent the bias, variance, and covariance
proportions of inequality.

Forecast error analyses for the eight categories of air traffic are summarized in Table 3.
The random walk forecasts are relatively accurate in four of the eight cases while the econometric
and neural network forecasts are more accurate in two cases each. The econometric model
outperforms the other methods in forecasting air mail shipments while the neural network is
more accurate for international air passenger arrivals and in-bound air freight shipments. In
the other four passenger and freight categories, the random walk performs best, followed by
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the econometric model, and then the neural network. The random walk forecasts also have higher
covariance proportions than either of the alternatives in five of eight cases. For the three remaining
categories, the neural network forecasts have the highest covariance proportions. Those categories
are in-bound air mail shipments and international passenger arrivals and departures.

Table 3
Air traffic forecast error metrics

Variable Method Rank U-Stat. U-Bias U-Var. U-Cov.

Domestic Air Passenger EC 2 0.0380 0.3188 0.0490 0.6323
Arrivals NN 3 0.0491 0.5290 0.2325 0.2385

RW 1 0.0363 0.0543 0.0126 0.9330
International Air Passenger EC 3 0.2657 0.6705 0.0640 0.2654
Arrivals NN 1 0.2158 0.4774 0.0225 0.5001

RW 2 0.2191 0.7236 0.0000 0.2764
Domestic Air Passenger EC 2 0.0384 0.8710 0.0305 0.0985
Departures NN 3 0.0529 0.5799 0.2163 0.2037

RW 1 0.0376 0.0540 0.0066 0.9394
International Air Passenger EC 2 0.2464 0.6326 0.0230 0.3444
Departures NN 3 0.2606 0.3543 0.0225 0.6232

RW 1 0.2172 0.6821 0.0003 0.3176
In-Bound Air Freight EC 3 0.0819 0.2000 0.0057 0.7943
Shipments NN 1 0.0764 0.0888 0.0070 0.9042

RW 2 0.0814 0.0000 0.0017 0.9983
Out-Bound Air Freight EC 2 0.0648 0.2592 0.0005 0.7403
Shipments NN 3 0.0732 0.3713 0.0017 0.6271

RW 1 0.0625 0.0008 0.0012 0.9980
In-Bound Air Mail EC 1 0.1815 0.2342 0.0002 0.7656
Shipments NN 3 0.2210 0.1043 0.0026 0.8931

RW 2 0.1994 0.2910 0.0018 0.7073
Out-Bound Air Mail EC 1 0.2727 0.2248 0.0009 0.7742
Shipments NN 2 0.2931 0.2664 0.0000 0.7336

RW 3 0.3032 0.2172 0.0000 0.7828

Note: EC, NN, and RW stand for the econometric model, neural network, and random walk, respectively. Accuracy
rankings are based on U-statistics. U-Bias, U-Var., and U-Cov. represent the bias, variance, and covariance
proportions of inequality.

The statistics in Tables 2 and 3 measure the average size and composition of forecast
errors. To provide a more comprehensive assessment of forecasting performance, a statistical
test of directional accuracy is also employed (Pesaran and Timmermann, 1992; 1994). Table 4
presents the test statistics for the null hypothesis that the indicated set of forecasts does not
provide useful information for predicting the direction of change in a given variable. Random
walk forecasts are not considered because those forecasts assume no change, either positive or
negative, in the variables. For the econometric forecasts, it is possible to reject the null hypothesis
at the 5 percent significance level in 13 out of 16 cases. Using the same significance criterion,
it is only possible to reject the null hypothesis for three out of 16 sets of neural network forecasts.
If a 10 percent significance criterion is used instead, then the null hypothesis can be rejected
for six out of the 16 sets of neural network forecasts.
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Table 4
Pesaran-Timmermann (PT) directional accuracy test results

Variable EC PT Statistic NN PT Statistic

Bridge of the Americas Light Vehicles 3.8072** 0.4689
Bridge of the Americas Cargo Vehicles 1.9007** 1.5143*
Bridge of the Americas Pedestrians 4.2065** 2.0864**
Paso del Norte Bridge Light Vehicles 3.9424** -0.0357
Paso del Norte Bridge Pedestrians 5.8011** 0.3139
Ysleta Bridge Light Vehicles 2.4005** -2.5825
Ysleta Bridge Cargo Vehicles 2.3608** 3.0052**
Ysleta Bridge Pedestrians 4.8596** 1.5271*
Domestic Air Passenger Arrivals 2.4602** 1.1649
International Air Passenger Arrivals 0.8083 -0.3944
Domestic Air Passenger Departures 3.1038** 1.1621
International Air Passenger Departures 1.4651* 0.3640
In-Bound Air Freight Shipments 2.6875** 2.4358**
Out-Bound Air Freight Shipments 2.6762** 1.2670
In-Bound Air Mail Shipments 0.3955 0.6857
Out-Bound Air Mail Shipments 3.6395** 1.3234*
* Surpasses the 10-percent critical value for a one-tailed normal test.
** Surpasses the 5-percent critical value for a one-tailed normal test.
Notes: The null hypothesis is that the forecasts do not provide useful information for predicting directional changes.

Negative PT statistics indicate that the forecasts systematically move in the opposite direction of the actual
values.

The directional accuracy results are largely consistent with the U-statistics in the sense
that the econometric model generally outperforms the neural network. This contrasts with the
finding in Heravi, Osborn, and Birchenhall (2004) that neural network forecasts of European
industrial production variables appear in a more favorable light when evaluated by measures
of directional accuracy as compared to measures of the average size of forecast errors. For the
sample examined in this analysis, both types of evaluation metrics suggest better predictive
performance by the econometric model.

5. CONCLUSION

Forecasts of metropolitan area bridge and air traffic are important aids in planning, policymaking,
and investment decisions. This analysis assesses the performance of previously published
econometric forecasts against predictions generated by a neural network model and random
walk benchmarks. Theil U-statistics indicate that the neural network forecasts improve upon
their econometric counterparts in four out of 16 cases. However, the econometric forecasts
outperform the alternatives in seven cases. These results indicate that, while no single method
is consistently superior to the others, the econometric forecasting model performs reasonably
well for at least a substantial subset of the time series examined.

While metrics such as the U-statistic that gauge the average size of forecast errors represent
useful summary measures of forecasting performance, other statistics can offer a more holistic
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assessment of predictive accuracy. The proportions of inequality provide information on the
composition of forecast errors. Across 11 of the 16 traffic categories examined, the random
walk forecasts are associated with the highest covariance proportions, suggesting that they are
less prone to systematic deviations from the mean and variance of the actual time series.
However, the econometric forecasts have higher covariance proportions than any of the
alternatives for two of the traffic categories. The neural network forecasts have the highest
covariance proportion in three cases. The analysis of forecast error decompositions indicate
somewhat dissatisfying outcomes for the relatively sophisticated forecasting models.

Finally, planners are also often concerned with correctly anticipating the direction of change
in traffic variables. Statistical tests of directional accuracy may prove useful in this regard. The
null hypothesis that econometric forecasts fail to provide useful information on directional
accuracy is rejected for a majority of the traffic categories. However, for the neural network
forecasts, the null hypothesis can only be rejected in a minority of cases. The directional accuracy
results lend further support to the regional econometric model. Overall, the latter model appears
to be fairly reliable, although both neural networks and random walks are sometimes more
accurate.

Acknowledgements

Financial support for this research was provided by El Paso Water, City of El Paso Office of Management &
Budget, National Science Foundation Grant DRL-1740695, the UTEP Center for the Study of Western
Hemispheric Trade, and the Hunt Institute for Global Competitiveness at UTEP. Econometric research assistance
was provided by Ernesto Duarte and Omar Solis.

References

Antoniou, C., Psarianos, B. and Brilon., W. (2011), Induced Traffic Prediction Inaccuracies as a Source of
Traffic Forecasting Failure. Transportation Letters, Vol. 3 (4): 253-264.

Chen, S.-C., Kuo, S.-Y., Chang, K.-W., and Wang, Y.-T. (2012), Improving the Forecasting Accuracy of Air
Passenger and Air Cargo Demand: The Application of Back-Propagation Neural Networks. Transportation
Planning and Technology, Vol. 35 (3): 373-392.

Church, K.B. and Curram., S.P. (1996), Forecasting Consumers’ Expenditure: A Comparison between
Econometric and Neural Network Models. International Journal of Forecasting, Vol. 12 (2): 255-267.

Faraway, J. and Chatfield, C. (1998), Time Series Forecasting with Neural Networks: A Comparative Study
Using the Airline Data. Journal of the Royal Statistical Society Series C (Applied Statistics), Vol. 47 (2):
231-250.

Figliozzi, M.A., Harrison, R. and McCray, J.P. (2001), Estimating Texas-Mexico North American Free Trade
Agreement Truck Volumes. Transportation Research Record, 1763: 42-47.

Fildes, R., Y. Wei, Y. and Ismail, S. (2011), Evaluating the Forecasting Performance of Econometric Models of
Air Passenger Traffic Flows Using Multiple Error Measures. International Journal of Forecasting, Vol.
27 (3): 902-922.

Fullerton, T.M., Jr. (2001), Specification of a Borderplex Econometric Forecasting Model. International Regional
Science Review, Vol. 24 (2): 245-260.

Fullerton, T.M., Jr. (2004), “Borderplex Bridge and Air Econometric Forecast Accuracy.” Journal of
Transportation & Statistics 7 (1): 7-21.



Econometric Versus Neural Network Transportation Forecasts 91

Fullerton, T.M., Jr. and Mukhopadhyay, S. (2013), Border Region Bridge and Air Transport Predictability.
Journal of Business & Economics, Vol. 4 (11): 1089-1104.

Fullerton, T.M., Jr., Jimenez, A.A. and, Walke, A.G. (2015), An Econometric Analysis of Retail Gasoline
Prices in a Border Metropolitan Economy. North American Journal of Economics & Finance, Vol. 34
(SI): 450-461.

Granger, C.W.J. and Pesaran, M.H. (2000), Economic and Statistical Measures of Forecast Accuracy. Journal
of Forecasting, Vol. 19 (7): 537-560.

Hann, T.H. and Steurer, E. (1996), Much Ado about Nothing? Exchange Rate Forecasting: Neural Networks
vs. Linear Models Using Monthly and Weekly Data. Neurocomputing, Vol. 10 (4): 323-339.

Heravi, S., Osborn, D.R. and Birchenhall, C.R. (2004), Linear versus Neural Network Forecasts for European
Industrial Production Series. International Journal of Forecasting, Vol. 20 (3): 435-446.

Mukhopadhyay, S. (2006), Predicting Global Diffusion of the Internet: An Alternative to Diffusion Models.
Communications of the Association for Information Systems, Vol. 17: 106-122.

Nicolaisen, M.S. and Driscoll, P.A. (2014), Ex-Post Evaluations of Demand Forecast Accuracy: A Literature
Review. Transport Reviews, Vol. 34 (4): 540-557.

Pesaran, M.H. and Timmermann, A.G. (1992), A Simple Nonparametric Test of Predictive Performance. Journal
of Business & Economic Statistics, Vol. 10 (4): 461-465.

Pesaran, M.H. and Timmermann, A.G. (1994), A Generalization of the Non-Parametric Henriksson-Merton
Test of Market Timing. Economics Letters, Vol. 44 (1-2): 1-7.

Pindyck, R.S. and Rubinfeld., D.L. (1998), Econometric Models and Economic Forecasts, 4th edition, Boston,
MA: Irwin McGraw-Hill.

Rumelhart, D. E., Hinton G. E. and, Williams, R. J. (1986), Learning Internal Representations by Error
Propagation. Chapter 8 in Parallel Distributed Processing: Explorations in the Microstructure of Cognition,
Vol. 1, D.E. Rumelhart and J.L. McClelland, Editors, Cambridge, MA: MIT Press.

Vlahogianni, E.I., and M.G. Karlaftis. (2013), “Testing and Comparing Neural Network and Statistical
Approaches for Predicting Transportation Time Series.” Transportation Research Record 2399: 9-22.

Walke, A.G., and Fullerton, T.M. Jr. (2014), Freight Transportation Costs and the Thickening of the US-
Mexico Border. Applied Economics, Vol. 46 (11): 1248-1258.

Wei, Y. and Chen, M.-C. (2012), Forecasting the Short-Term Metro Passenger Flow with Empirical Mode
Decomposition and Neural Networks. Transportation Research Part C, Vol. 21 (1): 148-162.

Xiang, C., Ding, S.Q. and Lee, T.H. (2005), Geometrical Interpretation and Architecture Selection of MLP,
IEEE Transactions on Neural Networks, Vol. 16 (1): 84-96.

Xiao, Y., Liu, J.J., Xiao, J., Hu, Y., Bu, H., and Wang, S. (2015), Application of Multiscale Analysis-Based
Intelligent Ensemble Modelling on Airport Traffic Forecast. Transportation Letters, Vol. 7 (2): 73-79.




