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Abstract—The fundamental limits of communication over
multiple-input multiple-output (MIMO) networks are considered
when a limited number of one-bit analog to digital converters
(ADC) are used at the receiver terminals. Prior works have
mainly focused on point-to-point communications, where receiver
architectures consisting of a concatenation of an analog process-
ing module, a limited number of one-bit ADCs with non-adaptive
thresholds, and a digital processing module are considered. In
this work, a new receiver architecture is proposed which utilizes
adaptive threshold one-bit ADCs — where the ADC thresholds
at each channel-use are dependent on the channel outputs in the
previous channel-uses — to mitigate the quantization rate-loss.
Coding schemes are proposed for communication over the point-
to-point and broadcast channels, and achievable rate regions are
derived. In the high SNR regime, it is shown that using the
proposed architectures and coding schemes leads to the largest
achievable rate regions among all receiver architectures with the
same number of one-bit ADCs.

I. Introduction

Next generation cellular networks will utilize hundreds of
antennas at the base station and in excess of ten antennas at
the user terminals [1]. A major obstacle in implementation and
adoption of massive multiple-input multiple-output (MIMO)
systems and millimeter wave (mmWave) technologies is the
high energy consumption resulting from the large number of
antennas in the transmitter and receiver terminals [2], [3].

In traditional fully digital receivers, each antenna is con-
nected to a distinct high resolution analog to digital converter
(ADC). While ADCs are an essential component of wireless
communication systems, they are a major source of power
consumption [2]. In conventional ADC design, the power
consumption of an nq-bit ADC grows exponentially in nq [4].
Consequently, the power requirements for nq one-bit ADCs
— which grows linearly in nq — is significantly less than that
of a single nq-bit ADC. As a result, the use of several one-
bit ADCs instead of a single high resolution ADC has been
proposed to limit the power consumption at MIMO receiver
terminals [5]–[10]. However, the receiver architectures studied
in the literature lead to a rate-loss, in the sense that when nq

one-bit ADCs are used, they achieve rates strictly less than nq

bits per channel-use [11].
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There has been a large body of work on characterizing
the rate-loss due to low resolution quantization in point-to-
point (PtP) MIMO systems [6]–[10]. These works consider
a PtP MIMO communication problem, where the receiver is
equipped with a limited number of one-bit threshold ADCs.
The receiver performs linear analog processing on the received
channel output vector and feeds the resulting vector to the
one-bit ADCs. The digitized output is stored and blockwise
processing is performed to recover the message. In particular,
[6] and [8] show that using non-zero thresholds in the ADCs
can lead to higher achievable rates.

In a companion paper [11], we studied PtP MIMO commu-
nication with nq one-bit ADCs at the receiver, and proposed a
blockwise non-adaptive threshold receiver architecture where
the ADC thresholds are fixed over the transmission block.
We showed that this architecture, which uses analog delay
elements, results in an achievable rate that grows linearly in nq,
the number of ADCs at high SNRs, and achieves the maximum
rate for a PtP MIMO system for a given nq. This is in contrast
with prior works, where the increase in capacity is logarithmic
in nq [1], [6]. However, the performance analysis in [11] does
not extend naturally to PtP communication in low SNRs and
multiterminal communications. In this paper, we consider PtP
and multiterminal MIMO communication in the presence of
a set of nq low resolution ADCs at the receiver. While we
consider the application of one-bit ADCs, the analysis can be
extended in a straightforward manner to the case where a set
of b-bit ADCs are used at the receiver, where b is an arbitrary
system parameter. We propose a class of adaptive threshold
receiver architectures, where the ADC thresholds at each
channel-use depend on the channel outputs in the previous
channel-uses. The proposed adaptive threshold architecture
resembles the class of successive approximation register ADCs
[12], and is amiable to analysis for PtP communication in the
low SNR regime and multiterminal communications. In addi-
tion, in PtP communications, the proposed adaptive threshold
architecture achieves the same optimal high SNR rate as the
non-adaptive threshold one of [11].

While much of the literature focuses on PtP communi-
cation, the use of low resolution ADCs at the receivers in
multiterminal communications gives rise to new challenges in
interference management and successive decoding schemes.
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Fig. 1. A PtP-QMIMO system is shown where the linear combiner, temporal processing, and adaptive threshold coefficients are characterized by the matrices
vnq×nr , bn×n, and un×n, respectively. Each of the columns of tnq×n are equal to the threshold vector tnq . The ADC module consists of nq one-bit ADCs.

There have only been few works analyzing efficient and
reliable multiterminal receiver architectures and communica-
tion strategies in the presence of low resolution ADCs. In
[13], communication over the multiple-access channel (MAC)
was studied when each transmitter is equipped with a single
antenna and the receiver has a single one-bit ADC. It was
shown that the optimal input distribution is discrete. Uplink
communication over wireless networks modeled as a MAC,
was also studied in [14] and practical coding strategies were
proposed when coarse quantization is used at the receiver.

Using the adaptive threshold receiver architecture, we pro-
pose coding schemes for communication over PtP channels
and the broadcast channel (BC), and derive achievable rate or
rate regions for arbitrary SNRs. We show that the proposed
architecture achieves the optimal rate region in the presence
of one-bit ADCs when SNR goes to infinity in all receiver
terminals in the sense that the achievable region cannot be
expanded by improving the architecture design without the
use of additional ADCs. The ideas used in constructing the
coding scheme may be used to devise coding strategies for
communication over the MAC as well. The MAC achievable
region will appear in a longer version of this work.

The rest of the paper is organized as follows: Section II
explains the system model. Section III contains the proposed
ADC module construction and receiver architectures. In Sec-
tion IV, we derive achievable regions for various multiterminal
communication settings. Section V concludes the paper.

Notation: Sets are denoted by calligraphic letters such as
X,U. The set of natural numbers and real numbers are denoted
by N and R, respectively. The set of numbers {1, 2, · · · , n}, n ∈
N is represented by [n]. For a given n ∈ N, the n-length vector
(x1, x2, . . . , xn) is written as xn. The subvector (xk, xk+1, · · · , xn)
is denoted by xn

k . We write ||xn||2 to denote the L2-norm of xn.
An n × m matrix is written as hn×m = [hi, j]i, j∈[n]×[m], and In is
the n× n identity matrix. The notation hm(i), i ∈ [n] is used to
represent the ith column of hn×m.

II. SystemModel

We first describe the PtP MIMO communication setup when
a limited number of one-bit ADCs are available at the receiver
which also forms the basis of the BC model. Consider a PtP-
MIMO system characterized by (nt, nr, hnr×nt ), where nt is the
number of transmitter antennas, nr is the number of receiver

antennas, and hnr×nt is the channel gain matrix. The input and
output vector pair (Xnt ,Ynr ) are related through

Ynr = hnr×nt Xnt + Nnr ,

where Nnr is a vector of independent and identically distributed
Gaussian variables with zero mean and unit variance, and the
channel input has average power constraint P. The channel
gain matrix is assumed to be fixed over the transmission block
and is known at the transmitter and receiver. The receiver
uses a concatenation of an analog processing module which
performs analog signal processing on the received signals,
an ADC module consisting of nq one-bit threshold ADCs to
digitize and store the signals, and a digital processing module
which performs a digital blockwise decoding operation on the
stored bits to recover the message. The communication system
is called an (nt, nr, hnr×nt , nq) PtP-QMIMO system.

One-shot Architectures: Prior works have proposed analog
processing of the received signals before quantization as a
means to mitigate the rate-loss [6]–[10]. In these works, com-
munication is performed in a transmission block of length n.
At each channel-use, an analog linear combiner multiplies the
channel output vector Ynr by a spatial analog processing matrix
vnq×nr and the output vector is fed to the threshold ADCs,
where the threshold vector is denoted by tnq . The spatial analog
processing matrix and threshold vector are assumed to be fixed
over the transmission block. The ADC output vector in the ith
channel-use is Ŵnq (i) = Q(vnq×nr Ynr (i) + tnq ), i ∈ [n], where
Ynr (i) is the channel output in that channel-use, and Q(xnq ) is
the element-wise sign quantization of xnq . The digital output
is stored by the receiver and digital blockwise processing is
performed to recover the message. Note that this architecture
does not allow for analog temporal processing of the received
signals prior to quantization. Consequently, it is called one-
shot receiver architecture. The one-shot capacity, maximized
over all spatial analog processing matrices vnq×nr and threshold
vectors tnq , is denoted by COS (hnr×nt , nq).

Adaptive Threshold Architectures: We propose a specific
class of adaptive threshold blockwise receiver (AT-Rx) archi-
tectures shown in Fig. 1. The matrix Ynr×n consists of the
received channel output vectors over n channel-uses, where
Ynr (i) is the output in the ith channel-use. The outputs are
linearly combined by the temporal analog processing matrix
bn×n and the spatial analog processing matrix vnq×nr . These
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linear combination operations are implemented using analog
linear combiners and delay elements. More precisely, in order
to allow for temporal processing, the receiver uses delay
elements to store the previously received signals and feeds the
stored signals to the analog combiner. The analog combiner
produces vnq×nr Ynr×nbn×n. As shown in Fig. 1, the ADC thresh-
olds consist of a fixed component and an adaptive component.
To elaborate, let Ŵnq×n be the matrix of ADC outputs, where
Ŵnq (i), i ∈ [n] is the vector of ADC outputs after the ith
channel-use. The adaptive threshold matrix t̃nq×n is produced
by linear processing of Ŵnq×n and is equal to Ŵnq×nun×n, where
un×n is called the adaptive threshold coefficient matrix. The
vector t̃nq (i), i ∈ [n] is the adaptive threshold in the ith channel-
use. The fixed component of the ADC thresholds is the vector
tnq , and the matrix tnq×n consists of n identical copies of tnq .
The adaptive threshold coefficient matrix un×n is strictly upper-
triangular and the temporal linear combining coefficient matrix
bn×n is an upper-triangular matrix. This ensures that the system
can be implemented causally.

We call the architectures described above adaptive threshold
architectures (AT-Rx). We will provide an example of an
adaptive threshold architecture and justify its use in Section
III. The AT-Rx architectures are formally defined below.

Definition 1 (AT-Rx). Consider the PtP-QMIMO system
characterized by the tuple (nt, nr, hnr×nt , nq). Let bn×n ∈ Rn×n

be an upper-triangular matrix, and un×n ∈ Rn×n be a strictly
upper-triangular matrix. A transmission system with adaptive
threshold architecture at the receiver (AT-Rx) is characterized
by the tuple (n,Θ, vnq×nr , tnq , bn×n, un×n), the pair of encoding
and decoding functions (e, d) are defined in a similar fashion
as in PtP-QMIMO systems, where Ŵnq (i) = Q(vnq×nr Y

nr (i) +

t̃nq (i) + tnq ), i ∈ [n], Y
nr×n

= Ynr×nbn×n is the temporally
processed received signal, and t̃nq×n = Ŵnq×nun×n is the
adaptive threshold matrix. The capacity, maximized over all
linear combiner matrices vnq×nr , threshold vectors tnq , temporal
processing matrix bn×n and adaptive threshold coefficient
matrices un×n, is denoted by CAT (hnr×nt , nq).

The BC model considered in this paper is formally defined
below. An example is provided in Section IV.

Definition 2 (BC-QMIMO). A two-user MIMO broadcast
channel with one-bit ADCs (BC-QMIMO) is characterized by
the tuple (nt, nr,1, nr,2, h

nr,1×nt

1 , hnr,2×nt

2 , nq,1, nq,2), where nt is the
number of transmit antennas, nr,i, hnr,i×nt

i , nq,i, i ∈ {1, 2} are
the number of receive antennas, channel gain matrix, and
number of one-bit ADCs at the ith receiver. The channel input
vector is Xnt and the output at the ith receiver is given by
Ynr,i = hnr,i×nt

i Xnt + Nnr,i , i ∈ {1, 2}, where Nnr,i is a vector of
independent, zero-mean and unit-variance Gaussian variables.

III. Adaptive Threshold Architectures

It was shown in prior works that one-shot communication
over PtP-MIMO systems with a limited number of one-bit
ADCs at the receiver inflicts a rate-loss on the transmission
system in the sense that the maximum achievable rate is

strictly less than the number of one-bit ADCs even at high
SNRs [1], [6], [7]. More precisely, even in the ideal scenario
when the SNR is taken to be asymptotically large, the one-
shot capacity COS (hnr×nt , nq) is strictly less than nq. The
example in Section III.A illustrates how the proposed adaptive
threshold architectures eliminate the aforementioned rate-loss.
Particularly, Example 1 describes a method for constructing
an equivalent scalar quantizer with 2nq quantization bins from
nq one-bit threshold ADCs. Section III.B builds upon this
motivating example to propose a general coding strategy
for PtP MIMO communication with AT-Rx architectures and
derive an achievable rate region for arbitrary SNRs. Section
IV further extends these ideas to communication over BC.

A. Motivating Example

The following example explains the rate-loss due to low res-
olution quantization in a simple SISO scenario and describes
the proposed receiver architecture.

Example 1. One-shot Architecture: consider a PtP SISO
communication scenario (i.e. nt = nr = 1), where the receiver
is equipped with two one-bit ADCs (i.e. nq = 2). Fig. 2(a)
shows a generic one-shot PtP-QMIMO receiver in which the
receiver antenna receives Y1, and produces the digitized signal:

(Ŵ1, Ŵ2) =


(−1,−1) if Y1 < t1,
(−1,+1) if t1 < Y1 < t2,
(+1,+1) if t2 < Y1,

where we have assumed that t1 < t2 without loss of generality.
Note that the symbol (+1,−1) is not produced at the receiver.
In the high SNR scenario, the communication noise is negligi-
ble and rates close to log 3 bits per channel-use are achievable.
The rate is strictly less than nq = 2 bits per channel-use.
Adaptive Threshold Architecture: Fig. 2(b) shows the pro-
posed adaptive threshold architecture. The first ADC has zero
threshold and outputs the sign of the received signal Y1. The
threshold of the second ADC is adaptive and is set to be equal
to half of the output of the first ADC in the previous channel-

use. In the context of Definition 1, we have n = 2, v2×1 =

[
1
1

]
,

b2×2 = I2, and u2×2 =

[
0 − 1

2
0 0

]
. Let (Ŵ1(i), Ŵ2(i)) be the output

of the two ADCs at the ith channel-use. Then,

(Ŵ1(i), Ŵ2(i + 1)) =


(−1,−1) if Y1(i) < − 1

2 ,

(−1,+1) if − 1
2 < Y1(i) < 0,

(+1,−1) if 0 < Y1(i) < 1
2 ,

(+1,+1) if 1
2 < Y1(i).

As a result, the rate of 2 bits per channel-use is achievable at
high SNRs. Note that this rate is optimal in the sense that any
other receiver architecture and coding scheme cannot achieve
higher rates without increasing the number of one-bit ADCs.

B. Achievable PtP Rates

In the following, we consider communication over PtP-
QMIMO systems and propose a communication scheme which
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Fig. 2. (a) An OS-Rx system with fixed thresholds. (b) An AT-Rx system
where the first ADC has zero threshold and the second ADC has an adaptive
threshold which is equal to half of the output of the first ADC.

uses the singular value decomposition (SVD) in the analog
domain to transform the communication system into s parallel,
non-interfering channels. The ith parallel channel is allocated
a number of nq,i one-bit ADCs, where

∑
i∈[s] nq,i = nq. The

adaptive threshold architecture described in Example 1 is
employed to construct an equivalent scalar quantizer with 2nq,i

quantization bins. We calculate the maximum achievable rate
for a given ADC allocation (nq,1, nq,2, · · · , nq,s) and power
allocation (P1, P2, · · · , Ps) for the subchannel subject to the
total power constraint. The following theorem describes the
set of achievable rates. The proof is provided in [15].

Theorem 1. For the PtP-QMIMO characterized by
(nt, nr, hnr×nt , nq) and average input power constraint P,
the rate R is achievable if it satisfies the following inequality:

R ≤ max
s∑

k=1

I(X̃k; Ỹk)

where the maximum is taken over (nq,i)i∈[s], (Pi)i∈[s] such that∑
i∈[s] nq,i = nq,

∑
i∈[s] Pi = P, X̃k = ak ·

(
2X̂k − 1 − 2nq,k

)
, Ỹk =

σkX̃k + Nk, ak =
√

3Pk

22nq,k−1
, X̂k is uniformly distributed over

[2nq,k ], N s is a vector of i.i.d. zero-mean Gaussian variables
with unit variance, and σk is the kth singular value of hnr×nt .

Outline of proof. Let nq,1, nq,2, · · · , nq,s ∈ N ∪ {0} and
P1, P2, · · · , Ps ∈ R

≥0 such that
∑

i∈[s] nq,i = nq and
∑

i∈[s] Pi =

P. Let hnr×nt = Φnr×nr Σnr×nt Γnt×nt be the SVD of the channel
gain matrix. Let Xnt = Γnt×nt X̃nt . The transmitter sends X̃s,
the first s elements of the vector X̃nt . The receiver receives
Ynr and computes Ỹnr such that Ynr = Φnr×nr Ỹnr in the
analog combiner module. The resulting parallel channels are
Ỹi = σiX̃i + Ñi, i ∈ [s], where σi, i ∈ [s] is the ith singular
value of the channel matrix hnr×nt and the power constraint
E(‖X̃s‖22) ≤ P must hold. The ith parallel channel is allocated
nq,i one-bit ADCs and the average power constraint Pi. The nq,i

one-bit ADCs are used to construct a uniform quantizer with
2nq,i levels as described in Example 1. The achievable rate is
the summation of the rates of each sub-channel. It follows from
standard Shannon theoretic arguments that the transmission
rate of I(X̃k; Ỹk) is achievable for the k’th channel. As a result,
the total transmission rate of

∑
k∈[s] I(X̃k; Ỹk) is achievable. �

X2 N2

X1

N1

Tx

Rx

Rx
dM2

dM1

(M1;M2)

Fig. 3. A two user broadcast channel example.

Note that as SNR→ ∞, we have

I(X̃k; Ỹk)
(a)
→ H(X̃k)

(b)
= H(X̂k)

(c)
= nq,k,

where (a) holds since at high SNR we have h(X̃k |Ỹk) ≈ 0,
(b) follows by the bijectivity of the mapping X̃k = ak ·(
2X̂k − 1 − 2nq,k

)
, and (c) holds since X̂k is uniformly dis-

tributed over [2nq,k ]. As a result, the total transmission rate
approaches nq. Consequently, the performance converges to
optimality as SNR is increased asymptotically since no more
than nq bits per channel-use may be decoded using nq one-bit
ADCs at each channel-use. This is in contrast with [1] and [6],
where the achievable rate grows logarithmically in the number
of ADCs at high SNRs.

IV. Broadcast Channel Communication Strategies

In this section, we propose BC coding strategies and derive
achievable regions for communication over the BC.

A. Motivating Example

The following example describes the key ideas used in the
proposed coding strategies.

Example 2. Consider the two-user broadcast channel shown
in Fig. 3. The BC-QMIMO system is characterized by
(nt, nr,1, nr,2, h

nr,1×nt

1 , hnr,2×nt

2 , nq,1, nq,2), where nt = 2, nr,1 = nr,2 =

nq,1 = nq,2 = 1, and hnr,1×nt

1 = hnr,2×nt

2 =
[
1 1

]
. We consider the

achievable rate vectors when SNR→ ∞ when one-shot and
adaptive threshold architectures are used at the receiver.
One-shot Architecture with Zero Thresholds: If the re-
ceivers are equipped with one-shot architectures and zero-
threshold ADCs (i.e. t1,k = 0, k ∈ {1, 2}), then the two users’
channels are statistically equivalent. As a result, each receiver
may decode the other receivers’ message. Consequently, by
Fano’s inequality, R1 + R2 ≤ 1.
One-shot Architecture with Non-zero Thresholds: Consider
a one-shot architecture where the first receiver is equipped
with a zero-threshold ADC and at the second receiver, the
ADC threshold is equal to 0 < ε � P. Let the channel input
be equal to X1 + X2 = (−1)U1

√
P′
2 + (−1)U2

√
P′, where P′ = 4

5 P
and U1 and U2 correspond to the binary messages sent to
receivers one and two, respectively. It is straightforward to
verify that R1 + R2 = 1 + C, where C is the capacity of a
binary Z-channel with cross-over probability 1

2 .
Adaptive Threshold Architecture: Let each receiver be
equipped with the adaptive threshold architecture, where the
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temporal processing matrix is b2×2 =

[
1 1
0 0

]
, v1×1 = 1, and

the adaptive threshold coefficient matrix is u2×2 =

[
0 − 1

2
0 0

]
.

We argue that the symmetric sum-rate of 2 bits per channel-
use (1 bit per channel-use for each user) is achievable using
this architecture. Assume that the transmitter is to send the
message (Ui,1,Ui,2, · · · ,Ui,m), i ∈ {1, 2} to the ith receiver over
m+1 channel-uses, where Ui, j, j ∈ [m] are independent binary
symmetric variables and m is an odd number. The odd (even)
channel-uses are used to transmit two bits of information to
the first (second) receiver. More precisely, the channel input
in the jth channel-use is

X j = X1, j + X2, j = (−1)Uk, j′
√

P′ + (−1)Uk, j′+1

√
P′

2
,

where P′ = 4
5 P, in the odd channel-uses k = 1 and j′ = j, and

in the even channel-uses k = 2 and j′ = j − 1. We explain the
decoding process at the first receiver in the first two channel-
uses. The decoder receives Y1 and feeds it to a zero-threshold
ADC to recover U1,1. It also stores Y1 using a delay element
and in the next channel-use feeds it to the ADC with threshold
1
2 U1,1. The second decoder uses a similar method to recover
its corresponding message. Note that the resulting sum-rate
approaches 2 bits per channel-use as m,SNR→ ∞.

We observe that in the adaptive threshold architecture
described in Example 2, the transmitter uses a time-sharing
method where the odd (even) channel-uses are used for trans-
mission to the first (second) user. However, the one-bit ADCs
at both receivers are active at all channel-uses. This leads to
optimal performance at high SNRs where the communication
bottleneck is the number of one-bit ADCs. In the next section,
we build upon the time-sharing strategy to derive an achievable
region for the general BC-QMIMO system.

B. Achievable Regions

In this section, we build upon the time-sharing strategy
described in Example 2 and the coding strategy used in
Theorem 1 to provide achievable rate-regions for the two user
BC-QMIMO under quantization resolution constraints when
adaptive threshold architectures are used at the receivers. We
prove the following theorem in [15].

Theorem 2. Consider the BC-QMIMO system characterized
by (nt, nr,1, nr,2, h

nr,1×nt

1 , hnr,2×nt

2 , nq,1, nq,2). Let R be the set of rate
vectors (R1,R2) for which there exists (nq, j,k)k∈[s j], j ∈ {1, 2} and
(P j,k)k∈[s j], j∈{1,2} satisfying the following bounds:∑

k∈[s j]

nq, j,k = nq, j,
∑

k∈[s j]

P j,k = P,

R j ≤
1
2

∑
k∈[s j]

I(X̃ j,k, Ỹ j,k),

where s j, j ∈ {1, 2} is the number of singular values of hnr, j×nt

j ,
X̃ j,k = ak

(
2X̂ j,k − 1 − 22nq, j,k

)
, Ỹ j,k = σ j,kX̃ j,k + N j,k, k ∈ [s j], j ∈

{1, 2}, a j,k =

√
3P j,k

24nq, j,k−1
, X̂ j,k is uniformly distributed over 22nq, j,k ,

and σ j,k is the kth singular value of hnr×nt, j

j . Then conv(R) is
a subset of the optimal achievable rate region, where conv(·)
is the convex hull function.

The rate pair (nq,1, nq,2) is achievable at high SNR since
I(X̃ j,k; Ỹ j,k) → 2nq, j,k, j ∈ {1, 2}, k ∈ [s j] as shown in Section
III. As a result, the coding scheme is optimal at high SNRs
in the sense that the rate pair (nq,1, nq,2) cannot be improved
upon unless the number of one-bit ADCs is increased.

V. Conclusion

We have studied multiterminal communication over MIMO
channels when a limited number of one-bit ADCs are available
at the receiver terminals. We have proposed a receiver archi-
tecture which uses adaptive thresholds ADCs to mitigate the
rate-loss due to low resolution quantization. We have derived
achievable rate regions for communication over point-to-point
and the two user broadcast channel. We have shown that the
achievable regions are tight as the SNR goes to infinity.
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